linux/sound/soc/codecs/nau8540.c
David Lin a60a609b7f
ASoC: nau8540: Add self recovery to improve capture quility
Reading the peak data to detect abnormal data in the ADC channel.
If abnormal data occurs, the driver takes recovery actions to
refresh the ADC channel.

Signed-off-by: David Lin <CTLIN0@nuvoton.com>
Link: https://lore.kernel.org/r/20231108061658.1265065-1-CTLIN0@nuvoton.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2023-11-08 13:21:05 +00:00

950 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* NAU85L40 ALSA SoC audio driver
*
* Copyright 2016 Nuvoton Technology Corp.
* Author: John Hsu <KCHSU0@nuvoton.com>
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/i2c.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/spi/spi.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/initval.h>
#include <sound/tlv.h>
#include "nau8540.h"
#define NAU_FREF_MAX 13500000
#define NAU_FVCO_MAX 100000000
#define NAU_FVCO_MIN 90000000
/* the maximum frequency of CLK_ADC */
#define CLK_ADC_MAX 6144000
/* scaling for mclk from sysclk_src output */
static const struct nau8540_fll_attr mclk_src_scaling[] = {
{ 1, 0x0 },
{ 2, 0x2 },
{ 4, 0x3 },
{ 8, 0x4 },
{ 16, 0x5 },
{ 32, 0x6 },
{ 3, 0x7 },
{ 6, 0xa },
{ 12, 0xb },
{ 24, 0xc },
};
/* ratio for input clk freq */
static const struct nau8540_fll_attr fll_ratio[] = {
{ 512000, 0x01 },
{ 256000, 0x02 },
{ 128000, 0x04 },
{ 64000, 0x08 },
{ 32000, 0x10 },
{ 8000, 0x20 },
{ 4000, 0x40 },
};
static const struct nau8540_fll_attr fll_pre_scalar[] = {
{ 1, 0x0 },
{ 2, 0x1 },
{ 4, 0x2 },
{ 8, 0x3 },
};
/* over sampling rate */
static const struct nau8540_osr_attr osr_adc_sel[] = {
{ 32, 3 }, /* OSR 32, SRC 1/8 */
{ 64, 2 }, /* OSR 64, SRC 1/4 */
{ 128, 1 }, /* OSR 128, SRC 1/2 */
{ 256, 0 }, /* OSR 256, SRC 1 */
};
static const struct reg_default nau8540_reg_defaults[] = {
{NAU8540_REG_POWER_MANAGEMENT, 0x0000},
{NAU8540_REG_CLOCK_CTRL, 0x0000},
{NAU8540_REG_CLOCK_SRC, 0x0000},
{NAU8540_REG_FLL1, 0x0001},
{NAU8540_REG_FLL2, 0x3126},
{NAU8540_REG_FLL3, 0x0008},
{NAU8540_REG_FLL4, 0x0010},
{NAU8540_REG_FLL5, 0xC000},
{NAU8540_REG_FLL6, 0x6000},
{NAU8540_REG_FLL_VCO_RSV, 0xF13C},
{NAU8540_REG_PCM_CTRL0, 0x000B},
{NAU8540_REG_PCM_CTRL1, 0x3010},
{NAU8540_REG_PCM_CTRL2, 0x0800},
{NAU8540_REG_PCM_CTRL3, 0x0000},
{NAU8540_REG_PCM_CTRL4, 0x000F},
{NAU8540_REG_ALC_CONTROL_1, 0x0000},
{NAU8540_REG_ALC_CONTROL_2, 0x700B},
{NAU8540_REG_ALC_CONTROL_3, 0x0022},
{NAU8540_REG_ALC_CONTROL_4, 0x1010},
{NAU8540_REG_ALC_CONTROL_5, 0x1010},
{NAU8540_REG_NOTCH_FIL1_CH1, 0x0000},
{NAU8540_REG_NOTCH_FIL2_CH1, 0x0000},
{NAU8540_REG_NOTCH_FIL1_CH2, 0x0000},
{NAU8540_REG_NOTCH_FIL2_CH2, 0x0000},
{NAU8540_REG_NOTCH_FIL1_CH3, 0x0000},
{NAU8540_REG_NOTCH_FIL2_CH3, 0x0000},
{NAU8540_REG_NOTCH_FIL1_CH4, 0x0000},
{NAU8540_REG_NOTCH_FIL2_CH4, 0x0000},
{NAU8540_REG_HPF_FILTER_CH12, 0x0000},
{NAU8540_REG_HPF_FILTER_CH34, 0x0000},
{NAU8540_REG_ADC_SAMPLE_RATE, 0x0002},
{NAU8540_REG_DIGITAL_GAIN_CH1, 0x0400},
{NAU8540_REG_DIGITAL_GAIN_CH2, 0x0400},
{NAU8540_REG_DIGITAL_GAIN_CH3, 0x0400},
{NAU8540_REG_DIGITAL_GAIN_CH4, 0x0400},
