mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-27 04:54:41 +08:00
649c87c6ff
Several headers in the ice driver include ice.h even though they are themselves included by that header. The most notable of these is ice_common.h, but several other headers also do this. Such a recursive inclusion is problematic as it forces headers to be included in a strict order, otherwise compilation errors can result. The circular inclusions do not trigger an endless loop due to standard header inclusion guards, however other errors can occur. For example, ice_flow.h defines ice_rss_hash_cfg, which is used by ice_sriov.h as part of the definition of ice_vf_hash_ip_ctx. ice_flow.h includes ice_acl.h, which includes ice_common.h, and which finally includes ice.h. Since ice.h itself includes ice_sriov.h, this creates a circular dependency. The definition in ice_sriov.h requires things from ice_flow.h, but ice_flow.h itself will lead to trying to load ice_sriov.h as part of its process for expanding ice.h. The current code avoids this issue by having an implicit dependency without the include of ice_flow.h. If we were to fix that so that ice_sriov.h explicitly depends on ice_flow.h the following pattern would occur: ice_flow.h -> ice_acl.h -> ice_common.h -> ice.h -> ice_sriov.h At this point, during the expansion of, the header guard for ice_flow.h is already set, so when ice_sriov.h attempts to load the ice_flow.h header it is skipped. Then, we go on to begin including the rest of ice_sriov.h, including structure definitions which depend on ice_rss_hash_cfg. This produces a compiler warning because ice_rss_hash_cfg hasn't yet been included. Remember, we're just at the start of ice_flow.h! If the order of headers is incorrect (ice_flow.h is not implicitly loaded first in all files which include ice_sriov.h) then we get the same failure. Removing this recursive inclusion requires fixing a few cases where some headers depended on the header inclusions from ice.h. In addition, a few other changes are also required. Most notably, ice_hw_to_dev is implemented as a macro in ice_osdep.h, which is the likely reason that ice_common.h includes ice.h at all. This macro implementation requires the full definition of ice_pf in order to properly compile. Fix this by moving it to a function declared in ice_main.c, so that we do not require all files to depend on the layout of the ice_pf structure. Note that this change only fixes circular dependencies, but it does not fully resolve all implicit dependencies where one header may depend on the inclusion of another. I tried to fix as many of the implicit dependencies as I noticed, but fixing them all requires a somewhat tedious analysis of each header and attempting to compile it separately. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Tested-by: Gurucharan G <gurucharanx.g@intel.com> (A Contingent worker at Intel) Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
6127 lines
158 KiB
C
6127 lines
158 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (c) 2019, Intel Corporation. */
|
|
|
|
#include "ice_common.h"
|
|
#include "ice_flex_pipe.h"
|
|
#include "ice_flow.h"
|
|
#include "ice.h"
|
|
|
|
/* For supporting double VLAN mode, it is necessary to enable or disable certain
|
|
* boost tcam entries. The metadata labels names that match the following
|
|
* prefixes will be saved to allow enabling double VLAN mode.
|
|
*/
|
|
#define ICE_DVM_PRE "BOOST_MAC_VLAN_DVM" /* enable these entries */
|
|
#define ICE_SVM_PRE "BOOST_MAC_VLAN_SVM" /* disable these entries */
|
|
|
|
/* To support tunneling entries by PF, the package will append the PF number to
|
|
* the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc.
|
|
*/
|
|
#define ICE_TNL_PRE "TNL_"
|
|
static const struct ice_tunnel_type_scan tnls[] = {
|
|
{ TNL_VXLAN, "TNL_VXLAN_PF" },
|
|
{ TNL_GENEVE, "TNL_GENEVE_PF" },
|
|
{ TNL_LAST, "" }
|
|
};
|
|
|
|
static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
|
|
/* SWITCH */
|
|
{
|
|
ICE_SID_XLT0_SW,
|
|
ICE_SID_XLT_KEY_BUILDER_SW,
|
|
ICE_SID_XLT1_SW,
|
|
ICE_SID_XLT2_SW,
|
|
ICE_SID_PROFID_TCAM_SW,
|
|
ICE_SID_PROFID_REDIR_SW,
|
|
ICE_SID_FLD_VEC_SW,
|
|
ICE_SID_CDID_KEY_BUILDER_SW,
|
|
ICE_SID_CDID_REDIR_SW
|
|
},
|
|
|
|
/* ACL */
|
|
{
|
|
ICE_SID_XLT0_ACL,
|
|
ICE_SID_XLT_KEY_BUILDER_ACL,
|
|
ICE_SID_XLT1_ACL,
|
|
ICE_SID_XLT2_ACL,
|
|
ICE_SID_PROFID_TCAM_ACL,
|
|
ICE_SID_PROFID_REDIR_ACL,
|
|
ICE_SID_FLD_VEC_ACL,
|
|
ICE_SID_CDID_KEY_BUILDER_ACL,
|
|
ICE_SID_CDID_REDIR_ACL
|
|
},
|
|
|
|
/* FD */
|
|
{
|
|
ICE_SID_XLT0_FD,
|
|
ICE_SID_XLT_KEY_BUILDER_FD,
|
|
ICE_SID_XLT1_FD,
|
|
ICE_SID_XLT2_FD,
|
|
ICE_SID_PROFID_TCAM_FD,
|
|
ICE_SID_PROFID_REDIR_FD,
|
|
ICE_SID_FLD_VEC_FD,
|
|
ICE_SID_CDID_KEY_BUILDER_FD,
|
|
ICE_SID_CDID_REDIR_FD
|
|
},
|
|
|
|
/* RSS */
|
|
{
|
|
ICE_SID_XLT0_RSS,
|
|
ICE_SID_XLT_KEY_BUILDER_RSS,
|
|
ICE_SID_XLT1_RSS,
|
|
ICE_SID_XLT2_RSS,
|
|
ICE_SID_PROFID_TCAM_RSS,
|
|
ICE_SID_PROFID_REDIR_RSS,
|
|
ICE_SID_FLD_VEC_RSS,
|
|
ICE_SID_CDID_KEY_BUILDER_RSS,
|
|
ICE_SID_CDID_REDIR_RSS
|
|
},
|
|
|
|
/* PE */
|
|
{
|
|
ICE_SID_XLT0_PE,
|
|
ICE_SID_XLT_KEY_BUILDER_PE,
|
|
ICE_SID_XLT1_PE,
|
|
ICE_SID_XLT2_PE,
|
|
ICE_SID_PROFID_TCAM_PE,
|
|
ICE_SID_PROFID_REDIR_PE,
|
|
ICE_SID_FLD_VEC_PE,
|
|
ICE_SID_CDID_KEY_BUILDER_PE,
|
|
ICE_SID_CDID_REDIR_PE
|
|
}
|
|
};
|
|
|
|
/**
|
|
* ice_sect_id - returns section ID
|
|
* @blk: block type
|
|
* @sect: section type
|
|
*
|
|
* This helper function returns the proper section ID given a block type and a
|
|
* section type.
|
|
*/
|
|
static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
|
|
{
|
|
return ice_sect_lkup[blk][sect];
|
|
}
|
|
|
|
/**
|
|
* ice_pkg_val_buf
|
|
* @buf: pointer to the ice buffer
|
|
*
|
|
* This helper function validates a buffer's header.
|
|
*/
|
|
static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf)
|
|
{
|
|
struct ice_buf_hdr *hdr;
|
|
u16 section_count;
|
|
u16 data_end;
|
|
|
|
hdr = (struct ice_buf_hdr *)buf->buf;
|
|
/* verify data */
|
|
section_count = le16_to_cpu(hdr->section_count);
|
|
if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT)
|
|
return NULL;
|
|
|
|
data_end = le16_to_cpu(hdr->data_end);
|
|
if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END)
|
|
return NULL;
|
|
|
|
return hdr;
|
|
}
|
|
|
|
/**
|
|
* ice_find_buf_table
|
|
* @ice_seg: pointer to the ice segment
|
|
*
|
|
* Returns the address of the buffer table within the ice segment.
|
|
*/
|
|
static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg)
|
|
{
|
|
struct ice_nvm_table *nvms;
|
|
|
|
nvms = (struct ice_nvm_table *)
|
|
(ice_seg->device_table +
|
|
le32_to_cpu(ice_seg->device_table_count));
|
|
|
|
return (__force struct ice_buf_table *)
|
|
(nvms->vers + le32_to_cpu(nvms->table_count));
|
|
}
|
|
|
|
/**
|
|
* ice_pkg_enum_buf
|
|
* @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
|
|
* @state: pointer to the enum state
|
|
*
|
|
* This function will enumerate all the buffers in the ice segment. The first
|
|
* call is made with the ice_seg parameter non-NULL; on subsequent calls,
|
|
* ice_seg is set to NULL which continues the enumeration. When the function
|
|
* returns a NULL pointer, then the end of the buffers has been reached, or an
|
|
* unexpected value has been detected (for example an invalid section count or
|
|
* an invalid buffer end value).
|
|
*/
|
|
static struct ice_buf_hdr *
|
|
ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
|
|
{
|
|
if (ice_seg) {
|
|
state->buf_table = ice_find_buf_table(ice_seg);
|
|
if (!state->buf_table)
|
|
return NULL;
|
|
|
|
state->buf_idx = 0;
|
|
return ice_pkg_val_buf(state->buf_table->buf_array);
|
|
}
|
|
|
|
if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count))
|
|
return ice_pkg_val_buf(state->buf_table->buf_array +
|
|
state->buf_idx);
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ice_pkg_advance_sect
|
|
* @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
|
|
* @state: pointer to the enum state
|
|
*
|
|
* This helper function will advance the section within the ice segment,
|
|
* also advancing the buffer if needed.
|
|
*/
|
|
static bool
|
|
ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
|
|
{
|
|
if (!ice_seg && !state->buf)
|
|
return false;
|
|
|
|
if (!ice_seg && state->buf)
|
|
if (++state->sect_idx < le16_to_cpu(state->buf->section_count))
|
|
return true;
|
|
|
|
state->buf = ice_pkg_enum_buf(ice_seg, state);
|
|
if (!state->buf)
|
|
return false;
|
|
|
|
/* start of new buffer, reset section index */
|
|
state->sect_idx = 0;
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* ice_pkg_enum_section
|
|
* @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
|
|
* @state: pointer to the enum state
|
|
* @sect_type: section type to enumerate
|
|
*
|
|
* This function will enumerate all the sections of a particular type in the
|
|
* ice segment. The first call is made with the ice_seg parameter non-NULL;
|
|
* on subsequent calls, ice_seg is set to NULL which continues the enumeration.
|
|
* When the function returns a NULL pointer, then the end of the matching
|
|
* sections has been reached.
|
|
*/
|
|
static void *
|
|
ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
|
|
u32 sect_type)
|
|
{
|
|
u16 offset, size;
|
|
|
|
if (ice_seg)
|
|
state->type = sect_type;
|
|
|
|
if (!ice_pkg_advance_sect(ice_seg, state))
|
|
return NULL;
|
|
|
|
/* scan for next matching section */
|
|
while (state->buf->section_entry[state->sect_idx].type !=
|
|
cpu_to_le32(state->type))
|
|
if (!ice_pkg_advance_sect(NULL, state))
|
|
return NULL;
|
|
|
|
/* validate section */
|
|
offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
|
|
if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF)
|
|
return NULL;
|
|
|
|
size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size);
|
|
if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ)
|
|
return NULL;
|
|
|
|
/* make sure the section fits in the buffer */
|
|
if (offset + size > ICE_PKG_BUF_SIZE)
|
|
return NULL;
|
|
|
|
state->sect_type =
|
|
le32_to_cpu(state->buf->section_entry[state->sect_idx].type);
|
|
|
|
/* calc pointer to this section */
|
|
state->sect = ((u8 *)state->buf) +
|
|
le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
|
|
|
|
return state->sect;
|
|
}
|
|
|
|
/**
|
|
* ice_pkg_enum_entry
|
|
* @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
|
|
* @state: pointer to the enum state
|
|
* @sect_type: section type to enumerate
|
|
* @offset: pointer to variable that receives the offset in the table (optional)
|
|
* @handler: function that handles access to the entries into the section type
|
|
*
|
|
* This function will enumerate all the entries in particular section type in
|
|
* the ice segment. The first call is made with the ice_seg parameter non-NULL;
|
|
* on subsequent calls, ice_seg is set to NULL which continues the enumeration.
|
|
* When the function returns a NULL pointer, then the end of the entries has
|
|
* been reached.
|
|
*
|
|
* Since each section may have a different header and entry size, the handler
|
|
* function is needed to determine the number and location entries in each
|
|
* section.
|
|
*
|
|
* The offset parameter is optional, but should be used for sections that
|
|
* contain an offset for each section table. For such cases, the section handler
|
|
* function must return the appropriate offset + index to give the absolution
|
|
* offset for each entry. For example, if the base for a section's header
|
|
* indicates a base offset of 10, and the index for the entry is 2, then
|
|
* section handler function should set the offset to 10 + 2 = 12.
|
|
*/
|
|
static void *
|
|
ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
|
|
u32 sect_type, u32 *offset,
|
|
void *(*handler)(u32 sect_type, void *section,
|
|
u32 index, u32 *offset))
|
|
{
|
|
void *entry;
|
|
|
|
if (ice_seg) {
|
|
if (!handler)
|
|
return NULL;
|
|
|
|
if (!ice_pkg_enum_section(ice_seg, state, sect_type))
|
|
return NULL;
|
|
|
|
state->entry_idx = 0;
|
|
state->handler = handler;
|
|
} else {
|
|
state->entry_idx++;
|
|
}
|
|
|
|
if (!state->handler)
|
|
return NULL;
|
|
|
|
/* get entry */
|
|
entry = state->handler(state->sect_type, state->sect, state->entry_idx,
|
|
offset);
|
|
if (!entry) {
|
|
/* end of a section, look for another section of this type */
|
|
if (!ice_pkg_enum_section(NULL, state, 0))
|
|
return NULL;
|
|
|
|
state->entry_idx = 0;
|
|
entry = state->handler(state->sect_type, state->sect,
|
|
state->entry_idx, offset);
|
|
}
|
|
|
|
return entry;
|
|
}
|
|
|
|
/**
|
|
* ice_hw_ptype_ena - check if the PTYPE is enabled or not
|
|
* @hw: pointer to the HW structure
|
|
* @ptype: the hardware PTYPE
|
|
*/
|
|
bool ice_hw_ptype_ena(struct ice_hw *hw, u16 ptype)
|
|
{
|
|
return ptype < ICE_FLOW_PTYPE_MAX &&
|
|
test_bit(ptype, hw->hw_ptype);
|
|
}
|
|
|
|
/**
|
|
* ice_marker_ptype_tcam_handler
|
|
* @sect_type: section type
|
|
* @section: pointer to section
|
|
* @index: index of the Marker PType TCAM entry to be returned
|
|
* @offset: pointer to receive absolute offset, always 0 for ptype TCAM sections
|
|
*
|
|
* This is a callback function that can be passed to ice_pkg_enum_entry.
