mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-04 09:34:12 +08:00
d35099d3c6
Retain documentation on how the voc index is actually calculated in driver code as it'll be removed in Documentation. This is a follow up on patch "[PATCH] iio: ABI: remove duplicate in_resistance_calibbias" from David. Signed-off-by: Andreas Klinger <ak@it-klinger.de> Link: https://patch.msgid.link/ZsWdFOIkDtEB9WGO@mail.your-server.de Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
384 lines
9.5 KiB
C
384 lines
9.5 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* sgp40.c - Support for Sensirion SGP40 Gas Sensor
|
|
*
|
|
* Copyright (C) 2021 Andreas Klinger <ak@it-klinger.de>
|
|
*
|
|
* I2C slave address: 0x59
|
|
*
|
|
* Datasheet can be found here:
|
|
* https://www.sensirion.com/file/datasheet_sgp40
|
|
*
|
|
* There are two functionalities supported:
|
|
*
|
|
* 1) read raw logarithmic resistance value from sensor
|
|
* --> useful to pass it to the algorithm of the sensor vendor for
|
|
* measuring deteriorations and improvements of air quality.
|
|
* It can be read from the attribute in_resistance_raw.
|
|
*
|
|
* 2) calculate an estimated absolute voc index (in_concentration_input)
|
|
* with 0 - 500 index points) for measuring the air quality.
|
|
* For this purpose the value of the resistance for which the voc index
|
|
* will be 250 can be set up using in_resistance_calibbias (default 30000).
|
|
*
|
|
* The voc index is calculated as:
|
|
* x = (in_resistance_raw - in_resistance_calibbias) * 0.65
|
|
* in_concentration_input = 500 / (1 + e^x)
|
|
*
|
|
* Compensation values of relative humidity and temperature can be set up
|
|
* by writing to the out values of temp and humidityrelative.
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/crc8.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/iio/iio.h>
|
|
|
|
/*
|
|
* floating point calculation of voc is done as integer
|
|
* where numbers are multiplied by 1 << SGP40_CALC_POWER
|
|
*/
|
|
#define SGP40_CALC_POWER 14
|
|
|
|
#define SGP40_CRC8_POLYNOMIAL 0x31
|
|
#define SGP40_CRC8_INIT 0xff
|
|
|
|
DECLARE_CRC8_TABLE(sgp40_crc8_table);
|
|
|
|
struct sgp40_data {
|
|
struct device *dev;
|
|
struct i2c_client *client;
|
|
int rht;
|
|
int temp;
|
|
int res_calibbias;
|
|
/* Prevent concurrent access to rht, tmp, calibbias */
|
|
struct mutex lock;
|
|
};
|
|
|
|
struct sgp40_tg_measure {
|
|
u8 command[2];
|
|
__be16 rht_ticks;
|
|
u8 rht_crc;
|
|
__be16 temp_ticks;
|
|
u8 temp_crc;
|
|
} __packed;
|
|
|
|
struct sgp40_tg_result {
|
|
__be16 res_ticks;
|
|
u8 res_crc;
|
|
} __packed;
|
|
|
|
static const struct iio_chan_spec sgp40_channels[] = {
|
|
{
|
|
.type = IIO_CONCENTRATION,
|
|
.channel2 = IIO_MOD_VOC,
|
|
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
|
|
},
|
|
{
|
|
.type = IIO_RESISTANCE,
|
|
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
|
|
BIT(IIO_CHAN_INFO_CALIBBIAS),
|
|
},
|
|
{
|
|
.type = IIO_TEMP,
|
|
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
|
|
.output = 1,
|
|
},
|
|
{
|
|
.type = IIO_HUMIDITYRELATIVE,
|
|
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
|
|
.output = 1,
|
|
},
|
|
};
|
|
|
|
/*
|
|
* taylor approximation of e^x:
|
|
* y = 1 + x + x^2 / 2 + x^3 / 6 + x^4 / 24 + ... + x^n / n!
|
|
*
|
|
* Because we are calculating x real value multiplied by 2^power we get
|
|
* an additional 2^power^n to divide for every element. For a reasonable
|
|
* precision this would overflow after a few iterations. Therefore we
|
|
* divide the x^n part whenever its about to overflow (xmax).
