mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-03 17:14:14 +08:00
0062818298
The amount of payload per MR depends on device capabilities and the memory registration mode in use. The new rdma_rw API hides both, making it difficult for ULPs to determine how large their transport send queues need to be. Expose the MR payload information via a new API. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Acked-by: Doug Ledford <dledford@redhat.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
750 lines
21 KiB
C
750 lines
21 KiB
C
/*
|
|
* Copyright (c) 2016 HGST, a Western Digital Company.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*/
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/slab.h>
|
|
#include <rdma/mr_pool.h>
|
|
#include <rdma/rw.h>
|
|
|
|
enum {
|
|
RDMA_RW_SINGLE_WR,
|
|
RDMA_RW_MULTI_WR,
|
|
RDMA_RW_MR,
|
|
RDMA_RW_SIG_MR,
|
|
};
|
|
|
|
static bool rdma_rw_force_mr;
|
|
module_param_named(force_mr, rdma_rw_force_mr, bool, 0);
|
|
MODULE_PARM_DESC(force_mr, "Force usage of MRs for RDMA READ/WRITE operations");
|
|
|
|
/*
|
|
* Check if the device might use memory registration. This is currently only
|
|
* true for iWarp devices. In the future we can hopefully fine tune this based
|
|
* on HCA driver input.
|
|
*/
|
|
static inline bool rdma_rw_can_use_mr(struct ib_device *dev, u8 port_num)
|
|
{
|
|
if (rdma_protocol_iwarp(dev, port_num))
|
|
return true;
|
|
if (unlikely(rdma_rw_force_mr))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Check if the device will use memory registration for this RW operation.
|
|
* We currently always use memory registrations for iWarp RDMA READs, and
|
|
* have a debug option to force usage of MRs.
|
|
*
|
|
* XXX: In the future we can hopefully fine tune this based on HCA driver
|
|
* input.
|
|
*/
|
|
static inline bool rdma_rw_io_needs_mr(struct ib_device *dev, u8 port_num,
|
|
enum dma_data_direction dir, int dma_nents)
|
|
{
|
|
if (rdma_protocol_iwarp(dev, port_num) && dir == DMA_FROM_DEVICE)
|
|
return true;
|
|
if (unlikely(rdma_rw_force_mr))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static inline u32 rdma_rw_fr_page_list_len(struct ib_device *dev)
|
|
{
|
|
/* arbitrary limit to avoid allocating gigantic resources */
|
|
return min_t(u32, dev->attrs.max_fast_reg_page_list_len, 256);
|
|
}
|
|
|
|
/* Caller must have zero-initialized *reg. */
|
|
static int rdma_rw_init_one_mr(struct ib_qp *qp, u8 port_num,
|
|
struct rdma_rw_reg_ctx *reg, struct scatterlist *sg,
|
|
u32 sg_cnt, u32 offset)
|
|
{
|
|
u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device);
|
|
u32 nents = min(sg_cnt, pages_per_mr);
|
|
int count = 0, ret;
|
|
|
|
reg->mr = ib_mr_pool_get(qp, &qp->rdma_mrs);
|
|
if (!reg->mr)
|
|
return -EAGAIN;
|
|
|
|
if (reg->mr->need_inval) {
|
|
reg->inv_wr.opcode = IB_WR_LOCAL_INV;
|
|
reg->inv_wr.ex.invalidate_rkey = reg->mr->lkey;
|
|
reg->inv_wr.next = ®->reg_wr.wr;
|
|
count++;
|
|
} else {
|
|
reg->inv_wr.next = NULL;
|
|
}
|
|
|
|
ret = ib_map_mr_sg(reg->mr, sg, nents, &offset, PAGE_SIZE);
|
|
if (ret < nents) {
|
|
ib_mr_pool_put(qp, &qp->rdma_mrs, reg->mr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
reg->reg_wr.wr.opcode = IB_WR_REG_MR;
|
|
reg->reg_wr.mr = reg->mr;
|
|
reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE;
|
|
if (rdma_protocol_iwarp(qp->device, port_num))
|
|
reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE;