|
|
* Handles enumeration of individual Marker PType TCAM entries.
|
|
*/
|
|
static void *
|
|
ice_marker_ptype_tcam_handler(u32 sect_type, void *section, u32 index,
|
|
u32 *offset)
|
|
{
|
|
struct ice_marker_ptype_tcam_section *marker_ptype;
|
|
|
|
if (sect_type != ICE_SID_RXPARSER_MARKER_PTYPE)
|
|
return NULL;
|
|
|
|
if (index > ICE_MAX_MARKER_PTYPE_TCAMS_IN_BUF)
|
|
return NULL;
|
|
|
|
if (offset)
|
|
*offset = 0;
|
|
|
|
marker_ptype = section;
|
|
if (index >= le16_to_cpu(marker_ptype->count))
|
|
return NULL;
|
|
|
|
return marker_ptype->tcam + index;
|
|
}
|
|
|
|
/**
|
|
* ice_fill_hw_ptype - fill the enabled PTYPE bit information
|
|
* @hw: pointer to the HW structure
|
|
*/
|
|
static void ice_fill_hw_ptype(struct ice_hw *hw)
|
|
{
|
|
struct ice_marker_ptype_tcam_entry *tcam;
|
|
struct ice_seg *seg = hw->seg;
|
|
struct ice_pkg_enum state;
|
|
|
|
bitmap_zero(hw->hw_ptype, ICE_FLOW_PTYPE_MAX);
|
|
if (!seg)
|
|
return;
|
|
|
|
memset(&state, 0, sizeof(state));
|
|
|
|
do {
|
|
tcam = ice_pkg_enum_entry(seg, &state,
|
|
ICE_SID_RXPARSER_MARKER_PTYPE, NULL,
|
|
ice_marker_ptype_tcam_handler);
|
|
if (tcam &&
|
|
le16_to_cpu(tcam->addr) < ICE_MARKER_PTYPE_TCAM_ADDR_MAX &&
|
|
le16_to_cpu(tcam->ptype) < ICE_FLOW_PTYPE_MAX)
|
|
set_bit(le16_to_cpu(tcam->ptype), hw->hw_ptype);
|
|
|
|
seg = NULL;
|
|
} while (tcam);
|
|
}
|
|
|
|
/**
|
|
* ice_boost_tcam_handler
|
|
* @sect_type: section type
|
|
* @section: pointer to section
|
|
* @index: index of the boost TCAM entry to be returned
|
|
* @offset: pointer to receive absolute offset, always 0 for boost TCAM sections
|
|
*
|
|
* This is a callback function that can be passed to ice_pkg_enum_entry.
|
|
* Handles enumeration of individual boost TCAM entries.
|
|
*/
|
|
static void *
|
|
ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset)
|
|
{
|
|
struct ice_boost_tcam_section *boost;
|
|
|
|
if (!section)
|
|
return NULL;
|
|
|
|
if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM)
|
|
return NULL;
|
|
|
|
/* cppcheck-suppress nullPointer */
|
|
if (index > ICE_MAX_BST_TCAMS_IN_BUF)
|
|
return NULL;
|
|
|
|
if (offset)
|
|
*offset = 0;
|
|
|
|
boost = section;
|
|
if (index >= le16_to_cpu(boost->count))
|
|
return NULL;
|
|
|
|
return boost->tcam + index;
|
|
}
|
|
|
|
/**
|
|
* ice_find_boost_entry
|
|
* @ice_seg: pointer to the ice segment (non-NULL)
|
|
* @addr: Boost TCAM address of entry to search for
|
|
* @entry: returns pointer to the entry
|
|
*
|
|
* Finds a particular Boost TCAM entry and returns a pointer to that entry
|
|
* if it is found. The ice_seg parameter must not be NULL since the first call
|
|
* to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure.
|
|
*/
|
|
static int
|
|
ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr,
|
|
struct ice_boost_tcam_entry **entry)
|
|
{
|
|
struct ice_boost_tcam_entry *tcam;
|
|
struct ice_pkg_enum state;
|
|
|
|
memset(&state, 0, sizeof(state));
|
|
|
|
if (!ice_seg)
|
|
return -EINVAL;
|
|
|
|
do {
|
|
tcam = ice_pkg_enum_entry(ice_seg, &state,
|
|
ICE_SID_RXPARSER_BOOST_TCAM, NULL,
|
|
ice_boost_tcam_handler);
|
|
if (tcam && le16_to_cpu(tcam->addr) == addr) {
|
|
*entry = tcam;
|
|
return 0;
|
|
}
|
|
|
|
ice_seg = NULL;
|
|
} while (tcam);
|
|
|
|
*entry = NULL;
|
|
return -EIO;
|
|
}
|
|
|
|
/**
|
|
* ice_label_enum_handler
|
|
* @sect_type: section type
|
|
* @section: pointer to section
|
|
* @index: index of the label entry to be returned
|
|
* @offset: pointer to receive absolute offset, always zero for label sections
|
|
*
|
|
* This is a callback function that can be passed to ice_pkg_enum_entry.
|
|
* Handles enumeration of individual label entries.
|
|
*/
|
|
static void *
|
|
ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index,
|
|
u32 *offset)
|
|
{
|
|
struct ice_label_section *labels;
|
|
|
|
if (!section)
|
|
return NULL;
|
|
|
|
/* cppcheck-suppress nullPointer */
|
|
if (index > ICE_MAX_LABELS_IN_BUF)
|
|
return NULL;
|
|
|
|
if (offset)
|
|
*offset = 0;
|
|
|
|
labels = section;
|
|
if (index >= le16_to_cpu(labels->count))
|
|
return NULL;
|
|
|
|
return labels->label + index;
|
|
}
|
|
|
|
/**
|
|
* ice_enum_labels
|
|
* @ice_seg: pointer to the ice segment (NULL on subsequent calls)
|
|
* @type: the section type that will contain the label (0 on subsequent calls)
|
|
* @state: ice_pkg_enum structure that will hold the state of the enumeration
|
|
* @value: pointer to a value that will return the label's value if found
|
|
*
|
|
* Enumerates a list of labels in the package. The caller will call
|
|
* ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call
|
|
* ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL
|
|
* the end of the list has been reached.
|
|
*/
|
|
static char *
|
|
ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state,
|
|
u16 *value)
|
|
{
|
|
struct ice_label *label;
|
|
|
|
/* Check for valid label section on first call */
|
|
if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST))
|
|
return NULL;
|
|
|
|
label = ice_pkg_enum_entry(ice_seg, state, type, NULL,
|
|
ice_label_enum_handler);
|
|
if (!label)
|
|
return NULL;
|
|
|
|
*value = le16_to_cpu(label->value);
|
|
return label->name;
|
|
}
|
|
|
|
/**
|
|
* ice_add_tunnel_hint
|
|
* @hw: pointer to the HW structure
|
|
* @label_name: label text
|
|
* @val: value of the tunnel port boost entry
|
|
*/
|
|
static void ice_add_tunnel_hint(struct ice_hw *hw, char *label_name, u16 val)
|
|
{
|
|
if (hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) {
|
|
u16 i;
|
|
|
|
for (i = 0; tnls[i].type != TNL_LAST; i++) {
|
|
size_t len = strlen(tnls[i].label_prefix);
|
|
|
|
/* Look for matching label start, before continuing */
|
|
if (strncmp(label_name, tnls[i].label_prefix, len))
|
|
continue;
|
|
|
|
/* Make sure this label matches our PF. Note that the PF
|
|
* character ('0' - '7') will be located where our
|
|
* prefix string's null terminator is located.
|
|
*/
|
|
if ((label_name[len] - '0') == hw->pf_id) {
|
|
hw->tnl.tbl[hw->tnl.count].type = tnls[i].type;
|
|
hw->tnl.tbl[hw->tnl.count].valid = false;
|
|
hw->tnl.tbl[hw->tnl.count].boost_addr = val;
|
|
hw->tnl.tbl[hw->tnl.count].port = 0;
|
|
hw->tnl.count++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_add_dvm_hint
|
|
* @hw: pointer to the HW structure
|
|
* @val: value of the boost entry
|
|
* @enable: true if entry needs to be enabled, or false if needs to be disabled
|
|
*/
|
|
static void ice_add_dvm_hint(struct ice_hw *hw, u16 val, bool enable)
|
|
{
|
|
if (hw->dvm_upd.count < ICE_DVM_MAX_ENTRIES) {
|
|
hw->dvm_upd.tbl[hw->dvm_upd.count].boost_addr = val;
|
|
hw->dvm_upd.tbl[hw->dvm_upd.count].enable = enable;
|
|
hw->dvm_upd.count++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_init_pkg_hints
|
|
* @hw: pointer to the HW structure
|
|
* @ice_seg: pointer to the segment of the package scan (non-NULL)
|
|
*
|
|
* This function will scan the package and save off relevant information
|
|
* (hints or metadata) for driver use. The ice_seg parameter must not be NULL
|
|
* since the first call to ice_enum_labels requires a pointer to an actual
|
|
* ice_seg structure.
|
|
*/
|
|
static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg)
|
|
{
|
|
struct ice_pkg_enum state;
|
|
char *label_name;
|
|
u16 val;
|
|
int i;
|
|
|
|
memset(&hw->tnl, 0, sizeof(hw->tnl));
|
|
memset(&state, 0, sizeof(state));
|
|
|
|
if (!ice_seg)
|
|
return;
|
|
|
|
label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state,
|
|
&val);
|
|
|
|
while (label_name) {
|
|
if (!strncmp(label_name, ICE_TNL_PRE, strlen(ICE_TNL_PRE)))
|
|
/* check for a tunnel entry */
|
|
ice_add_tunnel_hint(hw, label_name, val);
|
|
|
|
/* check for a dvm mode entry */
|
|
else if (!strncmp(label_name, ICE_DVM_PRE, strlen(ICE_DVM_PRE)))
|
|
ice_add_dvm_hint(hw, val, true);
|
|
|
|
/* check for a svm mode entry */
|
|
else if (!strncmp(label_name, ICE_SVM_PRE, strlen(ICE_SVM_PRE)))
|
|
ice_add_dvm_hint(hw, val, false);
|
|
|
|
label_name = ice_enum_labels(NULL, 0, &state, &val);
|
|
}
|
|
|
|
/* Cache the appropriate boost TCAM entry pointers for tunnels */
|
|
for (i = 0; i < hw->tnl.count; i++) {
|
|
ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr,
|
|
&hw->tnl.tbl[i].boost_entry);
|
|
if (hw->tnl.tbl[i].boost_entry) {
|
|
hw->tnl.tbl[i].valid = true;
|
|
if (hw->tnl.tbl[i].type < __TNL_TYPE_CNT)
|
|
hw->tnl.valid_count[hw->tnl.tbl[i].type]++;
|
|
}
|
|
}
|
|
|
|
/* Cache the appropriate boost TCAM entry pointers for DVM and SVM */
|
|
for (i = 0; i < hw->dvm_upd.count; i++)
|
|
ice_find_boost_entry(ice_seg, hw->dvm_upd.tbl[i].boost_addr,
|
|
&hw->dvm_upd.tbl[i].boost_entry);
|
|
}
|
|
|
|
/* Key creation */
|
|
|
|
#define ICE_DC_KEY 0x1 /* don't care */
|
|
#define ICE_DC_KEYINV 0x1
|
|
#define ICE_NM_KEY 0x0 /* never match */
|
|
#define ICE_NM_KEYINV 0x0
|
|
#define ICE_0_KEY 0x1 /* match 0 */
|
|
#define ICE_0_KEYINV 0x0
|
|
#define ICE_1_KEY 0x0 /* match 1 */
|
|
#define ICE_1_KEYINV 0x1
|
|
|
|
/**
|
|
* ice_gen_key_word - generate 16-bits of a key/mask word
|
|
* @val: the value
|
|
* @valid: valid bits mask (change only the valid bits)
|
|
* @dont_care: don't care mask
|
|
* @nvr_mtch: never match mask
|
|
* @key: pointer to an array of where the resulting key portion
|
|
* @key_inv: pointer to an array of where the resulting key invert portion
|
|
*
|
|
* This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
|
|
* and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
|
|
* of key and 8 bits of key invert.