|
|
*/
|
|
|
|
static u32 sgp40_exp(int exp, u32 power, u32 rounds)
|
|
{
|
|
u32 x, y, xp;
|
|
u32 factorial, divider, xmax;
|
|
int sign = 1;
|
|
int i;
|
|
|
|
if (exp == 0)
|
|
return 1 << power;
|
|
else if (exp < 0) {
|
|
sign = -1;
|
|
exp *= -1;
|
|
}
|
|
|
|
xmax = 0x7FFFFFFF / exp;
|
|
x = exp;
|
|
xp = 1;
|
|
factorial = 1;
|
|
y = 1 << power;
|
|
divider = 0;
|
|
|
|
for (i = 1; i <= rounds; i++) {
|
|
xp *= x;
|
|
factorial *= i;
|
|
y += (xp >> divider) / factorial;
|
|
divider += power;
|
|
/* divide when next multiplication would overflow */
|
|
if (xp >= xmax) {
|
|
xp >>= power;
|
|
divider -= power;
|
|
}
|
|
}
|
|
|
|
if (sign == -1)
|
|
return (1 << (power * 2)) / y;
|
|
else
|
|
return y;
|
|
}
|
|
|
|
static int sgp40_calc_voc(struct sgp40_data *data, u16 resistance_raw, int *voc)
|
|
{
|
|
int x;
|
|
u32 exp = 0;
|
|
|
|
/* we calculate as a multiple of 16384 (2^14) */
|
|
mutex_lock(&data->lock);
|
|
x = ((int)resistance_raw - data->res_calibbias) * 106;
|
|
mutex_unlock(&data->lock);
|
|
|
|
/* voc = 500 / (1 + e^x) */
|
|
exp = sgp40_exp(x, SGP40_CALC_POWER, 18);
|
|
*voc = 500 * ((1 << (SGP40_CALC_POWER * 2)) / ((1<<SGP40_CALC_POWER) + exp));
|
|
|
|
dev_dbg(data->dev, "raw: %d res_calibbias: %d x: %d exp: %d voc: %d\n",
|
|
resistance_raw, data->res_calibbias, x, exp, *voc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sgp40_measure_resistance_raw(struct sgp40_data *data, u16 *resistance_raw)
|
|
{
|
|
int ret;
|
|
struct i2c_client *client = data->client;
|
|
u32 ticks;
|
|
u16 ticks16;
|
|
u8 crc;
|
|
struct sgp40_tg_measure tg = {.command = {0x26, 0x0F}};
|
|
struct sgp40_tg_result tgres;
|
|
|
|
mutex_lock(&data->lock);
|
|
|
|
ticks = (data->rht / 10) * 65535 / 10000;
|
|
ticks16 = (u16)clamp(ticks, 0u, 65535u); /* clamp between 0 .. 100 %rH */
|
|
tg.rht_ticks = cpu_to_be16(ticks16);
|
|
tg.rht_crc = crc8(sgp40_crc8_table, (u8 *)&tg.rht_ticks, 2, SGP40_CRC8_INIT);
|
|
|
|
ticks = ((data->temp + 45000) / 10 ) * 65535 / 17500;
|
|
ticks16 = (u16)clamp(ticks, 0u, 65535u); /* clamp between -45 .. +130 °C */
|
|
tg.temp_ticks = cpu_to_be16(ticks16);
|
|
tg.temp_crc = crc8(sgp40_crc8_table, (u8 *)&tg.temp_ticks, 2, SGP40_CRC8_INIT);
|
|
|
|
mutex_unlock(&data->lock);
|
|
|
|
ret = i2c_master_send(client, (const char *)&tg, sizeof(tg));
|
|
if (ret != sizeof(tg)) {
|
|
dev_warn(data->dev, "i2c_master_send ret: %d sizeof: %zu\n", ret, sizeof(tg));
|
|
return -EIO;
|
|
}
|
|
msleep(30);
|
|
|
|
ret = i2c_master_recv(client, (u8 *)&tgres, sizeof(tgres));
|
|
if (ret < 0)
|
|
return ret;
|
|
if (ret != sizeof(tgres)) {
|
|
dev_warn(data->dev, "i2c_master_recv ret: %d sizeof: %zu\n", ret, sizeof(tgres));
|
|
return -EIO;
|
|
}
|
|
|
|
crc = crc8(sgp40_crc8_table, (u8 *)&tgres.res_ticks, 2, SGP40_CRC8_INIT);
|
|
if (crc != tgres.res_crc) {
|
|
dev_err(data->dev, "CRC error while measure-raw\n");
|
|
return -EIO;
|
|
}
|
|
|
|
*resistance_raw = be16_to_cpu(tgres.res_ticks);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sgp40_read_raw(struct iio_dev *indio_dev,
|
|
struct iio_chan_spec const *chan, int *val,
|
|
int *val2, long mask)
|
|
{
|
|
struct sgp40_data *data = iio_priv(indio_dev);
|
|
int ret, voc;
|
|
u16 resistance_raw;
|
|
|
|
switch (mask) {
|
|
case IIO_CHAN_INFO_RAW:
|
|
switch (chan->type) {
|
|
case IIO_RESISTANCE:
|
|
ret = sgp40_measure_resistance_raw(data, &resistance_raw);
|
|
if (ret)
|
|
return ret;
|
|
|
|
*val = resistance_raw;
|
|
return IIO_VAL_INT;
|
|
case IIO_TEMP:
|
|
mutex_lock(&data->lock);
|
|
*val = data->temp;
|
|
mutex_unlock(&data->lock);
|
|
return IIO_VAL_INT;
|
|
case IIO_HUMIDITYRELATIVE:
|
|
mutex_lock(&data->lock);
|
|
*val = data->rht;
|
|
mutex_unlock(&data->lock);
|
|