{NAU8540_REG_DIGITAL_MUX, 0x00E4},
{NAU8540_REG_GPIO_CTRL, 0x0000},
{NAU8540_REG_MISC_CTRL, 0x0000},
{NAU8540_REG_I2C_CTRL, 0xEFFF},
{NAU8540_REG_VMID_CTRL, 0x0000},
{NAU8540_REG_MUTE, 0x0000},
{NAU8540_REG_ANALOG_ADC1, 0x0011},
{NAU8540_REG_ANALOG_ADC2, 0x0020},
{NAU8540_REG_ANALOG_PWR, 0x0000},
{NAU8540_REG_MIC_BIAS, 0x0004},
{NAU8540_REG_REFERENCE, 0x0000},
{NAU8540_REG_FEPGA1, 0x0000},
{NAU8540_REG_FEPGA2, 0x0000},
{NAU8540_REG_FEPGA3, 0x0101},
{NAU8540_REG_FEPGA4, 0x0101},
{NAU8540_REG_PWR, 0x0000},
};
static bool nau8540_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case NAU8540_REG_POWER_MANAGEMENT ... NAU8540_REG_FLL_VCO_RSV:
case NAU8540_REG_PCM_CTRL0 ... NAU8540_REG_PCM_CTRL4:
case NAU8540_REG_ALC_CONTROL_1 ... NAU8540_REG_ALC_CONTROL_5:
case NAU8540_REG_ALC_GAIN_CH12 ... NAU8540_REG_ADC_SAMPLE_RATE:
case NAU8540_REG_DIGITAL_GAIN_CH1 ... NAU8540_REG_DIGITAL_MUX:
case NAU8540_REG_P2P_CH1 ... NAU8540_REG_I2C_CTRL:
case NAU8540_REG_I2C_DEVICE_ID:
case NAU8540_REG_VMID_CTRL ... NAU8540_REG_MUTE:
case NAU8540_REG_ANALOG_ADC1 ... NAU8540_REG_PWR:
return true;
default:
return false;
}
}
static bool nau8540_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case NAU8540_REG_SW_RESET ... NAU8540_REG_FLL_VCO_RSV:
case NAU8540_REG_PCM_CTRL0 ... NAU8540_REG_PCM_CTRL4:
case NAU8540_REG_ALC_CONTROL_1 ... NAU8540_REG_ALC_CONTROL_5:
case NAU8540_REG_NOTCH_FIL1_CH1 ... NAU8540_REG_ADC_SAMPLE_RATE:
case NAU8540_REG_DIGITAL_GAIN_CH1 ... NAU8540_REG_DIGITAL_MUX:
case NAU8540_REG_GPIO_CTRL ... NAU8540_REG_I2C_CTRL:
case NAU8540_REG_RST:
case NAU8540_REG_VMID_CTRL ... NAU8540_REG_MUTE:
case NAU8540_REG_ANALOG_ADC1 ... NAU8540_REG_PWR:
return true;
default:
return false;
}
}
static bool nau8540_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case NAU8540_REG_SW_RESET:
case NAU8540_REG_ALC_GAIN_CH12 ... NAU8540_REG_ALC_STATUS:
case NAU8540_REG_P2P_CH1 ... NAU8540_REG_PEAK_CH4:
case NAU8540_REG_I2C_DEVICE_ID:
case NAU8540_REG_RST:
return true;
default:
return false;
}
}
static const DECLARE_TLV_DB_MINMAX(adc_vol_tlv, -12800, 3600);
static const DECLARE_TLV_DB_MINMAX(fepga_gain_tlv, -100, 3600);
static const struct snd_kcontrol_new nau8540_snd_controls[] = {
SOC_SINGLE_TLV("Mic1 Volume", NAU8540_REG_DIGITAL_GAIN_CH1,
0, 0x520, 0, adc_vol_tlv),
SOC_SINGLE_TLV("Mic2 Volume", NAU8540_REG_DIGITAL_GAIN_CH2,
0, 0x520, 0, adc_vol_tlv),
SOC_SINGLE_TLV("Mic3 Volume", NAU8540_REG_DIGITAL_GAIN_CH3,
0, 0x520, 0, adc_vol_tlv),
SOC_SINGLE_TLV("Mic4 Volume", NAU8540_REG_DIGITAL_GAIN_CH4,
0, 0x520, 0, adc_vol_tlv),
SOC_SINGLE_TLV("Frontend PGA1 Volume", NAU8540_REG_FEPGA3,
0, 0x25, 0, fepga_gain_tlv),
SOC_SINGLE_TLV("Frontend PGA2 Volume", NAU8540_REG_FEPGA3,
8, 0x25, 0, fepga_gain_tlv),
SOC_SINGLE_TLV("Frontend PGA3 Volume", NAU8540_REG_FEPGA4,
0, 0x25, 0, fepga_gain_tlv),
SOC_SINGLE_TLV("Frontend PGA4 Volume", NAU8540_REG_FEPGA4,
8, 0x25, 0, fepga_gain_tlv),
};
static const char * const adc_channel[] = {
"ADC channel 1", "ADC channel 2", "ADC channel 3", "ADC channel 4"
};
static SOC_ENUM_SINGLE_DECL(
digital_ch4_enum, NAU8540_REG_DIGITAL_MUX, 6, adc_channel);