|
|
*
|
|
* '0' = b01, always match a 0 bit
|
|
* '1' = b10, always match a 1 bit
|
|
* '?' = b11, don't care bit (always matches)
|
|
* '~' = b00, never match bit
|
|
*
|
|
* Input:
|
|
* val: b0 1 0 1 0 1
|
|
* dont_care: b0 0 1 1 0 0
|
|
* never_mtch: b0 0 0 0 1 1
|
|
* ------------------------------
|
|
* Result: key: b01 10 11 11 00 00
|
|
*/
|
|
static int
|
|
ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
|
|
u8 *key_inv)
|
|
{
|
|
u8 in_key = *key, in_key_inv = *key_inv;
|
|
u8 i;
|
|
|
|
/* 'dont_care' and 'nvr_mtch' masks cannot overlap */
|
|
if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
|
|
return -EIO;
|
|
|
|
*key = 0;
|
|
*key_inv = 0;
|
|
|
|
/* encode the 8 bits into 8-bit key and 8-bit key invert */
|
|
for (i = 0; i < 8; i++) {
|
|
*key >>= 1;
|
|
*key_inv >>= 1;
|
|
|
|
if (!(valid & 0x1)) { /* change only valid bits */
|
|
*key |= (in_key & 0x1) << 7;
|
|
*key_inv |= (in_key_inv & 0x1) << 7;
|
|
} else if (dont_care & 0x1) { /* don't care bit */
|
|
*key |= ICE_DC_KEY << 7;
|
|
*key_inv |= ICE_DC_KEYINV << 7;
|
|
} else if (nvr_mtch & 0x1) { /* never match bit */
|
|
*key |= ICE_NM_KEY << 7;
|
|
*key_inv |= ICE_NM_KEYINV << 7;
|
|
} else if (val & 0x01) { /* exact 1 match */
|
|
*key |= ICE_1_KEY << 7;
|
|
*key_inv |= ICE_1_KEYINV << 7;
|
|
} else { /* exact 0 match */
|
|
*key |= ICE_0_KEY << 7;
|
|
*key_inv |= ICE_0_KEYINV << 7;
|
|
}
|
|
|
|
dont_care >>= 1;
|
|
nvr_mtch >>= 1;
|
|
valid >>= 1;
|
|
val >>= 1;
|
|
in_key >>= 1;
|
|
in_key_inv >>= 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_bits_max_set - determine if the number of bits set is within a maximum
|
|
* @mask: pointer to the byte array which is the mask
|
|
* @size: the number of bytes in the mask
|
|
* @max: the max number of set bits
|
|
*
|
|
* This function determines if there are at most 'max' number of bits set in an
|
|
* array. Returns true if the number for bits set is <= max or will return false
|
|
* otherwise.
|
|
*/
|
|
static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
|
|
{
|
|
u16 count = 0;
|
|
u16 i;
|
|
|
|
/* check each byte */
|
|
for (i = 0; i < size; i++) {
|
|
/* if 0, go to next byte */
|
|
if (!mask[i])
|
|
continue;
|
|
|
|
/* We know there is at least one set bit in this byte because of
|
|
* the above check; if we already have found 'max' number of
|
|
* bits set, then we can return failure now.
|
|
*/
|
|
if (count == max)
|
|
return false;
|
|
|
|
/* count the bits in this byte, checking threshold */
|
|
count += hweight8(mask[i]);
|
|
if (count > max)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* ice_set_key - generate a variable sized key with multiples of 16-bits
|
|
* @key: pointer to where the key will be stored
|
|
* @size: the size of the complete key in bytes (must be even)
|
|
* @val: array of 8-bit values that makes up the value portion of the key
|
|
* @upd: array of 8-bit masks that determine what key portion to update
|
|
* @dc: array of 8-bit masks that make up the don't care mask
|
|
* @nm: array of 8-bit masks that make up the never match mask
|
|
* @off: the offset of the first byte in the key to update
|
|
* @len: the number of bytes in the key update
|
|
*
|
|
* This function generates a key from a value, a don't care mask and a never
|
|
* match mask.
|
|
* upd, dc, and nm are optional parameters, and can be NULL:
|
|
* upd == NULL --> upd mask is all 1's (update all bits)
|
|
* dc == NULL --> dc mask is all 0's (no don't care bits)
|
|
* nm == NULL --> nm mask is all 0's (no never match bits)
|
|
*/
|
|
static int
|
|
ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
|
|
u16 len)
|
|
{
|
|
u16 half_size;
|
|
u16 i;
|
|
|
|
/* size must be a multiple of 2 bytes. */
|
|
if (size % 2)
|
|
return -EIO;
|
|
|
|
half_size = size / 2;
|
|
if (off + len > half_size)
|
|
return -EIO;
|
|
|
|
/* Make sure at most one bit is set in the never match mask. Having more
|
|
* than one never match mask bit set will cause HW to consume excessive
|
|
* power otherwise; this is a power management efficiency check.
|
|
*/
|
|
#define ICE_NVR_MTCH_BITS_MAX 1
|
|
if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
|
|
return -EIO;
|
|
|
|
for (i = 0; i < len; i++)
|
|
if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
|
|
dc ? dc[i] : 0, nm ? nm[i] : 0,
|
|
key + off + i, key + half_size + off + i))
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_acquire_global_cfg_lock
|
|
* @hw: pointer to the HW structure
|
|
* @access: access type (read or write)
|
|
*
|
|
* This function will request ownership of the global config lock for reading
|
|
* or writing of the package. When attempting to obtain write access, the
|
|
* caller must check for the following two return values:
|
|
*
|
|
* 0 - Means the caller has acquired the global config lock
|
|
* and can perform writing of the package.
|
|
* -EALREADY - Indicates another driver has already written the
|
|
* package or has found that no update was necessary; in
|
|
* this case, the caller can just skip performing any
|
|
* update of the package.
|
|
*/
|
|
static int
|
|
ice_acquire_global_cfg_lock(struct ice_hw *hw,
|
|
enum ice_aq_res_access_type access)
|
|
{
|
|
int status;
|
|
|
|
status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access,
|
|
ICE_GLOBAL_CFG_LOCK_TIMEOUT);
|
|
|
|
if (!status)
|
|
mutex_lock(&ice_global_cfg_lock_sw);
|
|
else if (status == -EALREADY)
|
|
ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n");
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_release_global_cfg_lock
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This function will release the global config lock.
|
|
*/
|
|
static void ice_release_global_cfg_lock(struct ice_hw *hw)
|
|
{
|
|
mutex_unlock(&ice_global_cfg_lock_sw);
|
|
ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID);
|
|
}
|
|
|
|
/**
|
|
* ice_acquire_change_lock
|
|
* @hw: pointer to the HW structure
|
|
* @access: access type (read or write)
|
|
*
|
|
* This function will request ownership of the change lock.
|
|
*/
|
|
int
|
|
ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
|
|
{
|
|
return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
|
|
ICE_CHANGE_LOCK_TIMEOUT);
|
|
}
|
|
|
|
/**
|
|
* ice_release_change_lock
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This function will release the change lock using the proper Admin Command.
|
|
*/
|
|
void ice_release_change_lock(struct ice_hw *hw)
|
|
{
|
|
ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_download_pkg
|
|
* @hw: pointer to the hardware structure
|
|
* @pkg_buf: the package buffer to transfer
|
|
* @buf_size: the size of the package buffer
|
|
* @last_buf: last buffer indicator
|
|
* @error_offset: returns error offset
|
|
* @error_info: returns error information
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Download Package (0x0C40)
|
|
*/
|
|
static int
|
|
ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
|
|
u16 buf_size, bool last_buf, u32 *error_offset,
|
|
u32 *error_info, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_download_pkg *cmd;
|
|
struct ice_aq_desc desc;
|
|
int status;
|
|
|
|
if (error_offset)
|
|
*error_offset = 0;
|
|
if (error_info)
|
|
*error_info = 0;
|
|
|
|
cmd = &desc.params.download_pkg;
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg);
|
|
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
|
|
|
|
if (last_buf)
|
|
cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
|
|
if (status == -EIO) {
|
|
/* Read error from buffer only when the FW returned an error */
|
|
struct ice_aqc_download_pkg_resp *resp;
|
|
|
|
resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
|
|
if (error_offset)
|
|
*error_offset = le32_to_cpu(resp->error_offset);
|
|
if (error_info)
|
|
*error_info = le32_to_cpu(resp->error_info);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_upload_section
|
|
* @hw: pointer to the hardware structure
|
|
* @pkg_buf: the package buffer which will receive the section
|
|
* @buf_size: the size of the package buffer
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Upload Section (0x0C41)
|
|
*/
|
|
int
|
|
ice_aq_upload_section(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
|
|
u16 buf_size, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aq_desc desc;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_upload_section);
|
|
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_update_pkg
|
|
* @hw: pointer to the hardware structure
|
|
* @pkg_buf: the package cmd buffer
|
|
* @buf_size: the size of the package cmd buffer
|
|
* @last_buf: last buffer indicator
|
|
* @error_offset: returns error offset
|
|
* @error_info: returns error information
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Update Package (0x0C42)
|
|
*/
|
|
static int
|
|
ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size,
|
|
bool last_buf, u32 *error_offset, u32 *error_info,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_download_pkg *cmd;
|
|
struct ice_aq_desc desc;
|
|
int status;
|
|
|
|
if (error_offset)
|
|
*error_offset = 0;
|
|
if (error_info)
|
|
*error_info = 0;
|
|
|
|
cmd = &desc.params.download_pkg;
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg);
|
|
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
|
|
|
|
if (last_buf)
|
|
cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
|
|
if (status == -EIO) {
|
|
/* Read error from buffer only when the FW returned an error */
|
|
struct ice_aqc_download_pkg_resp *resp;
|
|
|
|
resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
|
|
if (error_offset)
|
|
*error_offset = le32_to_cpu(resp->error_offset);
|
|
if (error_info)
|
|
*error_info = le32_to_cpu(resp->error_info);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_find_seg_in_pkg
|
|
* @hw: pointer to the hardware structure
|
|
* @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK)
|
|
* @pkg_hdr: pointer to the package header to be searched
|
|
*
|
|
* This function searches a package file for a particular segment type. On
|
|
* success it returns a pointer to the segment header, otherwise it will
|
|
* return NULL.
|
|
*/
|
|
static struct ice_generic_seg_hdr *
|
|
ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type,
|
|
struct ice_pkg_hdr *pkg_hdr)
|
|
{
|
|
u32 i;
|
|
|
|
ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n",
|
|
pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor,
|
|
pkg_hdr->pkg_format_ver.update,
|
|
pkg_hdr->pkg_format_ver.draft);
|
|
|
|
/* Search all package segments for the requested segment type */
|
|
for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) {
|
|
struct ice_generic_seg_hdr *seg;
|
|
|
|
seg = (struct ice_generic_seg_hdr *)
|
|
((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i]));
|
|
|
|
if (le32_to_cpu(seg->seg_type) == seg_type)
|
|
return seg;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ice_update_pkg_no_lock
|
|
* @hw: pointer to the hardware structure
|
|
* @bufs: pointer to an array of buffers
|
|
* @count: the number of buffers in the array
|
|
*/
|
|
static int
|
|
ice_update_pkg_no_lock(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
|
|
{
|
|
int status = 0;
|
|
u32 i;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i);
|
|
bool last = ((i + 1) == count);
|
|
u32 offset, info;
|
|
|
|
status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end),
|
|
last, &offset, &info, NULL);
|
|
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n",
|
|
status, offset, info);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_update_pkg
|
|
* @hw: pointer to the hardware structure
|
|
* @bufs: pointer to an array of buffers
|
|
* @count: the number of buffers in the array
|
|
*
|
|
* Obtains change lock and updates package.
|
|
*/
|
|
static int ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
|
|
{
|
|
int status;
|
|
|
|
status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
|
|
if (status)
|
|
return status;
|
|
|
|
status = ice_update_pkg_no_lock(hw, bufs, count);
|
|
|
|
ice_release_change_lock(hw);
|
|
|
|
return status;
|
|
}
|
|
|
|
static enum ice_ddp_state ice_map_aq_err_to_ddp_state(enum ice_aq_err aq_err)
|
|
{
|
|
switch (aq_err) {
|
|
case ICE_AQ_RC_ENOSEC:
|
|
case ICE_AQ_RC_EBADSIG:
|
|
return ICE_DDP_PKG_FILE_SIGNATURE_INVALID;
|
|
case ICE_AQ_RC_ESVN:
|
|
return ICE_DDP_PKG_FILE_REVISION_TOO_LOW;
|
|
case ICE_AQ_RC_EBADMAN:
|
|
case ICE_AQ_RC_EBADBUF:
|
|
return ICE_DDP_PKG_LOAD_ERROR;
|
|
default:
|
|
return ICE_DDP_PKG_ERR;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_dwnld_cfg_bufs
|
|
* @hw: pointer to the hardware structure
|
|
* @bufs: pointer to an array of buffers
|
|
* @count: the number of buffers in the array
|
|
*
|
|
* Obtains global config lock and downloads the package configuration buffers
|
|
* to the firmware. Metadata buffers are skipped, and the first metadata buffer
|
|
* found indicates that the rest of the buffers are all metadata buffers.
|
|
*/
|
|
static enum ice_ddp_state
|
|
ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
|
|
{
|
|
enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS;
|
|
struct ice_buf_hdr *bh;
|
|
enum ice_aq_err err;
|
|
u32 offset, info, i;
|
|
int status;
|
|
|
|
if (!bufs || !count)
|
|
return ICE_DDP_PKG_ERR;
|
|
|
|
/* If the first buffer's first section has its metadata bit set
|
|
* then there are no buffers to be downloaded, and the operation is
|
|
* considered a success.
|
|
*/
|
|
bh = (struct ice_buf_hdr *)bufs;
|
|
if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF)
|
|
return ICE_DDP_PKG_SUCCESS;
|
|
|
|
status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
|
|
if (status) {
|
|
if (status == -EALREADY)
|
|
return ICE_DDP_PKG_ALREADY_LOADED;
|
|
return ice_map_aq_err_to_ddp_state(hw->adminq.sq_last_status);
|
|
}
|
|
|
|
for (i = 0; i < count; i++) {
|
|
bool last = ((i + 1) == count);
|
|
|
|
if (!last) {
|
|
/* check next buffer for metadata flag */
|
|
bh = (struct ice_buf_hdr *)(bufs + i + 1);
|
|
|
|
/* A set metadata flag in the next buffer will signal
|
|
* that the current buffer will be the last buffer
|
|
* downloaded
|
|
*/
|
|
if (le16_to_cpu(bh->section_count))
|
|
if (le32_to_cpu(bh->section_entry[0].type) &
|
|
ICE_METADATA_BUF)
|
|
last = true;
|
|
}
|
|
|
|
bh = (struct ice_buf_hdr *)(bufs + i);
|
|
|
|
status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last,
|
|
&offset, &info, NULL);
|
|
|
|
/* Save AQ status from download package */
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n",
|
|
status, offset, info);
|
|
err = hw->adminq.sq_last_status;
|
|
state = ice_map_aq_err_to_ddp_state(err);
|
|
break;
|
|
}
|
|
|
|
if (last)
|
|
break;
|
|
}
|
|
|
|
if (!status) {
|
|
status = ice_set_vlan_mode(hw);
|
|
if (status)
|
|
ice_debug(hw, ICE_DBG_PKG, "Failed to set VLAN mode: err %d\n",
|
|
status);
|
|
}
|
|
|
|
ice_release_global_cfg_lock(hw);
|
|
|
|
return state;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_pkg_info_list
|
|
* @hw: pointer to the hardware structure
|
|
* @pkg_info: the buffer which will receive the information list
|
|
* @buf_size: the size of the pkg_info information buffer
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Get Package Info List (0x0C43)
|
|
*/
|
|
static int
|
|
ice_aq_get_pkg_info_list(struct ice_hw *hw,
|
|
struct ice_aqc_get_pkg_info_resp *pkg_info,
|
|
u16 buf_size, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aq_desc desc;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_download_pkg
|
|
* @hw: pointer to the hardware structure
|
|
* @ice_seg: pointer to the segment of the package to be downloaded
|
|
*
|
|
* Handles the download of a complete package.
