mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-11 21:38:32 +08:00
a9d47a50cf
Revert commit 163eae0fb0
to get back the
original operation of the debugging macros.
Signed-off-by: David Howells <dhowells@redhat.com>
Link: https://lore.kernel.org/r/20240608151352.22860-2-ukleinek@kernel.org
Link: https://lore.kernel.org/r/1410685.1721333252@warthog.procyon.org.uk
cc: Uwe Kleine-König <ukleinek@kernel.org>
cc: Christian Brauner <brauner@kernel.org>
cc: Jeff Layton <jlayton@kernel.org>
cc: netfs@lists.linux.dev
cc: linux-fsdevel@vger.kernel.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
648 lines
18 KiB
C
648 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/* Network filesystem high-level read support.
|
|
*
|
|
* Copyright (C) 2021 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/export.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/task_io_accounting_ops.h>
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* Clear the unread part of an I/O request.
|
|
*/
|
|
static void netfs_clear_unread(struct netfs_io_subrequest *subreq)
|
|
{
|
|
iov_iter_zero(iov_iter_count(&subreq->io_iter), &subreq->io_iter);
|
|
}
|
|
|
|
static void netfs_cache_read_terminated(void *priv, ssize_t transferred_or_error,
|
|
bool was_async)
|
|
{
|
|
struct netfs_io_subrequest *subreq = priv;
|
|
|
|
netfs_subreq_terminated(subreq, transferred_or_error, was_async);
|
|
}
|
|
|
|
/*
|
|
* Issue a read against the cache.
|
|
* - Eats the caller's ref on subreq.
|
|
*/
|
|
static void netfs_read_from_cache(struct netfs_io_request *rreq,
|
|
struct netfs_io_subrequest *subreq,
|
|
enum netfs_read_from_hole read_hole)
|
|
{
|
|
struct netfs_cache_resources *cres = &rreq->cache_resources;
|
|
|
|
netfs_stat(&netfs_n_rh_read);
|
|
cres->ops->read(cres, subreq->start, &subreq->io_iter, read_hole,
|
|
netfs_cache_read_terminated, subreq);
|
|
}
|
|
|
|
/*
|
|
* Fill a subrequest region with zeroes.
|
|
*/
|
|
static void netfs_fill_with_zeroes(struct netfs_io_request *rreq,
|
|
struct netfs_io_subrequest *subreq)
|
|
{
|
|
netfs_stat(&netfs_n_rh_zero);
|
|
__set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
|
|
netfs_subreq_terminated(subreq, 0, false);
|
|
}
|
|
|
|
/*
|
|
* Ask the netfs to issue a read request to the server for us.
|
|
*
|
|
* The netfs is expected to read from subreq->pos + subreq->transferred to
|
|
* subreq->pos + subreq->len - 1. It may not backtrack and write data into the
|
|
* buffer prior to the transferred point as it might clobber dirty data
|
|
* obtained from the cache.
|
|
*
|
|
* Alternatively, the netfs is allowed to indicate one of two things:
|
|
*
|
|
* - NETFS_SREQ_SHORT_READ: A short read - it will get called again to try and
|
|
* make progress.
|
|
*
|
|
* - NETFS_SREQ_CLEAR_TAIL: A short read - the rest of the buffer will be
|
|
* cleared.
|
|
*/
|
|
static void netfs_read_from_server(struct netfs_io_request *rreq,
|
|
struct netfs_io_subrequest *subreq)
|
|
{
|
|
netfs_stat(&netfs_n_rh_download);
|
|
|
|
if (rreq->origin != NETFS_DIO_READ &&
|
|
iov_iter_count(&subreq->io_iter) != subreq->len - subreq->transferred)
|
|
pr_warn("R=%08x[%u] ITER PRE-MISMATCH %zx != %zx-%zx %lx\n",
|
|
rreq->debug_id, subreq->debug_index,
|
|
iov_iter_count(&subreq->io_iter), subreq->len,
|
|
subreq->transferred, subreq->flags);
|
|
rreq->netfs_ops->issue_read(subreq);
|
|
}
|
|
|
|
/*
|
|
* Release those waiting.
|
|
*/
|
|
static void netfs_rreq_completed(struct netfs_io_request *rreq, bool was_async)
|
|
{
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_done);
|
|
netfs_clear_subrequests(rreq, was_async);
|
|
netfs_put_request(rreq, was_async, netfs_rreq_trace_put_complete);
|
|
}
|
|
|
|
/*
|
|
* Handle a short read.