static const struct snd_kcontrol_new digital_ch4_mux =
SOC_DAPM_ENUM("Digital CH4 Select", digital_ch4_enum);
static SOC_ENUM_SINGLE_DECL(
digital_ch3_enum, NAU8540_REG_DIGITAL_MUX, 4, adc_channel);
static const struct snd_kcontrol_new digital_ch3_mux =
SOC_DAPM_ENUM("Digital CH3 Select", digital_ch3_enum);
static SOC_ENUM_SINGLE_DECL(
digital_ch2_enum, NAU8540_REG_DIGITAL_MUX, 2, adc_channel);
static const struct snd_kcontrol_new digital_ch2_mux =
SOC_DAPM_ENUM("Digital CH2 Select", digital_ch2_enum);
static SOC_ENUM_SINGLE_DECL(
digital_ch1_enum, NAU8540_REG_DIGITAL_MUX, 0, adc_channel);
static const struct snd_kcontrol_new digital_ch1_mux =
SOC_DAPM_ENUM("Digital CH1 Select", digital_ch1_enum);
static int adc_power_control(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *k, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct nau8540 *nau8540 = snd_soc_component_get_drvdata(component);
if (SND_SOC_DAPM_EVENT_ON(event)) {
msleep(300);
/* DO12 and DO34 pad output enable */
regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL1,
NAU8540_I2S_DO12_TRI, 0);
regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL2,
NAU8540_I2S_DO34_TRI, 0);
} else if (SND_SOC_DAPM_EVENT_OFF(event)) {
regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL1,
NAU8540_I2S_DO12_TRI, NAU8540_I2S_DO12_TRI);
regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL2,
NAU8540_I2S_DO34_TRI, NAU8540_I2S_DO34_TRI);
}
return 0;
}
static int aiftx_power_control(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *k, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct nau8540 *nau8540 = snd_soc_component_get_drvdata(component);
if (SND_SOC_DAPM_EVENT_OFF(event)) {
regmap_write(nau8540->regmap, NAU8540_REG_RST, 0x0001);
regmap_write(nau8540->regmap, NAU8540_REG_RST, 0x0000);
}
return 0;
}
static const struct snd_soc_dapm_widget nau8540_dapm_widgets[] = {
SND_SOC_DAPM_SUPPLY("MICBIAS2", NAU8540_REG_MIC_BIAS, 11, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("MICBIAS1", NAU8540_REG_MIC_BIAS, 10, 0, NULL, 0),
SND_SOC_DAPM_INPUT("MIC1"),
SND_SOC_DAPM_INPUT("MIC2"),
SND_SOC_DAPM_INPUT("MIC3"),
SND_SOC_DAPM_INPUT("MIC4"),
SND_SOC_DAPM_PGA("Frontend PGA1", NAU8540_REG_PWR, 12, 0, NULL, 0),
SND_SOC_DAPM_PGA("Frontend PGA2", NAU8540_REG_PWR, 13, 0, NULL, 0),
SND_SOC_DAPM_PGA("Frontend PGA3", NAU8540_REG_PWR, 14, 0, NULL, 0),
SND_SOC_DAPM_PGA("Frontend PGA4", NAU8540_REG_PWR, 15, 0, NULL, 0),
SND_SOC_DAPM_ADC_E("ADC1", NULL,
NAU8540_REG_POWER_MANAGEMENT, 0, 0, adc_power_control,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_ADC_E("ADC2", NULL,
NAU8540_REG_POWER_MANAGEMENT, 1, 0, adc_power_control,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_ADC_E("ADC3", NULL,
NAU8540_REG_POWER_MANAGEMENT, 2, 0, adc_power_control,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_ADC_E("ADC4", NULL,
NAU8540_REG_POWER_MANAGEMENT, 3, 0, adc_power_control,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_PGA("ADC CH1", NAU8540_REG_ANALOG_PWR, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("ADC CH2", NAU8540_REG_ANALOG_PWR, 1, 0, NULL, 0),
SND_SOC_DAPM_PGA("ADC CH3", NAU8540_REG_ANALOG_PWR, 2, 0, NULL, 0),