|
|
count++;
|
|
|
|
reg->sge.addr = reg->mr->iova;
|
|
reg->sge.length = reg->mr->length;
|
|
return count;
|
|
}
|
|
|
|
static int rdma_rw_init_mr_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
|
|
u8 port_num, struct scatterlist *sg, u32 sg_cnt, u32 offset,
|
|
u64 remote_addr, u32 rkey, enum dma_data_direction dir)
|
|
{
|
|
struct rdma_rw_reg_ctx *prev = NULL;
|
|
u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device);
|
|
int i, j, ret = 0, count = 0;
|
|
|
|
ctx->nr_ops = (sg_cnt + pages_per_mr - 1) / pages_per_mr;
|
|
ctx->reg = kcalloc(ctx->nr_ops, sizeof(*ctx->reg), GFP_KERNEL);
|
|
if (!ctx->reg) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < ctx->nr_ops; i++) {
|
|
struct rdma_rw_reg_ctx *reg = &ctx->reg[i];
|
|
u32 nents = min(sg_cnt, pages_per_mr);
|
|
|
|
ret = rdma_rw_init_one_mr(qp, port_num, reg, sg, sg_cnt,
|
|
offset);
|
|
if (ret < 0)
|
|
goto out_free;
|
|
count += ret;
|
|
|
|
if (prev) {
|
|
if (reg->mr->need_inval)
|
|
prev->wr.wr.next = ®->inv_wr;
|
|
else
|
|
prev->wr.wr.next = ®->reg_wr.wr;
|
|
}
|
|
|
|
reg->reg_wr.wr.next = ®->wr.wr;
|
|
|
|
reg->wr.wr.sg_list = ®->sge;
|
|
reg->wr.wr.num_sge = 1;
|
|
reg->wr.remote_addr = remote_addr;
|
|
reg->wr.rkey = rkey;
|
|
if (dir == DMA_TO_DEVICE) {
|
|
reg->wr.wr.opcode = IB_WR_RDMA_WRITE;
|
|
} else if (!rdma_cap_read_inv(qp->device, port_num)) {
|
|
reg->wr.wr.opcode = IB_WR_RDMA_READ;
|
|
} else {
|
|
reg->wr.wr.opcode = IB_WR_RDMA_READ_WITH_INV;
|
|
reg->wr.wr.ex.invalidate_rkey = reg->mr->lkey;
|
|
}
|
|
count++;
|
|
|
|
remote_addr += reg->sge.length;
|
|
sg_cnt -= nents;
|
|
for (j = 0; j < nents; j++)
|
|
sg = sg_next(sg);
|
|
prev = reg;
|
|
offset = 0;
|
|
}
|
|
|
|
if (prev)
|
|
prev->wr.wr.next = NULL;
|
|
|
|
ctx->type = RDMA_RW_MR;
|
|
return count;
|
|
|
|
out_free:
|
|
while (--i >= 0)
|
|
ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
|
|
kfree(ctx->reg);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int rdma_rw_init_map_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
|
|
struct scatterlist *sg, u32 sg_cnt, u32 offset,
|
|
u64 remote_addr, u32 rkey, enum dma_data_direction dir)
|
|
{
|
|
struct ib_device *dev = qp->pd->device;
|
|
u32 max_sge = dir == DMA_TO_DEVICE ? qp->max_write_sge :
|
|
qp->max_read_sge;
|
|
struct ib_sge *sge;
|
|
u32 total_len = 0, i, j;
|
|
|
|
ctx->nr_ops = DIV_ROUND_UP(sg_cnt, max_sge);
|
|
|
|
ctx->map.sges = sge = kcalloc(sg_cnt, sizeof(*sge), GFP_KERNEL);
|
|
if (!ctx->map.sges)
|
|
goto out;
|
|
|
|
ctx->map.wrs = kcalloc(ctx->nr_ops, sizeof(*ctx->map.wrs), GFP_KERNEL);
|
|
if (!ctx->map.wrs)
|
|
goto out_free_sges;
|
|
|
|
for (i = 0; i < ctx->nr_ops; i++) {
|
|
struct ib_rdma_wr *rdma_wr = &ctx->map.wrs[i];
|
|
u32 nr_sge = min(sg_cnt, max_sge);
|
|
|
|
if (dir == DMA_TO_DEVICE)
|
|
rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
|
|
else
|
|
rdma_wr->wr.opcode = IB_WR_RDMA_READ;
|
|
rdma_wr->remote_addr = remote_addr + total_len;
|
|
rdma_wr->rkey = rkey;
|
|
rdma_wr->wr.num_sge = nr_sge;
|
|
rdma_wr->wr.sg_list = sge;
|
|
|
|
for (j = 0; j < nr_sge; j++, sg = sg_next(sg)) {
|
|
sge->addr = ib_sg_dma_address(dev, sg) + offset;
|
|
sge->length = ib_sg_dma_len(dev, sg) - offset;
|
|
sge->lkey = qp->pd->local_dma_lkey;
|
|
|
|
total_len += sge->length;
|
|
sge++;
|
|
sg_cnt--;
|
|
offset = 0;
|
|
}
|
|
|
|
rdma_wr->wr.next = i + 1 < ctx->nr_ops ?
