mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-15 15:04:27 +08:00
6887237cd7
amba drivers does not need to enable pm runtime at probe. amba_probe already enables pm runtime. This rids this warning in the ux500 boot log: ssp-pl022 ssp0: Unbalanced pm_runtime_enable! Signed-off-by: Michel JAOUEN <michel.jaouen@stericsson.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
2323 lines
64 KiB
C
2323 lines
64 KiB
C
/*
|
|
* A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
|
|
*
|
|
* Copyright (C) 2008-2009 ST-Ericsson AB
|
|
* Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
|
|
*
|
|
* Author: Linus Walleij <linus.walleij@stericsson.com>
|
|
*
|
|
* Initial version inspired by:
|
|
* linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
|
|
* Initial adoption to PL022 by:
|
|
* Sachin Verma <sachin.verma@st.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/device.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/err.h>
|
|
#include <linux/amba/bus.h>
|
|
#include <linux/amba/pl022.h>
|
|
#include <linux/io.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/pm_runtime.h>
|
|
|
|
/*
|
|
* This macro is used to define some register default values.
|
|
* reg is masked with mask, the OR:ed with an (again masked)
|
|
* val shifted sb steps to the left.
|
|
*/
|
|
#define SSP_WRITE_BITS(reg, val, mask, sb) \
|
|
((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
|
|
|
|
/*
|
|
* This macro is also used to define some default values.
|
|
* It will just shift val by sb steps to the left and mask
|
|
* the result with mask.
|
|
*/
|
|
#define GEN_MASK_BITS(val, mask, sb) \
|
|
(((val)<<(sb)) & (mask))
|
|
|
|
#define DRIVE_TX 0
|
|
#define DO_NOT_DRIVE_TX 1
|
|
|
|
#define DO_NOT_QUEUE_DMA 0
|
|
#define QUEUE_DMA 1
|
|
|
|
#define RX_TRANSFER 1
|
|
#define TX_TRANSFER 2
|
|
|
|
/*
|
|
* Macros to access SSP Registers with their offsets
|
|
*/
|
|
#define SSP_CR0(r) (r + 0x000)
|
|
#define SSP_CR1(r) (r + 0x004)
|
|
#define SSP_DR(r) (r + 0x008)
|
|
#define SSP_SR(r) (r + 0x00C)
|
|
#define SSP_CPSR(r) (r + 0x010)
|
|
#define SSP_IMSC(r) (r + 0x014)
|
|
#define SSP_RIS(r) (r + 0x018)
|
|
#define SSP_MIS(r) (r + 0x01C)
|
|
#define SSP_ICR(r) (r + 0x020)
|
|
#define SSP_DMACR(r) (r + 0x024)
|
|
#define SSP_ITCR(r) (r + 0x080)
|
|
#define SSP_ITIP(r) (r + 0x084)
|
|
#define SSP_ITOP(r) (r + 0x088)
|
|
#define SSP_TDR(r) (r + 0x08C)
|
|
|
|
#define SSP_PID0(r) (r + 0xFE0)
|
|
#define SSP_PID1(r) (r + 0xFE4)
|
|
#define SSP_PID2(r) (r + 0xFE8)
|
|
#define SSP_PID3(r) (r + 0xFEC)
|
|
|
|
#define SSP_CID0(r) (r + 0xFF0)
|
|
#define SSP_CID1(r) (r + 0xFF4)
|
|
#define SSP_CID2(r) (r + 0xFF8)
|
|
#define SSP_CID3(r) (r + 0xFFC)
|
|
|
|
/*
|
|
* SSP Control Register 0 - SSP_CR0
|
|
*/
|
|
#define SSP_CR0_MASK_DSS (0x0FUL << 0)
|
|
#define SSP_CR0_MASK_FRF (0x3UL << 4)
|
|
#define SSP_CR0_MASK_SPO (0x1UL << 6)
|
|
#define SSP_CR0_MASK_SPH (0x1UL << 7)
|
|
#define SSP_CR0_MASK_SCR (0xFFUL << 8)
|
|
|
|
/*
|
|
* The ST version of this block moves som bits
|
|
* in SSP_CR0 and extends it to 32 bits
|
|
*/
|
|
#define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
|
|
#define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
|
|
#define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
|
|
#define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
|
|
|
|
/*
|
|
* SSP Control Register 0 - SSP_CR1
|
|
*/
|
|
#define SSP_CR1_MASK_LBM (0x1UL << 0)
|
|
#define SSP_CR1_MASK_SSE (0x1UL << 1)
|
|
#define SSP_CR1_MASK_MS (0x1UL << 2)
|
|
#define SSP_CR1_MASK_SOD (0x1UL << 3)
|
|
|
|
/*
|
|
* The ST version of this block adds some bits
|
|
* in SSP_CR1
|
|
*/
|
|
#define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
|
|
#define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
|
|
#define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
|
|
#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
|
|
#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
|
|
/* This one is only in the PL023 variant */
|
|
#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
|
|
|
|
/*
|
|
* SSP Status Register - SSP_SR
|
|
*/
|
|
#define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
|
|
#define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
|
|
#define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
|
|
#define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
|
|
#define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
|
|
|
|
/*
|
|
* SSP Clock Prescale Register - SSP_CPSR
|
|
*/
|
|
#define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
|
|
|
|
/*
|
|
* SSP Interrupt Mask Set/Clear Register - SSP_IMSC
|
|
*/
|
|
#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
|
|
#define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
|
|
#define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
|
|
#define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
|
|
|
|
/*
|
|
* SSP Raw Interrupt Status Register - SSP_RIS
|
|
*/
|
|
/* Receive Overrun Raw Interrupt status */
|
|
#define SSP_RIS_MASK_RORRIS (0x1UL << 0)
|
|
/* Receive Timeout Raw Interrupt status */
|
|
#define SSP_RIS_MASK_RTRIS (0x1UL << 1)
|
|
/* Receive FIFO Raw Interrupt status */
|
|
#define SSP_RIS_MASK_RXRIS (0x1UL << 2)
|
|
/* Transmit FIFO Raw Interrupt status */
|
|
#define SSP_RIS_MASK_TXRIS (0x1UL << 3)
|
|
|
|
/*
|
|
* SSP Masked Interrupt Status Register - SSP_MIS
|
|
*/
|
|
/* Receive Overrun Masked Interrupt status */
|
|
#define SSP_MIS_MASK_RORMIS (0x1UL << 0)
|
|
/* Receive Timeout Masked Interrupt status */
|
|
#define SSP_MIS_MASK_RTMIS (0x1UL << 1)
|
|
/* Receive FIFO Masked Interrupt status */
|
|
#define SSP_MIS_MASK_RXMIS (0x1UL << 2)
|
|
/* Transmit FIFO Masked Interrupt status */
|
|
#define SSP_MIS_MASK_TXMIS (0x1UL << 3)
|
|
|
|
/*
|
|
* SSP Interrupt Clear Register - SSP_ICR
|
|
*/
|
|
/* Receive Overrun Raw Clear Interrupt bit */
|
|
#define SSP_ICR_MASK_RORIC (0x1UL << 0)
|
|
/* Receive Timeout Clear Interrupt bit */
|
|
#define SSP_ICR_MASK_RTIC (0x1UL << 1)
|
|
|
|
/*
|
|
* SSP DMA Control Register - SSP_DMACR
|
|
*/
|
|
/* Receive DMA Enable bit */
|
|
#define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
|
|
/* Transmit DMA Enable bit */
|
|
#define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
|
|
|
|
/*
|
|
* SSP Integration Test control Register - SSP_ITCR
|
|
*/
|
|
#define SSP_ITCR_MASK_ITEN (0x1UL << 0)
|
|
#define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
|
|
|
|
/*
|
|
* SSP Integration Test Input Register - SSP_ITIP
|
|
*/
|
|
#define ITIP_MASK_SSPRXD (0x1UL << 0)
|
|
#define ITIP_MASK_SSPFSSIN (0x1UL << 1)
|
|
#define ITIP_MASK_SSPCLKIN (0x1UL << 2)
|
|
#define ITIP_MASK_RXDMAC (0x1UL << 3)
|
|
#define ITIP_MASK_TXDMAC (0x1UL << 4)
|
|
#define ITIP_MASK_SSPTXDIN (0x1UL << 5)
|
|
|
|
/*
|
|
* SSP Integration Test output Register - SSP_ITOP
|
|
*/
|
|
#define ITOP_MASK_SSPTXD (0x1UL << 0)
|
|
#define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
|
|
#define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
|
|
#define ITOP_MASK_SSPOEn (0x1UL << 3)
|
|
#define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
|
|
#define ITOP_MASK_RORINTR (0x1UL << 5)
|
|
#define ITOP_MASK_RTINTR (0x1UL << 6)
|
|
#define ITOP_MASK_RXINTR (0x1UL << 7)
|
|
#define ITOP_MASK_TXINTR (0x1UL << 8)
|
|
#define ITOP_MASK_INTR (0x1UL << 9)
|
|
#define ITOP_MASK_RXDMABREQ (0x1UL << 10)
|
|
#define ITOP_MASK_RXDMASREQ (0x1UL << 11)
|
|
#define ITOP_MASK_TXDMABREQ (0x1UL << 12)
|
|
#define ITOP_MASK_TXDMASREQ (0x1UL << 13)
|
|
|
|
/*
|
|
* SSP Test Data Register - SSP_TDR
|
|
*/
|
|
#define TDR_MASK_TESTDATA (0xFFFFFFFF)
|
|
|
|
/*
|
|
* Message State
|
|
* we use the spi_message.state (void *) pointer to
|
|
* hold a single state value, that's why all this
|
|
* (void *) casting is done here.