SND_SOC_DAPM_PGA("ADC CH4", NAU8540_REG_ANALOG_PWR, 3, 0, NULL, 0),
SND_SOC_DAPM_MUX("Digital CH4 Mux",
SND_SOC_NOPM, 0, 0, &digital_ch4_mux),
SND_SOC_DAPM_MUX("Digital CH3 Mux",
SND_SOC_NOPM, 0, 0, &digital_ch3_mux),
SND_SOC_DAPM_MUX("Digital CH2 Mux",
SND_SOC_NOPM, 0, 0, &digital_ch2_mux),
SND_SOC_DAPM_MUX("Digital CH1 Mux",
SND_SOC_NOPM, 0, 0, &digital_ch1_mux),
SND_SOC_DAPM_AIF_OUT_E("AIFTX", "Capture", 0, SND_SOC_NOPM, 0, 0,
aiftx_power_control, SND_SOC_DAPM_POST_PMD),
};
static const struct snd_soc_dapm_route nau8540_dapm_routes[] = {
{"Frontend PGA1", NULL, "MIC1"},
{"Frontend PGA2", NULL, "MIC2"},
{"Frontend PGA3", NULL, "MIC3"},
{"Frontend PGA4", NULL, "MIC4"},
{"ADC1", NULL, "Frontend PGA1"},
{"ADC2", NULL, "Frontend PGA2"},
{"ADC3", NULL, "Frontend PGA3"},
{"ADC4", NULL, "Frontend PGA4"},
{"ADC CH1", NULL, "ADC1"},
{"ADC CH2", NULL, "ADC2"},
{"ADC CH3", NULL, "ADC3"},
{"ADC CH4", NULL, "ADC4"},
{"ADC1", NULL, "MICBIAS1"},
{"ADC2", NULL, "MICBIAS1"},
{"ADC3", NULL, "MICBIAS2"},
{"ADC4", NULL, "MICBIAS2"},
{"Digital CH1 Mux", "ADC channel 1", "ADC CH1"},
{"Digital CH1 Mux", "ADC channel 2", "ADC CH2"},
{"Digital CH1 Mux", "ADC channel 3", "ADC CH3"},
{"Digital CH1 Mux", "ADC channel 4", "ADC CH4"},
{"Digital CH2 Mux", "ADC channel 1", "ADC CH1"},
{"Digital CH2 Mux", "ADC channel 2", "ADC CH2"},
{"Digital CH2 Mux", "ADC channel 3", "ADC CH3"},
{"Digital CH2 Mux", "ADC channel 4", "ADC CH4"},
{"Digital CH3 Mux", "ADC channel 1", "ADC CH1"},
{"Digital CH3 Mux", "ADC channel 2", "ADC CH2"},
{"Digital CH3 Mux", "ADC channel 3", "ADC CH3"},
{"Digital CH3 Mux", "ADC channel 4", "ADC CH4"},
{"Digital CH4 Mux", "ADC channel 1", "ADC CH1"},
{"Digital CH4 Mux", "ADC channel 2", "ADC CH2"},
{"Digital CH4 Mux", "ADC channel 3", "ADC CH3"},
{"Digital CH4 Mux", "ADC channel 4", "ADC CH4"},
{"AIFTX", NULL, "Digital CH1 Mux"},
{"AIFTX", NULL, "Digital CH2 Mux"},
{"AIFTX", NULL, "Digital CH3 Mux"},
{"AIFTX", NULL, "Digital CH4 Mux"},
};
static const struct nau8540_osr_attr *
nau8540_get_osr(struct nau8540 *nau8540)
{
unsigned int osr;
regmap_read(nau8540->regmap, NAU8540_REG_ADC_SAMPLE_RATE, &osr);
osr &= NAU8540_ADC_OSR_MASK;
if (osr >= ARRAY_SIZE(osr_adc_sel))
return NULL;
return &osr_adc_sel[osr];
}
static int nau8540_dai_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct nau8540 *nau8540 = snd_soc_component_get_drvdata(component);
const struct nau8540_osr_attr *osr;
osr = nau8540_get_osr(nau8540);
if (!osr || !osr->osr)
return -EINVAL;
return snd_pcm_hw_constraint_minmax(substream->runtime,
SNDRV_PCM_HW_PARAM_RATE,
0, CLK_ADC_MAX / osr->osr);
}
static int nau8540_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params, struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct nau8540 *nau8540 = snd_soc_component_get_drvdata(component);
unsigned int val_len = 0;
const struct nau8540_osr_attr *osr;
/* CLK_ADC = OSR * FS
* ADC clock frequency is defined as Over Sampling Rate (OSR)
* multiplied by the audio sample rate (Fs). Note that the OSR and Fs
* values must be selected such that the maximum frequency is less
* than 6.144 MHz.