|
|
&ctx->map.wrs[i + 1].wr : NULL;
|
|
}
|
|
|
|
ctx->type = RDMA_RW_MULTI_WR;
|
|
return ctx->nr_ops;
|
|
|
|
out_free_sges:
|
|
kfree(ctx->map.sges);
|
|
out:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int rdma_rw_init_single_wr(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
|
|
struct scatterlist *sg, u32 offset, u64 remote_addr, u32 rkey,
|
|
enum dma_data_direction dir)
|
|
{
|
|
struct ib_device *dev = qp->pd->device;
|
|
struct ib_rdma_wr *rdma_wr = &ctx->single.wr;
|
|
|
|
ctx->nr_ops = 1;
|
|
|
|
ctx->single.sge.lkey = qp->pd->local_dma_lkey;
|
|
ctx->single.sge.addr = ib_sg_dma_address(dev, sg) + offset;
|
|
ctx->single.sge.length = ib_sg_dma_len(dev, sg) - offset;
|
|
|
|
memset(rdma_wr, 0, sizeof(*rdma_wr));
|
|
if (dir == DMA_TO_DEVICE)
|
|
rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
|
|
else
|
|
rdma_wr->wr.opcode = IB_WR_RDMA_READ;
|
|
rdma_wr->wr.sg_list = &ctx->single.sge;
|
|
rdma_wr->wr.num_sge = 1;
|
|
rdma_wr->remote_addr = remote_addr;
|
|
rdma_wr->rkey = rkey;
|
|
|
|
ctx->type = RDMA_RW_SINGLE_WR;
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* rdma_rw_ctx_init - initialize a RDMA READ/WRITE context
|
|
* @ctx: context to initialize
|
|
* @qp: queue pair to operate on
|
|
* @port_num: port num to which the connection is bound
|
|
* @sg: scatterlist to READ/WRITE from/to
|
|
* @sg_cnt: number of entries in @sg
|
|
* @sg_offset: current byte offset into @sg
|
|
* @remote_addr:remote address to read/write (relative to @rkey)
|
|
* @rkey: remote key to operate on
|
|
* @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
|
|
*
|
|
* Returns the number of WQEs that will be needed on the workqueue if
|
|
* successful, or a negative error code.
