mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-26 04:25:27 +08:00
7ddc839977
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications. For example, the fix in
commit 5e427ec2d0
("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.
After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out. Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.
Note that some harmless section mismatch warnings may result, since
notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c)
are flagged as __cpuinit -- so if we remove the __cpuinit from
arch specific callers, we will also get section mismatch warnings.
As an intermediate step, we intend to turn the linux/init.h cpuinit
content into no-ops as early as possible, since that will get rid
of these warnings. In any case, they are temporary and harmless.
This removes all the arch/hexagon uses of the __cpuinit macros from
all C files. Currently hexagon does not have any __CPUINIT used in
assembly files.
[1] https://lkml.org/lkml/2013/5/20/589
Cc: Richard Kuo <rkuo@codeaurora.org>
Acked-by: Richard Kuo <rkuo@codeaurora.org>
Cc: linux-hexagon@vger.kernel.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
271 lines
5.5 KiB
C
271 lines
5.5 KiB
C
/*
|
|
* SMP support for Hexagon
|
|
*
|
|
* Copyright (c) 2010-2012, The Linux Foundation. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 and
|
|
* only version 2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
* 02110-1301, USA.
|
|
*/
|
|
|
|
#include <linux/err.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/module.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/cpu.h>
|
|
|
|
#include <asm/time.h> /* timer_interrupt */
|
|
#include <asm/hexagon_vm.h>
|
|
|
|
#define BASE_IPI_IRQ 26
|
|
|
|
/*
|
|
* cpu_possible_mask needs to be filled out prior to setup_per_cpu_areas
|
|
* (which is prior to any of our smp_prepare_cpu crap), in order to set
|
|
* up the... per_cpu areas.
|
|
*/
|
|
|
|
struct ipi_data {
|
|
unsigned long bits;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct ipi_data, ipi_data);
|
|
|
|
static inline void __handle_ipi(unsigned long *ops, struct ipi_data *ipi,
|
|
int cpu)
|
|
{
|
|
unsigned long msg = 0;
|
|
do {
|
|
msg = find_next_bit(ops, BITS_PER_LONG, msg+1);
|
|
|
|
switch (msg) {
|
|
|
|
case IPI_TIMER:
|
|
ipi_timer();
|
|
break;
|
|
|
|
case IPI_CALL_FUNC:
|
|
generic_smp_call_function_interrupt();
|
|
break;
|
|
|
|
case IPI_CALL_FUNC_SINGLE:
|
|
generic_smp_call_function_single_interrupt();
|
|
break;
|
|
|
|
case IPI_CPU_STOP:
|
|
/*
|
|
* call vmstop()
|
|
*/
|
|
__vmstop();
|
|
break;
|
|
|
|
case IPI_RESCHEDULE:
|
|
scheduler_ipi();
|
|
break;
|
|
}
|
|
} while (msg < BITS_PER_LONG);
|
|
}
|
|
|
|
/* Used for IPI call from other CPU's to unmask int */
|
|
void smp_vm_unmask_irq(void *info)
|
|
{
|
|
__vmintop_locen((long) info);
|
|
}
|
|
|
|
|
|
/*
|
|
* This is based on Alpha's IPI stuff.
|
|
* Supposed to take (int, void*) as args now.
|
|
* Specifically, first arg is irq, second is the irq_desc.
