mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-29 22:14:41 +08:00
81713d3788
Add implicit MR, covering entire user address space. The MR is implemented as an indirect KSM MR consisting of 1GB direct MRs. Pages and direct MRs are added/removed to MR by ODP. Signed-off-by: Artemy Kovalyov <artemyko@mellanox.com> Signed-off-by: Leon Romanovsky <leon@kernel.org> Signed-off-by: Doug Ledford <dledford@redhat.com>
1168 lines
31 KiB
C
1168 lines
31 KiB
C
/*
|
|
* Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <rdma/ib_umem.h>
|
|
#include <rdma/ib_umem_odp.h>
|
|
|
|
#include "mlx5_ib.h"
|
|
#include "cmd.h"
|
|
|
|
#define MAX_PREFETCH_LEN (4*1024*1024U)
|
|
|
|
/* Timeout in ms to wait for an active mmu notifier to complete when handling
|
|
* a pagefault. */
|
|
#define MMU_NOTIFIER_TIMEOUT 1000
|
|
|
|
#define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
|
|
#define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
|
|
#define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
|
|
#define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
|
|
#define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
|
|
|
|
#define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
|
|
|
|
static u64 mlx5_imr_ksm_entries;
|
|
|
|
static int check_parent(struct ib_umem_odp *odp,
|
|
struct mlx5_ib_mr *parent)
|
|
{
|
|
struct mlx5_ib_mr *mr = odp->private;
|
|
|
|
return mr && mr->parent == parent;
|
|
}
|
|
|
|
static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp)
|
|
{
|
|
struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent;
|
|
struct ib_ucontext *ctx = odp->umem->context;
|
|
struct rb_node *rb;
|
|
|
|
down_read(&ctx->umem_rwsem);
|
|
while (1) {
|
|
rb = rb_next(&odp->interval_tree.rb);
|
|
if (!rb)
|
|
goto not_found;
|
|
odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
|
|
if (check_parent(odp, parent))
|
|
goto end;
|
|
}
|
|
not_found:
|
|
odp = NULL;
|
|
end:
|
|
up_read(&ctx->umem_rwsem);
|
|
return odp;
|
|
}
|
|
|
|
static struct ib_umem_odp *odp_lookup(struct ib_ucontext *ctx,
|
|
u64 start, u64 length,
|
|
struct mlx5_ib_mr *parent)
|
|
{
|
|
struct ib_umem_odp *odp;
|
|
struct rb_node *rb;
|
|
|
|
down_read(&ctx->umem_rwsem);
|
|
odp = rbt_ib_umem_lookup(&ctx->umem_tree, start, length);
|
|
if (!odp)
|
|
goto end;
|
|
|
|
while (1) {
|
|
if (check_parent(odp, parent))
|
|
goto end;
|
|
rb = rb_next(&odp->interval_tree.rb);
|
|
if (!rb)
|
|
goto not_found;
|
|
odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
|
|
if (ib_umem_start(odp->umem) > start + length)
|
|
goto not_found;
|
|
}
|
|
not_found:
|
|
odp = NULL;
|
|
end:
|
|
up_read(&ctx->umem_rwsem);
|
|
return odp;
|
|
}
|
|
|
|
void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset,
|
|
size_t nentries, struct mlx5_ib_mr *mr, int flags)
|
|
{
|
|
struct ib_pd *pd = mr->ibmr.pd;
|
|
struct ib_ucontext *ctx = pd->uobject->context;
|
|
struct mlx5_ib_dev *dev = to_mdev(pd->device);
|
|
struct ib_umem_odp *odp;
|
|
unsigned long va;
|
|
int i;
|
|
|
|
if (flags & MLX5_IB_UPD_XLT_ZAP) {
|
|
for (i = 0; i < nentries; i++, pklm++) {
|
|
pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
|
|
pklm->key = cpu_to_be32(dev->null_mkey);
|
|
pklm->va = 0;
|
|
}
|
|
return;
|
|
}
|
|
|
|
odp = odp_lookup(ctx, offset * MLX5_IMR_MTT_SIZE,
|
|
nentries * MLX5_IMR_MTT_SIZE, mr);
|
|
|
|
for (i = 0; i < nentries; i++, pklm++) {
|
|
pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
|
|
va = (offset + i) * MLX5_IMR_MTT_SIZE;
|
|
if (odp && odp->umem->address == va) {
|
|
struct mlx5_ib_mr *mtt = odp->private;
|
|
|
|
pklm->key = cpu_to_be32(mtt->ibmr.lkey);
|
|
odp = odp_next(odp);
|
|
} else {
|
|
pklm->key = cpu_to_be32(dev->null_mkey);
|
|
}
|
|
mlx5_ib_dbg(dev, "[%d] va %lx key %x\n",
|
|
i, va, be32_to_cpu(pklm->key));
|
|
}
|
|
}
|
|
|
|
static void mr_leaf_free_action(struct work_struct *work)
|
|
{
|
|
struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work);
|
|
int idx = ib_umem_start(odp->umem) >> MLX5_IMR_MTT_SHIFT;
|
|
struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent;
|
|
|
|
mr->parent = NULL;
|
|
synchronize_srcu(&mr->dev->mr_srcu);
|
|
|
|
if (!READ_ONCE(odp->dying)) {
|
|
mr->parent = imr;
|
|
if (atomic_dec_and_test(&imr->num_leaf_free))
|
|
wake_up(&imr->q_leaf_free);
|
|
return;
|
|
}
|
|
|
|
ib_umem_release(odp->umem);
|
|
if (imr->live)
|
|
mlx5_ib_update_xlt(imr, idx, 1, 0,
|
|
MLX5_IB_UPD_XLT_INDIRECT |
|
|
MLX5_IB_UPD_XLT_ATOMIC);
|
|
mlx5_mr_cache_free(mr->dev, mr);
|
|
|
|
if (atomic_dec_and_test(&imr->num_leaf_free))
|
|
wake_up(&imr->q_leaf_free);
|
|
}
|
|
|
|
void mlx5_ib_invalidate_range(struct ib_umem *umem, unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
struct mlx5_ib_mr *mr;
|
|
const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
|
|
sizeof(struct mlx5_mtt)) - 1;
|
|
u64 idx = 0, blk_start_idx = 0;
|
|
int in_block = 0;
|
|
u64 addr;
|
|
|
|
if (!umem || !umem->odp_data) {
|
|
pr_err("invalidation called on NULL umem or non-ODP umem\n");
|
|
return;
|
|
}
|
|
|
|
mr = umem->odp_data->private;
|
|
|
|
if (!mr || !mr->ibmr.pd)
|
|
return;
|
|
|
|
start = max_t(u64, ib_umem_start(umem), start);
|
|
end = min_t(u64, ib_umem_end(umem), end);
|
|
|
|
/*
|
|
* Iteration one - zap the HW's MTTs. The notifiers_count ensures that
|
|
* while we are doing the invalidation, no page fault will attempt to
|
|
* overwrite the same MTTs. Concurent invalidations might race us,
|
|
* but they will write 0s as well, so no difference in the end result.
|
|
*/
|
|
|
|
for (addr = start; addr < end; addr += (u64)umem->page_size) {
|
|
idx = (addr - ib_umem_start(umem)) / PAGE_SIZE;
|
|
/*
|
|
* Strive to write the MTTs in chunks, but avoid overwriting
|
|
* non-existing MTTs. The huristic here can be improved to
|
|
* estimate the cost of another UMR vs. the cost of bigger
|
|
* UMR.
|
|
*/
|
|
if (umem->odp_data->dma_list[idx] &
|
|
(ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
|
|
if (!in_block) {
|
|
blk_start_idx = idx;
|
|
in_block = 1;
|
|
}
|
|
} else {
|
|
u64 umr_offset = idx & umr_block_mask;
|
|
|
|
if (in_block && umr_offset == 0) {
|
|
mlx5_ib_update_xlt(mr, blk_start_idx,
|
|
idx - blk_start_idx,
|
|
PAGE_SHIFT,
|
|
MLX5_IB_UPD_XLT_ZAP |
|
|
MLX5_IB_UPD_XLT_ATOMIC);
|
|
in_block = 0;
|
|
}
|
|
}
|
|
}
|
|
if (in_block)
|
|
mlx5_ib_update_xlt(mr, blk_start_idx,
|
|
idx - blk_start_idx + 1,
|
|
PAGE_SHIFT,
|
|
MLX5_IB_UPD_XLT_ZAP |
|
|
MLX5_IB_UPD_XLT_ATOMIC);
|
|
/*
|
|
* We are now sure that the device will not access the
|
|
* memory. We can safely unmap it, and mark it as dirty if
|
|
* needed.
|
|
*/
|
|
|
|
ib_umem_odp_unmap_dma_pages(umem, start, end);
|
|
|
|
if (unlikely(!umem->npages && mr->parent &&
|
|
!umem->odp_data->dying)) {
|
|
WRITE_ONCE(umem->odp_data->dying, 1);
|
|
atomic_inc(&mr->parent->num_leaf_free);
|
|
schedule_work(&umem->odp_data->work);
|
|
}
|
|
}
|
|
|
|
void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
|
|
{
|
|
struct ib_odp_caps *caps = &dev->odp_caps;
|
|
|
|
memset(caps, 0, sizeof(*caps));
|
|
|
|
if (!MLX5_CAP_GEN(dev->mdev, pg))
|
|
return;
|
|
|
|
caps->general_caps = IB_ODP_SUPPORT;
|
|
|
|
if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
|
|
dev->odp_max_size = U64_MAX;
|
|
else
|
|
dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
|
|
|
|
if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
|
|
caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
|
|
|
|
if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
|
|
caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
|
|
|
|
if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
|
|
caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
|
|
|
|
if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
|
|
caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
|
|
|
|
if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
|
|
caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
|
|
|
|
if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
|
|
caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