|
|
*/
|
|
static enum ice_ddp_state
|
|
ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg)
|
|
{
|
|
struct ice_buf_table *ice_buf_tbl;
|
|
int status;
|
|
|
|
ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n",
|
|
ice_seg->hdr.seg_format_ver.major,
|
|
ice_seg->hdr.seg_format_ver.minor,
|
|
ice_seg->hdr.seg_format_ver.update,
|
|
ice_seg->hdr.seg_format_ver.draft);
|
|
|
|
ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n",
|
|
le32_to_cpu(ice_seg->hdr.seg_type),
|
|
le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id);
|
|
|
|
ice_buf_tbl = ice_find_buf_table(ice_seg);
|
|
|
|
ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n",
|
|
le32_to_cpu(ice_buf_tbl->buf_count));
|
|
|
|
status = ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array,
|
|
le32_to_cpu(ice_buf_tbl->buf_count));
|
|
|
|
ice_post_pkg_dwnld_vlan_mode_cfg(hw);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_init_pkg_info
|
|
* @hw: pointer to the hardware structure
|
|
* @pkg_hdr: pointer to the driver's package hdr
|
|
*
|
|
* Saves off the package details into the HW structure.
|
|
*/
|
|
static enum ice_ddp_state
|
|
ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
|
|
{
|
|
struct ice_generic_seg_hdr *seg_hdr;
|
|
|
|
if (!pkg_hdr)
|
|
return ICE_DDP_PKG_ERR;
|
|
|
|
seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr);
|
|
if (seg_hdr) {
|
|
struct ice_meta_sect *meta;
|
|
struct ice_pkg_enum state;
|
|
|
|
memset(&state, 0, sizeof(state));
|
|
|
|
/* Get package information from the Metadata Section */
|
|
meta = ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state,
|
|
ICE_SID_METADATA);
|
|
if (!meta) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n");
|
|
return ICE_DDP_PKG_INVALID_FILE;
|
|
}
|
|
|
|
hw->pkg_ver = meta->ver;
|
|
memcpy(hw->pkg_name, meta->name, sizeof(meta->name));
|
|
|
|
ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n",
|
|
meta->ver.major, meta->ver.minor, meta->ver.update,
|
|
meta->ver.draft, meta->name);
|
|
|
|
hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver;
|
|
memcpy(hw->ice_seg_id, seg_hdr->seg_id,
|
|
sizeof(hw->ice_seg_id));
|
|
|
|
ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n",
|
|
seg_hdr->seg_format_ver.major,
|
|
seg_hdr->seg_format_ver.minor,
|
|
seg_hdr->seg_format_ver.update,
|
|
seg_hdr->seg_format_ver.draft,
|
|
seg_hdr->seg_id);
|
|
} else {
|
|
ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n");
|
|
return ICE_DDP_PKG_INVALID_FILE;
|
|
}
|
|
|
|
return ICE_DDP_PKG_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_get_pkg_info
|
|
* @hw: pointer to the hardware structure
|
|
*
|
|
* Store details of the package currently loaded in HW into the HW structure.
|
|
*/
|
|
static enum ice_ddp_state ice_get_pkg_info(struct ice_hw *hw)
|
|
{
|
|
enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS;
|
|
struct ice_aqc_get_pkg_info_resp *pkg_info;
|
|
u16 size;
|
|
u32 i;
|
|
|
|
size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT);
|
|
pkg_info = kzalloc(size, GFP_KERNEL);
|
|
if (!pkg_info)
|
|
return ICE_DDP_PKG_ERR;
|
|
|
|
if (ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL)) {
|
|
state = ICE_DDP_PKG_ERR;
|
|
goto init_pkg_free_alloc;
|
|
}
|
|
|
|
for (i = 0; i < le32_to_cpu(pkg_info->count); i++) {
|
|
#define ICE_PKG_FLAG_COUNT 4
|
|
char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 };
|
|
u8 place = 0;
|
|
|
|
if (pkg_info->pkg_info[i].is_active) {
|
|
flags[place++] = 'A';
|
|
hw->active_pkg_ver = pkg_info->pkg_info[i].ver;
|
|
hw->active_track_id =
|
|
le32_to_cpu(pkg_info->pkg_info[i].track_id);
|
|
memcpy(hw->active_pkg_name,
|
|
pkg_info->pkg_info[i].name,
|
|
sizeof(pkg_info->pkg_info[i].name));
|
|
hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm;
|
|
}
|
|
if (pkg_info->pkg_info[i].is_active_at_boot)
|
|
flags[place++] = 'B';
|
|
if (pkg_info->pkg_info[i].is_modified)
|
|
flags[place++] = 'M';
|
|
if (pkg_info->pkg_info[i].is_in_nvm)
|
|
flags[place++] = 'N';
|
|
|
|
ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n",
|
|
i, pkg_info->pkg_info[i].ver.major,
|
|
pkg_info->pkg_info[i].ver.minor,
|
|
pkg_info->pkg_info[i].ver.update,
|
|
pkg_info->pkg_info[i].ver.draft,
|
|
pkg_info->pkg_info[i].name, flags);
|
|
}
|
|
|
|
init_pkg_free_alloc:
|
|
kfree(pkg_info);
|
|
|
|
return state;
|
|
}
|
|
|
|
/**
|
|
* ice_verify_pkg - verify package
|
|
* @pkg: pointer to the package buffer
|
|
* @len: size of the package buffer
|
|
*
|
|
* Verifies various attributes of the package file, including length, format
|
|
* version, and the requirement of at least one segment.
|
|
*/
|
|
static enum ice_ddp_state ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len)
|
|
{
|
|
u32 seg_count;
|
|
u32 i;
|
|
|
|
if (len < struct_size(pkg, seg_offset, 1))
|
|
return ICE_DDP_PKG_INVALID_FILE;
|
|
|
|
if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ ||
|
|
pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR ||
|
|
pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD ||
|
|
pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT)
|
|
return ICE_DDP_PKG_INVALID_FILE;
|
|
|
|
/* pkg must have at least one segment */
|
|
seg_count = le32_to_cpu(pkg->seg_count);
|
|
if (seg_count < 1)
|
|
return ICE_DDP_PKG_INVALID_FILE;
|
|
|
|
/* make sure segment array fits in package length */
|
|
if (len < struct_size(pkg, seg_offset, seg_count))
|
|
return ICE_DDP_PKG_INVALID_FILE;
|
|
|
|
/* all segments must fit within length */
|
|
for (i = 0; i < seg_count; i++) {
|
|
u32 off = le32_to_cpu(pkg->seg_offset[i]);
|
|
struct ice_generic_seg_hdr *seg;
|
|
|
|
/* segment header must fit */
|
|
if (len < off + sizeof(*seg))
|
|
return ICE_DDP_PKG_INVALID_FILE;
|
|
|
|
seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off);
|
|
|
|
/* segment body must fit */
|
|
if (len < off + le32_to_cpu(seg->seg_size))
|
|
return ICE_DDP_PKG_INVALID_FILE;
|
|
}
|
|
|
|
return ICE_DDP_PKG_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_free_seg - free package segment pointer
|
|
* @hw: pointer to the hardware structure
|
|
*
|
|
* Frees the package segment pointer in the proper manner, depending on if the
|
|
* segment was allocated or just the passed in pointer was stored.
|
|
*/
|
|
void ice_free_seg(struct ice_hw *hw)
|
|
{
|
|
if (hw->pkg_copy) {
|
|
devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy);
|
|
hw->pkg_copy = NULL;
|
|
hw->pkg_size = 0;
|
|
}
|
|
hw->seg = NULL;
|
|
}
|
|
|
|
/**
|
|
* ice_init_pkg_regs - initialize additional package registers
|
|
* @hw: pointer to the hardware structure
|
|
*/
|
|
static void ice_init_pkg_regs(struct ice_hw *hw)
|
|
{
|
|
#define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF
|
|
#define ICE_SW_BLK_INP_MASK_H 0x0000FFFF
|
|
#define ICE_SW_BLK_IDX 0
|
|
|
|
/* setup Switch block input mask, which is 48-bits in two parts */
|
|
wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L);
|
|
wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H);
|
|
}
|
|
|
|
/**
|
|
* ice_chk_pkg_version - check package version for compatibility with driver
|
|
* @pkg_ver: pointer to a version structure to check
|
|
*
|
|
* Check to make sure that the package about to be downloaded is compatible with
|
|
* the driver. To be compatible, the major and minor components of the package
|
|
* version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR
|
|
* definitions.
|
|
*/
|
|
static enum ice_ddp_state ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver)
|
|
{
|
|
if (pkg_ver->major > ICE_PKG_SUPP_VER_MAJ ||
|
|
(pkg_ver->major == ICE_PKG_SUPP_VER_MAJ &&
|
|
pkg_ver->minor > ICE_PKG_SUPP_VER_MNR))
|
|
return ICE_DDP_PKG_FILE_VERSION_TOO_HIGH;
|
|
else if (pkg_ver->major < ICE_PKG_SUPP_VER_MAJ ||
|
|
(pkg_ver->major == ICE_PKG_SUPP_VER_MAJ &&
|
|
pkg_ver->minor < ICE_PKG_SUPP_VER_MNR))
|
|
return ICE_DDP_PKG_FILE_VERSION_TOO_LOW;
|
|
|
|
return ICE_DDP_PKG_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_chk_pkg_compat
|
|
* @hw: pointer to the hardware structure
|
|
* @ospkg: pointer to the package hdr
|
|
* @seg: pointer to the package segment hdr
|
|
*
|
|
* This function checks the package version compatibility with driver and NVM
|
|
*/
|
|
static enum ice_ddp_state
|
|
ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg,
|
|
struct ice_seg **seg)
|
|
{
|
|
struct ice_aqc_get_pkg_info_resp *pkg;
|
|
enum ice_ddp_state state;
|
|
u16 size;
|
|
u32 i;
|
|
|
|
/* Check package version compatibility */
|
|
state = ice_chk_pkg_version(&hw->pkg_ver);
|
|
if (state) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n");
|
|
return state;
|
|
}
|
|
|
|
/* find ICE segment in given package */
|
|
*seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE,
|
|
ospkg);
|
|
if (!*seg) {
|
|
ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n");
|
|
return ICE_DDP_PKG_INVALID_FILE;
|
|
}
|
|
|
|
/* Check if FW is compatible with the OS package */
|
|
size = struct_size(pkg, pkg_info, ICE_PKG_CNT);
|
|
pkg = kzalloc(size, GFP_KERNEL);
|
|
if (!pkg)
|
|
return ICE_DDP_PKG_ERR;
|
|
|
|
if (ice_aq_get_pkg_info_list(hw, pkg, size, NULL)) {
|
|
state = ICE_DDP_PKG_LOAD_ERROR;
|
|
goto fw_ddp_compat_free_alloc;
|
|
}
|
|
|
|
for (i = 0; i < le32_to_cpu(pkg->count); i++) {
|
|
/* loop till we find the NVM package */
|
|
if (!pkg->pkg_info[i].is_in_nvm)
|
|
continue;
|
|
if ((*seg)->hdr.seg_format_ver.major !=
|
|
pkg->pkg_info[i].ver.major ||
|
|
(*seg)->hdr.seg_format_ver.minor >
|
|
pkg->pkg_info[i].ver.minor) {
|
|
state = ICE_DDP_PKG_FW_MISMATCH;
|
|
ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n");
|
|
}
|
|
/* done processing NVM package so break */
|
|
break;
|
|
}
|
|
fw_ddp_compat_free_alloc:
|
|
kfree(pkg);
|
|
return state;
|
|
}
|
|
|
|
/**
|
|
* ice_sw_fv_handler
|
|
* @sect_type: section type
|
|
* @section: pointer to section
|
|
* @index: index of the field vector entry to be returned
|
|
* @offset: ptr to variable that receives the offset in the field vector table
|
|
*
|
|
* This is a callback function that can be passed to ice_pkg_enum_entry.
|
|
* This function treats the given section as of type ice_sw_fv_section and
|
|
* enumerates offset field. "offset" is an index into the field vector table.
|
|
*/
|
|
static void *
|
|
ice_sw_fv_handler(u32 sect_type, void *section, u32 index, u32 *offset)
|
|
{
|
|
struct ice_sw_fv_section *fv_section = section;
|
|
|
|
if (!section || sect_type != ICE_SID_FLD_VEC_SW)
|
|
return NULL;
|
|
if (index >= le16_to_cpu(fv_section->count))
|
|
return NULL;
|
|
if (offset)
|
|
/* "index" passed in to this function is relative to a given
|
|
* 4k block. To get to the true index into the field vector
|
|
* table need to add the relative index to the base_offset
|
|
* field of this section
|
|
*/
|
|
*offset = le16_to_cpu(fv_section->base_offset) + index;
|
|
return fv_section->fv + index;
|
|
}
|
|
|
|
/**
|
|
* ice_get_prof_index_max - get the max profile index for used profile
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* Calling this function will get the max profile index for used profile
|
|
* and store the index number in struct ice_switch_info *switch_info
|
|
* in HW for following use.