|
|
*/
|
|
int rdma_rw_ctx_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
|
|
struct scatterlist *sg, u32 sg_cnt, u32 sg_offset,
|
|
u64 remote_addr, u32 rkey, enum dma_data_direction dir)
|
|
{
|
|
struct ib_device *dev = qp->pd->device;
|
|
int ret;
|
|
|
|
ret = ib_dma_map_sg(dev, sg, sg_cnt, dir);
|
|
if (!ret)
|
|
return -ENOMEM;
|
|
sg_cnt = ret;
|
|
|
|
/*
|
|
* Skip to the S/G entry that sg_offset falls into:
|
|
*/
|
|
for (;;) {
|
|
u32 len = ib_sg_dma_len(dev, sg);
|
|
|
|
if (sg_offset < len)
|
|
break;
|
|
|
|
sg = sg_next(sg);
|
|
sg_offset -= len;
|
|
sg_cnt--;
|
|
}
|
|
|
|
ret = -EIO;
|
|
if (WARN_ON_ONCE(sg_cnt == 0))
|
|
goto out_unmap_sg;
|
|
|
|
if (rdma_rw_io_needs_mr(qp->device, port_num, dir, sg_cnt)) {
|
|
ret = rdma_rw_init_mr_wrs(ctx, qp, port_num, sg, sg_cnt,
|
|
sg_offset, remote_addr, rkey, dir);
|
|
} else if (sg_cnt > 1) {
|
|
ret = rdma_rw_init_map_wrs(ctx, qp, sg, sg_cnt, sg_offset,
|
|
remote_addr, rkey, dir);
|
|
} else {
|
|
ret = rdma_rw_init_single_wr(ctx, qp, sg, sg_offset,
|
|
remote_addr, rkey, dir);
|
|
}
|
|
|
|
if (ret < 0)
|
|
goto out_unmap_sg;
|
|
return ret;
|
|
|
|
out_unmap_sg:
|
|
ib_dma_unmap_sg(dev, sg, sg_cnt, dir);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(rdma_rw_ctx_init);
|
|
|
|
/**
|
|
* rdma_rw_ctx_signature init - initialize a RW context with signature offload
|
|
* @ctx: context to initialize
|
|
* @qp: queue pair to operate on
|
|
* @port_num: port num to which the connection is bound
|
|
* @sg: scatterlist to READ/WRITE from/to
|
|
* @sg_cnt: number of entries in @sg
|
|
* @prot_sg: scatterlist to READ/WRITE protection information from/to
|
|
* @prot_sg_cnt: number of entries in @prot_sg
|
|
* @sig_attrs: signature offloading algorithms
|
|
* @remote_addr:remote address to read/write (relative to @rkey)
|
|
* @rkey: remote key to operate on
|
|
* @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
|
|
*
|
|
* Returns the number of WQEs that will be needed on the workqueue if
|
|
* successful, or a negative error code.
|
|
*/
|
|
int rdma_rw_ctx_signature_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
|
|
u8 port_num, struct scatterlist *sg, u32 sg_cnt,
|
|
struct scatterlist *prot_sg, u32 prot_sg_cnt,
|
|
struct ib_sig_attrs *sig_attrs,
|
|
u64 remote_addr, u32 rkey, enum dma_data_direction dir)
|
|
{
|
|
struct ib_device *dev = qp->pd->device;
|
|
u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device);
|
|
struct ib_rdma_wr *rdma_wr;
|
|
struct ib_send_wr *prev_wr = NULL;
|
|
int count = 0, ret;
|
|
|
|
if (sg_cnt > pages_per_mr || prot_sg_cnt > pages_per_mr) {
|
|
pr_err("SG count too large\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = ib_dma_map_sg(dev, sg, sg_cnt, dir);
|
|
if (!ret)
|
|
return -ENOMEM;
|
|
sg_cnt = ret;
|
|
|
|
ret = ib_dma_map_sg(dev, prot_sg, prot_sg_cnt, dir);
|
|
if (!ret) {
|
|
ret = -ENOMEM;
|
|
goto out_unmap_sg;
|
|
}
|
|
prot_sg_cnt = ret;
|
|
|
|
ctx->type = RDMA_RW_SIG_MR;
|
|
ctx->nr_ops = 1;
|
|
ctx->sig = kcalloc(1, sizeof(*ctx->sig), GFP_KERNEL);