|
|
|
|
if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
|
|
MLX5_CAP_GEN(dev->mdev, null_mkey) &&
|
|
MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
|
|
caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
|
|
|
|
return;
|
|
}
|
|
|
|
static struct mlx5_ib_mr *mlx5_ib_odp_find_mr_lkey(struct mlx5_ib_dev *dev,
|
|
u32 key)
|
|
{
|
|
u32 base_key = mlx5_base_mkey(key);
|
|
struct mlx5_core_mkey *mmkey = __mlx5_mr_lookup(dev->mdev, base_key);
|
|
struct mlx5_ib_mr *mr;
|
|
|
|
if (!mmkey || mmkey->key != key || mmkey->type != MLX5_MKEY_MR)
|
|
return NULL;
|
|
|
|
mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
|
|
|
|
if (!mr->live)
|
|
return NULL;
|
|
|
|
return container_of(mmkey, struct mlx5_ib_mr, mmkey);
|
|
}
|
|
|
|
static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
|
|
struct mlx5_pagefault *pfault,
|
|
int error)
|
|
{
|
|
int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
|
|
pfault->wqe.wq_num : pfault->token;
|
|
int ret = mlx5_core_page_fault_resume(dev->mdev,
|
|
pfault->token,
|
|
wq_num,
|
|
pfault->type,
|
|
error);
|
|
if (ret)
|
|
mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x\n",
|
|
wq_num);
|
|
}
|
|
|
|
static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd,
|
|
struct ib_umem *umem,
|
|
bool ksm, int access_flags)
|
|
{
|
|
struct mlx5_ib_dev *dev = to_mdev(pd->device);
|
|
struct mlx5_ib_mr *mr;
|
|
int err;
|
|
|
|
mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY :
|
|
MLX5_IMR_MTT_CACHE_ENTRY);
|
|
|
|
if (IS_ERR(mr))
|
|
return mr;
|
|
|
|
mr->ibmr.pd = pd;
|
|
|
|
mr->dev = dev;
|
|
mr->access_flags = access_flags;
|
|
mr->mmkey.iova = 0;
|
|
mr->umem = umem;
|
|
|
|
if (ksm) {
|
|
err = mlx5_ib_update_xlt(mr, 0,
|
|
mlx5_imr_ksm_entries,
|
|
MLX5_KSM_PAGE_SHIFT,
|
|
MLX5_IB_UPD_XLT_INDIRECT |
|
|
MLX5_IB_UPD_XLT_ZAP |
|
|
MLX5_IB_UPD_XLT_ENABLE);
|
|
|
|
} else {
|
|
err = mlx5_ib_update_xlt(mr, 0,
|
|
MLX5_IMR_MTT_ENTRIES,
|
|
PAGE_SHIFT,
|
|
MLX5_IB_UPD_XLT_ZAP |
|
|
MLX5_IB_UPD_XLT_ENABLE |
|
|
MLX5_IB_UPD_XLT_ATOMIC);
|
|
}
|
|
|
|
if (err)
|
|
goto fail;
|
|
|
|
mr->ibmr.lkey = mr->mmkey.key;
|
|
mr->ibmr.rkey = mr->mmkey.key;
|
|
|
|
mr->live = 1;
|
|
|
|
mlx5_ib_dbg(dev, "key %x dev %p mr %p\n",
|
|
mr->mmkey.key, dev->mdev, mr);
|
|
|
|
return mr;
|
|
|
|
fail:
|
|
mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
|
|
mlx5_mr_cache_free(dev, mr);
|
|
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr,
|
|
u64 io_virt, size_t bcnt)
|
|
{
|
|
struct ib_ucontext *ctx = mr->ibmr.pd->uobject->context;
|
|
struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device);
|
|
struct ib_umem_odp *odp, *result = NULL;
|
|
u64 addr = io_virt & MLX5_IMR_MTT_MASK;
|
|
int nentries = 0, start_idx = 0, ret;
|
|
struct mlx5_ib_mr *mtt;
|
|
struct ib_umem *umem;
|
|
|
|
mutex_lock(&mr->umem->odp_data->umem_mutex);
|
|
odp = odp_lookup(ctx, addr, 1, mr);
|
|
|
|
mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n",
|
|
io_virt, bcnt, addr, odp);
|
|
|
|
next_mr:
|
|
if (likely(odp)) {
|
|
if (nentries)
|
|
nentries++;
|
|
} else {
|
|
umem = ib_alloc_odp_umem(ctx, addr, MLX5_IMR_MTT_SIZE);
|
|
if (IS_ERR(umem)) {
|
|
mutex_unlock(&mr->umem->odp_data->umem_mutex);
|
|
return ERR_CAST(umem);
|
|
}
|
|
|
|
mtt = implicit_mr_alloc(mr->ibmr.pd, umem, 0, mr->access_flags);
|
|
if (IS_ERR(mtt)) {
|
|
mutex_unlock(&mr->umem->odp_data->umem_mutex);
|
|
ib_umem_release(umem);
|
|
return ERR_CAST(mtt);
|
|
}
|
|
|
|
odp = umem->odp_data;
|
|
odp->private = mtt;
|
|
mtt->umem = umem;
|
|
mtt->mmkey.iova = addr;
|
|
mtt->parent = mr;
|
|
INIT_WORK(&odp->work, mr_leaf_free_action);
|
|
|
|
if (!nentries)
|
|
start_idx = addr >> MLX5_IMR_MTT_SHIFT;
|
|
nentries++;
|
|
}
|
|
|
|
odp->dying = 0;
|
|
|
|
/* Return first odp if region not covered by single one */
|
|
if (likely(!result))
|
|
result = odp;
|
|
|
|
addr += MLX5_IMR_MTT_SIZE;
|
|
if (unlikely(addr < io_virt + bcnt)) {
|
|
odp = odp_next(odp);
|
|
if (odp && odp->umem->address != addr)
|
|
odp = NULL;