|
|
*/
|
|
#define STATE_START ((void *) 0)
|
|
#define STATE_RUNNING ((void *) 1)
|
|
#define STATE_DONE ((void *) 2)
|
|
#define STATE_ERROR ((void *) -1)
|
|
|
|
/*
|
|
* SSP State - Whether Enabled or Disabled
|
|
*/
|
|
#define SSP_DISABLED (0)
|
|
#define SSP_ENABLED (1)
|
|
|
|
/*
|
|
* SSP DMA State - Whether DMA Enabled or Disabled
|
|
*/
|
|
#define SSP_DMA_DISABLED (0)
|
|
#define SSP_DMA_ENABLED (1)
|
|
|
|
/*
|
|
* SSP Clock Defaults
|
|
*/
|
|
#define SSP_DEFAULT_CLKRATE 0x2
|
|
#define SSP_DEFAULT_PRESCALE 0x40
|
|
|
|
/*
|
|
* SSP Clock Parameter ranges
|
|
*/
|
|
#define CPSDVR_MIN 0x02
|
|
#define CPSDVR_MAX 0xFE
|
|
#define SCR_MIN 0x00
|
|
#define SCR_MAX 0xFF
|
|
|
|
/*
|
|
* SSP Interrupt related Macros
|
|
*/
|
|
#define DEFAULT_SSP_REG_IMSC 0x0UL
|
|
#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
|
|
#define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
|
|
|
|
#define CLEAR_ALL_INTERRUPTS 0x3
|
|
|
|
#define SPI_POLLING_TIMEOUT 1000
|
|
|
|
/*
|
|
* The type of reading going on on this chip
|
|
*/
|
|
enum ssp_reading {
|
|
READING_NULL,
|
|
READING_U8,
|
|
READING_U16,
|
|
READING_U32
|
|
};
|
|
|
|
/**
|
|
* The type of writing going on on this chip
|
|
*/
|
|
enum ssp_writing {
|
|
WRITING_NULL,
|
|
WRITING_U8,
|
|
WRITING_U16,
|
|
WRITING_U32
|
|
};
|
|
|
|
/**
|
|
* struct vendor_data - vendor-specific config parameters
|
|
* for PL022 derivates
|
|
* @fifodepth: depth of FIFOs (both)
|
|
* @max_bpw: maximum number of bits per word
|
|
* @unidir: supports unidirection transfers
|
|
* @extended_cr: 32 bit wide control register 0 with extra
|
|
* features and extra features in CR1 as found in the ST variants
|
|
* @pl023: supports a subset of the ST extensions called "PL023"
|
|
*/
|
|
struct vendor_data {
|
|
int fifodepth;
|
|
int max_bpw;
|
|
bool unidir;
|
|
bool extended_cr;
|
|
bool pl023;
|
|
bool loopback;
|
|
};
|
|
|
|
/**
|
|
* struct pl022 - This is the private SSP driver data structure
|
|
* @adev: AMBA device model hookup
|
|
* @vendor: vendor data for the IP block
|
|
* @phybase: the physical memory where the SSP device resides
|
|
* @virtbase: the virtual memory where the SSP is mapped
|
|
* @clk: outgoing clock "SPICLK" for the SPI bus
|
|
* @master: SPI framework hookup
|
|
* @master_info: controller-specific data from machine setup
|
|
* @kworker: thread struct for message pump
|
|
* @kworker_task: pointer to task for message pump kworker thread
|
|
* @pump_messages: work struct for scheduling work to the message pump
|
|
* @queue_lock: spinlock to syncronise access to message queue
|
|
* @queue: message queue
|
|
* @busy: message pump is busy
|
|
* @running: message pump is running
|
|
* @pump_transfers: Tasklet used in Interrupt Transfer mode
|
|
* @cur_msg: Pointer to current spi_message being processed
|
|
* @cur_transfer: Pointer to current spi_transfer
|
|
* @cur_chip: pointer to current clients chip(assigned from controller_state)
|
|
* @next_msg_cs_active: the next message in the queue has been examined
|
|
* and it was found that it uses the same chip select as the previous
|
|
* message, so we left it active after the previous transfer, and it's
|
|
* active already.
|
|
* @tx: current position in TX buffer to be read
|
|
* @tx_end: end position in TX buffer to be read
|
|
* @rx: current position in RX buffer to be written
|
|
* @rx_end: end position in RX buffer to be written
|
|
* @read: the type of read currently going on
|
|
* @write: the type of write currently going on
|
|
* @exp_fifo_level: expected FIFO level
|
|
* @dma_rx_channel: optional channel for RX DMA
|
|
* @dma_tx_channel: optional channel for TX DMA
|
|
* @sgt_rx: scattertable for the RX transfer
|
|
* @sgt_tx: scattertable for the TX transfer
|
|
* @dummypage: a dummy page used for driving data on the bus with DMA
|
|
*/
|
|
struct pl022 {
|
|
struct amba_device *adev;
|
|
struct vendor_data *vendor;
|
|
resource_size_t phybase;
|
|
void __iomem *virtbase;
|
|
struct clk *clk;
|
|
struct spi_master *master;
|
|
struct pl022_ssp_controller *master_info;
|
|
/* Message per-transfer pump */
|
|
struct tasklet_struct pump_transfers;
|
|
struct spi_message *cur_msg;
|
|
struct spi_transfer *cur_transfer;
|
|
struct chip_data *cur_chip;
|
|
bool next_msg_cs_active;
|
|
void *tx;
|
|
void *tx_end;
|
|
void *rx;
|
|
void *rx_end;
|
|
enum ssp_reading read;
|
|
enum ssp_writing write;
|
|
u32 exp_fifo_level;
|
|
enum ssp_rx_level_trig rx_lev_trig;
|
|
enum ssp_tx_level_trig tx_lev_trig;
|
|
/* DMA settings */
|
|
#ifdef CONFIG_DMA_ENGINE
|
|
struct dma_chan *dma_rx_channel;
|
|
struct dma_chan *dma_tx_channel;
|
|
struct sg_table sgt_rx;
|
|
struct sg_table sgt_tx;
|
|
char *dummypage;
|
|
bool dma_running;
|
|
#endif
|
|
};
|
|
|
|
/**
|
|
* struct chip_data - To maintain runtime state of SSP for each client chip
|
|
* @cr0: Value of control register CR0 of SSP - on later ST variants this
|
|
* register is 32 bits wide rather than just 16
|
|
* @cr1: Value of control register CR1 of SSP
|
|
* @dmacr: Value of DMA control Register of SSP
|
|
* @cpsr: Value of Clock prescale register
|
|
* @n_bytes: how many bytes(power of 2) reqd for a given data width of client
|
|
* @enable_dma: Whether to enable DMA or not
|
|
* @read: function ptr to be used to read when doing xfer for this chip
|
|
* @write: function ptr to be used to write when doing xfer for this chip
|
|
* @cs_control: chip select callback provided by chip
|
|
* @xfer_type: polling/interrupt/DMA
|
|
*
|
|
* Runtime state of the SSP controller, maintained per chip,
|
|
* This would be set according to the current message that would be served
|
|
*/
|
|
struct chip_data {
|
|
u32 cr0;
|
|
u16 cr1;
|
|
u16 dmacr;
|
|
u16 cpsr;
|
|
u8 n_bytes;
|
|
bool enable_dma;
|
|
enum ssp_reading read;
|
|
enum ssp_writing write;
|
|
void (*cs_control) (u32 command);
|
|
int xfer_type;
|
|
};
|
|
|
|
/**
|
|
* null_cs_control - Dummy chip select function
|
|
* @command: select/delect the chip
|
|
*
|
|
* If no chip select function is provided by client this is used as dummy
|
|
* chip select
|
|
*/
|
|
static void null_cs_control(u32 command)
|
|
{
|
|
pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
|
|
}
|
|
|
|
/**
|
|
* giveback - current spi_message is over, schedule next message and call
|
|
* callback of this message. Assumes that caller already
|
|
* set message->status; dma and pio irqs are blocked
|
|
* @pl022: SSP driver private data structure
|
|
*/
|
|
static void giveback(struct pl022 *pl022)
|
|
{
|
|
struct spi_transfer *last_transfer;
|
|
pl022->next_msg_cs_active = false;
|
|
|
|
last_transfer = list_entry(pl022->cur_msg->transfers.prev,
|
|
struct spi_transfer,
|
|
transfer_list);
|
|
|
|
/* Delay if requested before any change in chip select */
|
|
if (last_transfer->delay_usecs)
|
|
/*
|
|
* FIXME: This runs in interrupt context.
|
|
* Is this really smart?
|
|
*/
|
|
udelay(last_transfer->delay_usecs);
|
|
|
|
if (!last_transfer->cs_change) {
|
|
struct spi_message *next_msg;
|
|
|
|
/*
|
|
* cs_change was not set. We can keep the chip select
|
|
* enabled if there is message in the queue and it is
|
|
* for the same spi device.
|
|
*
|
|
* We cannot postpone this until pump_messages, because
|
|
* after calling msg->complete (below) the driver that
|
|
* sent the current message could be unloaded, which
|
|
* could invalidate the cs_control() callback...
|
|
*/
|
|
/* get a pointer to the next message, if any */
|
|
next_msg = spi_get_next_queued_message(pl022->master);
|
|
|
|
/*
|
|
* see if the next and current messages point
|
|
* to the same spi device.
|
|
*/
|
|
if (next_msg && next_msg->spi != pl022->cur_msg->spi)
|
|
next_msg = NULL;
|
|
if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
|
|
pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
|
|
else
|
|
pl022->next_msg_cs_active = true;
|
|
|
|
}
|
|
|
|
pl022->cur_msg = NULL;
|
|
pl022->cur_transfer = NULL;
|
|
pl022->cur_chip = NULL;
|
|
spi_finalize_current_message(pl022->master);
|
|
|
|
/* disable the SPI/SSP operation */
|
|
writew((readw(SSP_CR1(pl022->virtbase)) &
|
|
(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
|
|
|
|
}
|
|
|
|
/**
|
|
* flush - flush the FIFO to reach a clean state
|
|
* @pl022: SSP driver private data structure
|
|
*/
|
|
static int flush(struct pl022 *pl022)
|
|
{
|
|
unsigned long limit = loops_per_jiffy << 1;
|
|
|
|
dev_dbg(&pl022->adev->dev, "flush\n");
|
|
do {
|
|
while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
|
|
readw(SSP_DR(pl022->virtbase));
|
|
} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
|
|
|
|
pl022->exp_fifo_level = 0;
|
|
|
|
return limit;
|
|
}
|
|
|
|
/**
|
|
* restore_state - Load configuration of current chip
|
|
* @pl022: SSP driver private data structure
|
|
*/
|
|
static void restore_state(struct pl022 *pl022)
|
|
{
|
|
struct chip_data *chip = pl022->cur_chip;
|
|
|
|
if (pl022->vendor->extended_cr)
|
|
writel(chip->cr0, SSP_CR0(pl022->virtbase));
|
|
else
|
|
writew(chip->cr0, SSP_CR0(pl022->virtbase));
|
|
writew(chip->cr1, SSP_CR1(pl022->virtbase));
|
|
writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
|
|
writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
|
|
writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
|
|
writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
|
|
}
|
|
|
|
/*
|
|
* Default SSP Register Values
|
|
*/
|
|
#define DEFAULT_SSP_REG_CR0 ( \
|
|
GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
|
|
GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
|
|
GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
|
|
GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
|
|
GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
|
|
)
|
|
|
|
/* ST versions have slightly different bit layout */
|
|
#define DEFAULT_SSP_REG_CR0_ST ( \
|
|
GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
|
|
GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
|
|
GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
|
|
GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
|
|
GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
|
|
GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
|
|
GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
|
|
)
|
|
|
|
/* The PL023 version is slightly different again */
|
|
#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
|
|
GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
|
|
GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
|
|
GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
|
|
GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
|
|
)
|
|
|
|
#define DEFAULT_SSP_REG_CR1 ( \
|
|
GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
|
|
GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
|
|
GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
|
|
GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
|
|
)
|
|
|
|
/* ST versions extend this register to use all 16 bits */
|
|
#define DEFAULT_SSP_REG_CR1_ST ( \
|
|
DEFAULT_SSP_REG_CR1 | \
|
|
GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
|
|
GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
|
|
GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
|
|
GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
|
|
GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
|
|
)
|
|
|
|
/*
|
|
* The PL023 variant has further differences: no loopback mode, no microwire
|
|
* support, and a new clock feedback delay setting.