|
|
*/
|
|
static void netfs_rreq_short_read(struct netfs_io_request *rreq,
|
|
struct netfs_io_subrequest *subreq)
|
|
{
|
|
__clear_bit(NETFS_SREQ_SHORT_IO, &subreq->flags);
|
|
__set_bit(NETFS_SREQ_SEEK_DATA_READ, &subreq->flags);
|
|
|
|
netfs_stat(&netfs_n_rh_short_read);
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_resubmit_short);
|
|
|
|
netfs_get_subrequest(subreq, netfs_sreq_trace_get_short_read);
|
|
atomic_inc(&rreq->nr_outstanding);
|
|
if (subreq->source == NETFS_READ_FROM_CACHE)
|
|
netfs_read_from_cache(rreq, subreq, NETFS_READ_HOLE_CLEAR);
|
|
else
|
|
netfs_read_from_server(rreq, subreq);
|
|
}
|
|
|
|
/*
|
|
* Reset the subrequest iterator prior to resubmission.
|
|
*/
|
|
static void netfs_reset_subreq_iter(struct netfs_io_request *rreq,
|
|
struct netfs_io_subrequest *subreq)
|
|
{
|
|
size_t remaining = subreq->len - subreq->transferred;
|
|
size_t count = iov_iter_count(&subreq->io_iter);
|
|
|
|
if (count == remaining)
|
|
return;
|
|
|
|
_debug("R=%08x[%u] ITER RESUB-MISMATCH %zx != %zx-%zx-%llx %x\n",
|
|
rreq->debug_id, subreq->debug_index,
|
|
iov_iter_count(&subreq->io_iter), subreq->transferred,
|
|
subreq->len, rreq->i_size,
|
|
subreq->io_iter.iter_type);
|
|
|
|
if (count < remaining)
|
|
iov_iter_revert(&subreq->io_iter, remaining - count);
|
|
else
|
|
iov_iter_advance(&subreq->io_iter, count - remaining);
|
|
}
|
|
|
|
/*
|
|
* Resubmit any short or failed operations. Returns true if we got the rreq
|
|
* ref back.
|
|
*/
|
|
static bool netfs_rreq_perform_resubmissions(struct netfs_io_request *rreq)
|
|
{
|
|
struct netfs_io_subrequest *subreq;
|
|
|
|
WARN_ON(in_interrupt());
|
|
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_resubmit);
|
|
|
|
/* We don't want terminating submissions trying to wake us up whilst
|
|
* we're still going through the list.
|
|
*/
|
|
atomic_inc(&rreq->nr_outstanding);
|
|
|
|
__clear_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
|
|
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
|
if (subreq->error) {
|
|
if (subreq->source != NETFS_READ_FROM_CACHE)
|
|
break;
|
|
subreq->source = NETFS_DOWNLOAD_FROM_SERVER;
|
|
subreq->error = 0;
|
|
netfs_stat(&netfs_n_rh_download_instead);
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_download_instead);
|
|
netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit);
|
|
atomic_inc(&rreq->nr_outstanding);
|
|
netfs_reset_subreq_iter(rreq, subreq);
|
|
netfs_read_from_server(rreq, subreq);
|
|
} else if (test_bit(NETFS_SREQ_SHORT_IO, &subreq->flags)) {
|
|
netfs_rreq_short_read(rreq, subreq);
|
|
}
|
|
}
|
|
|
|
/* If we decrement nr_outstanding to 0, the usage ref belongs to us. */
|
|
if (atomic_dec_and_test(&rreq->nr_outstanding))
|
|
return true;
|
|
|
|
wake_up_var(&rreq->nr_outstanding);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Check to see if the data read is still valid.
|
|
*/
|
|
static void netfs_rreq_is_still_valid(struct netfs_io_request *rreq)
|
|
{
|
|
struct netfs_io_subrequest *subreq;
|
|
|
|
if (!rreq->netfs_ops->is_still_valid ||
|
|
rreq->netfs_ops->is_still_valid(rreq))
|
|
return;
|
|
|
|
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
|
if (subreq->source == NETFS_READ_FROM_CACHE) {
|
|
subreq->error = -ESTALE;
|
|
__set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Determine how much we can admit to having read from a DIO read.