|
|
if (!ctx->sig) {
|
|
ret = -ENOMEM;
|
|
goto out_unmap_prot_sg;
|
|
}
|
|
|
|
ret = rdma_rw_init_one_mr(qp, port_num, &ctx->sig->data, sg, sg_cnt, 0);
|
|
if (ret < 0)
|
|
goto out_free_ctx;
|
|
count += ret;
|
|
prev_wr = &ctx->sig->data.reg_wr.wr;
|
|
|
|
if (prot_sg_cnt) {
|
|
ret = rdma_rw_init_one_mr(qp, port_num, &ctx->sig->prot,
|
|
prot_sg, prot_sg_cnt, 0);
|
|
if (ret < 0)
|
|
goto out_destroy_data_mr;
|
|
count += ret;
|
|
|
|
if (ctx->sig->prot.inv_wr.next)
|
|
prev_wr->next = &ctx->sig->prot.inv_wr;
|
|
else
|
|
prev_wr->next = &ctx->sig->prot.reg_wr.wr;
|
|
prev_wr = &ctx->sig->prot.reg_wr.wr;
|
|
} else {
|
|
ctx->sig->prot.mr = NULL;
|
|
}
|
|
|
|
ctx->sig->sig_mr = ib_mr_pool_get(qp, &qp->sig_mrs);
|
|
if (!ctx->sig->sig_mr) {
|
|
ret = -EAGAIN;
|
|
goto out_destroy_prot_mr;
|
|
}
|
|
|
|
if (ctx->sig->sig_mr->need_inval) {
|
|
memset(&ctx->sig->sig_inv_wr, 0, sizeof(ctx->sig->sig_inv_wr));
|
|
|
|
ctx->sig->sig_inv_wr.opcode = IB_WR_LOCAL_INV;
|
|
ctx->sig->sig_inv_wr.ex.invalidate_rkey = ctx->sig->sig_mr->rkey;
|
|
|
|
prev_wr->next = &ctx->sig->sig_inv_wr;
|
|
prev_wr = &ctx->sig->sig_inv_wr;
|
|
}
|
|
|
|
ctx->sig->sig_wr.wr.opcode = IB_WR_REG_SIG_MR;
|
|
ctx->sig->sig_wr.wr.wr_cqe = NULL;
|
|
ctx->sig->sig_wr.wr.sg_list = &ctx->sig->data.sge;
|
|
ctx->sig->sig_wr.wr.num_sge = 1;
|
|
ctx->sig->sig_wr.access_flags = IB_ACCESS_LOCAL_WRITE;
|
|
ctx->sig->sig_wr.sig_attrs = sig_attrs;
|
|
ctx->sig->sig_wr.sig_mr = ctx->sig->sig_mr;
|
|
if (prot_sg_cnt)
|
|
ctx->sig->sig_wr.prot = &ctx->sig->prot.sge;
|
|
prev_wr->next = &ctx->sig->sig_wr.wr;
|
|
prev_wr = &ctx->sig->sig_wr.wr;
|
|
count++;
|
|
|
|
ctx->sig->sig_sge.addr = 0;
|
|
ctx->sig->sig_sge.length = ctx->sig->data.sge.length;
|
|
if (sig_attrs->wire.sig_type != IB_SIG_TYPE_NONE)
|
|
ctx->sig->sig_sge.length += ctx->sig->prot.sge.length;
|
|
|
|
rdma_wr = &ctx->sig->data.wr;
|
|
rdma_wr->wr.sg_list = &ctx->sig->sig_sge;
|
|
rdma_wr->wr.num_sge = 1;
|
|
rdma_wr->remote_addr = remote_addr;
|
|
rdma_wr->rkey = rkey;
|
|
if (dir == DMA_TO_DEVICE)
|
|
rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
|
|
else
|
|
rdma_wr->wr.opcode = IB_WR_RDMA_READ;
|
|
prev_wr->next = &rdma_wr->wr;
|
|
prev_wr = &rdma_wr->wr;
|
|
count++;
|
|
|
|
return count;
|
|
|
|
out_destroy_prot_mr:
|
|
if (prot_sg_cnt)
|
|
ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->prot.mr);
|
|
out_destroy_data_mr:
|
|
ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->data.mr);
|
|
out_free_ctx:
|
|
kfree(ctx->sig);
|
|
out_unmap_prot_sg:
|
|
ib_dma_unmap_sg(dev, prot_sg, prot_sg_cnt, dir);
|
|
out_unmap_sg:
|
|
ib_dma_unmap_sg(dev, sg, sg_cnt, dir);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(rdma_rw_ctx_signature_init);
|
|
|
|
/*
|
|
* Now that we are going to post the WRs we can update the lkey and need_inval
|
|
* state on the MRs. If we were doing this at init time, we would get double
|
|
* or missing invalidations if a context was initialized but not actually
|
|
* posted.