*/
osr = nau8540_get_osr(nau8540);
if (!osr || !osr->osr)
return -EINVAL;
if (params_rate(params) * osr->osr > CLK_ADC_MAX)
return -EINVAL;
regmap_update_bits(nau8540->regmap, NAU8540_REG_CLOCK_SRC,
NAU8540_CLK_ADC_SRC_MASK,
osr->clk_src << NAU8540_CLK_ADC_SRC_SFT);
switch (params_width(params)) {
case 16:
val_len |= NAU8540_I2S_DL_16;
break;
case 20:
val_len |= NAU8540_I2S_DL_20;
break;
case 24:
val_len |= NAU8540_I2S_DL_24;
break;
case 32:
val_len |= NAU8540_I2S_DL_32;
break;
default:
return -EINVAL;
}
regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL0,
NAU8540_I2S_DL_MASK, val_len);
return 0;
}
static int nau8540_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct snd_soc_component *component = dai->component;
struct nau8540 *nau8540 = snd_soc_component_get_drvdata(component);
unsigned int ctrl1_val = 0, ctrl2_val = 0;
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM:
ctrl2_val |= NAU8540_I2S_MS_MASTER;
break;
case SND_SOC_DAIFMT_CBS_CFS:
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
case SND_SOC_DAIFMT_IB_NF:
ctrl1_val |= NAU8540_I2S_BP_INV;
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
ctrl1_val |= NAU8540_I2S_DF_I2S;
break;
case SND_SOC_DAIFMT_LEFT_J:
ctrl1_val |= NAU8540_I2S_DF_LEFT;
break;
case SND_SOC_DAIFMT_RIGHT_J:
ctrl1_val |= NAU8540_I2S_DF_RIGTH;
break;
case SND_SOC_DAIFMT_DSP_A:
ctrl1_val |= NAU8540_I2S_DF_PCM_AB;
break;
case SND_SOC_DAIFMT_DSP_B:
ctrl1_val |= NAU8540_I2S_DF_PCM_AB;
ctrl1_val |= NAU8540_I2S_PCMB_EN;
break;
default:
return -EINVAL;
}
regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL0,
NAU8540_I2S_DL_MASK | NAU8540_I2S_DF_MASK |
NAU8540_I2S_BP_INV | NAU8540_I2S_PCMB_EN, ctrl1_val);
regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL1,
NAU8540_I2S_MS_MASK | NAU8540_I2S_DO12_OE, ctrl2_val);
regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL2,
NAU8540_I2S_DO34_OE, 0);
return 0;
}
/**
* nau8540_set_tdm_slot - configure DAI TX TDM.
* @dai: DAI
* @tx_mask: bitmask representing active TX slots. Ex.
* 0xf for normal 4 channel TDM.
* 0xf0 for shifted 4 channel TDM
* @rx_mask: no used.
* @slots: Number of slots in use.
* @slot_width: Width in bits for each slot.
*
* Configures a DAI for TDM operation. Only support 4 slots TDM.
*/
static int nau8540_set_tdm_slot(struct snd_soc_dai *dai,
unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
{
struct snd_soc_component *component = dai->component;
struct nau8540 *nau8540 = snd_soc_component_get_drvdata(component);
unsigned int ctrl2_val = 0, ctrl4_val = 0;
if (slots > 4 || ((tx_mask & 0xf0) && (tx_mask & 0xf)))
return -EINVAL;
ctrl4_val |= (NAU8540_TDM_MODE | NAU8540_TDM_OFFSET_EN);
if (tx_mask & 0xf0) {
ctrl2_val = 4 * slot_width;
ctrl4_val |= (tx_mask >> 4);
} else {
ctrl4_val |= tx_mask;
}
regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL4,
NAU8540_TDM_MODE | NAU8540_TDM_OFFSET_EN |
NAU8540_TDM_TX_MASK, ctrl4_val);
regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL1,
NAU8540_I2S_DO12_OE, NAU8540_I2S_DO12_OE);
regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL2,
NAU8540_I2S_DO34_OE | NAU8540_I2S_TSLOT_L_MASK,
NAU8540_I2S_DO34_OE | ctrl2_val);
return 0;
}
static int nau8540_dai_trigger(struct snd_pcm_substream *substream,
int cmd, struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct nau8540 *nau8540 = snd_soc_component_get_drvdata(component);
struct regmap *regmap = nau8540->regmap;
unsigned int val;
int ret = 0;
/* Reading the peak data to detect abnormal data in the ADC channel.
* If abnormal data happens, the driver takes recovery actions to
* refresh the ADC channel.
*/
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
regmap_update_bits(regmap, NAU8540_REG_CLOCK_CTRL,
NAU8540_CLK_AGC_EN, NAU8540_CLK_AGC_EN);
regmap_update_bits(regmap, NAU8540_REG_ALC_CONTROL_3,
NAU8540_ALC_CH_ALL_EN, NAU8540_ALC_CH_ALL_EN);
regmap_read(regmap, NAU8540_REG_PEAK_CH1, &val);
dev_dbg(nau8540->dev, "1.ADC CH1 peak data %x", val);
if (!val) {
regmap_update_bits(regmap, NAU8540_REG_MUTE,
NAU8540_PGA_CH_ALL_MUTE, NAU8540_PGA_CH_ALL_MUTE);
regmap_update_bits(regmap, NAU8540_REG_MUTE,
NAU8540_PGA_CH_ALL_MUTE, 0);
regmap_write(regmap, NAU8540_REG_RST, 0x1);
regmap_write(regmap, NAU8540_REG_RST, 0);
regmap_read(regmap, NAU8540_REG_PEAK_CH1, &val);
dev_dbg(nau8540->dev, "2.ADC CH1 peak data %x", val);
if (!val) {
dev_err(nau8540->dev, "Channel recovery failed!!");
ret = -EIO;
}
}
regmap_update_bits(regmap, NAU8540_REG_CLOCK_CTRL,
NAU8540_CLK_AGC_EN, 0);
regmap_update_bits(regmap, NAU8540_REG_ALC_CONTROL_3,
NAU8540_ALC_CH_ALL_EN, 0);
break;
default:
break;
}
return ret;
}
static const struct snd_soc_dai_ops nau8540_dai_ops = {
.startup = nau8540_dai_startup,
.hw_params = nau8540_hw_params,
.set_fmt = nau8540_set_fmt,
.set_tdm_slot = nau8540_set_tdm_slot,
.trigger = nau8540_dai_trigger,
};
#define NAU8540_RATES SNDRV_PCM_RATE_8000_48000
#define NAU8540_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
| SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
static struct snd_soc_dai_driver nau8540_dai = {
.name = "nau8540-hifi",
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = 4,
.rates = NAU8540_RATES,
.formats = NAU8540_FORMATS,
},
.ops = &nau8540_dai_ops,
};
/**
* nau8540_calc_fll_param - Calculate FLL parameters.