|
|
*/
|
|
#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
|
|
GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
|
|
GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
|
|
GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
|
|
GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
|
|
GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
|
|
GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
|
|
GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
|
|
GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
|
|
)
|
|
|
|
#define DEFAULT_SSP_REG_CPSR ( \
|
|
GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
|
|
)
|
|
|
|
#define DEFAULT_SSP_REG_DMACR (\
|
|
GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
|
|
GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
|
|
)
|
|
|
|
/**
|
|
* load_ssp_default_config - Load default configuration for SSP
|
|
* @pl022: SSP driver private data structure
|
|
*/
|
|
static void load_ssp_default_config(struct pl022 *pl022)
|
|
{
|
|
if (pl022->vendor->pl023) {
|
|
writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
|
|
writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
|
|
} else if (pl022->vendor->extended_cr) {
|
|
writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
|
|
writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
|
|
} else {
|
|
writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
|
|
writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
|
|
}
|
|
writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
|
|
writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
|
|
writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
|
|
writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
|
|
}
|
|
|
|
/**
|
|
* This will write to TX and read from RX according to the parameters
|
|
* set in pl022.
|
|
*/
|
|
static void readwriter(struct pl022 *pl022)
|
|
{
|
|
|
|
/*
|
|
* The FIFO depth is different between primecell variants.
|
|
* I believe filling in too much in the FIFO might cause
|
|
* errons in 8bit wide transfers on ARM variants (just 8 words
|
|
* FIFO, means only 8x8 = 64 bits in FIFO) at least.
|
|
*
|
|
* To prevent this issue, the TX FIFO is only filled to the
|
|
* unused RX FIFO fill length, regardless of what the TX
|
|
* FIFO status flag indicates.
|
|
*/
|
|
dev_dbg(&pl022->adev->dev,
|
|
"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
|
|
__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
|
|
|
|
/* Read as much as you can */
|
|
while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
|
|
&& (pl022->rx < pl022->rx_end)) {
|
|
switch (pl022->read) {
|
|
case READING_NULL:
|
|
readw(SSP_DR(pl022->virtbase));
|
|
break;
|
|
case READING_U8:
|
|
*(u8 *) (pl022->rx) =
|
|
readw(SSP_DR(pl022->virtbase)) & 0xFFU;
|
|
break;
|
|
case READING_U16:
|
|
*(u16 *) (pl022->rx) =
|
|
(u16) readw(SSP_DR(pl022->virtbase));
|
|
break;
|
|
case READING_U32:
|
|
*(u32 *) (pl022->rx) =
|
|
readl(SSP_DR(pl022->virtbase));
|
|
break;
|
|
}
|
|
pl022->rx += (pl022->cur_chip->n_bytes);
|
|
pl022->exp_fifo_level--;
|
|
}
|
|
/*
|
|
* Write as much as possible up to the RX FIFO size
|
|
*/
|
|
while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
|
|
&& (pl022->tx < pl022->tx_end)) {
|
|
switch (pl022->write) {
|
|
case WRITING_NULL:
|
|
writew(0x0, SSP_DR(pl022->virtbase));
|
|
break;
|
|
case WRITING_U8:
|
|
writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
|
|
break;
|
|
case WRITING_U16:
|
|
writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
|
|
break;
|
|
case WRITING_U32:
|
|
writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
|
|
break;
|
|
}
|
|
pl022->tx += (pl022->cur_chip->n_bytes);
|
|
pl022->exp_fifo_level++;
|
|
/*
|
|
* This inner reader takes care of things appearing in the RX
|
|
* FIFO as we're transmitting. This will happen a lot since the
|
|
* clock starts running when you put things into the TX FIFO,
|
|
* and then things are continuously clocked into the RX FIFO.
|
|
*/
|
|
while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
|
|
&& (pl022->rx < pl022->rx_end)) {
|
|
switch (pl022->read) {
|
|
case READING_NULL:
|
|
readw(SSP_DR(pl022->virtbase));
|
|
break;
|
|
case READING_U8:
|
|
*(u8 *) (pl022->rx) =
|
|
readw(SSP_DR(pl022->virtbase)) & 0xFFU;
|
|
break;
|
|
case READING_U16:
|
|
*(u16 *) (pl022->rx) =
|
|
(u16) readw(SSP_DR(pl022->virtbase));
|
|
break;
|
|
case READING_U32:
|
|
*(u32 *) (pl022->rx) =
|
|
readl(SSP_DR(pl022->virtbase));
|
|
break;
|
|
}
|
|
pl022->rx += (pl022->cur_chip->n_bytes);
|
|
pl022->exp_fifo_level--;
|
|
}
|
|
}
|
|
/*
|
|
* When we exit here the TX FIFO should be full and the RX FIFO
|
|
* should be empty
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* next_transfer - Move to the Next transfer in the current spi message
|
|
* @pl022: SSP driver private data structure
|
|
*
|
|
* This function moves though the linked list of spi transfers in the
|
|
* current spi message and returns with the state of current spi
|
|
* message i.e whether its last transfer is done(STATE_DONE) or
|
|
* Next transfer is ready(STATE_RUNNING)
|
|
*/
|
|
static void *next_transfer(struct pl022 *pl022)
|
|
{
|
|
struct spi_message *msg = pl022->cur_msg;
|
|
struct spi_transfer *trans = pl022->cur_transfer;
|
|
|
|
/* Move to next transfer */
|
|
if (trans->transfer_list.next != &msg->transfers) {
|
|
pl022->cur_transfer =
|
|
list_entry(trans->transfer_list.next,
|
|
struct spi_transfer, transfer_list);
|
|
return STATE_RUNNING;
|
|
}
|
|
return STATE_DONE;
|
|
}
|
|
|
|
/*
|
|
* This DMA functionality is only compiled in if we have
|
|
* access to the generic DMA devices/DMA engine.
|
|
*/
|
|
#ifdef CONFIG_DMA_ENGINE
|
|
static void unmap_free_dma_scatter(struct pl022 *pl022)
|
|
{
|
|
/* Unmap and free the SG tables */
|
|
dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
|
|
pl022->sgt_tx.nents, DMA_TO_DEVICE);
|
|
dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
|
|
pl022->sgt_rx.nents, DMA_FROM_DEVICE);
|
|
sg_free_table(&pl022->sgt_rx);
|
|
sg_free_table(&pl022->sgt_tx);
|
|
}
|
|
|
|
static void dma_callback(void *data)
|
|
{
|
|
struct pl022 *pl022 = data;
|
|
struct spi_message *msg = pl022->cur_msg;
|
|
|
|
BUG_ON(!pl022->sgt_rx.sgl);
|
|
|
|
#ifdef VERBOSE_DEBUG
|
|
/*
|
|
* Optionally dump out buffers to inspect contents, this is
|
|
* good if you want to convince yourself that the loopback
|
|
* read/write contents are the same, when adopting to a new
|
|
* DMA engine.
|
|
*/
|
|
{
|
|
struct scatterlist *sg;
|
|
unsigned int i;
|
|
|
|
dma_sync_sg_for_cpu(&pl022->adev->dev,
|
|
pl022->sgt_rx.sgl,
|
|
pl022->sgt_rx.nents,
|
|
DMA_FROM_DEVICE);
|
|
|
|
for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
|
|
dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
|
|
print_hex_dump(KERN_ERR, "SPI RX: ",
|
|
DUMP_PREFIX_OFFSET,
|
|
16,
|
|
1,
|
|
sg_virt(sg),
|
|
sg_dma_len(sg),
|
|
1);
|
|
}
|
|
for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
|
|
dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
|
|
print_hex_dump(KERN_ERR, "SPI TX: ",
|
|
DUMP_PREFIX_OFFSET,
|
|
16,
|
|
1,
|
|
sg_virt(sg),
|
|
sg_dma_len(sg),
|
|
1);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
unmap_free_dma_scatter(pl022);
|
|
|
|
/* Update total bytes transferred */
|
|
msg->actual_length += pl022->cur_transfer->len;
|
|
if (pl022->cur_transfer->cs_change)
|
|
pl022->cur_chip->
|
|
cs_control(SSP_CHIP_DESELECT);
|
|
|
|
/* Move to next transfer */
|
|
msg->state = next_transfer(pl022);
|
|
tasklet_schedule(&pl022->pump_transfers);
|
|
}
|
|
|
|
static void setup_dma_scatter(struct pl022 *pl022,
|
|
void *buffer,
|
|
unsigned int length,
|
|
struct sg_table *sgtab)
|
|
{
|
|
struct scatterlist *sg;
|
|
int bytesleft = length;
|
|
void *bufp = buffer;
|
|
int mapbytes;
|
|
int i;
|
|
|
|
if (buffer) {
|
|
for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
|
|
/*
|
|
* If there are less bytes left than what fits
|
|
* in the current page (plus page alignment offset)
|
|
* we just feed in this, else we stuff in as much
|
|
* as we can.