|
|
*/
|
|
static int ice_get_prof_index_max(struct ice_hw *hw)
|
|
{
|
|
u16 prof_index = 0, j, max_prof_index = 0;
|
|
struct ice_pkg_enum state;
|
|
struct ice_seg *ice_seg;
|
|
bool flag = false;
|
|
struct ice_fv *fv;
|
|
u32 offset;
|
|
|
|
memset(&state, 0, sizeof(state));
|
|
|
|
if (!hw->seg)
|
|
return -EINVAL;
|
|
|
|
ice_seg = hw->seg;
|
|
|
|
do {
|
|
fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
|
|
&offset, ice_sw_fv_handler);
|
|
if (!fv)
|
|
break;
|
|
ice_seg = NULL;
|
|
|
|
/* in the profile that not be used, the prot_id is set to 0xff
|
|
* and the off is set to 0x1ff for all the field vectors.
|
|
*/
|
|
for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
|
|
if (fv->ew[j].prot_id != ICE_PROT_INVALID ||
|
|
fv->ew[j].off != ICE_FV_OFFSET_INVAL)
|
|
flag = true;
|
|
if (flag && prof_index > max_prof_index)
|
|
max_prof_index = prof_index;
|
|
|
|
prof_index++;
|
|
flag = false;
|
|
} while (fv);
|
|
|
|
hw->switch_info->max_used_prof_index = max_prof_index;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_get_ddp_pkg_state - get DDP pkg state after download
|
|
* @hw: pointer to the HW struct
|
|
* @already_loaded: indicates if pkg was already loaded onto the device
|
|
*/
|
|
static enum ice_ddp_state
|
|
ice_get_ddp_pkg_state(struct ice_hw *hw, bool already_loaded)
|
|
{
|
|
if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
|
|
hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
|
|
hw->pkg_ver.update == hw->active_pkg_ver.update &&
|
|
hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
|
|
!memcmp(hw->pkg_name, hw->active_pkg_name, sizeof(hw->pkg_name))) {
|
|
if (already_loaded)
|
|
return ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED;
|
|
else
|
|
return ICE_DDP_PKG_SUCCESS;
|
|
} else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
|
|
hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
|
|
return ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED;
|
|
} else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
|
|
hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
|
|
return ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED;
|
|
} else {
|
|
return ICE_DDP_PKG_ERR;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_init_pkg - initialize/download package
|
|
* @hw: pointer to the hardware structure
|
|
* @buf: pointer to the package buffer
|
|
* @len: size of the package buffer
|
|
*
|
|
* This function initializes a package. The package contains HW tables
|
|
* required to do packet processing. First, the function extracts package
|
|
* information such as version. Then it finds the ice configuration segment
|
|
* within the package; this function then saves a copy of the segment pointer
|
|
* within the supplied package buffer. Next, the function will cache any hints
|
|
* from the package, followed by downloading the package itself. Note, that if
|
|
* a previous PF driver has already downloaded the package successfully, then
|
|
* the current driver will not have to download the package again.
|
|
*
|
|
* The local package contents will be used to query default behavior and to
|
|
* update specific sections of the HW's version of the package (e.g. to update
|
|
* the parse graph to understand new protocols).
|
|
*
|
|
* This function stores a pointer to the package buffer memory, and it is
|
|
* expected that the supplied buffer will not be freed immediately. If the
|
|
* package buffer needs to be freed, such as when read from a file, use
|
|
* ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this
|
|
* case.
|
|
*/
|
|
enum ice_ddp_state ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len)
|
|
{
|
|
bool already_loaded = false;
|
|
enum ice_ddp_state state;
|
|
struct ice_pkg_hdr *pkg;
|
|
struct ice_seg *seg;
|
|
|
|
if (!buf || !len)
|
|
return ICE_DDP_PKG_ERR;
|
|
|
|
pkg = (struct ice_pkg_hdr *)buf;
|
|
state = ice_verify_pkg(pkg, len);
|
|
if (state) {
|
|
ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
|
|
state);
|
|
return state;
|
|
}
|
|
|
|
/* initialize package info */
|
|
state = ice_init_pkg_info(hw, pkg);
|
|
if (state)
|
|
return state;
|
|
|
|
/* before downloading the package, check package version for
|
|
* compatibility with driver
|
|
*/
|
|
state = ice_chk_pkg_compat(hw, pkg, &seg);
|
|
if (state)
|
|
return state;
|
|
|
|
/* initialize package hints and then download package */
|
|
ice_init_pkg_hints(hw, seg);
|
|
state = ice_download_pkg(hw, seg);
|
|
if (state == ICE_DDP_PKG_ALREADY_LOADED) {
|
|
ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n");
|
|
already_loaded = true;
|
|
}
|
|
|
|
/* Get information on the package currently loaded in HW, then make sure
|
|
* the driver is compatible with this version.
|
|
*/
|
|
if (!state || state == ICE_DDP_PKG_ALREADY_LOADED) {
|
|
state = ice_get_pkg_info(hw);
|
|
if (!state)
|
|
state = ice_get_ddp_pkg_state(hw, already_loaded);
|
|
}
|
|
|
|
if (ice_is_init_pkg_successful(state)) {
|
|
hw->seg = seg;
|
|
/* on successful package download update other required
|
|
* registers to support the package and fill HW tables
|
|
* with package content.
|
|
*/
|
|
ice_init_pkg_regs(hw);
|
|
ice_fill_blk_tbls(hw);
|
|
ice_fill_hw_ptype(hw);
|
|
ice_get_prof_index_max(hw);
|
|
} else {
|
|
ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n",
|
|
state);
|
|
}
|
|
|
|
return state;
|
|
}
|
|
|
|
/**
|
|
* ice_copy_and_init_pkg - initialize/download a copy of the package
|
|
* @hw: pointer to the hardware structure
|
|
* @buf: pointer to the package buffer
|
|
* @len: size of the package buffer
|
|
*
|
|
* This function copies the package buffer, and then calls ice_init_pkg() to
|
|
* initialize the copied package contents.
|
|
*
|
|
* The copying is necessary if the package buffer supplied is constant, or if
|
|
* the memory may disappear shortly after calling this function.
|
|
*
|
|
* If the package buffer resides in the data segment and can be modified, the
|
|
* caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
|
|
*
|
|
* However, if the package buffer needs to be copied first, such as when being
|
|
* read from a file, the caller should use ice_copy_and_init_pkg().
|
|
*
|
|
* This function will first copy the package buffer, before calling
|
|
* ice_init_pkg(). The caller is free to immediately destroy the original
|
|
* package buffer, as the new copy will be managed by this function and
|
|
* related routines.
|
|
*/
|
|
enum ice_ddp_state
|
|
ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len)
|
|
{
|
|
enum ice_ddp_state state;
|
|
u8 *buf_copy;
|
|
|
|
if (!buf || !len)
|
|
return ICE_DDP_PKG_ERR;
|
|
|
|
buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL);
|
|
|
|
state = ice_init_pkg(hw, buf_copy, len);
|
|
if (!ice_is_init_pkg_successful(state)) {
|
|
/* Free the copy, since we failed to initialize the package */
|
|
devm_kfree(ice_hw_to_dev(hw), buf_copy);
|
|
} else {
|
|
/* Track the copied pkg so we can free it later */
|
|
hw->pkg_copy = buf_copy;
|
|
hw->pkg_size = len;
|
|
}
|
|
|
|
return state;
|
|
}
|
|
|
|
/**
|
|
* ice_is_init_pkg_successful - check if DDP init was successful
|
|
* @state: state of the DDP pkg after download
|
|
*/
|
|
bool ice_is_init_pkg_successful(enum ice_ddp_state state)
|
|
{
|
|
switch (state) {
|
|
case ICE_DDP_PKG_SUCCESS:
|
|
case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
|
|
case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_pkg_buf_alloc
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Allocates a package buffer and returns a pointer to the buffer header.
|
|
* Note: all package contents must be in Little Endian form.
|
|
*/
|
|
static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw)
|
|
{
|
|
struct ice_buf_build *bld;
|
|
struct ice_buf_hdr *buf;
|
|
|
|
bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL);
|
|
if (!bld)
|
|
return NULL;
|
|
|
|
buf = (struct ice_buf_hdr *)bld;
|
|
buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr,
|
|
section_entry));
|
|
return bld;
|
|
}
|
|
|
|
static bool ice_is_gtp_u_profile(u16 prof_idx)
|
|
{
|
|
return (prof_idx >= ICE_PROFID_IPV6_GTPU_TEID &&
|
|
prof_idx <= ICE_PROFID_IPV6_GTPU_IPV6_TCP_INNER) ||
|
|
prof_idx == ICE_PROFID_IPV4_GTPU_TEID;
|
|
}
|
|
|
|
static bool ice_is_gtp_c_profile(u16 prof_idx)
|
|
{
|
|
switch (prof_idx) {
|
|
case ICE_PROFID_IPV4_GTPC_TEID:
|
|
case ICE_PROFID_IPV4_GTPC_NO_TEID:
|
|
case ICE_PROFID_IPV6_GTPC_TEID:
|
|
case ICE_PROFID_IPV6_GTPC_NO_TEID:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_get_sw_prof_type - determine switch profile type
|
|
* @hw: pointer to the HW structure
|
|
* @fv: pointer to the switch field vector
|
|
* @prof_idx: profile index to check
|
|
*/
|
|
static enum ice_prof_type
|
|
ice_get_sw_prof_type(struct ice_hw *hw, struct ice_fv *fv, u32 prof_idx)
|
|
{
|
|
u16 i;
|
|
|
|
if (ice_is_gtp_c_profile(prof_idx))
|
|
return ICE_PROF_TUN_GTPC;
|
|
|
|
if (ice_is_gtp_u_profile(prof_idx))
|
|
return ICE_PROF_TUN_GTPU;
|
|
|
|
for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) {
|
|
/* UDP tunnel will have UDP_OF protocol ID and VNI offset */
|
|
if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF &&
|
|
fv->ew[i].off == ICE_VNI_OFFSET)
|
|
return ICE_PROF_TUN_UDP;
|
|
|
|
/* GRE tunnel will have GRE protocol */
|
|
if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF)
|
|
return ICE_PROF_TUN_GRE;
|
|
}
|
|
|
|
return ICE_PROF_NON_TUN;
|
|
}
|
|
|
|
/**
|
|
* ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type
|
|
* @hw: pointer to hardware structure
|
|
* @req_profs: type of profiles requested
|
|
* @bm: pointer to memory for returning the bitmap of field vectors
|
|
*/
|
|
void
|
|
ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs,
|
|
unsigned long *bm)
|
|
{
|
|
struct ice_pkg_enum state;
|
|
struct ice_seg *ice_seg;
|
|
struct ice_fv *fv;
|
|
|
|
if (req_profs == ICE_PROF_ALL) {
|
|
bitmap_set(bm, 0, ICE_MAX_NUM_PROFILES);
|
|
return;
|
|
}
|
|
|
|
memset(&state, 0, sizeof(state));
|
|
bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
|
|
ice_seg = hw->seg;
|
|
do {
|
|
enum ice_prof_type prof_type;
|
|
u32 offset;
|
|
|
|
fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
|
|
&offset, ice_sw_fv_handler);
|
|
ice_seg = NULL;
|
|
|
|
if (fv) {
|
|
/* Determine field vector type */
|
|
prof_type = ice_get_sw_prof_type(hw, fv, offset);
|
|
|
|
if (req_profs & prof_type)
|
|
set_bit((u16)offset, bm);
|
|
}
|
|
} while (fv);
|
|
}
|
|
|
|
/**
|
|
* ice_get_sw_fv_list
|
|
* @hw: pointer to the HW structure
|
|
* @lkups: list of protocol types
|
|
* @bm: bitmap of field vectors to consider
|
|
* @fv_list: Head of a list
|
|
*
|
|
* Finds all the field vector entries from switch block that contain
|
|
* a given protocol ID and offset and returns a list of structures of type
|
|
* "ice_sw_fv_list_entry". Every structure in the list has a field vector
|
|
* definition and profile ID information
|
|
* NOTE: The caller of the function is responsible for freeing the memory
|
|
* allocated for every list entry.
|
|
*/
|
|
int
|
|
ice_get_sw_fv_list(struct ice_hw *hw, struct ice_prot_lkup_ext *lkups,
|
|
unsigned long *bm, struct list_head *fv_list)
|
|
{
|
|
struct ice_sw_fv_list_entry *fvl;
|
|
struct ice_sw_fv_list_entry *tmp;
|
|
struct ice_pkg_enum state;
|
|
struct ice_seg *ice_seg;
|
|
struct ice_fv *fv;
|
|
u32 offset;
|
|
|
|
memset(&state, 0, sizeof(state));
|
|
|
|
if (!lkups->n_val_words || !hw->seg)
|
|
return -EINVAL;
|
|
|
|
ice_seg = hw->seg;
|
|
do {
|
|
u16 i;
|
|
|
|
fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
|
|
&offset, ice_sw_fv_handler);
|
|
if (!fv)
|
|
break;
|
|
ice_seg = NULL;
|
|
|
|
/* If field vector is not in the bitmap list, then skip this
|
|
* profile.
|
|
*/
|
|
if (!test_bit((u16)offset, bm))
|
|
continue;
|
|
|
|
for (i = 0; i < lkups->n_val_words; i++) {
|
|
int j;
|
|
|
|
for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
|
|
if (fv->ew[j].prot_id ==
|
|
lkups->fv_words[i].prot_id &&
|
|
fv->ew[j].off == lkups->fv_words[i].off)
|
|
break;
|
|
if (j >= hw->blk[ICE_BLK_SW].es.fvw)
|
|
break;
|
|
if (i + 1 == lkups->n_val_words) {
|
|
fvl = devm_kzalloc(ice_hw_to_dev(hw),
|
|
sizeof(*fvl), GFP_KERNEL);
|
|
if (!fvl)
|
|
goto err;
|
|
fvl->fv_ptr = fv;
|
|
fvl->profile_id = offset;
|
|
list_add(&fvl->list_entry, fv_list);
|
|
break;
|
|
}
|
|
}
|
|
} while (fv);
|
|
if (list_empty(fv_list))
|
|
return -EIO;
|
|
return 0;
|
|
|
|
err:
|
|
list_for_each_entry_safe(fvl, tmp, fv_list, list_entry) {
|
|
list_del(&fvl->list_entry);
|
|
devm_kfree(ice_hw_to_dev(hw), fvl);
|
|
}
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* ice_init_prof_result_bm - Initialize the profile result index bitmap
|
|
* @hw: pointer to hardware structure
|
|
*/
|
|
void ice_init_prof_result_bm(struct ice_hw *hw)
|
|
{
|
|
struct ice_pkg_enum state;
|
|
struct ice_seg *ice_seg;
|
|
struct ice_fv *fv;
|
|
|
|
memset(&state, 0, sizeof(state));
|
|
|
|
if (!hw->seg)
|
|
return;
|
|
|
|
ice_seg = hw->seg;
|
|
do {
|
|
u32 off;
|
|
u16 i;
|
|
|
|
fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
|
|
&off, ice_sw_fv_handler);
|
|
ice_seg = NULL;
|
|
if (!fv)
|
|
break;
|
|
|
|
bitmap_zero(hw->switch_info->prof_res_bm[off],
|
|
ICE_MAX_FV_WORDS);
|
|
|
|
/* Determine empty field vector indices, these can be
|
|
* used for recipe results. Skip index 0, since it is
|
|
* always used for Switch ID.