|
|
*/
|
|
static void rdma_rw_update_lkey(struct rdma_rw_reg_ctx *reg, bool need_inval)
|
|
{
|
|
reg->mr->need_inval = need_inval;
|
|
ib_update_fast_reg_key(reg->mr, ib_inc_rkey(reg->mr->lkey));
|
|
reg->reg_wr.key = reg->mr->lkey;
|
|
reg->sge.lkey = reg->mr->lkey;
|
|
}
|
|
|
|
/**
|
|
* rdma_rw_ctx_wrs - return chain of WRs for a RDMA READ or WRITE operation
|
|
* @ctx: context to operate on
|
|
* @qp: queue pair to operate on
|
|
* @port_num: port num to which the connection is bound
|
|
* @cqe: completion queue entry for the last WR
|
|
* @chain_wr: WR to append to the posted chain
|
|
*
|
|
* Return the WR chain for the set of RDMA READ/WRITE operations described by
|
|
* @ctx, as well as any memory registration operations needed. If @chain_wr
|
|
* is non-NULL the WR it points to will be appended to the chain of WRs posted.
|
|
* If @chain_wr is not set @cqe must be set so that the caller gets a
|
|
* completion notification.
|
|
*/
|
|
struct ib_send_wr *rdma_rw_ctx_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
|
|
u8 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
|
|
{
|
|
struct ib_send_wr *first_wr, *last_wr;
|
|
int i;
|
|
|
|
switch (ctx->type) {
|
|
case RDMA_RW_SIG_MR:
|
|
rdma_rw_update_lkey(&ctx->sig->data, true);
|
|
if (ctx->sig->prot.mr)
|
|
rdma_rw_update_lkey(&ctx->sig->prot, true);
|
|
|
|
ctx->sig->sig_mr->need_inval = true;
|
|
ib_update_fast_reg_key(ctx->sig->sig_mr,
|
|
ib_inc_rkey(ctx->sig->sig_mr->lkey));
|
|
ctx->sig->sig_sge.lkey = ctx->sig->sig_mr->lkey;
|
|
|
|
if (ctx->sig->data.inv_wr.next)
|
|
first_wr = &ctx->sig->data.inv_wr;
|
|
else
|
|
first_wr = &ctx->sig->data.reg_wr.wr;
|
|
last_wr = &ctx->sig->data.wr.wr;
|
|
break;
|
|
case RDMA_RW_MR:
|
|
for (i = 0; i < ctx->nr_ops; i++) {
|
|
rdma_rw_update_lkey(&ctx->reg[i],
|
|
ctx->reg[i].wr.wr.opcode !=
|
|
IB_WR_RDMA_READ_WITH_INV);
|
|
}
|
|
|
|
if (ctx->reg[0].inv_wr.next)
|
|
first_wr = &ctx->reg[0].inv_wr;
|
|
else
|
|
first_wr = &ctx->reg[0].reg_wr.wr;
|
|
last_wr = &ctx->reg[ctx->nr_ops - 1].wr.wr;
|
|
break;
|
|
case RDMA_RW_MULTI_WR:
|
|
first_wr = &ctx->map.wrs[0].wr;
|
|
last_wr = &ctx->map.wrs[ctx->nr_ops - 1].wr;
|
|
break;
|
|
case RDMA_RW_SINGLE_WR:
|
|
first_wr = &ctx->single.wr.wr;
|
|
last_wr = &ctx->single.wr.wr;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
if (chain_wr) {
|
|
last_wr->next = chain_wr;
|
|
} else {
|
|
last_wr->wr_cqe = cqe;
|
|
last_wr->send_flags |= IB_SEND_SIGNALED;
|
|
}
|
|
|
|
return first_wr;
|
|
}
|
|
EXPORT_SYMBOL(rdma_rw_ctx_wrs);
|
|
|
|
/**
|
|
* rdma_rw_ctx_post - post a RDMA READ or RDMA WRITE operation
|
|
* @ctx: context to operate on
|
|
* @qp: queue pair to operate on
|
|
* @port_num: port num to which the connection is bound
|
|
* @cqe: completion queue entry for the last WR
|
|
* @chain_wr: WR to append to the posted chain
|
|
*
|
|
* Post the set of RDMA READ/WRITE operations described by @ctx, as well as
|
|
* any memory registration operations needed. If @chain_wr is non-NULL the
|
|
* WR it points to will be appended to the chain of WRs posted. If @chain_wr
|
|
* is not set @cqe must be set so that the caller gets a completion
|
|
* notification.