|
|
*/
|
|
static void netfs_rreq_assess_dio(struct netfs_io_request *rreq)
|
|
{
|
|
struct netfs_io_subrequest *subreq;
|
|
unsigned int i;
|
|
size_t transferred = 0;
|
|
|
|
for (i = 0; i < rreq->direct_bv_count; i++) {
|
|
flush_dcache_page(rreq->direct_bv[i].bv_page);
|
|
// TODO: cifs marks pages in the destination buffer
|
|
// dirty under some circumstances after a read. Do we
|
|
// need to do that too?
|
|
set_page_dirty(rreq->direct_bv[i].bv_page);
|
|
}
|
|
|
|
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
|
if (subreq->error || subreq->transferred == 0)
|
|
break;
|
|
transferred += subreq->transferred;
|
|
if (subreq->transferred < subreq->len)
|
|
break;
|
|
}
|
|
|
|
for (i = 0; i < rreq->direct_bv_count; i++)
|
|
flush_dcache_page(rreq->direct_bv[i].bv_page);
|
|
|
|
rreq->transferred = transferred;
|
|
task_io_account_read(transferred);
|
|
|
|
if (rreq->iocb) {
|
|
rreq->iocb->ki_pos += transferred;
|
|
if (rreq->iocb->ki_complete)
|
|
rreq->iocb->ki_complete(
|
|
rreq->iocb, rreq->error ? rreq->error : transferred);
|
|
}
|
|
if (rreq->netfs_ops->done)
|
|
rreq->netfs_ops->done(rreq);
|
|
inode_dio_end(rreq->inode);
|
|
}
|
|
|
|
/*
|
|
* Assess the state of a read request and decide what to do next.
|
|
*
|
|
* Note that we could be in an ordinary kernel thread, on a workqueue or in
|
|
* softirq context at this point. We inherit a ref from the caller.
|
|
*/
|
|
static void netfs_rreq_assess(struct netfs_io_request *rreq, bool was_async)
|
|
{
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_assess);
|
|
|
|
again:
|
|
netfs_rreq_is_still_valid(rreq);
|
|
|
|
if (!test_bit(NETFS_RREQ_FAILED, &rreq->flags) &&
|
|
test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags)) {
|
|
if (netfs_rreq_perform_resubmissions(rreq))
|
|
goto again;
|
|
return;
|
|
}
|
|
|
|
if (rreq->origin != NETFS_DIO_READ)
|
|
netfs_rreq_unlock_folios(rreq);
|
|
else
|
|
netfs_rreq_assess_dio(rreq);
|
|
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_wake_ip);
|
|
clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &rreq->flags);
|
|
wake_up_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS);
|
|
|
|
netfs_rreq_completed(rreq, was_async);
|
|
}
|
|
|
|
static void netfs_rreq_work(struct work_struct *work)
|
|
{
|
|
struct netfs_io_request *rreq =
|
|
container_of(work, struct netfs_io_request, work);
|
|
netfs_rreq_assess(rreq, false);
|
|
}
|
|
|
|
/*
|
|
* Handle the completion of all outstanding I/O operations on a read request.
|
|
* We inherit a ref from the caller.
|
|
*/
|
|
static void netfs_rreq_terminated(struct netfs_io_request *rreq,
|
|
bool was_async)
|
|
{
|
|
if (test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags) &&
|
|
was_async) {
|
|
if (!queue_work(system_unbound_wq, &rreq->work))
|
|
BUG();
|
|
} else {
|
|
netfs_rreq_assess(rreq, was_async);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* netfs_subreq_terminated - Note the termination of an I/O operation.
|
|
* @subreq: The I/O request that has terminated.
|
|
* @transferred_or_error: The amount of data transferred or an error code.
|
|
* @was_async: The termination was asynchronous
|
|
*
|
|
* This tells the read helper that a contributory I/O operation has terminated,
|
|
* one way or another, and that it should integrate the results.
|
|
*
|
|
* The caller indicates in @transferred_or_error the outcome of the operation,
|
|
* supplying a positive value to indicate the number of bytes transferred, 0 to
|
|
* indicate a failure to transfer anything that should be retried or a negative
|
|
* error code. The helper will look after reissuing I/O operations as
|
|
* appropriate and writing downloaded data to the cache.
