linux/arch/arm64/include/asm/cpufeature.h
Suzuki K Poulose 143ba05d86 arm64: capabilities: Prepare for fine grained capabilities
We use arm64_cpu_capabilities to represent CPU ELF HWCAPs exposed
to the userspace and the CPU hwcaps used by the kernel, which
include cpu features and CPU errata work arounds. Capabilities
have some properties that decide how they should be treated :

 1) Detection, i.e scope : A cap could be "detected" either :
    - if it is present on at least one CPU (SCOPE_LOCAL_CPU)
	Or
    - if it is present on all the CPUs (SCOPE_SYSTEM)

 2) When is it enabled ? - A cap is treated as "enabled" when the
  system takes some action based on whether the capability is detected or
  not. e.g, setting some control register, patching the kernel code.
  Right now, we treat all caps are enabled at boot-time, after all
  the CPUs are brought up by the kernel. But there are certain caps,
  which are enabled early during the boot (e.g, VHE, GIC_CPUIF for NMI)
  and kernel starts using them, even before the secondary CPUs are brought
  up. We would need a way to describe this for each capability.

 3) Conflict on a late CPU - When a CPU is brought up, it is checked
  against the caps that are known to be enabled on the system (via
  verify_local_cpu_capabilities()). Based on the state of the capability
  on the CPU vs. that of System we could have the following combinations
  of conflict.

	x-----------------------------x
	| Type	| System   | Late CPU |
	------------------------------|
	|  a    |   y      |    n     |
	------------------------------|
	|  b    |   n      |    y     |
	x-----------------------------x

  Case (a) is not permitted for caps which are system features, which the
  system expects all the CPUs to have (e.g VHE). While (a) is ignored for
  all errata work arounds. However, there could be exceptions to the plain
  filtering approach. e.g, KPTI is an optional feature for a late CPU as
  long as the system already enables it.

  Case (b) is not permitted for errata work arounds which requires some
  work around, which cannot be delayed. And we ignore (b) for features.
  Here, yet again, KPTI is an exception, where if a late CPU needs KPTI we
  are too late to enable it (because we change the allocation of ASIDs
  etc).

So this calls for a lot more fine grained behavior for each capability.
And if we define all the attributes to control their behavior properly,
we may be able to use a single table for the CPU hwcaps (which cover
errata and features, not the ELF HWCAPs). This is a prepartory step
to get there. More bits would be added for the properties listed above.

We are going to use a bit-mask to encode all the properties of a
capabilities. This patch encodes the "SCOPE" of the capability.

As such there is no change in how the capabilities are treated.

Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:37 +01:00

408 lines
13 KiB
C

/*
* Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef __ASM_CPUFEATURE_H
#define __ASM_CPUFEATURE_H
#include <asm/cpucaps.h>
#include <asm/fpsimd.h>
#include <asm/hwcap.h>
#include <asm/sigcontext.h>
#include <asm/sysreg.h>
/*
* In the arm64 world (as in the ARM world), elf_hwcap is used both internally
* in the kernel and for user space to keep track of which optional features
* are supported by the current system. So let's map feature 'x' to HWCAP_x.
* Note that HWCAP_x constants are bit fields so we need to take the log.
*/
#define MAX_CPU_FEATURES (8 * sizeof(elf_hwcap))
#define cpu_feature(x) ilog2(HWCAP_ ## x)
#ifndef __ASSEMBLY__
#include <linux/bug.h>
#include <linux/jump_label.h>
#include <linux/kernel.h>
/*
* CPU feature register tracking
*
* The safe value of a CPUID feature field is dependent on the implications
* of the values assigned to it by the architecture. Based on the relationship
* between the values, the features are classified into 3 types - LOWER_SAFE,
* HIGHER_SAFE and EXACT.
*
* The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
* for HIGHER_SAFE. It is expected that all CPUs have the same value for
* a field when EXACT is specified, failing which, the safe value specified
* in the table is chosen.
*/
enum ftr_type {
FTR_EXACT, /* Use a predefined safe value */
FTR_LOWER_SAFE, /* Smaller value is safe */
FTR_HIGHER_SAFE,/* Bigger value is safe */
};
#define FTR_STRICT true /* SANITY check strict matching required */
#define FTR_NONSTRICT false /* SANITY check ignored */
#define FTR_SIGNED true /* Value should be treated as signed */
#define FTR_UNSIGNED false /* Value should be treated as unsigned */
#define FTR_VISIBLE true /* Feature visible to the user space */
#define FTR_HIDDEN false /* Feature is hidden from the user */
#define FTR_VISIBLE_IF_IS_ENABLED(config) \
(IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)
struct arm64_ftr_bits {
bool sign; /* Value is signed ? */
bool visible;
bool strict; /* CPU Sanity check: strict matching required ? */
enum ftr_type type;
u8 shift;
u8 width;
s64 safe_val; /* safe value for FTR_EXACT features */
};
/*
* @arm64_ftr_reg - Feature register
* @strict_mask Bits which should match across all CPUs for sanity.
* @sys_val Safe value across the CPUs (system view)
*/
struct arm64_ftr_reg {
const char *name;
u64 strict_mask;
u64 user_mask;
u64 sys_val;
u64 user_val;
const struct arm64_ftr_bits *ftr_bits;
};
extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
/*
* CPU capabilities:
*
* We use arm64_cpu_capabilities to represent system features, errata work
* arounds (both used internally by kernel and tracked in cpu_hwcaps) and
* ELF HWCAPs (which are exposed to user).
*
* To support systems with heterogeneous CPUs, we need to make sure that we
* detect the capabilities correctly on the system and take appropriate
* measures to ensure there are no incompatibilities.
*
* This comment tries to explain how we treat the capabilities.
* Each capability has the following list of attributes :
*
* 1) Scope of Detection : The system detects a given capability by
* performing some checks at runtime. This could be, e.g, checking the
* value of a field in CPU ID feature register or checking the cpu
* model. The capability provides a call back ( @matches() ) to
* perform the check. Scope defines how the checks should be performed.
* There are two cases:
*
* a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
* matches. This implies, we have to run the check on all the
* booting CPUs, until the system decides that state of the
* capability is finalised. (See section 2 below)
* Or
* b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
* matches. This implies, we run the check only once, when the
* system decides to finalise the state of the capability. If the
* capability relies on a field in one of the CPU ID feature
* registers, we use the sanitised value of the register from the
* CPU feature infrastructure to make the decision.
*
* The process of detection is usually denoted by "update" capability
* state in the code.
*
* 2) Finalise the state : The kernel should finalise the state of a
* capability at some point during its execution and take necessary
* actions if any. Usually, this is done, after all the boot-time
* enabled CPUs are brought up by the kernel, so that it can make
* better decision based on the available set of CPUs. However, there
* are some special cases, where the action is taken during the early
* boot by the primary boot CPU. (e.g, running the kernel at EL2 with
* Virtualisation Host Extensions). The kernel usually disallows any
* changes to the state of a capability once it finalises the capability
* and takes any action, as it may be impossible to execute the actions
* safely. A CPU brought up after a capability is "finalised" is
* referred to as "Late CPU" w.r.t the capability. e.g, all secondary
* CPUs are treated "late CPUs" for capabilities determined by the boot
* CPU.
*
* 3) Verification: When a CPU is brought online (e.g, by user or by the
* kernel), the kernel should make sure that it is safe to use the CPU,
* by verifying that the CPU is compliant with the state of the
* capabilities finalised already. This happens via :
*
* secondary_start_kernel()-> check_local_cpu_capabilities()
*
* As explained in (2) above, capabilities could be finalised at
* different points in the execution. Each CPU is verified against the
* "finalised" capabilities and if there is a conflict, the kernel takes
* an action, based on the severity (e.g, a CPU could be prevented from
* booting or cause a kernel panic). The CPU is allowed to "affect" the
* state of the capability, if it has not been finalised already.
*
* 4) Action: As mentioned in (2), the kernel can take an action for each
* detected capability, on all CPUs on the system. Appropriate actions
* include, turning on an architectural feature, modifying the control
* registers (e.g, SCTLR, TCR etc.) or patching the kernel via