|
|
*/
|
|
int rdma_rw_ctx_post(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
|
|
struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
|
|
{
|
|
struct ib_send_wr *first_wr, *bad_wr;
|
|
|
|
first_wr = rdma_rw_ctx_wrs(ctx, qp, port_num, cqe, chain_wr);
|
|
return ib_post_send(qp, first_wr, &bad_wr);
|
|
}
|
|
EXPORT_SYMBOL(rdma_rw_ctx_post);
|
|
|
|
/**
|
|
* rdma_rw_ctx_destroy - release all resources allocated by rdma_rw_ctx_init
|
|
* @ctx: context to release
|
|
* @qp: queue pair to operate on
|
|
* @port_num: port num to which the connection is bound
|
|
* @sg: scatterlist that was used for the READ/WRITE
|
|
* @sg_cnt: number of entries in @sg
|
|
* @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
|
|
*/
|
|
void rdma_rw_ctx_destroy(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
|
|
struct scatterlist *sg, u32 sg_cnt, enum dma_data_direction dir)
|
|
{
|
|
int i;
|
|
|
|
switch (ctx->type) {
|
|
case RDMA_RW_MR:
|
|
for (i = 0; i < ctx->nr_ops; i++)
|
|
ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
|
|
kfree(ctx->reg);
|
|
break;
|
|
case RDMA_RW_MULTI_WR:
|
|
kfree(ctx->map.wrs);
|
|
kfree(ctx->map.sges);
|
|
break;
|
|
case RDMA_RW_SINGLE_WR:
|
|
break;
|
|
default:
|
|
BUG();
|
|
break;
|
|
}
|
|
|
|
ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
|
|
}
|
|
EXPORT_SYMBOL(rdma_rw_ctx_destroy);
|
|
|
|
/**
|
|
* rdma_rw_ctx_destroy_signature - release all resources allocated by
|
|
* rdma_rw_ctx_init_signature
|
|
* @ctx: context to release
|
|
* @qp: queue pair to operate on
|
|
* @port_num: port num to which the connection is bound
|
|
* @sg: scatterlist that was used for the READ/WRITE
|
|
* @sg_cnt: number of entries in @sg
|
|
* @prot_sg: scatterlist that was used for the READ/WRITE of the PI
|
|
* @prot_sg_cnt: number of entries in @prot_sg
|
|
* @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
|
|
*/
|
|
void rdma_rw_ctx_destroy_signature(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
|
|
u8 port_num, struct scatterlist *sg, u32 sg_cnt,
|
|
struct scatterlist *prot_sg, u32 prot_sg_cnt,
|
|
enum dma_data_direction dir)
|
|
{
|
|
if (WARN_ON_ONCE(ctx->type != RDMA_RW_SIG_MR))
|
|
return;
|
|
|
|
ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->data.mr);
|
|
ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
|
|
|
|
if (ctx->sig->prot.mr) {
|
|
ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->prot.mr);
|
|
ib_dma_unmap_sg(qp->pd->device, prot_sg, prot_sg_cnt, dir);
|
|
}
|
|
|
|
ib_mr_pool_put(qp, &qp->sig_mrs, ctx->sig->sig_mr);
|
|
kfree(ctx->sig);
|
|
}
|
|
EXPORT_SYMBOL(rdma_rw_ctx_destroy_signature);
|
|
|
|
/**
|
|
* rdma_rw_mr_factor - return number of MRs required for a payload
|
|
* @device: device handling the connection
|
|
* @port_num: port num to which the connection is bound
|
|
* @maxpages: maximum payload pages per rdma_rw_ctx
|
|
*
|
|
* Returns the number of MRs the device requires to move @maxpayload
|
|
* bytes. The returned value is used during transport creation to
|
|
* compute max_rdma_ctxts and the size of the transport's Send and
|
|
* Send Completion Queues.