|
|
*/
|
|
if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
|
|
mapbytes = bytesleft;
|
|
else
|
|
mapbytes = PAGE_SIZE - offset_in_page(bufp);
|
|
sg_set_page(sg, virt_to_page(bufp),
|
|
mapbytes, offset_in_page(bufp));
|
|
bufp += mapbytes;
|
|
bytesleft -= mapbytes;
|
|
dev_dbg(&pl022->adev->dev,
|
|
"set RX/TX target page @ %p, %d bytes, %d left\n",
|
|
bufp, mapbytes, bytesleft);
|
|
}
|
|
} else {
|
|
/* Map the dummy buffer on every page */
|
|
for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
|
|
if (bytesleft < PAGE_SIZE)
|
|
mapbytes = bytesleft;
|
|
else
|
|
mapbytes = PAGE_SIZE;
|
|
sg_set_page(sg, virt_to_page(pl022->dummypage),
|
|
mapbytes, 0);
|
|
bytesleft -= mapbytes;
|
|
dev_dbg(&pl022->adev->dev,
|
|
"set RX/TX to dummy page %d bytes, %d left\n",
|
|
mapbytes, bytesleft);
|
|
|
|
}
|
|
}
|
|
BUG_ON(bytesleft);
|
|
}
|
|
|
|
/**
|
|
* configure_dma - configures the channels for the next transfer
|
|
* @pl022: SSP driver's private data structure
|
|
*/
|
|
static int configure_dma(struct pl022 *pl022)
|
|
{
|
|
struct dma_slave_config rx_conf = {
|
|
.src_addr = SSP_DR(pl022->phybase),
|
|
.direction = DMA_DEV_TO_MEM,
|
|
.device_fc = false,
|
|
};
|
|
struct dma_slave_config tx_conf = {
|
|
.dst_addr = SSP_DR(pl022->phybase),
|
|
.direction = DMA_MEM_TO_DEV,
|
|
.device_fc = false,
|
|
};
|
|
unsigned int pages;
|
|
int ret;
|
|
int rx_sglen, tx_sglen;
|
|
struct dma_chan *rxchan = pl022->dma_rx_channel;
|
|
struct dma_chan *txchan = pl022->dma_tx_channel;
|
|
struct dma_async_tx_descriptor *rxdesc;
|
|
struct dma_async_tx_descriptor *txdesc;
|
|
|
|
/* Check that the channels are available */
|
|
if (!rxchan || !txchan)
|
|
return -ENODEV;
|
|
|
|
/*
|
|
* If supplied, the DMA burstsize should equal the FIFO trigger level.
|
|
* Notice that the DMA engine uses one-to-one mapping. Since we can
|
|
* not trigger on 2 elements this needs explicit mapping rather than
|
|
* calculation.
|
|
*/
|
|
switch (pl022->rx_lev_trig) {
|
|
case SSP_RX_1_OR_MORE_ELEM:
|
|
rx_conf.src_maxburst = 1;
|
|
break;
|
|
case SSP_RX_4_OR_MORE_ELEM:
|
|
rx_conf.src_maxburst = 4;
|
|
break;
|
|
case SSP_RX_8_OR_MORE_ELEM:
|
|
rx_conf.src_maxburst = 8;
|
|
break;
|
|
case SSP_RX_16_OR_MORE_ELEM:
|
|
rx_conf.src_maxburst = 16;
|
|
break;
|
|
case SSP_RX_32_OR_MORE_ELEM:
|
|
rx_conf.src_maxburst = 32;
|
|
break;
|
|
default:
|
|
rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
|
|
break;
|
|
}
|
|
|
|
switch (pl022->tx_lev_trig) {
|
|
case SSP_TX_1_OR_MORE_EMPTY_LOC:
|
|
tx_conf.dst_maxburst = 1;
|
|
break;
|
|
case SSP_TX_4_OR_MORE_EMPTY_LOC:
|
|
tx_conf.dst_maxburst = 4;
|
|
break;
|
|
case SSP_TX_8_OR_MORE_EMPTY_LOC:
|
|
tx_conf.dst_maxburst = 8;
|
|
break;
|
|
case SSP_TX_16_OR_MORE_EMPTY_LOC:
|
|
tx_conf.dst_maxburst = 16;
|
|
break;
|
|
case SSP_TX_32_OR_MORE_EMPTY_LOC:
|
|
tx_conf.dst_maxburst = 32;
|
|
break;
|
|
default:
|
|
tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
|
|
break;
|
|
}
|
|
|
|
switch (pl022->read) {
|
|
case READING_NULL:
|
|
/* Use the same as for writing */
|
|
rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
|
|
break;
|
|
case READING_U8:
|
|
rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
|
|
break;
|
|
case READING_U16:
|
|
rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
|
|
break;
|
|
case READING_U32:
|
|
rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
break;
|
|
}
|
|
|
|
switch (pl022->write) {
|
|
case WRITING_NULL:
|
|
/* Use the same as for reading */
|
|
tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
|
|
break;
|
|
case WRITING_U8:
|
|
tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
|
|
break;
|
|
case WRITING_U16:
|
|
tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
|
|
break;
|
|
case WRITING_U32:
|
|
tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
break;
|
|
}
|
|
|
|
/* SPI pecularity: we need to read and write the same width */
|
|
if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
|
|
rx_conf.src_addr_width = tx_conf.dst_addr_width;
|
|
if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
|
|
tx_conf.dst_addr_width = rx_conf.src_addr_width;
|
|
BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
|
|
|
|
dmaengine_slave_config(rxchan, &rx_conf);
|
|
dmaengine_slave_config(txchan, &tx_conf);
|
|
|
|
/* Create sglists for the transfers */
|
|
pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
|
|
dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
|
|
|
|
ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
|
|
if (ret)
|
|
goto err_alloc_rx_sg;
|
|
|
|
ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
|
|
if (ret)
|
|
goto err_alloc_tx_sg;
|
|
|
|
/* Fill in the scatterlists for the RX+TX buffers */
|
|
setup_dma_scatter(pl022, pl022->rx,
|
|
pl022->cur_transfer->len, &pl022->sgt_rx);
|
|
setup_dma_scatter(pl022, pl022->tx,
|
|
pl022->cur_transfer->len, &pl022->sgt_tx);
|
|
|
|
/* Map DMA buffers */
|
|
rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
|
|
pl022->sgt_rx.nents, DMA_FROM_DEVICE);
|
|
if (!rx_sglen)
|
|
goto err_rx_sgmap;
|
|
|
|
tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
|
|
pl022->sgt_tx.nents, DMA_TO_DEVICE);
|
|
if (!tx_sglen)
|
|
goto err_tx_sgmap;
|
|
|
|
/* Send both scatterlists */
|
|
rxdesc = dmaengine_prep_slave_sg(rxchan,
|
|
pl022->sgt_rx.sgl,
|
|
rx_sglen,
|
|
DMA_DEV_TO_MEM,
|
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
if (!rxdesc)
|
|
goto err_rxdesc;
|
|
|
|
txdesc = dmaengine_prep_slave_sg(txchan,
|
|
pl022->sgt_tx.sgl,
|
|
tx_sglen,
|
|
DMA_MEM_TO_DEV,
|
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
if (!txdesc)
|
|
goto err_txdesc;
|
|
|
|
/* Put the callback on the RX transfer only, that should finish last */
|
|
rxdesc->callback = dma_callback;
|
|
rxdesc->callback_param = pl022;
|
|
|
|
/* Submit and fire RX and TX with TX last so we're ready to read! */
|
|
dmaengine_submit(rxdesc);
|
|
dmaengine_submit(txdesc);
|
|
dma_async_issue_pending(rxchan);
|
|
dma_async_issue_pending(txchan);
|
|
pl022->dma_running = true;
|
|
|
|
return 0;
|
|
|
|
err_txdesc:
|
|
dmaengine_terminate_all(txchan);
|
|
err_rxdesc:
|
|
dmaengine_terminate_all(rxchan);
|
|
dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
|
|
pl022->sgt_tx.nents, DMA_TO_DEVICE);
|
|
err_tx_sgmap:
|
|
dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
|
|
pl022->sgt_tx.nents, DMA_FROM_DEVICE);
|
|
err_rx_sgmap:
|
|
sg_free_table(&pl022->sgt_tx);
|
|
err_alloc_tx_sg:
|
|
sg_free_table(&pl022->sgt_rx);
|
|
err_alloc_rx_sg:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int __devinit pl022_dma_probe(struct pl022 *pl022)
|
|
{
|
|
dma_cap_mask_t mask;
|
|
|
|
/* Try to acquire a generic DMA engine slave channel */
|
|
dma_cap_zero(mask);
|
|
dma_cap_set(DMA_SLAVE, mask);
|
|
/*
|
|
* We need both RX and TX channels to do DMA, else do none
|
|
* of them.
|
|
*/
|
|
pl022->dma_rx_channel = dma_request_channel(mask,
|
|
pl022->master_info->dma_filter,
|
|
pl022->master_info->dma_rx_param);
|
|
if (!pl022->dma_rx_channel) {
|
|
dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
|
|
goto err_no_rxchan;
|
|
}
|
|
|
|
pl022->dma_tx_channel = dma_request_channel(mask,
|
|
pl022->master_info->dma_filter,
|
|
pl022->master_info->dma_tx_param);
|
|
if (!pl022->dma_tx_channel) {
|
|
dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
|
|
goto err_no_txchan;
|
|
}
|
|
|
|
pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
|
|
if (!pl022->dummypage) {
|
|
dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
|
|
goto err_no_dummypage;
|
|
}
|
|
|
|
dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
|
|
dma_chan_name(pl022->dma_rx_channel),
|
|
dma_chan_name(pl022->dma_tx_channel));
|
|
|
|
return 0;
|
|
|
|
err_no_dummypage:
|
|
dma_release_channel(pl022->dma_tx_channel);
|
|
err_no_txchan:
|
|
dma_release_channel(pl022->dma_rx_channel);
|
|
pl022->dma_rx_channel = NULL;
|
|
err_no_rxchan:
|
|
dev_err(&pl022->adev->dev,
|
|
"Failed to work in dma mode, work without dma!\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
static void terminate_dma(struct pl022 *pl022)
|
|
{
|
|
struct dma_chan *rxchan = pl022->dma_rx_channel;
|
|
struct dma_chan *txchan = pl022->dma_tx_channel;
|
|
|
|
dmaengine_terminate_all(rxchan);
|
|
dmaengine_terminate_all(txchan);
|
|
unmap_free_dma_scatter(pl022);
|
|
pl022->dma_running = false;
|
|
}
|
|
|
|
static void pl022_dma_remove(struct pl022 *pl022)
|
|
{
|
|
if (pl022->dma_running)
|
|
terminate_dma(pl022);
|
|
if (pl022->dma_tx_channel)
|
|
dma_release_channel(pl022->dma_tx_channel);
|
|
if (pl022->dma_rx_channel)
|
|
dma_release_channel(pl022->dma_rx_channel);
|
|
kfree(pl022->dummypage);
|
|
}
|
|
|
|
#else
|
|
static inline int configure_dma(struct pl022 *pl022)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
|
|
static inline int pl022_dma_probe(struct pl022 *pl022)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void pl022_dma_remove(struct pl022 *pl022)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* pl022_interrupt_handler - Interrupt handler for SSP controller
|
|
*
|
|
* This function handles interrupts generated for an interrupt based transfer.