|
|
*/
|
|
|
|
irqreturn_t handle_ipi(int irq, void *desc)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
|
|
unsigned long ops;
|
|
|
|
while ((ops = xchg(&ipi->bits, 0)) != 0)
|
|
__handle_ipi(&ops, ipi, cpu);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
void send_ipi(const struct cpumask *cpumask, enum ipi_message_type msg)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long cpu;
|
|
unsigned long retval;
|
|
|
|
local_irq_save(flags);
|
|
|
|
for_each_cpu(cpu, cpumask) {
|
|
struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
|
|
|
|
set_bit(msg, &ipi->bits);
|
|
/* Possible barrier here */
|
|
retval = __vmintop_post(BASE_IPI_IRQ+cpu);
|
|
|
|
if (retval != 0) {
|
|
printk(KERN_ERR "interrupt %ld not configured?\n",
|
|
BASE_IPI_IRQ+cpu);
|
|
}
|
|
}
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static struct irqaction ipi_intdesc = {
|
|
.handler = handle_ipi,
|
|
.flags = IRQF_TRIGGER_RISING,
|
|
.name = "ipi_handler"
|
|
};
|
|
|
|
void __init smp_prepare_boot_cpu(void)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* interrupts should already be disabled from the VM
|
|
* SP should already be correct; need to set THREADINFO_REG
|
|
* to point to current thread info
|
|
*/
|
|
|
|
void start_secondary(void)
|
|
{
|
|
unsigned int cpu;
|
|
unsigned long thread_ptr;
|
|
|
|
/* Calculate thread_info pointer from stack pointer */
|
|
__asm__ __volatile__(
|
|
"%0 = SP;\n"
|
|
: "=r" (thread_ptr)
|
|
);
|
|
|
|
thread_ptr = thread_ptr & ~(THREAD_SIZE-1);
|
|
|
|
__asm__ __volatile__(
|
|
QUOTED_THREADINFO_REG " = %0;\n"
|
|
:
|
|
: "r" (thread_ptr)
|
|
);
|
|
|
|
/* Set the memory struct */
|
|
atomic_inc(&init_mm.mm_count);
|
|
current->active_mm = &init_mm;
|
|
|
|
cpu = smp_processor_id();
|
|
|
|
setup_irq(BASE_IPI_IRQ + cpu, &ipi_intdesc);
|
|
|
|
/* Register the clock_event dummy */
|
|
setup_percpu_clockdev();
|
|
|
|
printk(KERN_INFO "%s cpu %d\n", __func__, current_thread_info()->cpu);
|
|
|
|
notify_cpu_starting(cpu);
|
|
|
|
set_cpu_online(cpu, true);
|
|
|
|
local_irq_enable();
|
|
|
|
cpu_startup_entry(CPUHP_ONLINE);
|
|
}
|
|
|
|
|
|
/*
|
|
* called once for each present cpu
|
|
* apparently starts up the CPU and then
|
|
* maintains control until "cpu_online(cpu)" is set.
|
|
*/
|
|
|
|
int __cpu_up(unsigned int cpu, struct task_struct *idle)
|
|
{
|
|
struct thread_info *thread = (struct thread_info *)idle->stack;
|
|
void *stack_start;
|
|
|
|
thread->cpu = cpu;
|
|
|
|
/* Boot to the head. */
|
|
stack_start = ((void *) thread) + THREAD_SIZE;
|
|
__vmstart(start_secondary, stack_start);
|
|
|
|
while (!cpu_online(cpu))
|
|
barrier();
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __init smp_cpus_done(unsigned int max_cpus)
|
|
{
|
|
}
|
|
|
|
void __init smp_prepare_cpus(unsigned int max_cpus)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* should eventually have some sort of machine
|
|
* descriptor that has this stuff
|
|
*/
|
|
|
|
/* Right now, let's just fake it. */
|
|
for (i = 0; i < max_cpus; i++)
|
|
set_cpu_present(i, true);
|
|
|
|
/* Also need to register the interrupts for IPI */
|
|
if (max_cpus > 1)
|
|
setup_irq(BASE_IPI_IRQ, &ipi_intdesc);
|
|
}
|
|
|
|
void smp_send_reschedule(int cpu)
|
|
{
|
|
send_ipi(cpumask_of(cpu), IPI_RESCHEDULE);
|
|
}
|
|
|
|
void smp_send_stop(void)
|
|
{
|
|
struct cpumask targets;
|
|
cpumask_copy(&targets, cpu_online_mask);
|
|
cpumask_clear_cpu(smp_processor_id(), &targets);
|
|
send_ipi(&targets, IPI_CPU_STOP);
|
|
}
|
|
|
|
void arch_send_call_function_single_ipi(int cpu)
|
|
{
|
|
send_ipi(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
|
|
}
|
|
|
|
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
|
|
{
|
|
send_ipi(mask, IPI_CALL_FUNC);
|
|
}
|
|
|
|
int setup_profiling_timer(unsigned int multiplier)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
void smp_start_cpus(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < NR_CPUS; i++)
|
|
set_cpu_possible(i, true);
|
|
}
|