|
|
*/
|
|
for (i = 1; i < ICE_MAX_FV_WORDS; i++)
|
|
if (fv->ew[i].prot_id == ICE_PROT_INVALID &&
|
|
fv->ew[i].off == ICE_FV_OFFSET_INVAL)
|
|
set_bit(i, hw->switch_info->prof_res_bm[off]);
|
|
} while (fv);
|
|
}
|
|
|
|
/**
|
|
* ice_pkg_buf_free
|
|
* @hw: pointer to the HW structure
|
|
* @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
|
|
*
|
|
* Frees a package buffer
|
|
*/
|
|
void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld)
|
|
{
|
|
devm_kfree(ice_hw_to_dev(hw), bld);
|
|
}
|
|
|
|
/**
|
|
* ice_pkg_buf_reserve_section
|
|
* @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
|
|
* @count: the number of sections to reserve
|
|
*
|
|
* Reserves one or more section table entries in a package buffer. This routine
|
|
* can be called multiple times as long as they are made before calling
|
|
* ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
|
|
* is called once, the number of sections that can be allocated will not be able
|
|
* to be increased; not using all reserved sections is fine, but this will
|
|
* result in some wasted space in the buffer.
|
|
* Note: all package contents must be in Little Endian form.
|
|
*/
|
|
static int
|
|
ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count)
|
|
{
|
|
struct ice_buf_hdr *buf;
|
|
u16 section_count;
|
|
u16 data_end;
|
|
|
|
if (!bld)
|
|
return -EINVAL;
|
|
|
|
buf = (struct ice_buf_hdr *)&bld->buf;
|
|
|
|
/* already an active section, can't increase table size */
|
|
section_count = le16_to_cpu(buf->section_count);
|
|
if (section_count > 0)
|
|
return -EIO;
|
|
|
|
if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT)
|
|
return -EIO;
|
|
bld->reserved_section_table_entries += count;
|
|
|
|
data_end = le16_to_cpu(buf->data_end) +
|
|
flex_array_size(buf, section_entry, count);
|
|
buf->data_end = cpu_to_le16(data_end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_pkg_buf_alloc_section
|
|
* @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
|
|
* @type: the section type value
|
|
* @size: the size of the section to reserve (in bytes)
|
|
*
|
|
* Reserves memory in the buffer for a section's content and updates the
|
|
* buffers' status accordingly. This routine returns a pointer to the first
|
|
* byte of the section start within the buffer, which is used to fill in the
|
|
* section contents.
|
|
* Note: all package contents must be in Little Endian form.
|
|
*/
|
|
static void *
|
|
ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size)
|
|
{
|
|
struct ice_buf_hdr *buf;
|
|
u16 sect_count;
|
|
u16 data_end;
|
|
|
|
if (!bld || !type || !size)
|
|
return NULL;
|
|
|
|
buf = (struct ice_buf_hdr *)&bld->buf;
|
|
|
|
/* check for enough space left in buffer */
|
|
data_end = le16_to_cpu(buf->data_end);
|
|
|
|
/* section start must align on 4 byte boundary */
|
|
data_end = ALIGN(data_end, 4);
|
|
|
|
if ((data_end + size) > ICE_MAX_S_DATA_END)
|
|
return NULL;
|
|
|
|
/* check for more available section table entries */
|
|
sect_count = le16_to_cpu(buf->section_count);
|
|
if (sect_count < bld->reserved_section_table_entries) {
|
|
void *section_ptr = ((u8 *)buf) + data_end;
|
|
|
|
buf->section_entry[sect_count].offset = cpu_to_le16(data_end);
|
|
buf->section_entry[sect_count].size = cpu_to_le16(size);
|
|
buf->section_entry[sect_count].type = cpu_to_le32(type);
|
|
|
|
data_end += size;
|
|
buf->data_end = cpu_to_le16(data_end);
|
|
|
|
buf->section_count = cpu_to_le16(sect_count + 1);
|
|
return section_ptr;
|
|
}
|
|
|
|
/* no free section table entries */
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ice_pkg_buf_alloc_single_section
|
|
* @hw: pointer to the HW structure
|
|
* @type: the section type value
|
|
* @size: the size of the section to reserve (in bytes)
|
|
* @section: returns pointer to the section
|
|
*
|
|
* Allocates a package buffer with a single section.
|
|
* Note: all package contents must be in Little Endian form.
|
|
*/
|
|
struct ice_buf_build *
|
|
ice_pkg_buf_alloc_single_section(struct ice_hw *hw, u32 type, u16 size,
|
|
void **section)
|
|
{
|
|
struct ice_buf_build *buf;
|
|
|
|
if (!section)
|
|
return NULL;
|
|
|
|
buf = ice_pkg_buf_alloc(hw);
|
|
if (!buf)
|
|
return NULL;
|
|
|
|
if (ice_pkg_buf_reserve_section(buf, 1))
|
|
goto ice_pkg_buf_alloc_single_section_err;
|
|
|
|
*section = ice_pkg_buf_alloc_section(buf, type, size);
|
|
if (!*section)
|
|
goto ice_pkg_buf_alloc_single_section_err;
|
|
|
|
return buf;
|
|
|
|
ice_pkg_buf_alloc_single_section_err:
|
|
ice_pkg_buf_free(hw, buf);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ice_pkg_buf_get_active_sections
|
|
* @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
|
|
*
|
|
* Returns the number of active sections. Before using the package buffer
|
|
* in an update package command, the caller should make sure that there is at
|
|
* least one active section - otherwise, the buffer is not legal and should
|
|
* not be used.
|
|
* Note: all package contents must be in Little Endian form.
|
|
*/
|
|
static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld)
|
|
{
|
|
struct ice_buf_hdr *buf;
|
|
|
|
if (!bld)
|
|
return 0;
|
|
|
|
buf = (struct ice_buf_hdr *)&bld->buf;
|
|
return le16_to_cpu(buf->section_count);
|
|
}
|
|
|
|
/**
|
|
* ice_pkg_buf
|
|
* @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
|
|
*
|
|
* Return a pointer to the buffer's header
|
|
*/
|
|
struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld)
|
|
{
|
|
if (!bld)
|
|
return NULL;
|
|
|
|
return &bld->buf;
|
|
}
|
|
|
|
/**
|
|
* ice_get_open_tunnel_port - retrieve an open tunnel port
|
|
* @hw: pointer to the HW structure
|
|
* @port: returns open port
|
|
* @type: type of tunnel, can be TNL_LAST if it doesn't matter
|
|
*/
|
|
bool
|
|
ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port,
|
|
enum ice_tunnel_type type)
|
|
{
|
|
bool res = false;
|
|
u16 i;
|
|
|
|
mutex_lock(&hw->tnl_lock);
|
|
|
|
for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
|
|
if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port &&
|
|
(type == TNL_LAST || type == hw->tnl.tbl[i].type)) {
|
|
*port = hw->tnl.tbl[i].port;
|
|
res = true;
|
|
break;
|
|
}
|
|
|
|
mutex_unlock(&hw->tnl_lock);
|
|
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* ice_upd_dvm_boost_entry
|
|
* @hw: pointer to the HW structure
|
|
* @entry: pointer to double vlan boost entry info
|
|
*/
|
|
static int
|
|
ice_upd_dvm_boost_entry(struct ice_hw *hw, struct ice_dvm_entry *entry)
|
|
{
|
|
struct ice_boost_tcam_section *sect_rx, *sect_tx;
|
|
int status = -ENOSPC;
|
|
struct ice_buf_build *bld;
|
|
u8 val, dc, nm;
|
|
|
|
bld = ice_pkg_buf_alloc(hw);
|
|
if (!bld)
|
|
return -ENOMEM;
|
|
|
|
/* allocate 2 sections, one for Rx parser, one for Tx parser */
|
|
if (ice_pkg_buf_reserve_section(bld, 2))
|
|
goto ice_upd_dvm_boost_entry_err;
|
|
|
|
sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
|
|
struct_size(sect_rx, tcam, 1));
|
|
if (!sect_rx)
|
|
goto ice_upd_dvm_boost_entry_err;
|
|
sect_rx->count = cpu_to_le16(1);
|
|
|
|
sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
|
|
struct_size(sect_tx, tcam, 1));
|
|
if (!sect_tx)
|
|
goto ice_upd_dvm_boost_entry_err;
|
|
sect_tx->count = cpu_to_le16(1);
|
|
|
|
/* copy original boost entry to update package buffer */
|
|
memcpy(sect_rx->tcam, entry->boost_entry, sizeof(*sect_rx->tcam));
|
|
|
|
/* re-write the don't care and never match bits accordingly */
|
|
if (entry->enable) {
|
|
/* all bits are don't care */
|
|
val = 0x00;
|
|
dc = 0xFF;
|
|
nm = 0x00;
|
|
} else {
|
|
/* disable, one never match bit, the rest are don't care */
|
|
val = 0x00;
|
|
dc = 0xF7;
|
|
nm = 0x08;
|
|
}
|
|
|
|
ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
|
|
&val, NULL, &dc, &nm, 0, sizeof(u8));
|
|
|
|
/* exact copy of entry to Tx section entry */
|
|
memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
|
|
|
|
status = ice_update_pkg_no_lock(hw, ice_pkg_buf(bld), 1);
|
|
|
|
ice_upd_dvm_boost_entry_err:
|
|
ice_pkg_buf_free(hw, bld);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_set_dvm_boost_entries
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Enable double vlan by updating the appropriate boost tcam entries.
|
|
*/
|
|
int ice_set_dvm_boost_entries(struct ice_hw *hw)
|
|
{
|
|
int status;
|
|
u16 i;
|
|
|
|
for (i = 0; i < hw->dvm_upd.count; i++) {
|
|
status = ice_upd_dvm_boost_entry(hw, &hw->dvm_upd.tbl[i]);
|
|
if (status)
|
|
return status;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_tunnel_idx_to_entry - convert linear index to the sparse one
|
|
* @hw: pointer to the HW structure
|
|
* @type: type of tunnel
|
|
* @idx: linear index
|
|
*
|
|
* Stack assumes we have 2 linear tables with indexes [0, count_valid),
|
|
* but really the port table may be sprase, and types are mixed, so convert
|
|
* the stack index into the device index.
|
|
*/
|
|
static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type,
|
|
u16 idx)
|
|
{
|
|
u16 i;
|
|
|
|
for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
|
|
if (hw->tnl.tbl[i].valid &&
|
|
hw->tnl.tbl[i].type == type &&
|
|
idx-- == 0)
|
|
return i;
|
|
|
|
WARN_ON_ONCE(1);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_create_tunnel
|
|
* @hw: pointer to the HW structure
|
|
* @index: device table entry
|
|
* @type: type of tunnel
|
|
* @port: port of tunnel to create
|
|
*
|
|
* Create a tunnel by updating the parse graph in the parser. We do that by
|
|
* creating a package buffer with the tunnel info and issuing an update package
|
|
* command.
|
|
*/
|
|
static int
|
|
ice_create_tunnel(struct ice_hw *hw, u16 index,
|
|
enum ice_tunnel_type type, u16 port)
|
|
{
|
|
struct ice_boost_tcam_section *sect_rx, *sect_tx;
|
|
struct ice_buf_build *bld;
|
|
int status = -ENOSPC;
|
|
|
|
mutex_lock(&hw->tnl_lock);
|
|
|
|
bld = ice_pkg_buf_alloc(hw);
|
|
if (!bld) {
|
|
status = -ENOMEM;
|
|
goto ice_create_tunnel_end;
|
|
}
|
|
|
|
/* allocate 2 sections, one for Rx parser, one for Tx parser */
|
|
if (ice_pkg_buf_reserve_section(bld, 2))
|
|
goto ice_create_tunnel_err;
|
|
|
|
sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
|
|
struct_size(sect_rx, tcam, 1));
|
|
if (!sect_rx)
|
|
goto ice_create_tunnel_err;
|
|
sect_rx->count = cpu_to_le16(1);
|
|
|
|
sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
|
|
struct_size(sect_tx, tcam, 1));
|
|
if (!sect_tx)
|
|
goto ice_create_tunnel_err;
|
|
sect_tx->count = cpu_to_le16(1);
|
|
|
|
/* copy original boost entry to update package buffer */
|
|
memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
|
|
sizeof(*sect_rx->tcam));
|
|
|
|
/* over-write the never-match dest port key bits with the encoded port
|
|
* bits
|
|
*/
|
|
ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
|
|
(u8 *)&port, NULL, NULL, NULL,
|
|
(u16)offsetof(struct ice_boost_key_value, hv_dst_port_key),
|
|
sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key));
|
|
|
|
/* exact copy of entry to Tx section entry */
|
|
memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
|
|
|
|
status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
|
|
if (!status)
|
|
hw->tnl.tbl[index].port = port;
|
|
|
|
ice_create_tunnel_err:
|
|
ice_pkg_buf_free(hw, bld);
|
|
|
|
ice_create_tunnel_end:
|
|
mutex_unlock(&hw->tnl_lock);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_destroy_tunnel
|
|
* @hw: pointer to the HW structure
|
|
* @index: device table entry
|
|
* @type: type of tunnel
|
|
* @port: port of tunnel to destroy (ignored if the all parameter is true)
|
|
*
|
|
* Destroys a tunnel or all tunnels by creating an update package buffer
|
|
* targeting the specific updates requested and then performing an update
|
|
* package.