|
|
*
|
|
* If @was_async is true, the caller might be running in softirq or interrupt
|
|
* context and we can't sleep.
|
|
*/
|
|
void netfs_subreq_terminated(struct netfs_io_subrequest *subreq,
|
|
ssize_t transferred_or_error,
|
|
bool was_async)
|
|
{
|
|
struct netfs_io_request *rreq = subreq->rreq;
|
|
int u;
|
|
|
|
_enter("R=%x[%x]{%llx,%lx},%zd",
|
|
rreq->debug_id, subreq->debug_index,
|
|
subreq->start, subreq->flags, transferred_or_error);
|
|
|
|
switch (subreq->source) {
|
|
case NETFS_READ_FROM_CACHE:
|
|
netfs_stat(&netfs_n_rh_read_done);
|
|
break;
|
|
case NETFS_DOWNLOAD_FROM_SERVER:
|
|
netfs_stat(&netfs_n_rh_download_done);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (IS_ERR_VALUE(transferred_or_error)) {
|
|
subreq->error = transferred_or_error;
|
|
trace_netfs_failure(rreq, subreq, transferred_or_error,
|
|
netfs_fail_read);
|
|
goto failed;
|
|
}
|
|
|
|
if (WARN(transferred_or_error > subreq->len - subreq->transferred,
|
|
"Subreq overread: R%x[%x] %zd > %zu - %zu",
|
|
rreq->debug_id, subreq->debug_index,
|
|
transferred_or_error, subreq->len, subreq->transferred))
|
|
transferred_or_error = subreq->len - subreq->transferred;
|
|
|
|
subreq->error = 0;
|
|
subreq->transferred += transferred_or_error;
|
|
if (subreq->transferred < subreq->len)
|
|
goto incomplete;
|
|
|
|
complete:
|
|
__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
|
|
if (test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags))
|
|
set_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags);
|
|
|
|
out:
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_terminated);
|
|
|
|
/* If we decrement nr_outstanding to 0, the ref belongs to us. */
|
|
u = atomic_dec_return(&rreq->nr_outstanding);
|
|
if (u == 0)
|
|
netfs_rreq_terminated(rreq, was_async);
|
|
else if (u == 1)
|
|
wake_up_var(&rreq->nr_outstanding);
|
|
|
|
netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated);
|
|
return;
|
|
|
|
incomplete:
|
|
if (test_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags)) {
|
|
netfs_clear_unread(subreq);
|
|
subreq->transferred = subreq->len;
|
|
goto complete;
|
|
}
|
|
|
|
if (transferred_or_error == 0) {
|
|
if (__test_and_set_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags)) {
|
|
subreq->error = -ENODATA;
|
|
goto failed;
|
|
}
|
|
} else {
|
|
__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
|
|
}
|
|
|
|
__set_bit(NETFS_SREQ_SHORT_IO, &subreq->flags);
|
|
set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
|
|
goto out;
|
|
|
|
failed:
|
|
if (subreq->source == NETFS_READ_FROM_CACHE) {
|
|
netfs_stat(&netfs_n_rh_read_failed);
|
|
set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
|
|
} else {
|
|
netfs_stat(&netfs_n_rh_download_failed);
|
|
set_bit(NETFS_RREQ_FAILED, &rreq->flags);
|
|
rreq->error = subreq->error;
|
|
}
|
|
goto out;
|
|
}
|
|
EXPORT_SYMBOL(netfs_subreq_terminated);
|
|
|
|
static enum netfs_io_source netfs_cache_prepare_read(struct netfs_io_subrequest *subreq,
|
|
loff_t i_size)
|
|
{
|
|
struct netfs_io_request *rreq = subreq->rreq;
|
|
struct netfs_cache_resources *cres = &rreq->cache_resources;
|
|
|
|
if (cres->ops)
|
|
return cres->ops->prepare_read(subreq, i_size);
|
|
if (subreq->start >= rreq->i_size)
|
|
return NETFS_FILL_WITH_ZEROES;
|
|
return NETFS_DOWNLOAD_FROM_SERVER;
|
|
}
|
|
|
|
/*
|
|
* Work out what sort of subrequest the next one will be.