return IIO_VAL_INT;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
case IIO_CHAN_INFO_PROCESSED:
|
|
ret = sgp40_measure_resistance_raw(data, &resistance_raw);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = sgp40_calc_voc(data, resistance_raw, &voc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
*val = voc / (1 << SGP40_CALC_POWER);
|
|
/*
|
|
* calculation should fit into integer, where:
|
|
* voc <= (500 * 2^SGP40_CALC_POWER) = 8192000
|
|
* (with SGP40_CALC_POWER = 14)
|
|
*/
|
|
*val2 = ((voc % (1 << SGP40_CALC_POWER)) * 244) / (1 << (SGP40_CALC_POWER - 12));
|
|
dev_dbg(data->dev, "voc: %d val: %d.%06d\n", voc, *val, *val2);
|
|
return IIO_VAL_INT_PLUS_MICRO;
|
|
case IIO_CHAN_INFO_CALIBBIAS:
|
|
mutex_lock(&data->lock);
|
|
*val = data->res_calibbias;
|
|
mutex_unlock(&data->lock);
|
|
return IIO_VAL_INT;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static int sgp40_write_raw(struct iio_dev *indio_dev,
|
|
struct iio_chan_spec const *chan, int val,
|
|
int val2, long mask)
|
|
{
|
|
struct sgp40_data *data = iio_priv(indio_dev);
|
|
|
|
switch (mask) {
|
|
case IIO_CHAN_INFO_RAW:
|
|
switch (chan->type) {
|
|
case IIO_TEMP:
|
|
if ((val < -45000) || (val > 130000))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&data->lock);
|
|
data->temp = val;
|
|
mutex_unlock(&data->lock);
|
|
return 0;
|
|
case IIO_HUMIDITYRELATIVE:
|
|
if ((val < 0) || (val > 100000))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&data->lock);
|
|
data->rht = val;
|
|
mutex_unlock(&data->lock);
|
|
return 0;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
case IIO_CHAN_INFO_CALIBBIAS:
|
|
if ((val < 20000) || (val > 52768))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&data->lock);
|
|
data->res_calibbias = val;
|
|
mutex_unlock(&data->lock);
|
|
return 0;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static const struct iio_info sgp40_info = {
|
|
.read_raw = sgp40_read_raw,
|
|
.write_raw = sgp40_write_raw,
|
|
};
|
|
|
|
static int sgp40_probe(struct i2c_client *client)
|
|
{
|
|
const struct i2c_device_id *id = i2c_client_get_device_id(client);
|
|
struct device *dev = &client->dev;
|
|
struct iio_dev *indio_dev;
|
|
struct sgp40_data *data;
|
|
int ret;
|
|
|
|
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
|
|
if (!indio_dev)
|
|
return -ENOMEM;
|
|
|
|
data = iio_priv(indio_dev);
|
|
data->client = client;
|
|
data->dev = dev;
|
|
|
|
crc8_populate_msb(sgp40_crc8_table, SGP40_CRC8_POLYNOMIAL);
|
|
|
|
mutex_init(&data->lock);
|
|
|
|
/* set default values */
|
|
data->rht = 50000; /* 50 % */
|
|
data->temp = 25000; /* 25 °C */
|
|
data->res_calibbias = 30000; /* resistance raw value for voc index of 250 */
|
|
|
|
indio_dev->info = &sgp40_info;
|
|
indio_dev->name = id->name;
|
|
indio_dev->modes = INDIO_DIRECT_MODE;
|
|
indio_dev->channels = sgp40_channels;
|
|
indio_dev->num_channels = ARRAY_SIZE(sgp40_channels);
|
|
|
|
ret = devm_iio_device_register(dev, indio_dev);
|
|
if (ret)
|
|
dev_err(dev, "failed to register iio device\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct i2c_device_id sgp40_id[] = {
|
|
{ "sgp40" },
|
|
{ }
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(i2c, sgp40_id);
|
|
|
|
static const struct of_device_id sgp40_dt_ids[] = {
|
|
{ .compatible = "sensirion,sgp40" },
|
|
{ }
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(of, sgp40_dt_ids);
|
|
|
|
static struct i2c_driver sgp40_driver = {
|
|
.driver = {
|
|
.name = "sgp40",
|
|
.of_match_table = sgp40_dt_ids,
|
|
},
|
|
.probe = sgp40_probe,
|
|
.id_table = sgp40_id,
|
|
};
|
|
module_i2c_driver(sgp40_driver);
|
|
|
|
MODULE_AUTHOR("Andreas Klinger <ak@it-klinger.de>");
|
|
MODULE_DESCRIPTION("Sensirion SGP40 gas sensor");
|
|
MODULE_LICENSE("GPL v2");
|