|
|
* If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
|
|
* current message's state as STATE_ERROR and schedule the tasklet
|
|
* pump_transfers which will do the postprocessing of the current message by
|
|
* calling giveback(). Otherwise it reads data from RX FIFO till there is no
|
|
* more data, and writes data in TX FIFO till it is not full. If we complete
|
|
* the transfer we move to the next transfer and schedule the tasklet.
|
|
*/
|
|
static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
|
|
{
|
|
struct pl022 *pl022 = dev_id;
|
|
struct spi_message *msg = pl022->cur_msg;
|
|
u16 irq_status = 0;
|
|
u16 flag = 0;
|
|
|
|
if (unlikely(!msg)) {
|
|
dev_err(&pl022->adev->dev,
|
|
"bad message state in interrupt handler");
|
|
/* Never fail */
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Read the Interrupt Status Register */
|
|
irq_status = readw(SSP_MIS(pl022->virtbase));
|
|
|
|
if (unlikely(!irq_status))
|
|
return IRQ_NONE;
|
|
|
|
/*
|
|
* This handles the FIFO interrupts, the timeout
|
|
* interrupts are flatly ignored, they cannot be
|
|
* trusted.
|
|
*/
|
|
if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
|
|
/*
|
|
* Overrun interrupt - bail out since our Data has been
|
|
* corrupted
|
|
*/
|
|
dev_err(&pl022->adev->dev, "FIFO overrun\n");
|
|
if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
|
|
dev_err(&pl022->adev->dev,
|
|
"RXFIFO is full\n");
|
|
if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
|
|
dev_err(&pl022->adev->dev,
|
|
"TXFIFO is full\n");
|
|
|
|
/*
|
|
* Disable and clear interrupts, disable SSP,
|
|
* mark message with bad status so it can be
|
|
* retried.
|
|
*/
|
|
writew(DISABLE_ALL_INTERRUPTS,
|
|
SSP_IMSC(pl022->virtbase));
|
|
writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
|
|
writew((readw(SSP_CR1(pl022->virtbase)) &
|
|
(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
|
|
msg->state = STATE_ERROR;
|
|
|
|
/* Schedule message queue handler */
|
|
tasklet_schedule(&pl022->pump_transfers);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
readwriter(pl022);
|
|
|
|
if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
|
|
flag = 1;
|
|
/* Disable Transmit interrupt, enable receive interrupt */
|
|
writew((readw(SSP_IMSC(pl022->virtbase)) &
|
|
~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
|
|
SSP_IMSC(pl022->virtbase));
|
|
}
|
|
|
|
/*
|
|
* Since all transactions must write as much as shall be read,
|
|
* we can conclude the entire transaction once RX is complete.
|
|
* At this point, all TX will always be finished.
|
|
*/
|
|
if (pl022->rx >= pl022->rx_end) {
|
|
writew(DISABLE_ALL_INTERRUPTS,
|
|
SSP_IMSC(pl022->virtbase));
|
|
writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
|
|
if (unlikely(pl022->rx > pl022->rx_end)) {
|
|
dev_warn(&pl022->adev->dev, "read %u surplus "
|
|
"bytes (did you request an odd "
|
|
"number of bytes on a 16bit bus?)\n",
|
|
(u32) (pl022->rx - pl022->rx_end));
|
|
}
|
|
/* Update total bytes transferred */
|
|
msg->actual_length += pl022->cur_transfer->len;
|
|
if (pl022->cur_transfer->cs_change)
|
|
pl022->cur_chip->
|
|
cs_control(SSP_CHIP_DESELECT);
|
|
/* Move to next transfer */
|
|
msg->state = next_transfer(pl022);
|
|
tasklet_schedule(&pl022->pump_transfers);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* This sets up the pointers to memory for the next message to
|
|
* send out on the SPI bus.
|
|
*/
|
|
static int set_up_next_transfer(struct pl022 *pl022,
|
|
struct spi_transfer *transfer)
|
|
{
|
|
int residue;
|
|
|
|
/* Sanity check the message for this bus width */
|
|
residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
|
|
if (unlikely(residue != 0)) {
|
|
dev_err(&pl022->adev->dev,
|
|
"message of %u bytes to transmit but the current "
|
|
"chip bus has a data width of %u bytes!\n",
|
|
pl022->cur_transfer->len,
|
|
pl022->cur_chip->n_bytes);
|
|
dev_err(&pl022->adev->dev, "skipping this message\n");
|
|
return -EIO;
|
|
}
|
|
pl022->tx = (void *)transfer->tx_buf;
|
|
pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
|
|
pl022->rx = (void *)transfer->rx_buf;
|
|
pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
|
|
pl022->write =
|
|
pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
|
|
pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pump_transfers - Tasklet function which schedules next transfer
|
|
* when running in interrupt or DMA transfer mode.
|
|
* @data: SSP driver private data structure
|
|
*
|
|
*/
|
|
static void pump_transfers(unsigned long data)
|
|
{
|
|
struct pl022 *pl022 = (struct pl022 *) data;
|
|
struct spi_message *message = NULL;
|
|
struct spi_transfer *transfer = NULL;
|
|
struct spi_transfer *previous = NULL;
|
|
|
|
/* Get current state information */
|
|
message = pl022->cur_msg;
|
|
transfer = pl022->cur_transfer;
|
|
|
|
/* Handle for abort */
|
|
if (message->state == STATE_ERROR) {
|
|
message->status = -EIO;
|
|
giveback(pl022);
|
|
return;
|
|
}
|
|
|
|
/* Handle end of message */
|
|
if (message->state == STATE_DONE) {
|
|
message->status = 0;
|
|
giveback(pl022);
|
|
return;
|
|
}
|
|
|
|
/* Delay if requested at end of transfer before CS change */
|
|
if (message->state == STATE_RUNNING) {
|
|
previous = list_entry(transfer->transfer_list.prev,
|
|
struct spi_transfer,
|
|
transfer_list);
|
|
if (previous->delay_usecs)
|
|
/*
|
|
* FIXME: This runs in interrupt context.
|
|
* Is this really smart?
|
|
*/
|
|
udelay(previous->delay_usecs);
|
|
|
|
/* Reselect chip select only if cs_change was requested */
|
|
if (previous->cs_change)
|
|
pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
|
|
} else {
|
|
/* STATE_START */
|
|
message->state = STATE_RUNNING;
|
|
}
|
|
|
|
if (set_up_next_transfer(pl022, transfer)) {
|
|
message->state = STATE_ERROR;
|
|
message->status = -EIO;
|
|
giveback(pl022);
|
|
return;
|
|
}
|
|
/* Flush the FIFOs and let's go! */
|
|
flush(pl022);
|
|
|
|
if (pl022->cur_chip->enable_dma) {
|
|
if (configure_dma(pl022)) {
|
|
dev_dbg(&pl022->adev->dev,
|
|
"configuration of DMA failed, fall back to interrupt mode\n");
|
|
goto err_config_dma;
|
|
}
|
|
return;
|
|
}
|
|
|
|
err_config_dma:
|
|
/* enable all interrupts except RX */
|
|
writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
|
|
}
|
|
|
|
static void do_interrupt_dma_transfer(struct pl022 *pl022)
|
|
{
|
|
/*
|
|
* Default is to enable all interrupts except RX -
|
|
* this will be enabled once TX is complete
|
|
*/
|
|
u32 irqflags = ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM;
|
|
|
|
/* Enable target chip, if not already active */
|
|
if (!pl022->next_msg_cs_active)
|
|
pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
|
|
|
|
if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
|
|
/* Error path */
|
|
pl022->cur_msg->state = STATE_ERROR;
|
|
pl022->cur_msg->status = -EIO;
|
|
giveback(pl022);
|
|
return;
|
|
}
|
|
/* If we're using DMA, set up DMA here */
|
|
if (pl022->cur_chip->enable_dma) {
|
|
/* Configure DMA transfer */
|
|
if (configure_dma(pl022)) {
|
|
dev_dbg(&pl022->adev->dev,
|
|
"configuration of DMA failed, fall back to interrupt mode\n");
|
|
goto err_config_dma;
|
|
}
|
|
/* Disable interrupts in DMA mode, IRQ from DMA controller */
|
|
irqflags = DISABLE_ALL_INTERRUPTS;
|
|
}
|
|
err_config_dma:
|
|
/* Enable SSP, turn on interrupts */
|
|
writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
|
|
SSP_CR1(pl022->virtbase));
|
|
writew(irqflags, SSP_IMSC(pl022->virtbase));
|
|
}
|
|
|
|
static void do_polling_transfer(struct pl022 *pl022)
|
|
{
|
|
struct spi_message *message = NULL;
|
|
struct spi_transfer *transfer = NULL;
|
|
struct spi_transfer *previous = NULL;
|
|
struct chip_data *chip;
|
|
unsigned long time, timeout;
|
|
|
|
chip = pl022->cur_chip;
|
|
message = pl022->cur_msg;
|
|
|
|
while (message->state != STATE_DONE) {
|
|
/* Handle for abort */
|
|
if (message->state == STATE_ERROR)
|
|
break;
|
|
transfer = pl022->cur_transfer;
|
|
|
|
/* Delay if requested at end of transfer */
|
|
if (message->state == STATE_RUNNING) {
|
|
previous =
|
|
list_entry(transfer->transfer_list.prev,
|
|
struct spi_transfer, transfer_list);
|
|
if (previous->delay_usecs)
|
|
udelay(previous->delay_usecs);
|
|
if (previous->cs_change)
|
|
pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
|
|
} else {
|
|
/* STATE_START */
|
|
message->state = STATE_RUNNING;
|
|
if (!pl022->next_msg_cs_active)
|
|
pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
|
|
}
|
|
|
|
/* Configuration Changing Per Transfer */
|
|
if (set_up_next_transfer(pl022, transfer)) {
|
|
/* Error path */
|
|
message->state = STATE_ERROR;
|
|
break;
|
|
}
|
|
/* Flush FIFOs and enable SSP */
|
|
flush(pl022);
|
|
writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
|
|
SSP_CR1(pl022->virtbase));
|
|
|
|
dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
|
|
|
|
timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
|
|
while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
|
|
time = jiffies;
|
|
readwriter(pl022);
|
|
if (time_after(time, timeout)) {
|
|
dev_warn(&pl022->adev->dev,
|
|
"%s: timeout!\n", __func__);
|
|
message->state = STATE_ERROR;
|
|
goto out;
|
|
}
|
|
cpu_relax();
|
|
}
|
|
|
|
/* Update total byte transferred */
|
|
message->actual_length += pl022->cur_transfer->len;
|
|
if (pl022->cur_transfer->cs_change)
|
|
pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
|
|
/* Move to next transfer */
|
|
message->state = next_transfer(pl022);
|
|
}
|
|
out:
|
|
/* Handle end of message */
|
|
if (message->state == STATE_DONE)
|
|
message->status = 0;
|
|
else
|
|
message->status = -EIO;
|
|
|
|
giveback(pl022);
|
|
return;
|
|
}
|
|
|
|
static int pl022_transfer_one_message(struct spi_master *master,
|
|
struct spi_message *msg)
|
|
{
|
|
struct pl022 *pl022 = spi_master_get_devdata(master);
|
|
|
|
/* Initial message state */
|
|
pl022->cur_msg = msg;
|
|
msg->state = STATE_START;
|
|
|
|
pl022->cur_transfer = list_entry(msg->transfers.next,
|
|
struct spi_transfer, transfer_list);
|
|
|
|
/* Setup the SPI using the per chip configuration */
|
|
pl022->cur_chip = spi_get_ctldata(msg->spi);
|
|
|
|
restore_state(pl022);
|
|
flush(pl022);
|
|
|
|
if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
|
|
do_polling_transfer(pl022);
|
|
else
|
|
do_interrupt_dma_transfer(pl022);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pl022_prepare_transfer_hardware(struct spi_master *master)
|
|
{
|
|
struct pl022 *pl022 = spi_master_get_devdata(master);
|
|
|
|
/*
|
|
* Just make sure we have all we need to run the transfer by syncing
|
|
* with the runtime PM framework.