|
|
*/
|
|
static enum netfs_io_source
|
|
netfs_rreq_prepare_read(struct netfs_io_request *rreq,
|
|
struct netfs_io_subrequest *subreq,
|
|
struct iov_iter *io_iter)
|
|
{
|
|
enum netfs_io_source source = NETFS_DOWNLOAD_FROM_SERVER;
|
|
struct netfs_inode *ictx = netfs_inode(rreq->inode);
|
|
size_t lsize;
|
|
|
|
_enter("%llx-%llx,%llx", subreq->start, subreq->start + subreq->len, rreq->i_size);
|
|
|
|
if (rreq->origin != NETFS_DIO_READ) {
|
|
source = netfs_cache_prepare_read(subreq, rreq->i_size);
|
|
if (source == NETFS_INVALID_READ)
|
|
goto out;
|
|
}
|
|
|
|
if (source == NETFS_DOWNLOAD_FROM_SERVER) {
|
|
/* Call out to the netfs to let it shrink the request to fit
|
|
* its own I/O sizes and boundaries. If it shinks it here, it
|
|
* will be called again to make simultaneous calls; if it wants
|
|
* to make serial calls, it can indicate a short read and then
|
|
* we will call it again.
|
|
*/
|
|
if (rreq->origin != NETFS_DIO_READ) {
|
|
if (subreq->start >= ictx->zero_point) {
|
|
source = NETFS_FILL_WITH_ZEROES;
|
|
goto set;
|
|
}
|
|
if (subreq->len > ictx->zero_point - subreq->start)
|
|
subreq->len = ictx->zero_point - subreq->start;
|
|
}
|
|
if (subreq->len > rreq->i_size - subreq->start)
|
|
subreq->len = rreq->i_size - subreq->start;
|
|
if (rreq->rsize && subreq->len > rreq->rsize)
|
|
subreq->len = rreq->rsize;
|
|
|
|
if (rreq->netfs_ops->clamp_length &&
|
|
!rreq->netfs_ops->clamp_length(subreq)) {
|
|
source = NETFS_INVALID_READ;
|
|
goto out;
|
|
}
|
|
|
|
if (subreq->max_nr_segs) {
|
|
lsize = netfs_limit_iter(io_iter, 0, subreq->len,
|
|
subreq->max_nr_segs);
|
|
if (subreq->len > lsize) {
|
|
subreq->len = lsize;
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_limited);
|
|
}
|
|
}
|
|
}
|
|
|
|
set:
|
|
if (subreq->len > rreq->len)
|
|
pr_warn("R=%08x[%u] SREQ>RREQ %zx > %llx\n",
|
|
rreq->debug_id, subreq->debug_index,
|
|
subreq->len, rreq->len);
|
|
|
|
if (WARN_ON(subreq->len == 0)) {
|
|
source = NETFS_INVALID_READ;
|
|
goto out;
|
|
}
|
|
|
|
subreq->source = source;
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
|
|
|
|
subreq->io_iter = *io_iter;
|
|
iov_iter_truncate(&subreq->io_iter, subreq->len);
|
|
iov_iter_advance(io_iter, subreq->len);
|
|
out:
|
|
subreq->source = source;
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
|
|
return source;
|
|
}
|
|
|
|
/*
|
|
* Slice off a piece of a read request and submit an I/O request for it.
|
|
*/
|
|
static bool netfs_rreq_submit_slice(struct netfs_io_request *rreq,
|
|
struct iov_iter *io_iter)
|
|
{
|
|
struct netfs_io_subrequest *subreq;
|
|
enum netfs_io_source source;
|
|
|
|
subreq = netfs_alloc_subrequest(rreq);
|
|
if (!subreq)
|
|
return false;
|
|
|
|
subreq->start = rreq->start + rreq->submitted;
|
|
subreq->len = io_iter->count;
|
|
|
|
_debug("slice %llx,%zx,%llx", subreq->start, subreq->len, rreq->submitted);
|
|
list_add_tail(&subreq->rreq_link, &rreq->subrequests);
|
|
|
|
/* Call out to the cache to find out what it can do with the remaining
|
|
* subset. It tells us in subreq->flags what it decided should be done
|
|
* and adjusts subreq->len down if the subset crosses a cache boundary.
|
|
*
|
|
* Then when we hand the subset, it can choose to take a subset of that
|
|
* (the starts must coincide), in which case, we go around the loop
|
|
* again and ask it to download the next piece.