|
|
goto next_mr;
|
|
}
|
|
|
|
if (unlikely(nentries)) {
|
|
ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0,
|
|
MLX5_IB_UPD_XLT_INDIRECT |
|
|
MLX5_IB_UPD_XLT_ATOMIC);
|
|
if (ret) {
|
|
mlx5_ib_err(dev, "Failed to update PAS\n");
|
|
result = ERR_PTR(ret);
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&mr->umem->odp_data->umem_mutex);
|
|
return result;
|
|
}
|
|
|
|
struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
|
|
int access_flags)
|
|
{
|
|
struct ib_ucontext *ctx = pd->ibpd.uobject->context;
|
|
struct mlx5_ib_mr *imr;
|
|
struct ib_umem *umem;
|
|
|
|
umem = ib_umem_get(ctx, 0, 0, IB_ACCESS_ON_DEMAND, 0);
|
|
if (IS_ERR(umem))
|
|
return ERR_CAST(umem);
|
|
|
|
imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags);
|
|
if (IS_ERR(imr)) {
|
|
ib_umem_release(umem);
|
|
return ERR_CAST(imr);
|
|
}
|
|
|
|
imr->umem = umem;
|
|
init_waitqueue_head(&imr->q_leaf_free);
|
|
atomic_set(&imr->num_leaf_free, 0);
|
|
|
|
return imr;
|
|
}
|
|
|
|
static int mr_leaf_free(struct ib_umem *umem, u64 start,
|
|
u64 end, void *cookie)
|
|
{
|
|
struct mlx5_ib_mr *mr = umem->odp_data->private, *imr = cookie;
|
|
|
|
if (mr->parent != imr)
|
|
return 0;
|
|
|
|
ib_umem_odp_unmap_dma_pages(umem,
|
|
ib_umem_start(umem),
|
|
ib_umem_end(umem));
|
|
|
|
if (umem->odp_data->dying)
|
|
return 0;
|
|
|
|
WRITE_ONCE(umem->odp_data->dying, 1);
|
|
atomic_inc(&imr->num_leaf_free);
|
|
schedule_work(&umem->odp_data->work);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
|
|
{
|
|
struct ib_ucontext *ctx = imr->ibmr.pd->uobject->context;
|
|
|
|
down_read(&ctx->umem_rwsem);
|
|
rbt_ib_umem_for_each_in_range(&ctx->umem_tree, 0, ULLONG_MAX,
|
|
mr_leaf_free, imr);
|
|
up_read(&ctx->umem_rwsem);
|
|
|
|
wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free));
|
|
}
|
|
|
|
/*
|
|
* Handle a single data segment in a page-fault WQE or RDMA region.
|
|
*
|
|
* Returns number of pages retrieved on success. The caller may continue to
|
|
* the next data segment.
|
|
* Can return the following error codes:
|
|
* -EAGAIN to designate a temporary error. The caller will abort handling the
|
|
* page fault and resolve it.
|
|
* -EFAULT when there's an error mapping the requested pages. The caller will
|
|
* abort the page fault handling.
|
|
*/
|
|
static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
|
|
u32 key, u64 io_virt, size_t bcnt,
|
|
u32 *bytes_committed,
|
|
u32 *bytes_mapped)
|
|
{
|
|
int srcu_key;
|
|
unsigned int current_seq = 0;
|
|
u64 start_idx;
|
|
int npages = 0, ret = 0;
|
|
struct mlx5_ib_mr *mr;
|
|
u64 access_mask = ODP_READ_ALLOWED_BIT;
|
|
struct ib_umem_odp *odp;
|
|
int implicit = 0;
|
|
size_t size;
|
|
|
|
srcu_key = srcu_read_lock(&dev->mr_srcu);
|
|
mr = mlx5_ib_odp_find_mr_lkey(dev, key);
|
|
/*
|
|
* If we didn't find the MR, it means the MR was closed while we were
|
|
* handling the ODP event. In this case we return -EFAULT so that the
|
|
* QP will be closed.
|
|
*/
|
|
if (!mr || !mr->ibmr.pd) {
|
|
mlx5_ib_dbg(dev, "Failed to find relevant mr for lkey=0x%06x, probably the MR was destroyed\n",
|
|
key);
|
|
ret = -EFAULT;
|
|
goto srcu_unlock;
|
|
}
|
|
if (!mr->umem->odp_data) {
|
|
mlx5_ib_dbg(dev, "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
|
|
key);
|
|
if (bytes_mapped)
|
|
*bytes_mapped +=
|
|
(bcnt - *bytes_committed);
|
|
goto srcu_unlock;
|
|
}
|
|
|
|
/*
|
|
* Avoid branches - this code will perform correctly
|
|
* in all iterations (in iteration 2 and above,
|
|
* bytes_committed == 0).
|
|
*/
|
|
io_virt += *bytes_committed;
|
|
bcnt -= *bytes_committed;
|
|
|
|
if (!mr->umem->odp_data->page_list) {
|
|
odp = implicit_mr_get_data(mr, io_virt, bcnt);
|
|
|
|
if (IS_ERR(odp)) {
|
|
ret = PTR_ERR(odp);
|
|
goto srcu_unlock;
|
|
}
|
|
mr = odp->private;
|
|
implicit = 1;
|
|
|
|
} else {
|
|
odp = mr->umem->odp_data;
|
|
}
|
|
|
|
next_mr:
|
|
current_seq = READ_ONCE(odp->notifiers_seq);
|
|
/*
|
|
* Ensure the sequence number is valid for some time before we call
|
|
* gup.