|
|
*/
|
|
static int
|
|
ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type,
|
|
u16 port)
|
|
{
|
|
struct ice_boost_tcam_section *sect_rx, *sect_tx;
|
|
struct ice_buf_build *bld;
|
|
int status = -ENOSPC;
|
|
|
|
mutex_lock(&hw->tnl_lock);
|
|
|
|
if (WARN_ON(!hw->tnl.tbl[index].valid ||
|
|
hw->tnl.tbl[index].type != type ||
|
|
hw->tnl.tbl[index].port != port)) {
|
|
status = -EIO;
|
|
goto ice_destroy_tunnel_end;
|
|
}
|
|
|
|
bld = ice_pkg_buf_alloc(hw);
|
|
if (!bld) {
|
|
status = -ENOMEM;
|
|
goto ice_destroy_tunnel_end;
|
|
}
|
|
|
|
/* allocate 2 sections, one for Rx parser, one for Tx parser */
|
|
if (ice_pkg_buf_reserve_section(bld, 2))
|
|
goto ice_destroy_tunnel_err;
|
|
|
|
sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
|
|
struct_size(sect_rx, tcam, 1));
|
|
if (!sect_rx)
|
|
goto ice_destroy_tunnel_err;
|
|
sect_rx->count = cpu_to_le16(1);
|
|
|
|
sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
|
|
struct_size(sect_tx, tcam, 1));
|
|
if (!sect_tx)
|
|
goto ice_destroy_tunnel_err;
|
|
sect_tx->count = cpu_to_le16(1);
|
|
|
|
/* copy original boost entry to update package buffer, one copy to Rx
|
|
* section, another copy to the Tx section
|
|
*/
|
|
memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
|
|
sizeof(*sect_rx->tcam));
|
|
memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry,
|
|
sizeof(*sect_tx->tcam));
|
|
|
|
status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
|
|
if (!status)
|
|
hw->tnl.tbl[index].port = 0;
|
|
|
|
ice_destroy_tunnel_err:
|
|
ice_pkg_buf_free(hw, bld);
|
|
|
|
ice_destroy_tunnel_end:
|
|
mutex_unlock(&hw->tnl_lock);
|
|
|
|
return status;
|
|
}
|
|
|
|
int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
|
|
unsigned int idx, struct udp_tunnel_info *ti)
|
|
{
|
|
struct ice_netdev_priv *np = netdev_priv(netdev);
|
|
struct ice_vsi *vsi = np->vsi;
|
|
struct ice_pf *pf = vsi->back;
|
|
enum ice_tunnel_type tnl_type;
|
|
int status;
|
|
u16 index;
|
|
|
|
tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
|
|
index = ice_tunnel_idx_to_entry(&pf->hw, tnl_type, idx);
|
|
|
|
status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port));
|
|
if (status) {
|
|
netdev_err(netdev, "Error adding UDP tunnel - %d\n",
|
|
status);
|
|
return -EIO;
|
|
}
|
|
|
|
udp_tunnel_nic_set_port_priv(netdev, table, idx, index);
|
|
return 0;
|
|
}
|
|
|
|
int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
|
|
unsigned int idx, struct udp_tunnel_info *ti)
|
|
{
|
|
struct ice_netdev_priv *np = netdev_priv(netdev);
|
|
struct ice_vsi *vsi = np->vsi;
|
|
struct ice_pf *pf = vsi->back;
|
|
enum ice_tunnel_type tnl_type;
|
|
int status;
|
|
|
|
tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
|
|
|
|
status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type,
|
|
ntohs(ti->port));
|
|
if (status) {
|
|
netdev_err(netdev, "Error removing UDP tunnel - %d\n",
|
|
status);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_find_prot_off - find prot ID and offset pair, based on prof and FV index
|
|
* @hw: pointer to the hardware structure
|
|
* @blk: hardware block
|
|
* @prof: profile ID
|
|
* @fv_idx: field vector word index
|
|
* @prot: variable to receive the protocol ID
|
|
* @off: variable to receive the protocol offset
|
|
*/
|
|
int
|
|
ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx,
|
|
u8 *prot, u16 *off)
|
|
{
|
|
struct ice_fv_word *fv_ext;
|
|
|
|
if (prof >= hw->blk[blk].es.count)
|
|
return -EINVAL;
|
|
|
|
if (fv_idx >= hw->blk[blk].es.fvw)
|
|
return -EINVAL;
|
|
|
|
fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw);
|
|
|
|
*prot = fv_ext[fv_idx].prot_id;
|
|
*off = fv_ext[fv_idx].off;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* PTG Management */
|
|
|
|
/**
|
|
* ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
|
|
* @hw: pointer to the hardware structure
|
|
* @blk: HW block
|
|
* @ptype: the ptype to search for
|
|
* @ptg: pointer to variable that receives the PTG
|
|
*
|
|
* This function will search the PTGs for a particular ptype, returning the
|
|
* PTG ID that contains it through the PTG parameter, with the value of
|
|
* ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
|
|
*/
|
|
static int
|
|
ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
|
|
{
|
|
if (ptype >= ICE_XLT1_CNT || !ptg)
|
|
return -EINVAL;
|
|
|
|
*ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptg_alloc_val - Allocates a new packet type group ID by value
|
|
* @hw: pointer to the hardware structure
|
|
* @blk: HW block
|
|
* @ptg: the PTG to allocate
|
|
*
|
|
* This function allocates a given packet type group ID specified by the PTG
|
|
* parameter.
|
|
*/
|
|
static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
|
|
{
|
|
hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
|
|
}
|
|
|
|
/**
|
|
* ice_ptg_remove_ptype - Removes ptype from a particular packet type group
|
|
* @hw: pointer to the hardware structure
|
|
* @blk: HW block
|
|
* @ptype: the ptype to remove
|
|
* @ptg: the PTG to remove the ptype from
|
|
*
|
|
* This function will remove the ptype from the specific PTG, and move it to
|
|
* the default PTG (ICE_DEFAULT_PTG).
|
|
*/
|
|
static int
|
|
ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
|
|
{
|
|
struct ice_ptg_ptype **ch;
|
|
struct ice_ptg_ptype *p;
|
|
|
|
if (ptype > ICE_XLT1_CNT - 1)
|
|
return -EINVAL;
|
|
|
|
if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
|
|
return -ENOENT;
|
|
|
|
/* Should not happen if .in_use is set, bad config */
|
|
if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
|
|
return -EIO;
|
|
|
|
/* find the ptype within this PTG, and bypass the link over it */
|
|
p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
|
|
ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
|
|
while (p) {
|
|
if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
|
|
*ch = p->next_ptype;
|
|
break;
|
|
}
|
|
|
|
ch = &p->next_ptype;
|
|
p = p->next_ptype;
|
|
}
|
|
|
|
hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
|
|
hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
|
|
* @hw: pointer to the hardware structure
|
|
* @blk: HW block
|
|
* @ptype: the ptype to add or move
|
|
* @ptg: the PTG to add or move the ptype to
|
|
*
|
|
* This function will either add or move a ptype to a particular PTG depending
|
|
* on if the ptype is already part of another group. Note that using a
|
|
* a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
|
|
* default PTG.
|
|
*/
|
|
static int
|
|
ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
|
|
{
|
|
u8 original_ptg;
|
|
int status;
|
|
|
|
if (ptype > ICE_XLT1_CNT - 1)
|
|
return -EINVAL;
|
|
|
|
if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
|
|
return -ENOENT;
|
|
|
|
status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
|
|
if (status)
|
|
return status;
|
|
|
|
/* Is ptype already in the correct PTG? */
|
|
if (original_ptg == ptg)
|
|
return 0;
|
|
|
|
/* Remove from original PTG and move back to the default PTG */
|
|
if (original_ptg != ICE_DEFAULT_PTG)
|
|
ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
|
|
|
|
/* Moving to default PTG? Then we're done with this request */
|
|
if (ptg == ICE_DEFAULT_PTG)
|
|
return 0;
|
|
|
|
/* Add ptype to PTG at beginning of list */
|
|
hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
|
|
hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
|
|
hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
|
|
&hw->blk[blk].xlt1.ptypes[ptype];
|
|
|
|
hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
|
|
hw->blk[blk].xlt1.t[ptype] = ptg;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Block / table size info */
|
|
struct ice_blk_size_details {
|
|
u16 xlt1; /* # XLT1 entries */
|
|
u16 xlt2; /* # XLT2 entries */
|
|
u16 prof_tcam; /* # profile ID TCAM entries */
|
|
u16 prof_id; /* # profile IDs */
|
|
u8 prof_cdid_bits; /* # CDID one-hot bits used in key */
|
|
u16 prof_redir; /* # profile redirection entries */
|
|
u16 es; /* # extraction sequence entries */
|
|
u16 fvw; /* # field vector words */
|
|
u8 overwrite; /* overwrite existing entries allowed */
|
|
u8 reverse; /* reverse FV order */
|
|
};
|
|
|
|
static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
|
|
/**
|
|
* Table Definitions
|
|
* XLT1 - Number of entries in XLT1 table
|
|
* XLT2 - Number of entries in XLT2 table
|
|
* TCAM - Number of entries Profile ID TCAM table
|
|
* CDID - Control Domain ID of the hardware block
|
|
* PRED - Number of entries in the Profile Redirection Table
|
|
* FV - Number of entries in the Field Vector
|
|
* FVW - Width (in WORDs) of the Field Vector
|
|
* OVR - Overwrite existing table entries
|
|
* REV - Reverse FV
|
|
*/
|
|
/* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */
|
|
/* Overwrite , Reverse FV */
|
|
/* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48,
|
|
false, false },
|
|
/* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32,
|
|
false, false },
|
|
/* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
|
|
false, true },
|
|
/* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
|
|
true, true },
|
|
/* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24,
|
|
false, false },
|
|
};
|
|
|
|
enum ice_sid_all {
|
|
ICE_SID_XLT1_OFF = 0,
|
|
ICE_SID_XLT2_OFF,
|
|
ICE_SID_PR_OFF,
|
|
ICE_SID_PR_REDIR_OFF,
|
|
ICE_SID_ES_OFF,
|
|
ICE_SID_OFF_COUNT,
|
|
};
|
|
|
|
/* Characteristic handling */
|
|
|
|
/**
|
|
* ice_match_prop_lst - determine if properties of two lists match
|
|
* @list1: first properties list
|
|
* @list2: second properties list
|
|
*
|
|
* Count, cookies and the order must match in order to be considered equivalent.
|
|
*/
|
|
static bool
|
|
ice_match_prop_lst(struct list_head *list1, struct list_head *list2)
|
|
{
|
|
struct ice_vsig_prof *tmp1;
|
|
struct ice_vsig_prof *tmp2;
|
|
u16 chk_count = 0;
|
|
u16 count = 0;
|
|
|
|
/* compare counts */
|
|
list_for_each_entry(tmp1, list1, list)
|
|
count++;
|
|
list_for_each_entry(tmp2, list2, list)
|
|
chk_count++;
|
|
/* cppcheck-suppress knownConditionTrueFalse */
|
|
if (!count || count != chk_count)
|
|
return false;
|
|
|
|
tmp1 = list_first_entry(list1, struct ice_vsig_prof, list);
|
|
tmp2 = list_first_entry(list2, struct ice_vsig_prof, list);
|
|
|
|
/* profile cookies must compare, and in the exact same order to take
|
|
* into account priority
|
|
*/
|
|
while (count--) {
|
|
if (tmp2->profile_cookie != tmp1->profile_cookie)
|
|
return false;
|
|
|
|
tmp1 = list_next_entry(tmp1, list);
|
|
tmp2 = list_next_entry(tmp2, list);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* VSIG Management */
|
|
|
|
/**
|
|
* ice_vsig_find_vsi - find a VSIG that contains a specified VSI
|
|
* @hw: pointer to the hardware structure
|
|
* @blk: HW block
|
|
* @vsi: VSI of interest
|
|
* @vsig: pointer to receive the VSI group
|
|
*
|
|
* This function will lookup the VSI entry in the XLT2 list and return
|
|
* the VSI group its associated with.
|
|
*/
|
|
static int
|
|
ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
|
|
{
|
|
if (!vsig || vsi >= ICE_MAX_VSI)
|
|
return -EINVAL;
|
|
|
|
/* As long as there's a default or valid VSIG associated with the input
|
|
* VSI, the functions returns a success. Any handling of VSIG will be
|
|
* done by the following add, update or remove functions.
|
|
*/
|
|
*vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_vsig_alloc_val - allocate a new VSIG by value
|
|
* @hw: pointer to the hardware structure
|
|
* @blk: HW block
|
|
* @vsig: the VSIG to allocate
|
|
*
|
|
* This function will allocate a given VSIG specified by the VSIG parameter.
|
|
*/
|
|
static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
|
|
{
|
|
u16 idx = vsig & ICE_VSIG_IDX_M;
|
|
|
|
if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
|
|
INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
|
|
hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
|
|
}
|
|
|
|
return ICE_VSIG_VALUE(idx, hw->pf_id);
|
|
}
|
|
|
|
/**
|
|
* ice_vsig_alloc - Finds a free entry and allocates a new VSIG
|
|
* @hw: pointer to the hardware structure
|
|
* @blk: HW block
|
|
*
|
|
* This function will iterate through the VSIG list and mark the first
|
|
* unused entry for the new VSIG entry as used and return that value.
|
|
*/
|
|
static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
|
|
{
|
|
u16 i;
|
|
|
|
for (i = 1; i < ICE_MAX_VSIGS; i++)
|
|
if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
|
|
return ice_vsig_alloc_val(hw, blk, i);
|
|
|
|
return ICE_DEFAULT_VSIG;
|
|
}
|
|
|
|
/**
|
|
* ice_find_dup_props_vsig - find VSI group with a specified set of properties
|
|
* @hw: pointer to the hardware structure
|
|
* @blk: HW block
|
|
* @chs: characteristic list
|
|
* @vsig: returns the VSIG with the matching profiles, if found
|
|
*
|
|
* Each VSIG is associated with a characteristic set; i.e. all VSIs under
|
|
* a group have the same characteristic set. To check if there exists a VSIG
|
|
* which has the same characteristics as the input characteristics; this
|
|
* function will iterate through the XLT2 list and return the VSIG that has a
|
|
* matching configuration. In order to make sure that priorities are accounted
|
|
* for, the list must match exactly, including the order in which the
|
|
* characteristics are listed.