* alternatives. The kernel patching is batched and performed at later
* point. The actions are always initiated only after the capability
* is finalised. This is usally denoted by "enabling" the capability.
* The actions are initiated as follows :
* a) Action is triggered on all online CPUs, after the capability is
* finalised, invoked within the stop_machine() context from
* enable_cpu_capabilitie().
*
* b) Any late CPU, brought up after (1), the action is triggered via:
*
* check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
*
*/
/* Decide how the capability is detected. On a local CPU vs System wide */
#define ARM64_CPUCAP_SCOPE_LOCAL_CPU ((u16)BIT(0))
#define ARM64_CPUCAP_SCOPE_SYSTEM ((u16)BIT(1))
#define ARM64_CPUCAP_SCOPE_MASK \
(ARM64_CPUCAP_SCOPE_SYSTEM | \
ARM64_CPUCAP_SCOPE_LOCAL_CPU)
#define SCOPE_SYSTEM ARM64_CPUCAP_SCOPE_SYSTEM
#define SCOPE_LOCAL_CPU ARM64_CPUCAP_SCOPE_LOCAL_CPU
struct arm64_cpu_capabilities {
const char *desc;
u16 capability;
u16 type;
bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
/*
* Take the appropriate actions to enable this capability for this CPU.
* For each successfully booted CPU, this method is called for each
* globally detected capability.
*/
void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
union {
struct { /* To be used for erratum handling only */
u32 midr_model;
u32 midr_range_min, midr_range_max;
const struct arm64_midr_revidr {
u32 midr_rv; /* revision/variant */
u32 revidr_mask;
} * const fixed_revs;
};
struct { /* Feature register checking */
u32 sys_reg;
u8 field_pos;
u8 min_field_value;
u8 hwcap_type;
bool sign;
unsigned long hwcap;
};
};
};
static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
{
return cap->type & ARM64_CPUCAP_SCOPE_MASK;
}
extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
extern struct static_key_false arm64_const_caps_ready;
bool this_cpu_has_cap(unsigned int cap);
static inline bool cpu_have_feature(unsigned int num)
{
return elf_hwcap & (1UL << num);
}
/* System capability check for constant caps */
static inline bool __cpus_have_const_cap(int num)
{
if (num >= ARM64_NCAPS)
return false;
return static_branch_unlikely(&cpu_hwcap_keys[num]);
}
static inline bool cpus_have_cap(unsigned int num)
{
if (num >= ARM64_NCAPS)
return false;
return test_bit(num, cpu_hwcaps);
}
static inline bool cpus_have_const_cap(int num)
{
if (static_branch_likely(&arm64_const_caps_ready))
return __cpus_have_const_cap(num);
else
return cpus_have_cap(num);
}
static inline void cpus_set_cap(unsigned int num)
{
if (num >= ARM64_NCAPS) {
pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
num, ARM64_NCAPS);
} else {
__set_bit(num, cpu_hwcaps);
}
}
static inline int __attribute_const__
cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
{
return (s64)(features << (64 - width - field)) >> (64 - width);
}
static inline int __attribute_const__
cpuid_feature_extract_signed_field(u64 features, int field)
{
return cpuid_feature_extract_signed_field_width(features, field, 4);
}
static inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
{
return (u64)(features << (64 - width - field)) >> (64 - width);
}
static inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field(u64 features, int field)
{
return cpuid_feature_extract_unsigned_field_width(features, field, 4);
}
static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
{
return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
}
static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
{
return (reg->user_val | (reg->sys_val & reg->user_mask));
}
static inline int __attribute_const__
cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
{
return (sign) ?
cpuid_feature_extract_signed_field_width(features, field, width) :
cpuid_feature_extract_unsigned_field_width(features, field, width);
}
static inline int __attribute_const__
cpuid_feature_extract_field(u64 features, int field, bool sign)
{
return cpuid_feature_extract_field_width(features, field, 4, sign);
}
static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
{
return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
}
static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
{
return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
}
static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
{
u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);
return val == ID_AA64PFR0_EL0_32BIT_64BIT;
}
static inline bool id_aa64pfr0_sve(u64 pfr0)
{
u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_SVE_SHIFT);
return val > 0;
}
void __init setup_cpu_features(void);
void check_local_cpu_capabilities(void);
u64 read_sanitised_ftr_reg(u32 id);
static inline bool cpu_supports_mixed_endian_el0(void)
{
return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
}
static inline bool system_supports_32bit_el0(void)
{
return cpus_have_const_cap(ARM64_HAS_32BIT_EL0);
}
static inline bool system_supports_mixed_endian_el0(void)
{
return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
}
static inline bool system_supports_fpsimd(void)
{
return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
}
static inline bool system_uses_ttbr0_pan(void)
{
return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
!cpus_have_const_cap(ARM64_HAS_PAN);
}
static inline bool system_supports_sve(void)
{
return IS_ENABLED(CONFIG_ARM64_SVE) &&
cpus_have_const_cap(ARM64_SVE);
}
/*
* Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
* vector length.
*
* Use only if SVE is present.
* This function clobbers the SVE vector length.
*/
static inline u64 read_zcr_features(void)
{
u64 zcr;
unsigned int vq_max;
/*
* Set the maximum possible VL, and write zeroes to all other
* bits to see if they stick.
*/
sve_kernel_enable(NULL);
write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
zcr = read_sysreg_s(SYS_ZCR_EL1);
zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
vq_max = sve_vq_from_vl(sve_get_vl());
zcr |= vq_max - 1; /* set LEN field to maximum effective value */
return zcr;
}
#endif /* __ASSEMBLY__ */
#endif