|
|
*/
|
|
smp_rmb();
|
|
|
|
size = min_t(size_t, bcnt, ib_umem_end(odp->umem) - io_virt);
|
|
start_idx = (io_virt - (mr->mmkey.iova & PAGE_MASK)) >> PAGE_SHIFT;
|
|
|
|
if (mr->umem->writable)
|
|
access_mask |= ODP_WRITE_ALLOWED_BIT;
|
|
|
|
ret = ib_umem_odp_map_dma_pages(mr->umem, io_virt, size,
|
|
access_mask, current_seq);
|
|
|
|
if (ret < 0)
|
|
goto srcu_unlock;
|
|
|
|
if (ret > 0) {
|
|
int np = ret;
|
|
|
|
mutex_lock(&odp->umem_mutex);
|
|
if (!ib_umem_mmu_notifier_retry(mr->umem, current_seq)) {
|
|
/*
|
|
* No need to check whether the MTTs really belong to
|
|
* this MR, since ib_umem_odp_map_dma_pages already
|
|
* checks this.
|
|
*/
|
|
ret = mlx5_ib_update_xlt(mr, start_idx, np,
|
|
PAGE_SHIFT,
|
|
MLX5_IB_UPD_XLT_ATOMIC);
|
|
} else {
|
|
ret = -EAGAIN;
|
|
}
|
|
mutex_unlock(&odp->umem_mutex);
|
|
if (ret < 0) {
|
|
if (ret != -EAGAIN)
|
|
mlx5_ib_err(dev, "Failed to update mkey page tables\n");
|
|
goto srcu_unlock;
|
|
}
|
|
|
|
if (bytes_mapped) {
|
|
u32 new_mappings = np * PAGE_SIZE -
|
|
(io_virt - round_down(io_virt, PAGE_SIZE));
|
|
*bytes_mapped += min_t(u32, new_mappings, size);
|
|
}
|
|
|
|
npages += np;
|
|
}
|
|
|
|
bcnt -= size;
|
|
if (unlikely(bcnt)) {
|
|
struct ib_umem_odp *next;
|
|
|
|
io_virt += size;
|
|
next = odp_next(odp);
|
|
if (unlikely(!next || next->umem->address != io_virt)) {
|
|
mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n",
|
|
io_virt, next);
|
|
ret = -EAGAIN;
|
|
goto srcu_unlock_no_wait;
|
|
}
|
|
odp = next;
|
|
mr = odp->private;
|
|
goto next_mr;
|
|
}
|
|
|
|
srcu_unlock:
|
|
if (ret == -EAGAIN) {
|
|
if (implicit || !odp->dying) {
|
|
unsigned long timeout =
|
|
msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
|
|
|
|
if (!wait_for_completion_timeout(
|
|
&odp->notifier_completion,
|
|
timeout)) {
|
|
mlx5_ib_warn(dev, "timeout waiting for mmu notifier. seq %d against %d\n",
|
|
current_seq, odp->notifiers_seq);
|
|
}
|
|
} else {
|
|
/* The MR is being killed, kill the QP as well. */
|
|
ret = -EFAULT;
|
|
}
|
|
}
|
|
|
|
srcu_unlock_no_wait:
|
|
srcu_read_unlock(&dev->mr_srcu, srcu_key);
|
|
*bytes_committed = 0;
|
|
return ret ? ret : npages;
|
|
}
|
|
|
|
/**
|
|
* Parse a series of data segments for page fault handling.
|
|
*
|
|
* @qp the QP on which the fault occurred.
|
|
* @pfault contains page fault information.
|
|
* @wqe points at the first data segment in the WQE.
|
|
* @wqe_end points after the end of the WQE.
|
|
* @bytes_mapped receives the number of bytes that the function was able to
|
|
* map. This allows the caller to decide intelligently whether
|
|
* enough memory was mapped to resolve the page fault
|
|
* successfully (e.g. enough for the next MTU, or the entire
|
|
* WQE).
|
|
* @total_wqe_bytes receives the total data size of this WQE in bytes (minus
|
|
* the committed bytes).
|
|
*
|
|
* Returns the number of pages loaded if positive, zero for an empty WQE, or a
|
|
* negative error code.