* @fll_in: external clock provided to codec.
* @fs: sampling rate.
* @fll_param: Pointer to structure of FLL parameters.
*
* Calculate FLL parameters to configure codec.
*
* Returns 0 for success or negative error code.
*/
static int nau8540_calc_fll_param(unsigned int fll_in,
unsigned int fs, struct nau8540_fll *fll_param)
{
u64 fvco, fvco_max;
unsigned int fref, i, fvco_sel;
/* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing
* freq_in by 1, 2, 4, or 8 using FLL pre-scalar.
* FREF = freq_in / NAU8540_FLL_REF_DIV_MASK
*/
for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) {
fref = fll_in / fll_pre_scalar[i].param;
if (fref <= NAU_FREF_MAX)
break;
}
if (i == ARRAY_SIZE(fll_pre_scalar))
return -EINVAL;
fll_param->clk_ref_div = fll_pre_scalar[i].val;
/* Choose the FLL ratio based on FREF */
for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) {
if (fref >= fll_ratio[i].param)
break;
}
if (i == ARRAY_SIZE(fll_ratio))
return -EINVAL;
fll_param->ratio = fll_ratio[i].val;
/* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs.
* FDCO must be within the 90MHz - 124MHz or the FFL cannot be
* guaranteed across the full range of operation.
* FDCO = freq_out * 2 * mclk_src_scaling
*/
fvco_max = 0;
fvco_sel = ARRAY_SIZE(mclk_src_scaling);
for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) {
fvco = 256ULL * fs * 2 * mclk_src_scaling[i].param;
if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX &&
fvco_max < fvco) {
fvco_max = fvco;
fvco_sel = i;
}
}
if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel)
return -EINVAL;
fll_param->mclk_src = mclk_src_scaling[fvco_sel].val;
/* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional
* input based on FDCO, FREF and FLL ratio.
*/
fvco = div_u64(fvco_max << 16, fref * fll_param->ratio);
fll_param->fll_int = (fvco >> 16) & 0x3FF;
fll_param->fll_frac = fvco & 0xFFFF;
return 0;
}
static void nau8540_fll_apply(struct regmap *regmap,
struct nau8540_fll *fll_param)
{
regmap_update_bits(regmap, NAU8540_REG_CLOCK_SRC,
NAU8540_CLK_SRC_MASK | NAU8540_CLK_MCLK_SRC_MASK,
NAU8540_CLK_SRC_MCLK | fll_param->mclk_src);
regmap_update_bits(regmap, NAU8540_REG_FLL1,
NAU8540_FLL_RATIO_MASK | NAU8540_ICTRL_LATCH_MASK,
fll_param->ratio | (0x6 << NAU8540_ICTRL_LATCH_SFT));
/* FLL 16-bit fractional input */
regmap_write(regmap, NAU8540_REG_FLL2, fll_param->fll_frac);
/* FLL 10-bit integer input */
regmap_update_bits(regmap, NAU8540_REG_FLL3,
NAU8540_FLL_INTEGER_MASK, fll_param->fll_int);
/* FLL pre-scaler */
regmap_update_bits(regmap, NAU8540_REG_FLL4,
NAU8540_FLL_REF_DIV_MASK,
fll_param->clk_ref_div << NAU8540_FLL_REF_DIV_SFT);
regmap_update_bits(regmap, NAU8540_REG_FLL5,
NAU8540_FLL_CLK_SW_MASK, NAU8540_FLL_CLK_SW_REF);
regmap_update_bits(regmap,
NAU8540_REG_FLL6, NAU8540_DCO_EN, 0);
if (fll_param->fll_frac) {
regmap_update_bits(regmap, NAU8540_REG_FLL5,
NAU8540_FLL_PDB_DAC_EN | NAU8540_FLL_LOOP_FTR_EN |
NAU8540_FLL_FTR_SW_MASK,
NAU8540_FLL_PDB_DAC_EN | NAU8540_FLL_LOOP_FTR_EN |
NAU8540_FLL_FTR_SW_FILTER);
regmap_update_bits(regmap, NAU8540_REG_FLL6,
NAU8540_SDM_EN | NAU8540_CUTOFF500,
NAU8540_SDM_EN | NAU8540_CUTOFF500);
} else {
regmap_update_bits(regmap, NAU8540_REG_FLL5,
NAU8540_FLL_PDB_DAC_EN | NAU8540_FLL_LOOP_FTR_EN |
NAU8540_FLL_FTR_SW_MASK, NAU8540_FLL_FTR_SW_ACCU);
regmap_update_bits(regmap, NAU8540_REG_FLL6,