|
|
*/
|
|
unsigned int rdma_rw_mr_factor(struct ib_device *device, u8 port_num,
|
|
unsigned int maxpages)
|
|
{
|
|
unsigned int mr_pages;
|
|
|
|
if (rdma_rw_can_use_mr(device, port_num))
|
|
mr_pages = rdma_rw_fr_page_list_len(device);
|
|
else
|
|
mr_pages = device->attrs.max_sge_rd;
|
|
return DIV_ROUND_UP(maxpages, mr_pages);
|
|
}
|
|
EXPORT_SYMBOL(rdma_rw_mr_factor);
|
|
|
|
void rdma_rw_init_qp(struct ib_device *dev, struct ib_qp_init_attr *attr)
|
|
{
|
|
u32 factor;
|
|
|
|
WARN_ON_ONCE(attr->port_num == 0);
|
|
|
|
/*
|
|
* Each context needs at least one RDMA READ or WRITE WR.
|
|
*
|
|
* For some hardware we might need more, eventually we should ask the
|
|
* HCA driver for a multiplier here.
|
|
*/
|
|
factor = 1;
|
|
|
|
/*
|
|
* If the devices needs MRs to perform RDMA READ or WRITE operations,
|
|
* we'll need two additional MRs for the registrations and the
|
|
* invalidation.
|
|
*/
|
|
if (attr->create_flags & IB_QP_CREATE_SIGNATURE_EN)
|
|
factor += 6; /* (inv + reg) * (data + prot + sig) */
|
|
else if (rdma_rw_can_use_mr(dev, attr->port_num))
|
|
factor += 2; /* inv + reg */
|
|
|
|
attr->cap.max_send_wr += factor * attr->cap.max_rdma_ctxs;
|
|
|
|
/*
|
|
* But maybe we were just too high in the sky and the device doesn't
|
|
* even support all we need, and we'll have to live with what we get..
|
|
*/
|
|
attr->cap.max_send_wr =
|
|
min_t(u32, attr->cap.max_send_wr, dev->attrs.max_qp_wr);
|
|
}
|
|
|
|
int rdma_rw_init_mrs(struct ib_qp *qp, struct ib_qp_init_attr *attr)
|
|
{
|
|
struct ib_device *dev = qp->pd->device;
|
|
u32 nr_mrs = 0, nr_sig_mrs = 0;
|
|
int ret = 0;
|
|
|
|
if (attr->create_flags & IB_QP_CREATE_SIGNATURE_EN) {
|
|
nr_sig_mrs = attr->cap.max_rdma_ctxs;
|
|
nr_mrs = attr->cap.max_rdma_ctxs * 2;
|
|
} else if (rdma_rw_can_use_mr(dev, attr->port_num)) {
|
|
nr_mrs = attr->cap.max_rdma_ctxs;
|
|
}
|
|
|
|
if (nr_mrs) {
|
|
ret = ib_mr_pool_init(qp, &qp->rdma_mrs, nr_mrs,
|
|
IB_MR_TYPE_MEM_REG,
|
|
rdma_rw_fr_page_list_len(dev));
|
|
if (ret) {
|
|
pr_err("%s: failed to allocated %d MRs\n",
|
|
__func__, nr_mrs);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (nr_sig_mrs) {
|
|
ret = ib_mr_pool_init(qp, &qp->sig_mrs, nr_sig_mrs,
|
|
IB_MR_TYPE_SIGNATURE, 2);
|
|
if (ret) {
|
|
pr_err("%s: failed to allocated %d SIG MRs\n",
|
|
__func__, nr_mrs);
|
|
goto out_free_rdma_mrs;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_free_rdma_mrs:
|
|
ib_mr_pool_destroy(qp, &qp->rdma_mrs);
|
|
return ret;
|
|
}
|
|
|
|
void rdma_rw_cleanup_mrs(struct ib_qp *qp)
|
|
{
|
|
ib_mr_pool_destroy(qp, &qp->sig_mrs);
|
|
ib_mr_pool_destroy(qp, &qp->rdma_mrs);
|
|
}
|