|
|
*/
|
|
source = netfs_rreq_prepare_read(rreq, subreq, io_iter);
|
|
if (source == NETFS_INVALID_READ)
|
|
goto subreq_failed;
|
|
|
|
atomic_inc(&rreq->nr_outstanding);
|
|
|
|
rreq->submitted += subreq->len;
|
|
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
|
|
switch (source) {
|
|
case NETFS_FILL_WITH_ZEROES:
|
|
netfs_fill_with_zeroes(rreq, subreq);
|
|
break;
|
|
case NETFS_DOWNLOAD_FROM_SERVER:
|
|
netfs_read_from_server(rreq, subreq);
|
|
break;
|
|
case NETFS_READ_FROM_CACHE:
|
|
netfs_read_from_cache(rreq, subreq, NETFS_READ_HOLE_IGNORE);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
return true;
|
|
|
|
subreq_failed:
|
|
rreq->error = subreq->error;
|
|
netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_failed);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Begin the process of reading in a chunk of data, where that data may be
|
|
* stitched together from multiple sources, including multiple servers and the
|
|
* local cache.
|
|
*/
|
|
int netfs_begin_read(struct netfs_io_request *rreq, bool sync)
|
|
{
|
|
struct iov_iter io_iter;
|
|
int ret;
|
|
|
|
_enter("R=%x %llx-%llx",
|
|
rreq->debug_id, rreq->start, rreq->start + rreq->len - 1);
|
|
|
|
if (rreq->len == 0) {
|
|
pr_err("Zero-sized read [R=%x]\n", rreq->debug_id);
|
|
return -EIO;
|
|
}
|
|
|
|
if (rreq->origin == NETFS_DIO_READ)
|
|
inode_dio_begin(rreq->inode);
|
|
|
|
// TODO: Use bounce buffer if requested
|
|
rreq->io_iter = rreq->iter;
|
|
|
|
INIT_WORK(&rreq->work, netfs_rreq_work);
|
|
|
|
/* Chop the read into slices according to what the cache and the netfs
|
|
* want and submit each one.
|
|
*/
|
|
netfs_get_request(rreq, netfs_rreq_trace_get_for_outstanding);
|
|
atomic_set(&rreq->nr_outstanding, 1);
|
|
io_iter = rreq->io_iter;
|
|
do {
|
|
_debug("submit %llx + %llx >= %llx",
|
|
rreq->start, rreq->submitted, rreq->i_size);
|
|
if (rreq->origin == NETFS_DIO_READ &&
|
|
rreq->start + rreq->submitted >= rreq->i_size)
|
|
break;
|
|
if (!netfs_rreq_submit_slice(rreq, &io_iter))
|
|
break;
|
|
if (test_bit(NETFS_RREQ_BLOCKED, &rreq->flags) &&
|
|
test_bit(NETFS_RREQ_NONBLOCK, &rreq->flags))
|
|
break;
|
|
|
|
} while (rreq->submitted < rreq->len);
|
|
|
|
if (!rreq->submitted) {
|
|
netfs_put_request(rreq, false, netfs_rreq_trace_put_no_submit);
|
|
if (rreq->origin == NETFS_DIO_READ)
|
|
inode_dio_end(rreq->inode);
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (sync) {
|
|
/* Keep nr_outstanding incremented so that the ref always
|
|
* belongs to us, and the service code isn't punted off to a
|
|
* random thread pool to process. Note that this might start
|
|
* further work, such as writing to the cache.
|
|
*/
|
|
wait_var_event(&rreq->nr_outstanding,
|
|
atomic_read(&rreq->nr_outstanding) == 1);
|
|
if (atomic_dec_and_test(&rreq->nr_outstanding))
|
|
netfs_rreq_assess(rreq, false);
|
|
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_wait_ip);
|
|
wait_on_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS,
|
|
TASK_UNINTERRUPTIBLE);
|
|
|
|
ret = rreq->error;
|
|
if (ret == 0 && rreq->submitted < rreq->len &&
|
|
rreq->origin != NETFS_DIO_READ) {
|
|
trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_read);
|
|
ret = -EIO;
|
|
}
|
|
} else {
|
|
/* If we decrement nr_outstanding to 0, the ref belongs to us. */
|
|
if (atomic_dec_and_test(&rreq->nr_outstanding))
|
|
netfs_rreq_assess(rreq, false);
|
|
ret = -EIOCBQUEUED;
|
|
}
|
|
|
|
out:
|
|
return ret;
|
|
}
|