|
|
*/
|
|
pm_runtime_get_sync(&pl022->adev->dev);
|
|
return 0;
|
|
}
|
|
|
|
static int pl022_unprepare_transfer_hardware(struct spi_master *master)
|
|
{
|
|
struct pl022 *pl022 = spi_master_get_devdata(master);
|
|
|
|
/* nothing more to do - disable spi/ssp and power off */
|
|
writew((readw(SSP_CR1(pl022->virtbase)) &
|
|
(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
|
|
|
|
if (pl022->master_info->autosuspend_delay > 0) {
|
|
pm_runtime_mark_last_busy(&pl022->adev->dev);
|
|
pm_runtime_put_autosuspend(&pl022->adev->dev);
|
|
} else {
|
|
pm_runtime_put(&pl022->adev->dev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int verify_controller_parameters(struct pl022 *pl022,
|
|
struct pl022_config_chip const *chip_info)
|
|
{
|
|
if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
|
|
|| (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
|
|
dev_err(&pl022->adev->dev,
|
|
"interface is configured incorrectly\n");
|
|
return -EINVAL;
|
|
}
|
|
if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
|
|
(!pl022->vendor->unidir)) {
|
|
dev_err(&pl022->adev->dev,
|
|
"unidirectional mode not supported in this "
|
|
"hardware version\n");
|
|
return -EINVAL;
|
|
}
|
|
if ((chip_info->hierarchy != SSP_MASTER)
|
|
&& (chip_info->hierarchy != SSP_SLAVE)) {
|
|
dev_err(&pl022->adev->dev,
|
|
"hierarchy is configured incorrectly\n");
|
|
return -EINVAL;
|
|
}
|
|
if ((chip_info->com_mode != INTERRUPT_TRANSFER)
|
|
&& (chip_info->com_mode != DMA_TRANSFER)
|
|
&& (chip_info->com_mode != POLLING_TRANSFER)) {
|
|
dev_err(&pl022->adev->dev,
|
|
"Communication mode is configured incorrectly\n");
|
|
return -EINVAL;
|
|
}
|
|
switch (chip_info->rx_lev_trig) {
|
|
case SSP_RX_1_OR_MORE_ELEM:
|
|
case SSP_RX_4_OR_MORE_ELEM:
|
|
case SSP_RX_8_OR_MORE_ELEM:
|
|
/* These are always OK, all variants can handle this */
|
|
break;
|
|
case SSP_RX_16_OR_MORE_ELEM:
|
|
if (pl022->vendor->fifodepth < 16) {
|
|
dev_err(&pl022->adev->dev,
|
|
"RX FIFO Trigger Level is configured incorrectly\n");
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
case SSP_RX_32_OR_MORE_ELEM:
|
|
if (pl022->vendor->fifodepth < 32) {
|
|
dev_err(&pl022->adev->dev,
|
|
"RX FIFO Trigger Level is configured incorrectly\n");
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
default:
|
|
dev_err(&pl022->adev->dev,
|
|
"RX FIFO Trigger Level is configured incorrectly\n");
|
|
return -EINVAL;
|
|
break;
|
|
}
|
|
switch (chip_info->tx_lev_trig) {
|
|
case SSP_TX_1_OR_MORE_EMPTY_LOC:
|
|
case SSP_TX_4_OR_MORE_EMPTY_LOC:
|
|
case SSP_TX_8_OR_MORE_EMPTY_LOC:
|
|
/* These are always OK, all variants can handle this */
|
|
break;
|
|
case SSP_TX_16_OR_MORE_EMPTY_LOC:
|
|
if (pl022->vendor->fifodepth < 16) {
|
|
dev_err(&pl022->adev->dev,
|
|
"TX FIFO Trigger Level is configured incorrectly\n");
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
case SSP_TX_32_OR_MORE_EMPTY_LOC:
|
|
if (pl022->vendor->fifodepth < 32) {
|
|
dev_err(&pl022->adev->dev,
|
|
"TX FIFO Trigger Level is configured incorrectly\n");
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
default:
|
|
dev_err(&pl022->adev->dev,
|
|
"TX FIFO Trigger Level is configured incorrectly\n");
|
|
return -EINVAL;
|
|
break;
|
|
}
|
|
if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
|
|
if ((chip_info->ctrl_len < SSP_BITS_4)
|
|
|| (chip_info->ctrl_len > SSP_BITS_32)) {
|
|
dev_err(&pl022->adev->dev,
|
|
"CTRL LEN is configured incorrectly\n");
|
|
return -EINVAL;
|
|
}
|
|
if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
|
|
&& (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
|
|
dev_err(&pl022->adev->dev,
|
|
"Wait State is configured incorrectly\n");
|
|
return -EINVAL;
|
|
}
|
|
/* Half duplex is only available in the ST Micro version */
|
|
if (pl022->vendor->extended_cr) {
|
|
if ((chip_info->duplex !=
|
|
SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
|
|
&& (chip_info->duplex !=
|
|
SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
|
|
dev_err(&pl022->adev->dev,
|
|
"Microwire duplex mode is configured incorrectly\n");
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
|
|
dev_err(&pl022->adev->dev,
|
|
"Microwire half duplex mode requested,"
|
|
" but this is only available in the"
|
|
" ST version of PL022\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
|
|
{
|
|
return rate / (cpsdvsr * (1 + scr));
|
|
}
|
|
|
|
static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
|
|
ssp_clock_params * clk_freq)
|
|
{
|
|
/* Lets calculate the frequency parameters */
|
|
u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
|
|
u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
|
|
best_scr = 0, tmp, found = 0;
|
|
|
|
rate = clk_get_rate(pl022->clk);
|
|
/* cpsdvscr = 2 & scr 0 */
|
|
max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
|
|
/* cpsdvsr = 254 & scr = 255 */
|
|
min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
|
|
|
|
if (freq > max_tclk)
|
|
dev_warn(&pl022->adev->dev,
|
|
"Max speed that can be programmed is %d Hz, you requested %d\n",
|
|
max_tclk, freq);
|
|
|
|
if (freq < min_tclk) {
|
|
dev_err(&pl022->adev->dev,
|
|
"Requested frequency: %d Hz is less than minimum possible %d Hz\n",
|
|
freq, min_tclk);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* best_freq will give closest possible available rate (<= requested
|
|
* freq) for all values of scr & cpsdvsr.
|
|
*/
|
|
while ((cpsdvsr <= CPSDVR_MAX) && !found) {
|
|
while (scr <= SCR_MAX) {
|
|
tmp = spi_rate(rate, cpsdvsr, scr);
|
|
|
|
if (tmp > freq) {
|
|
/* we need lower freq */
|
|
scr++;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If found exact value, mark found and break.
|
|
* If found more closer value, update and break.
|
|
*/
|
|
if (tmp > best_freq) {
|
|
best_freq = tmp;
|
|
best_cpsdvsr = cpsdvsr;
|
|
best_scr = scr;
|
|
|
|
if (tmp == freq)
|
|
found = 1;
|
|
}
|
|
/*
|
|
* increased scr will give lower rates, which are not
|
|
* required
|
|
*/
|
|
break;
|
|
}
|
|
cpsdvsr += 2;
|
|
scr = SCR_MIN;
|
|
}
|
|
|
|
WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
|
|
freq);
|
|
|
|
clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
|
|
clk_freq->scr = (u8) (best_scr & 0xFF);
|
|
dev_dbg(&pl022->adev->dev,
|
|
"SSP Target Frequency is: %u, Effective Frequency is %u\n",
|
|
freq, best_freq);
|
|
dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
|
|
clk_freq->cpsdvsr, clk_freq->scr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* A piece of default chip info unless the platform
|
|
* supplies it.