|
|
*/
|
|
static int pagefault_data_segments(struct mlx5_ib_dev *dev,
|
|
struct mlx5_pagefault *pfault,
|
|
struct mlx5_ib_qp *qp, void *wqe,
|
|
void *wqe_end, u32 *bytes_mapped,
|
|
u32 *total_wqe_bytes, int receive_queue)
|
|
{
|
|
int ret = 0, npages = 0;
|
|
u64 io_virt;
|
|
u32 key;
|
|
u32 byte_count;
|
|
size_t bcnt;
|
|
int inline_segment;
|
|
|
|
/* Skip SRQ next-WQE segment. */
|
|
if (receive_queue && qp->ibqp.srq)
|
|
wqe += sizeof(struct mlx5_wqe_srq_next_seg);
|
|
|
|
if (bytes_mapped)
|
|
*bytes_mapped = 0;
|
|
if (total_wqe_bytes)
|
|
*total_wqe_bytes = 0;
|
|
|
|
while (wqe < wqe_end) {
|
|
struct mlx5_wqe_data_seg *dseg = wqe;
|
|
|
|
io_virt = be64_to_cpu(dseg->addr);
|
|
key = be32_to_cpu(dseg->lkey);
|
|
byte_count = be32_to_cpu(dseg->byte_count);
|
|
inline_segment = !!(byte_count & MLX5_INLINE_SEG);
|
|
bcnt = byte_count & ~MLX5_INLINE_SEG;
|
|
|
|
if (inline_segment) {
|
|
bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
|
|
wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
|
|
16);
|
|
} else {
|
|
wqe += sizeof(*dseg);
|
|
}
|
|
|
|
/* receive WQE end of sg list. */
|
|
if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
|
|
io_virt == 0)
|
|
break;
|
|
|
|
if (!inline_segment && total_wqe_bytes) {
|
|
*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
|
|
pfault->bytes_committed);
|
|
}
|
|
|
|
/* A zero length data segment designates a length of 2GB. */
|
|
if (bcnt == 0)
|
|
bcnt = 1U << 31;
|
|
|
|
if (inline_segment || bcnt <= pfault->bytes_committed) {
|
|
pfault->bytes_committed -=
|
|
min_t(size_t, bcnt,
|
|
pfault->bytes_committed);
|
|
continue;
|
|
}
|
|
|
|
ret = pagefault_single_data_segment(dev, key, io_virt, bcnt,
|
|
&pfault->bytes_committed,
|
|
bytes_mapped);
|
|
if (ret < 0)
|
|
break;
|
|
npages += ret;
|
|
}
|
|
|
|
return ret < 0 ? ret : npages;
|
|
}
|
|
|
|
static const u32 mlx5_ib_odp_opcode_cap[] = {
|
|
[MLX5_OPCODE_SEND] = IB_ODP_SUPPORT_SEND,
|
|
[MLX5_OPCODE_SEND_IMM] = IB_ODP_SUPPORT_SEND,
|
|
[MLX5_OPCODE_SEND_INVAL] = IB_ODP_SUPPORT_SEND,
|
|
[MLX5_OPCODE_RDMA_WRITE] = IB_ODP_SUPPORT_WRITE,
|
|
[MLX5_OPCODE_RDMA_WRITE_IMM] = IB_ODP_SUPPORT_WRITE,
|
|
[MLX5_OPCODE_RDMA_READ] = IB_ODP_SUPPORT_READ,
|
|
[MLX5_OPCODE_ATOMIC_CS] = IB_ODP_SUPPORT_ATOMIC,
|
|
[MLX5_OPCODE_ATOMIC_FA] = IB_ODP_SUPPORT_ATOMIC,
|
|
};
|
|
|
|
/*
|
|
* Parse initiator WQE. Advances the wqe pointer to point at the
|
|
* scatter-gather list, and set wqe_end to the end of the WQE.
|
|
*/
|
|
static int mlx5_ib_mr_initiator_pfault_handler(
|
|
struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
|
|
struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
|
|
{
|
|
struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
|
|
u16 wqe_index = pfault->wqe.wqe_index;
|
|
u32 transport_caps;
|
|
struct mlx5_base_av *av;
|
|
unsigned ds, opcode;
|
|
#if defined(DEBUG)
|
|
u32 ctrl_wqe_index, ctrl_qpn;
|
|
#endif
|
|
u32 qpn = qp->trans_qp.base.mqp.qpn;
|
|
|
|
ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
|
|
if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
|
|
mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
|
|
ds, wqe_length);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (ds == 0) {
|
|
mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
|
|
wqe_index, qpn);
|
|
return -EFAULT;
|
|
}
|
|
|
|
#if defined(DEBUG)
|
|
ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
|
|
MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
|
|
MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
|
|
if (wqe_index != ctrl_wqe_index) {
|
|
mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
|
|
wqe_index, qpn,
|
|
ctrl_wqe_index);
|
|
return -EFAULT;
|
|
}
|
|
|
|
ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
|
|
MLX5_WQE_CTRL_QPN_SHIFT;
|
|
if (qpn != ctrl_qpn) {
|
|
mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
|
|
wqe_index, qpn,
|
|
ctrl_qpn);
|
|
return -EFAULT;
|
|
}
|
|
#endif /* DEBUG */
|
|
|
|
*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
|
|
*wqe += sizeof(*ctrl);
|
|
|
|
opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
|
|
MLX5_WQE_CTRL_OPCODE_MASK;
|
|
|
|
switch (qp->ibqp.qp_type) {
|
|
case IB_QPT_RC:
|
|
transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps;
|
|
break;
|
|
case IB_QPT_UD:
|
|
transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps;
|
|
break;
|
|
default:
|
|
mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n",
|
|
qp->ibqp.qp_type);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (unlikely(opcode >= sizeof(mlx5_ib_odp_opcode_cap) /
|
|
sizeof(mlx5_ib_odp_opcode_cap[0]) ||
|
|
!(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) {
|
|
mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n",
|
|
opcode);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (qp->ibqp.qp_type != IB_QPT_RC) {
|
|
av = *wqe;
|
|
if (av->dqp_dct & be32_to_cpu(MLX5_WQE_AV_EXT))
|
|
*wqe += sizeof(struct mlx5_av);
|
|
else
|
|
*wqe += sizeof(struct mlx5_base_av);
|
|
}
|
|
|
|
switch (opcode) {
|
|
case MLX5_OPCODE_RDMA_WRITE:
|
|
case MLX5_OPCODE_RDMA_WRITE_IMM:
|
|
case MLX5_OPCODE_RDMA_READ:
|
|
*wqe += sizeof(struct mlx5_wqe_raddr_seg);
|
|
break;
|
|
case MLX5_OPCODE_ATOMIC_CS:
|
|
case MLX5_OPCODE_ATOMIC_FA:
|
|
*wqe += sizeof(struct mlx5_wqe_raddr_seg);
|
|
*wqe += sizeof(struct mlx5_wqe_atomic_seg);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Parse responder WQE. Advances the wqe pointer to point at the
|
|
* scatter-gather list, and set wqe_end to the end of the WQE.