NAU8540_SDM_EN | NAU8540_CUTOFF500, 0);
}
}
/* freq_out must be 256*Fs in order to achieve the best performance */
static int nau8540_set_pll(struct snd_soc_component *component, int pll_id, int source,
unsigned int freq_in, unsigned int freq_out)
{
struct nau8540 *nau8540 = snd_soc_component_get_drvdata(component);
struct nau8540_fll fll_param;
int ret, fs;
switch (pll_id) {
case NAU8540_CLK_FLL_MCLK:
regmap_update_bits(nau8540->regmap, NAU8540_REG_FLL3,
NAU8540_FLL_CLK_SRC_MASK | NAU8540_GAIN_ERR_MASK,
NAU8540_FLL_CLK_SRC_MCLK | 0);
break;
case NAU8540_CLK_FLL_BLK:
regmap_update_bits(nau8540->regmap, NAU8540_REG_FLL3,
NAU8540_FLL_CLK_SRC_MASK | NAU8540_GAIN_ERR_MASK,
NAU8540_FLL_CLK_SRC_BLK |
(0xf << NAU8540_GAIN_ERR_SFT));
break;
case NAU8540_CLK_FLL_FS:
regmap_update_bits(nau8540->regmap, NAU8540_REG_FLL3,
NAU8540_FLL_CLK_SRC_MASK | NAU8540_GAIN_ERR_MASK,
NAU8540_FLL_CLK_SRC_FS |
(0xf << NAU8540_GAIN_ERR_SFT));
break;
default:
dev_err(nau8540->dev, "Invalid clock id (%d)\n", pll_id);
return -EINVAL;
}
dev_dbg(nau8540->dev, "Sysclk is %dHz and clock id is %d\n",
freq_out, pll_id);
fs = freq_out / 256;
ret = nau8540_calc_fll_param(freq_in, fs, &fll_param);
if (ret < 0) {
dev_err(nau8540->dev, "Unsupported input clock %d\n", freq_in);
return ret;
}
dev_dbg(nau8540->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n",
fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac,
fll_param.fll_int, fll_param.clk_ref_div);
nau8540_fll_apply(nau8540->regmap, &fll_param);
mdelay(2);
regmap_update_bits(nau8540->regmap, NAU8540_REG_CLOCK_SRC,
NAU8540_CLK_SRC_MASK, NAU8540_CLK_SRC_VCO);
return 0;
}
static int nau8540_set_sysclk(struct snd_soc_component *component,
int clk_id, int source, unsigned int freq, int dir)
{
struct nau8540 *nau8540 = snd_soc_component_get_drvdata(component);
switch (clk_id) {
case NAU8540_CLK_DIS:
case NAU8540_CLK_MCLK:
regmap_update_bits(nau8540->regmap, NAU8540_REG_CLOCK_SRC,
NAU8540_CLK_SRC_MASK, NAU8540_CLK_SRC_MCLK);
regmap_update_bits(nau8540->regmap, NAU8540_REG_FLL6,
NAU8540_DCO_EN, 0);
break;
case NAU8540_CLK_INTERNAL:
regmap_update_bits(nau8540->regmap, NAU8540_REG_FLL6,
NAU8540_DCO_EN, NAU8540_DCO_EN);
regmap_update_bits(nau8540->regmap, NAU8540_REG_CLOCK_SRC,
NAU8540_CLK_SRC_MASK, NAU8540_CLK_SRC_VCO);
break;
default:
dev_err(nau8540->dev, "Invalid clock id (%d)\n", clk_id);
return -EINVAL;
}
dev_dbg(nau8540->dev, "Sysclk is %dHz and clock id is %d\n",
freq, clk_id);
return 0;
}
static void nau8540_reset_chip(struct regmap *regmap)
{
regmap_write(regmap, NAU8540_REG_SW_RESET, 0x00);
regmap_write(regmap, NAU8540_REG_SW_RESET, 0x00);
}
static void nau8540_init_regs(struct nau8540 *nau8540)
{
struct regmap *regmap = nau8540->regmap;
/* Enable Bias/VMID/VMID Tieoff */
regmap_update_bits(regmap, NAU8540_REG_VMID_CTRL,
NAU8540_VMID_EN | NAU8540_VMID_SEL_MASK,
NAU8540_VMID_EN | (0x2 << NAU8540_VMID_SEL_SFT));
regmap_update_bits(regmap, NAU8540_REG_REFERENCE,
NAU8540_PRECHARGE_DIS | NAU8540_GLOBAL_BIAS_EN,
NAU8540_PRECHARGE_DIS | NAU8540_GLOBAL_BIAS_EN);
mdelay(2);
regmap_update_bits(regmap, NAU8540_REG_MIC_BIAS,
NAU8540_PU_PRE, NAU8540_PU_PRE);
regmap_update_bits(regmap, NAU8540_REG_CLOCK_CTRL,
NAU8540_CLK_ADC_EN | NAU8540_CLK_I2S_EN,
NAU8540_CLK_ADC_EN | NAU8540_CLK_I2S_EN);
/* ADC OSR selection, CLK_ADC = Fs * OSR;
* Channel time alignment enable.