|
|
*/
|
|
static const struct pl022_config_chip pl022_default_chip_info = {
|
|
.com_mode = POLLING_TRANSFER,
|
|
.iface = SSP_INTERFACE_MOTOROLA_SPI,
|
|
.hierarchy = SSP_SLAVE,
|
|
.slave_tx_disable = DO_NOT_DRIVE_TX,
|
|
.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
|
|
.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
|
|
.ctrl_len = SSP_BITS_8,
|
|
.wait_state = SSP_MWIRE_WAIT_ZERO,
|
|
.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
|
|
.cs_control = null_cs_control,
|
|
};
|
|
|
|
/**
|
|
* pl022_setup - setup function registered to SPI master framework
|
|
* @spi: spi device which is requesting setup
|
|
*
|
|
* This function is registered to the SPI framework for this SPI master
|
|
* controller. If it is the first time when setup is called by this device,
|
|
* this function will initialize the runtime state for this chip and save
|
|
* the same in the device structure. Else it will update the runtime info
|
|
* with the updated chip info. Nothing is really being written to the
|
|
* controller hardware here, that is not done until the actual transfer
|
|
* commence.
|
|
*/
|
|
static int pl022_setup(struct spi_device *spi)
|
|
{
|
|
struct pl022_config_chip const *chip_info;
|
|
struct chip_data *chip;
|
|
struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
|
|
int status = 0;
|
|
struct pl022 *pl022 = spi_master_get_devdata(spi->master);
|
|
unsigned int bits = spi->bits_per_word;
|
|
u32 tmp;
|
|
|
|
if (!spi->max_speed_hz)
|
|
return -EINVAL;
|
|
|
|
/* Get controller_state if one is supplied */
|
|
chip = spi_get_ctldata(spi);
|
|
|
|
if (chip == NULL) {
|
|
chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
|
|
if (!chip) {
|
|
dev_err(&spi->dev,
|
|
"cannot allocate controller state\n");
|
|
return -ENOMEM;
|
|
}
|
|
dev_dbg(&spi->dev,
|
|
"allocated memory for controller's runtime state\n");
|
|
}
|
|
|
|
/* Get controller data if one is supplied */
|
|
chip_info = spi->controller_data;
|
|
|
|
if (chip_info == NULL) {
|
|
chip_info = &pl022_default_chip_info;
|
|
/* spi_board_info.controller_data not is supplied */
|
|
dev_dbg(&spi->dev,
|
|
"using default controller_data settings\n");
|
|
} else
|
|
dev_dbg(&spi->dev,
|
|
"using user supplied controller_data settings\n");
|
|
|
|
/*
|
|
* We can override with custom divisors, else we use the board
|
|
* frequency setting
|
|
*/
|
|
if ((0 == chip_info->clk_freq.cpsdvsr)
|
|
&& (0 == chip_info->clk_freq.scr)) {
|
|
status = calculate_effective_freq(pl022,
|
|
spi->max_speed_hz,
|
|
&clk_freq);
|
|
if (status < 0)
|
|
goto err_config_params;
|
|
} else {
|
|
memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
|
|
if ((clk_freq.cpsdvsr % 2) != 0)
|
|
clk_freq.cpsdvsr =
|
|
clk_freq.cpsdvsr - 1;
|
|
}
|
|
if ((clk_freq.cpsdvsr < CPSDVR_MIN)
|
|
|| (clk_freq.cpsdvsr > CPSDVR_MAX)) {
|
|
status = -EINVAL;
|
|
dev_err(&spi->dev,
|
|
"cpsdvsr is configured incorrectly\n");
|
|
goto err_config_params;
|
|
}
|
|
|
|
status = verify_controller_parameters(pl022, chip_info);
|
|
if (status) {
|
|
dev_err(&spi->dev, "controller data is incorrect");
|
|
goto err_config_params;
|
|
}
|
|
|
|
pl022->rx_lev_trig = chip_info->rx_lev_trig;
|
|
pl022->tx_lev_trig = chip_info->tx_lev_trig;
|
|
|
|
/* Now set controller state based on controller data */
|
|
chip->xfer_type = chip_info->com_mode;
|
|
if (!chip_info->cs_control) {
|
|
chip->cs_control = null_cs_control;
|
|
dev_warn(&spi->dev,
|
|
"chip select function is NULL for this chip\n");
|
|
} else
|
|
chip->cs_control = chip_info->cs_control;
|
|
|
|
/* Check bits per word with vendor specific range */
|
|
if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
|
|
status = -ENOTSUPP;
|
|
dev_err(&spi->dev, "illegal data size for this controller!\n");
|
|
dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
|
|
pl022->vendor->max_bpw);
|
|
goto err_config_params;
|
|
} else if (bits <= 8) {
|
|
dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
|
|
chip->n_bytes = 1;
|
|
chip->read = READING_U8;
|
|
chip->write = WRITING_U8;
|
|
} else if (bits <= 16) {
|
|
dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
|
|
chip->n_bytes = 2;
|
|
chip->read = READING_U16;
|
|
chip->write = WRITING_U16;
|
|
} else {
|
|
dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
|
|
chip->n_bytes = 4;
|
|
chip->read = READING_U32;
|
|
chip->write = WRITING_U32;
|
|
}
|
|
|
|
/* Now Initialize all register settings required for this chip */
|
|
chip->cr0 = 0;
|
|
chip->cr1 = 0;
|
|
chip->dmacr = 0;
|
|
chip->cpsr = 0;
|
|
if ((chip_info->com_mode == DMA_TRANSFER)
|
|
&& ((pl022->master_info)->enable_dma)) {
|
|
chip->enable_dma = true;
|
|
dev_dbg(&spi->dev, "DMA mode set in controller state\n");
|
|
SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
|
|
SSP_DMACR_MASK_RXDMAE, 0);
|
|
SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
|
|
SSP_DMACR_MASK_TXDMAE, 1);
|
|
} else {
|
|
chip->enable_dma = false;
|
|
dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
|
|
SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
|
|
SSP_DMACR_MASK_RXDMAE, 0);
|
|
SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
|
|
SSP_DMACR_MASK_TXDMAE, 1);
|
|
}
|
|
|
|
chip->cpsr = clk_freq.cpsdvsr;
|
|
|
|
/* Special setup for the ST micro extended control registers */
|
|
if (pl022->vendor->extended_cr) {
|
|
u32 etx;
|
|
|
|
if (pl022->vendor->pl023) {
|
|
/* These bits are only in the PL023 */
|
|
SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
|
|
SSP_CR1_MASK_FBCLKDEL_ST, 13);
|
|
} else {
|
|
/* These bits are in the PL022 but not PL023 */
|
|
SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
|
|
SSP_CR0_MASK_HALFDUP_ST, 5);
|
|
SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
|
|
SSP_CR0_MASK_CSS_ST, 16);
|
|
SSP_WRITE_BITS(chip->cr0, chip_info->iface,
|
|
SSP_CR0_MASK_FRF_ST, 21);
|
|
SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
|
|
SSP_CR1_MASK_MWAIT_ST, 6);
|
|
}
|
|
SSP_WRITE_BITS(chip->cr0, bits - 1,
|
|
SSP_CR0_MASK_DSS_ST, 0);
|
|
|
|
if (spi->mode & SPI_LSB_FIRST) {
|
|
tmp = SSP_RX_LSB;
|
|
etx = SSP_TX_LSB;
|
|
} else {
|
|
tmp = SSP_RX_MSB;
|
|
etx = SSP_TX_MSB;
|
|
}
|
|
SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
|
|
SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
|
|
SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
|
|
SSP_CR1_MASK_RXIFLSEL_ST, 7);
|
|
SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
|
|
SSP_CR1_MASK_TXIFLSEL_ST, 10);
|
|
} else {
|
|
SSP_WRITE_BITS(chip->cr0, bits - 1,
|
|
SSP_CR0_MASK_DSS, 0);
|
|
SSP_WRITE_BITS(chip->cr0, chip_info->iface,
|
|
SSP_CR0_MASK_FRF, 4);
|
|
}
|
|
|
|
/* Stuff that is common for all versions */
|
|
if (spi->mode & SPI_CPOL)
|
|
tmp = SSP_CLK_POL_IDLE_HIGH;
|
|
else
|
|
tmp = SSP_CLK_POL_IDLE_LOW;
|
|
SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
|
|
|
|
if (spi->mode & SPI_CPHA)
|
|
tmp = SSP_CLK_SECOND_EDGE;
|
|
else
|
|
tmp = SSP_CLK_FIRST_EDGE;
|
|
SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
|
|
|
|
SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
|
|
/* Loopback is available on all versions except PL023 */
|
|
if (pl022->vendor->loopback) {
|
|
if (spi->mode & SPI_LOOP)
|
|
tmp = LOOPBACK_ENABLED;
|
|
else
|
|
tmp = LOOPBACK_DISABLED;
|
|
SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
|
|
}
|
|
SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
|
|
SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
|
|
SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
|
|
3);
|
|
|
|
/* Save controller_state */
|
|
spi_set_ctldata(spi, chip);
|
|
return status;
|
|
err_config_params:
|
|
spi_set_ctldata(spi, NULL);
|
|
kfree(chip);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* pl022_cleanup - cleanup function registered to SPI master framework
|
|
* @spi: spi device which is requesting cleanup
|
|
*
|
|
* This function is registered to the SPI framework for this SPI master
|
|
* controller. It will free the runtime state of chip.