|
|
*/
|
|
static int mlx5_ib_mr_responder_pfault_handler(
|
|
struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
|
|
struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
|
|
{
|
|
struct mlx5_ib_wq *wq = &qp->rq;
|
|
int wqe_size = 1 << wq->wqe_shift;
|
|
|
|
if (qp->ibqp.srq) {
|
|
mlx5_ib_err(dev, "ODP fault on SRQ is not supported\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (qp->wq_sig) {
|
|
mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (wqe_size > wqe_length) {
|
|
mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
switch (qp->ibqp.qp_type) {
|
|
case IB_QPT_RC:
|
|
if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
|
|
IB_ODP_SUPPORT_RECV))
|
|
goto invalid_transport_or_opcode;
|
|
break;
|
|
default:
|
|
invalid_transport_or_opcode:
|
|
mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
|
|
qp->ibqp.qp_type);
|
|
return -EFAULT;
|
|
}
|
|
|
|
*wqe_end = *wqe + wqe_size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct mlx5_ib_qp *mlx5_ib_odp_find_qp(struct mlx5_ib_dev *dev,
|
|
u32 wq_num)
|
|
{
|
|
struct mlx5_core_qp *mqp = __mlx5_qp_lookup(dev->mdev, wq_num);
|
|
|
|
if (!mqp) {
|
|
mlx5_ib_err(dev, "QPN 0x%6x not found\n", wq_num);
|
|
return NULL;
|
|
}
|
|
|
|
return to_mibqp(mqp);
|
|
}
|
|
|
|
static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
|
|
struct mlx5_pagefault *pfault)
|
|
{
|
|
int ret;
|
|
void *wqe, *wqe_end;
|
|
u32 bytes_mapped, total_wqe_bytes;
|
|
char *buffer = NULL;
|
|
int resume_with_error = 1;
|
|
u16 wqe_index = pfault->wqe.wqe_index;
|
|
int requestor = pfault->type & MLX5_PFAULT_REQUESTOR;
|
|
struct mlx5_ib_qp *qp;
|
|
|
|
buffer = (char *)__get_free_page(GFP_KERNEL);
|
|
if (!buffer) {
|
|
mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
|
|
goto resolve_page_fault;
|
|
}
|
|
|
|
qp = mlx5_ib_odp_find_qp(dev, pfault->wqe.wq_num);
|
|
if (!qp)
|
|
goto resolve_page_fault;
|
|
|
|
ret = mlx5_ib_read_user_wqe(qp, requestor, wqe_index, buffer,
|
|
PAGE_SIZE, &qp->trans_qp.base);
|
|
if (ret < 0) {
|
|
mlx5_ib_err(dev, "Failed reading a WQE following page fault, error=%d, wqe_index=%x, qpn=%x\n",
|
|
ret, wqe_index, pfault->token);
|
|
goto resolve_page_fault;
|
|
}
|
|
|
|
wqe = buffer;
|
|
if (requestor)
|
|
ret = mlx5_ib_mr_initiator_pfault_handler(dev, pfault, qp, &wqe,
|
|
&wqe_end, ret);
|
|
else
|
|
ret = mlx5_ib_mr_responder_pfault_handler(dev, pfault, qp, &wqe,
|
|
&wqe_end, ret);
|
|
if (ret < 0)
|
|
goto resolve_page_fault;
|
|
|
|
if (wqe >= wqe_end) {
|
|
mlx5_ib_err(dev, "ODP fault on invalid WQE.\n");
|
|
goto resolve_page_fault;
|
|
}
|
|
|
|
ret = pagefault_data_segments(dev, pfault, qp, wqe, wqe_end,
|
|
&bytes_mapped, &total_wqe_bytes,
|
|
!requestor);
|
|
if (ret == -EAGAIN) {
|
|
resume_with_error = 0;
|
|
goto resolve_page_fault;
|
|
} else if (ret < 0 || total_wqe_bytes > bytes_mapped) {
|
|
if (ret != -ENOENT)
|
|
mlx5_ib_err(dev, "PAGE FAULT error: %d. QP 0x%x. type: 0x%x\n",
|
|
ret, pfault->wqe.wq_num, pfault->type);
|
|
goto resolve_page_fault;
|
|
}
|
|
|
|
resume_with_error = 0;
|
|
resolve_page_fault:
|
|
mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
|
|
mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
|
|
pfault->wqe.wq_num, resume_with_error,
|
|
pfault->type);
|
|
free_page((unsigned long)buffer);
|
|
}
|
|
|
|
static int pages_in_range(u64 address, u32 length)
|
|
{
|
|
return (ALIGN(address + length, PAGE_SIZE) -
|
|
(address & PAGE_MASK)) >> PAGE_SHIFT;
|
|
}
|
|
|
|
static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
|
|
struct mlx5_pagefault *pfault)
|
|
{
|
|
u64 address;
|
|
u32 length;
|
|
u32 prefetch_len = pfault->bytes_committed;
|
|
int prefetch_activated = 0;
|
|
u32 rkey = pfault->rdma.r_key;
|
|
int ret;
|
|
|
|
/* The RDMA responder handler handles the page fault in two parts.