*/
regmap_update_bits(regmap, NAU8540_REG_ADC_SAMPLE_RATE,
NAU8540_CH_SYNC | NAU8540_ADC_OSR_MASK,
NAU8540_CH_SYNC | NAU8540_ADC_OSR_64);
/* PGA input mode selection */
regmap_update_bits(regmap, NAU8540_REG_FEPGA1,
NAU8540_FEPGA1_MODCH2_SHT | NAU8540_FEPGA1_MODCH1_SHT,
NAU8540_FEPGA1_MODCH2_SHT | NAU8540_FEPGA1_MODCH1_SHT);
regmap_update_bits(regmap, NAU8540_REG_FEPGA2,
NAU8540_FEPGA2_MODCH4_SHT | NAU8540_FEPGA2_MODCH3_SHT,
NAU8540_FEPGA2_MODCH4_SHT | NAU8540_FEPGA2_MODCH3_SHT);
/* DO12 and DO34 pad output disable */
regmap_update_bits(regmap, NAU8540_REG_PCM_CTRL1,
NAU8540_I2S_DO12_TRI, NAU8540_I2S_DO12_TRI);
regmap_update_bits(regmap, NAU8540_REG_PCM_CTRL2,
NAU8540_I2S_DO34_TRI, NAU8540_I2S_DO34_TRI);
}
static int __maybe_unused nau8540_suspend(struct snd_soc_component *component)
{
struct nau8540 *nau8540 = snd_soc_component_get_drvdata(component);
regcache_cache_only(nau8540->regmap, true);
regcache_mark_dirty(nau8540->regmap);
return 0;
}
static int __maybe_unused nau8540_resume(struct snd_soc_component *component)
{
struct nau8540 *nau8540 = snd_soc_component_get_drvdata(component);
regcache_cache_only(nau8540->regmap, false);
regcache_sync(nau8540->regmap);
return 0;
}
static const struct snd_soc_component_driver nau8540_component_driver = {
.set_sysclk = nau8540_set_sysclk,
.set_pll = nau8540_set_pll,
.suspend = nau8540_suspend,
.resume = nau8540_resume,
.controls = nau8540_snd_controls,
.num_controls = ARRAY_SIZE(nau8540_snd_controls),
.dapm_widgets = nau8540_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(nau8540_dapm_widgets),
.dapm_routes = nau8540_dapm_routes,
.num_dapm_routes = ARRAY_SIZE(nau8540_dapm_routes),
.suspend_bias_off = 1,
.idle_bias_on = 1,
.use_pmdown_time = 1,
.endianness = 1,
};
static const struct regmap_config nau8540_regmap_config = {
.val_bits = 16,
.reg_bits = 16,
.max_register = NAU8540_REG_MAX,
.readable_reg = nau8540_readable_reg,
.writeable_reg = nau8540_writeable_reg,
.volatile_reg = nau8540_volatile_reg,
.cache_type = REGCACHE_RBTREE,
.reg_defaults = nau8540_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(nau8540_reg_defaults),
};
static int nau8540_i2c_probe(struct i2c_client *i2c)
{
struct device *dev = &i2c->dev;
struct nau8540 *nau8540 = dev_get_platdata(dev);
int ret, value;
if (!nau8540) {
nau8540 = devm_kzalloc(dev, sizeof(*nau8540), GFP_KERNEL);
if (!nau8540)
return -ENOMEM;
}
i2c_set_clientdata(i2c, nau8540);
nau8540->regmap = devm_regmap_init_i2c(i2c, &nau8540_regmap_config);
if (IS_ERR(nau8540->regmap))
return PTR_ERR(nau8540->regmap);
ret = regmap_read(nau8540->regmap, NAU8540_REG_I2C_DEVICE_ID, &value);
if (ret < 0) {
dev_err(dev, "Failed to read device id from the NAU85L40: %d\n",
ret);
return ret;
}
nau8540->dev = dev;
nau8540_reset_chip(nau8540->regmap);
nau8540_init_regs(nau8540);
return devm_snd_soc_register_component(dev,
&nau8540_component_driver, &nau8540_dai, 1);
}
static const struct i2c_device_id nau8540_i2c_ids[] = {
{ "nau8540", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, nau8540_i2c_ids);
#ifdef CONFIG_OF
static const struct of_device_id nau8540_of_ids[] = {
{ .compatible = "nuvoton,nau8540", },
{}
};
MODULE_DEVICE_TABLE(of, nau8540_of_ids);
#endif
static struct i2c_driver nau8540_i2c_driver = {
.driver = {
.name = "nau8540",
.of_match_table = of_match_ptr(nau8540_of_ids),
},
.probe = nau8540_i2c_probe,
.id_table = nau8540_i2c_ids,
};
module_i2c_driver(nau8540_i2c_driver);
MODULE_DESCRIPTION("ASoC NAU85L40 driver");
MODULE_AUTHOR("John Hsu <KCHSU0@nuvoton.com>");
MODULE_LICENSE("GPL v2");