|
|
*/
|
|
static void pl022_cleanup(struct spi_device *spi)
|
|
{
|
|
struct chip_data *chip = spi_get_ctldata(spi);
|
|
|
|
spi_set_ctldata(spi, NULL);
|
|
kfree(chip);
|
|
}
|
|
|
|
static int __devinit
|
|
pl022_probe(struct amba_device *adev, const struct amba_id *id)
|
|
{
|
|
struct device *dev = &adev->dev;
|
|
struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
|
|
struct spi_master *master;
|
|
struct pl022 *pl022 = NULL; /*Data for this driver */
|
|
int status = 0;
|
|
|
|
dev_info(&adev->dev,
|
|
"ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
|
|
if (platform_info == NULL) {
|
|
dev_err(&adev->dev, "probe - no platform data supplied\n");
|
|
status = -ENODEV;
|
|
goto err_no_pdata;
|
|
}
|
|
|
|
/* Allocate master with space for data */
|
|
master = spi_alloc_master(dev, sizeof(struct pl022));
|
|
if (master == NULL) {
|
|
dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
|
|
status = -ENOMEM;
|
|
goto err_no_master;
|
|
}
|
|
|
|
pl022 = spi_master_get_devdata(master);
|
|
pl022->master = master;
|
|
pl022->master_info = platform_info;
|
|
pl022->adev = adev;
|
|
pl022->vendor = id->data;
|
|
|
|
/*
|
|
* Bus Number Which has been Assigned to this SSP controller
|
|
* on this board
|
|
*/
|
|
master->bus_num = platform_info->bus_id;
|
|
master->num_chipselect = platform_info->num_chipselect;
|
|
master->cleanup = pl022_cleanup;
|
|
master->setup = pl022_setup;
|
|
master->prepare_transfer_hardware = pl022_prepare_transfer_hardware;
|
|
master->transfer_one_message = pl022_transfer_one_message;
|
|
master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
|
|
master->rt = platform_info->rt;
|
|
|
|
/*
|
|
* Supports mode 0-3, loopback, and active low CS. Transfers are
|
|
* always MS bit first on the original pl022.
|
|
*/
|
|
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
|
|
if (pl022->vendor->extended_cr)
|
|
master->mode_bits |= SPI_LSB_FIRST;
|
|
|
|
dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
|
|
|
|
status = amba_request_regions(adev, NULL);
|
|
if (status)
|
|
goto err_no_ioregion;
|
|
|
|
pl022->phybase = adev->res.start;
|
|
pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
|
|
if (pl022->virtbase == NULL) {
|
|
status = -ENOMEM;
|
|
goto err_no_ioremap;
|
|
}
|
|
printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
|
|
adev->res.start, pl022->virtbase);
|
|
|
|
pm_runtime_resume(dev);
|
|
|
|
pl022->clk = clk_get(&adev->dev, NULL);
|
|
if (IS_ERR(pl022->clk)) {
|
|
status = PTR_ERR(pl022->clk);
|
|
dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
|
|
goto err_no_clk;
|
|
}
|
|
|
|
status = clk_prepare(pl022->clk);
|
|
if (status) {
|
|
dev_err(&adev->dev, "could not prepare SSP/SPI bus clock\n");
|
|
goto err_clk_prep;
|
|
}
|
|
|
|
status = clk_enable(pl022->clk);
|
|
if (status) {
|
|
dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
|
|
goto err_no_clk_en;
|
|
}
|
|
|
|
/* Initialize transfer pump */
|
|
tasklet_init(&pl022->pump_transfers, pump_transfers,
|
|
(unsigned long)pl022);
|
|
|
|
/* Disable SSP */
|
|
writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
|
|
SSP_CR1(pl022->virtbase));
|
|
load_ssp_default_config(pl022);
|
|
|
|
status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
|
|
pl022);
|
|
if (status < 0) {
|
|
dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
|
|
goto err_no_irq;
|
|
}
|
|
|
|
/* Get DMA channels */
|
|
if (platform_info->enable_dma) {
|
|
status = pl022_dma_probe(pl022);
|
|
if (status != 0)
|
|
platform_info->enable_dma = 0;
|
|
}
|
|
|
|
/* Register with the SPI framework */
|
|
amba_set_drvdata(adev, pl022);
|
|
status = spi_register_master(master);
|
|
if (status != 0) {
|
|
dev_err(&adev->dev,
|
|
"probe - problem registering spi master\n");
|
|
goto err_spi_register;
|
|
}
|
|
dev_dbg(dev, "probe succeeded\n");
|
|
|
|
/* let runtime pm put suspend */
|
|
if (platform_info->autosuspend_delay > 0) {
|
|
dev_info(&adev->dev,
|
|
"will use autosuspend for runtime pm, delay %dms\n",
|
|
platform_info->autosuspend_delay);
|
|
pm_runtime_set_autosuspend_delay(dev,
|
|
platform_info->autosuspend_delay);
|
|
pm_runtime_use_autosuspend(dev);
|
|
pm_runtime_put_autosuspend(dev);
|
|
} else {
|
|
pm_runtime_put(dev);
|
|
}
|
|
return 0;
|
|
|
|
err_spi_register:
|
|
if (platform_info->enable_dma)
|
|
pl022_dma_remove(pl022);
|
|
|
|
free_irq(adev->irq[0], pl022);
|
|
err_no_irq:
|
|
clk_disable(pl022->clk);
|
|
err_no_clk_en:
|
|
clk_unprepare(pl022->clk);
|
|
err_clk_prep:
|
|
clk_put(pl022->clk);
|
|
err_no_clk:
|
|
iounmap(pl022->virtbase);
|
|
err_no_ioremap:
|
|
amba_release_regions(adev);
|
|
err_no_ioregion:
|
|
spi_master_put(master);
|
|
err_no_master:
|
|
err_no_pdata:
|
|
return status;
|
|
}
|
|
|
|
static int __devexit
|
|
pl022_remove(struct amba_device *adev)
|
|
{
|
|
struct pl022 *pl022 = amba_get_drvdata(adev);
|
|
|
|
if (!pl022)
|
|
return 0;
|
|
|
|
/*
|
|
* undo pm_runtime_put() in probe. I assume that we're not
|
|
* accessing the primecell here.
|
|
*/
|
|
pm_runtime_get_noresume(&adev->dev);
|
|
|
|
load_ssp_default_config(pl022);
|
|
if (pl022->master_info->enable_dma)
|
|
pl022_dma_remove(pl022);
|
|
|
|
free_irq(adev->irq[0], pl022);
|
|
clk_disable(pl022->clk);
|
|
clk_unprepare(pl022->clk);
|
|
clk_put(pl022->clk);
|
|
pm_runtime_disable(&adev->dev);
|
|
iounmap(pl022->virtbase);
|
|
amba_release_regions(adev);
|
|
tasklet_disable(&pl022->pump_transfers);
|
|
spi_unregister_master(pl022->master);
|
|
spi_master_put(pl022->master);
|
|
amba_set_drvdata(adev, NULL);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_SUSPEND
|
|
static int pl022_suspend(struct device *dev)
|
|
{
|
|
struct pl022 *pl022 = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
ret = spi_master_suspend(pl022->master);
|
|
if (ret) {
|
|
dev_warn(dev, "cannot suspend master\n");
|
|
return ret;
|
|
}
|
|
|
|
dev_dbg(dev, "suspended\n");
|
|
return 0;
|
|
}
|
|
|
|
static int pl022_resume(struct device *dev)
|
|
{
|
|
struct pl022 *pl022 = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
/* Start the queue running */
|
|
ret = spi_master_resume(pl022->master);
|
|
if (ret)
|
|
dev_err(dev, "problem starting queue (%d)\n", ret);
|
|
else
|
|
dev_dbg(dev, "resumed\n");
|
|
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_PM */
|
|
|
|
#ifdef CONFIG_PM_RUNTIME
|
|
static int pl022_runtime_suspend(struct device *dev)
|
|
{
|
|
struct pl022 *pl022 = dev_get_drvdata(dev);
|
|
|
|
clk_disable(pl022->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pl022_runtime_resume(struct device *dev)
|
|
{
|
|
struct pl022 *pl022 = dev_get_drvdata(dev);
|
|
|
|
clk_enable(pl022->clk);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static const struct dev_pm_ops pl022_dev_pm_ops = {
|
|
SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
|
|
SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
|
|
};
|
|
|
|
static struct vendor_data vendor_arm = {
|
|
.fifodepth = 8,
|
|
.max_bpw = 16,
|
|
.unidir = false,
|
|
.extended_cr = false,
|
|
.pl023 = false,
|
|
.loopback = true,
|
|
};
|
|
|
|
static struct vendor_data vendor_st = {
|
|
.fifodepth = 32,
|
|
.max_bpw = 32,
|
|
.unidir = false,
|
|
.extended_cr = true,
|
|
.pl023 = false,
|
|
.loopback = true,
|
|
};
|
|
|
|
static struct vendor_data vendor_st_pl023 = {
|
|
.fifodepth = 32,
|
|
.max_bpw = 32,
|
|
.unidir = false,
|
|
.extended_cr = true,
|
|
.pl023 = true,
|
|
.loopback = false,
|
|
};
|
|
|
|
static struct amba_id pl022_ids[] = {
|
|
{
|
|
/*
|
|
* ARM PL022 variant, this has a 16bit wide
|
|
* and 8 locations deep TX/RX FIFO
|
|
*/
|
|
.id = 0x00041022,
|
|
.mask = 0x000fffff,
|
|
.data = &vendor_arm,
|
|
},
|
|
{
|
|
/*
|
|
* ST Micro derivative, this has 32bit wide
|
|
* and 32 locations deep TX/RX FIFO
|
|
*/
|
|
.id = 0x01080022,
|
|
.mask = 0xffffffff,
|
|
.data = &vendor_st,
|
|
},
|
|
{
|
|
/*
|
|
* ST-Ericsson derivative "PL023" (this is not
|
|
* an official ARM number), this is a PL022 SSP block
|
|
* stripped to SPI mode only, it has 32bit wide
|
|
* and 32 locations deep TX/RX FIFO but no extended
|
|
* CR0/CR1 register
|
|
*/
|
|
.id = 0x00080023,
|
|
.mask = 0xffffffff,
|
|
.data = &vendor_st_pl023,
|
|
},
|
|
{ 0, 0 },
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(amba, pl022_ids);
|
|
|
|
static struct amba_driver pl022_driver = {
|
|
.drv = {
|
|
.name = "ssp-pl022",
|
|
.pm = &pl022_dev_pm_ops,
|
|
},
|
|
.id_table = pl022_ids,
|
|
.probe = pl022_probe,
|
|
.remove = __devexit_p(pl022_remove),
|
|
};
|
|
|
|
static int __init pl022_init(void)
|
|
{
|
|
return amba_driver_register(&pl022_driver);
|
|
}
|
|
subsys_initcall(pl022_init);
|
|
|
|
static void __exit pl022_exit(void)
|
|
{
|
|
amba_driver_unregister(&pl022_driver);
|
|
}
|
|
module_exit(pl022_exit);
|
|
|
|
MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
|
|
MODULE_DESCRIPTION("PL022 SSP Controller Driver");
|
|
MODULE_LICENSE("GPL");
|