|
|
* First it brings the necessary pages for the current packet
|
|
* (and uses the pfault context), and then (after resuming the QP)
|
|
* prefetches more pages. The second operation cannot use the pfault
|
|
* context and therefore uses the dummy_pfault context allocated on
|
|
* the stack */
|
|
pfault->rdma.rdma_va += pfault->bytes_committed;
|
|
pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
|
|
pfault->rdma.rdma_op_len);
|
|
pfault->bytes_committed = 0;
|
|
|
|
address = pfault->rdma.rdma_va;
|
|
length = pfault->rdma.rdma_op_len;
|
|
|
|
/* For some operations, the hardware cannot tell the exact message
|
|
* length, and in those cases it reports zero. Use prefetch
|
|
* logic. */
|
|
if (length == 0) {
|
|
prefetch_activated = 1;
|
|
length = pfault->rdma.packet_size;
|
|
prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
|
|
}
|
|
|
|
ret = pagefault_single_data_segment(dev, rkey, address, length,
|
|
&pfault->bytes_committed, NULL);
|
|
if (ret == -EAGAIN) {
|
|
/* We're racing with an invalidation, don't prefetch */
|
|
prefetch_activated = 0;
|
|
} else if (ret < 0 || pages_in_range(address, length) > ret) {
|
|
mlx5_ib_page_fault_resume(dev, pfault, 1);
|
|
if (ret != -ENOENT)
|
|
mlx5_ib_warn(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
|
|
ret, pfault->token, pfault->type);
|
|
return;
|
|
}
|
|
|
|
mlx5_ib_page_fault_resume(dev, pfault, 0);
|
|
mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
|
|
pfault->token, pfault->type,
|
|
prefetch_activated);
|
|
|
|
/* At this point, there might be a new pagefault already arriving in
|
|
* the eq, switch to the dummy pagefault for the rest of the
|
|
* processing. We're still OK with the objects being alive as the
|
|
* work-queue is being fenced. */
|
|
|
|
if (prefetch_activated) {
|
|
u32 bytes_committed = 0;
|
|
|
|
ret = pagefault_single_data_segment(dev, rkey, address,
|
|
prefetch_len,
|
|
&bytes_committed, NULL);
|
|
if (ret < 0 && ret != -EAGAIN) {
|
|
mlx5_ib_warn(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
|
|
ret, pfault->token, address, prefetch_len);
|
|
}
|
|
}
|
|
}
|
|
|
|
void mlx5_ib_pfault(struct mlx5_core_dev *mdev, void *context,
|
|
struct mlx5_pagefault *pfault)
|
|
{
|
|
struct mlx5_ib_dev *dev = context;
|
|
u8 event_subtype = pfault->event_subtype;
|
|
|
|
switch (event_subtype) {
|
|
case MLX5_PFAULT_SUBTYPE_WQE:
|
|
mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
|
|
break;
|
|
case MLX5_PFAULT_SUBTYPE_RDMA:
|
|
mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
|
|
break;
|
|
default:
|
|
mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
|
|
event_subtype);
|
|
mlx5_ib_page_fault_resume(dev, pfault, 1);
|
|
}
|
|
}
|
|
|
|
void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
|
|
{
|
|
if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
|
|
return;
|
|
|
|
switch (ent->order - 2) {
|
|
case MLX5_IMR_MTT_CACHE_ENTRY:
|
|
ent->page = PAGE_SHIFT;
|
|
ent->xlt = MLX5_IMR_MTT_ENTRIES *
|
|
sizeof(struct mlx5_mtt) /
|
|
MLX5_IB_UMR_OCTOWORD;
|
|
ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
|
|
ent->limit = 0;
|
|
break;
|
|
|
|
case MLX5_IMR_KSM_CACHE_ENTRY:
|
|
ent->page = MLX5_KSM_PAGE_SHIFT;
|
|
ent->xlt = mlx5_imr_ksm_entries *
|
|
sizeof(struct mlx5_klm) /
|
|
MLX5_IB_UMR_OCTOWORD;
|
|
ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
|
|
ent->limit = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
|
|
{
|
|
int ret;
|
|
|
|
ret = init_srcu_struct(&dev->mr_srcu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
|
|
ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
|
|
if (ret) {
|
|
mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void mlx5_ib_odp_remove_one(struct mlx5_ib_dev *dev)
|
|
{
|
|
cleanup_srcu_struct(&dev->mr_srcu);
|
|
}
|
|
|
|
int mlx5_ib_odp_init(void)
|
|
{
|
|
mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
|
|
MLX5_IMR_MTT_BITS);
|
|
|
|
return 0;
|
|
}
|
|
|