|
|
*/
|
|
static int
|
|
ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
|
|
struct list_head *chs, u16 *vsig)
|
|
{
|
|
struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
|
|
u16 i;
|
|
|
|
for (i = 0; i < xlt2->count; i++)
|
|
if (xlt2->vsig_tbl[i].in_use &&
|
|
ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
|
|
*vsig = ICE_VSIG_VALUE(i, hw->pf_id);
|
|
return 0;
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
/**
|
|
* ice_vsig_free - free VSI group
|
|
* @hw: pointer to the hardware structure
|
|
* @blk: HW block
|
|
* @vsig: VSIG to remove
|
|
*
|
|
* The function will remove all VSIs associated with the input VSIG and move
|
|
* them to the DEFAULT_VSIG and mark the VSIG available.
|
|
*/
|
|
static int ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
|
|
{
|
|
struct ice_vsig_prof *dtmp, *del;
|
|
struct ice_vsig_vsi *vsi_cur;
|
|
u16 idx;
|
|
|
|
idx = vsig & ICE_VSIG_IDX_M;
|
|
if (idx >= ICE_MAX_VSIGS)
|
|
return -EINVAL;
|
|
|
|
if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
|
|
return -ENOENT;
|
|
|
|
hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
|
|
|
|
vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
|
|
/* If the VSIG has at least 1 VSI then iterate through the
|
|
* list and remove the VSIs before deleting the group.
|
|
*/
|
|
if (vsi_cur) {
|
|
/* remove all vsis associated with this VSIG XLT2 entry */
|
|
do {
|
|
struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
|
|
|
|
vsi_cur->vsig = ICE_DEFAULT_VSIG;
|
|
vsi_cur->changed = 1;
|
|
vsi_cur->next_vsi = NULL;
|
|
vsi_cur = tmp;
|
|
} while (vsi_cur);
|
|
|
|
/* NULL terminate head of VSI list */
|
|
hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
|
|
}
|
|
|
|
/* free characteristic list */
|
|
list_for_each_entry_safe(del, dtmp,
|
|
&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
|
|
list) {
|
|
list_del(&del->list);
|
|
devm_kfree(ice_hw_to_dev(hw), del);
|
|
}
|
|
|
|
/* if VSIG characteristic list was cleared for reset
|
|
* re-initialize the list head
|
|
*/
|
|
INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_vsig_remove_vsi - remove VSI from VSIG
|
|
* @hw: pointer to the hardware structure
|
|
* @blk: HW block
|
|
* @vsi: VSI to remove
|
|
* @vsig: VSI group to remove from
|
|
*
|
|
* The function will remove the input VSI from its VSI group and move it
|
|
* to the DEFAULT_VSIG.
|
|
*/
|
|
static int
|
|
ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
|
|
{
|
|
struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
|
|
u16 idx;
|
|
|
|
idx = vsig & ICE_VSIG_IDX_M;
|
|
|
|
if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
|
|
return -EINVAL;
|
|
|
|
if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
|
|
return -ENOENT;
|
|
|
|
/* entry already in default VSIG, don't have to remove */
|
|
if (idx == ICE_DEFAULT_VSIG)
|
|
return 0;
|
|
|
|
vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
|
|
if (!(*vsi_head))
|
|
return -EIO;
|
|
|
|
vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
|
|
vsi_cur = (*vsi_head);
|
|
|
|
/* iterate the VSI list, skip over the entry to be removed */
|
|
while (vsi_cur) {
|
|
if (vsi_tgt == vsi_cur) {
|
|
(*vsi_head) = vsi_cur->next_vsi;
|
|
break;
|
|
}
|
|
vsi_head = &vsi_cur->next_vsi;
|
|
vsi_cur = vsi_cur->next_vsi;
|
|
}
|
|
|
|
/* verify if VSI was removed from group list */
|
|
if (!vsi_cur)
|
|
return -ENOENT;
|
|
|
|
vsi_cur->vsig = ICE_DEFAULT_VSIG;
|
|
vsi_cur->changed = 1;
|
|
vsi_cur->next_vsi = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
|
|
* @hw: pointer to the hardware structure
|
|
* @blk: HW block
|
|
* @vsi: VSI to move
|
|
* @vsig: destination VSI group
|
|
*
|
|
* This function will move or add the input VSI to the target VSIG.
|
|
* The function will find the original VSIG the VSI belongs to and
|
|
* move the entry to the DEFAULT_VSIG, update the original VSIG and
|
|
* then move entry to the new VSIG.
|
|
*/
|
|
static int
|
|
ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
|
|
{
|
|
struct ice_vsig_vsi *tmp;
|
|
u16 orig_vsig, idx;
|
|
int status;
|
|
|
|
idx = vsig & ICE_VSIG_IDX_M;
|
|
|
|
if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
|
|
return -EINVAL;
|
|
|
|
/* if VSIG not in use and VSIG is not default type this VSIG
|
|
* doesn't exist.
|
|
*/
|
|
if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
|
|
vsig != ICE_DEFAULT_VSIG)
|
|
return -ENOENT;
|
|
|
|
status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
|
|
if (status)
|
|
return status;
|
|
|
|
/* no update required if vsigs match */
|
|
if (orig_vsig == vsig)
|
|
return 0;
|
|
|
|
if (orig_vsig != ICE_DEFAULT_VSIG) {
|
|
/* remove entry from orig_vsig and add to default VSIG */
|
|
status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
|
|
if (status)
|
|
return status;
|
|
}
|
|
|
|
if (idx == ICE_DEFAULT_VSIG)
|
|
return 0;
|
|
|
|
/* Create VSI entry and add VSIG and prop_mask values */
|
|
hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
|
|
hw->blk[blk].xlt2.vsis[vsi].changed = 1;
|
|
|
|
/* Add new entry to the head of the VSIG list */
|
|
tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
|
|
hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
|
|
&hw->blk[blk].xlt2.vsis[vsi];
|
|
hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
|
|
hw->blk[blk].xlt2.t[vsi] = vsig;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_prof_has_mask_idx - determine if profile index masking is identical
|
|
* @hw: pointer to the hardware structure
|
|
* @blk: HW block
|
|
* @prof: profile to check
|
|
* @idx: profile index to check
|
|
* @mask: mask to match
|
|
*/
|
|
static bool
|
|
ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx,
|
|
u16 mask)
|
|
{
|
|
bool expect_no_mask = false;
|
|
bool found = false;
|
|
bool match = false;
|
|
u16 i;
|
|
|
|
/* If mask is 0x0000 or 0xffff, then there is no masking */
|
|
if (mask == 0 || mask == 0xffff)
|
|
expect_no_mask = true;
|
|
|
|
/* Scan the enabled masks on this profile, for the specified idx */
|
|
for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first +
|
|
hw->blk[blk].masks.count; i++)
|
|
if (hw->blk[blk].es.mask_ena[prof] & BIT(i))
|
|
if (hw->blk[blk].masks.masks[i].in_use &&
|
|
hw->blk[blk].masks.masks[i].idx == idx) {
|
|
found = true;
|
|
if (hw->blk[blk].masks.masks[i].mask == mask)
|
|
match = true;
|
|
break;
|
|
}
|
|
|
|
if (expect_no_mask) {
|
|
if (found)
|
|
return false;
|
|
} else {
|
|
if (!match)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* ice_prof_has_mask - determine if profile masking is identical
|
|
* @hw: pointer to the hardware structure
|
|
* @blk: HW block
|
|
* @prof: profile to check
|
|
* @masks: masks to match
|
|
*/
|
|
static bool
|
|
ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks)
|
|
{
|
|
u16 i;
|
|
|
|
/* es->mask_ena[prof] will have the mask */
|
|
for (i = 0; i < hw->blk[blk].es.fvw; i++)
|
|
if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i]))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* ice_find_prof_id_with_mask - find profile ID for a given field vector
|
|
* @hw: pointer to the hardware structure
|
|
* @blk: HW block
|
|
* @fv: field vector to search for
|
|
* @masks: masks for FV
|
|
* @prof_id: receives the profile ID
|
|
*/
|
|
static int
|
|
ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk,
|
|
struct ice_fv_word *fv, u16 *masks, u8 *prof_id)
|
|
{
|
|
struct ice_es *es = &hw->blk[blk].es;
|
|
u8 i;
|
|
|
|
/* For FD, we don't want to re-use a existed profile with the same
|
|
* field vector and mask. This will cause rule interference.
|
|
*/
|
|
if (blk == ICE_BLK_FD)
|
|
return -ENOENT;
|
|
|
|
for (i = 0; i < (u8)es->count; i++) {
|
|
u16 off = i * es->fvw;
|
|
|
|
if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
|
|
continue;
|
|
|
|
/* check if masks settings are the same for this profile */
|
|
if (masks && !ice_prof_has_mask(hw, blk, i, masks))
|
|
continue;
|
|
|
|
*prof_id = i;
|
|
return 0;
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
/**
|
|
* ice_prof_id_rsrc_type - get profile ID resource type for a block type
|
|
* @blk: the block type
|
|
* @rsrc_type: pointer to variable to receive the resource type
|
|
*/
|
|
static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
|
|
{
|
|
switch (blk) {
|
|
case ICE_BLK_FD:
|
|
*rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID;
|
|
break;
|
|
case ICE_BLK_RSS:
|
|
*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
|
|
* @blk: the block type
|
|
* @rsrc_type: pointer to variable to receive the resource type
|
|
*/
|
|
static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
|
|
{
|
|
switch (blk) {
|
|
case ICE_BLK_FD:
|
|
*rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM;
|
|
break;
|
|
case ICE_BLK_RSS:
|
|
*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* ice_alloc_tcam_ent - allocate hardware TCAM entry
|
|
* @hw: pointer to the HW struct
|
|
* @blk: the block to allocate the TCAM for
|
|
* @btm: true to allocate from bottom of table, false to allocate from top
|
|
* @tcam_idx: pointer to variable to receive the TCAM entry
|
|
*
|
|
* This function allocates a new entry in a Profile ID TCAM for a specific
|
|
* block.
|
|
*/
|
|
static int
|
|
ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm,
|
|
u16 *tcam_idx)
|
|
{
|
|
u16 res_type;
|
|
|
|
if (!ice_tcam_ent_rsrc_type(blk, &res_type))
|
|
return -EINVAL;
|
|
|
|
return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx);
|
|
}
|
|
|
|
/**
|
|
* ice_free_tcam_ent - free hardware TCAM entry
|
|
* @hw: pointer to the HW struct
|
|
* @blk: the block from which to free the TCAM entry
|
|
* @tcam_idx: the TCAM entry to free
|
|
*
|
|
* This function frees an entry in a Profile ID TCAM for a specific block.
|
|
*/
|
|
static int
|
|
ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
|
|
{
|
|
u16 res_type;
|
|
|
|
if (!ice_tcam_ent_rsrc_type(blk, &res_type))
|
|
return -EINVAL;
|
|
|
|
return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
|
|
}
|
|
|
|
/**
|
|
* ice_alloc_prof_id - allocate profile ID
|
|
* @hw: pointer to the HW struct
|
|
* @blk: the block to allocate the profile ID for
|
|
* @prof_id: pointer to variable to receive the profile ID
|
|
*
|
|
* This function allocates a new profile ID, which also corresponds to a Field
|
|
* Vector (Extraction Sequence) entry.
|
|
*/
|
|
static int ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
|
|
{
|
|
u16 res_type;
|
|
u16 get_prof;
|
|
int status;
|
|
|
|
if (!ice_prof_id_rsrc_type(blk, &res_type))
|
|
return -EINVAL;
|
|
|
|
status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
|
|
if (!status)
|
|
*prof_id = (u8)get_prof;
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_free_prof_id - free profile ID
|
|
* @hw: pointer to the HW struct
|
|
* @blk: the block from which to free the profile ID
|
|
* @prof_id: the profile ID to free
|
|
*
|
|
* This function frees a profile ID, which also corresponds to a Field Vector.
|
|
*/
|
|
static int ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
|
|
{
|
|
u16 tmp_prof_id = (u16)prof_id;
|
|
u16 res_type;
|
|
|
|
if (!ice_prof_id_rsrc_type(blk, &res_type))
|
|
return -EINVAL;
|
|
|
|
return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
|
|
}
|
|
|
|
/**
|
|
* ice_prof_inc_ref - increment reference count for profile
|
|
* @hw: pointer to the HW struct
|
|
* @blk: the block from which to free the profile ID
|
|
* @prof_id: the profile ID for which to increment the reference count
|
|
*/
|
|
static int ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
|
|
{
|
|
if (prof_id > hw->blk[blk].es.count)
|
|
return -EINVAL;
|
|
|
|
hw->blk[blk].es.ref_count[prof_id]++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_write_prof_mask_reg - write profile mask register
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @mask_idx: mask index
|
|
* @idx: index of the FV which will use the mask
|
|
* @mask: the 16-bit mask
|
|
*/
|
|
static void
|
|
ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx,
|
|
u16 idx, u16 mask)
|
|
{
|
|
u32 offset;
|
|
u32 val;
|
|
|
|
switch (blk) {
|
|
case ICE_BLK_RSS:
|
|
offset = GLQF_HMASK(mask_idx);
|
|
val = (idx << GLQF_HMASK_MSK_INDEX_S) & GLQF_HMASK_MSK_INDEX_M;
|
|
val |= (mask << GLQF_HMASK_MASK_S) & GLQF_HMASK_MASK_M;
|
|
break;
|
|
case ICE_BLK_FD:
|
|
offset = GLQF_FDMASK(mask_idx);
|
|
val = (idx << GLQF_FDMASK_MSK_INDEX_S) & GLQF_FDMASK_MSK_INDEX_M;
|
|
val |= (mask << GLQF_FDMASK_MASK_S) & GLQF_FDMASK_MASK_M;
|
|
break;
|
|
default:
|
|
ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
|
|
blk);
|
|
return;
|
|
}
|
|
|
|
wr32(hw, offset, val);
|
|
ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n",
|
|
blk, idx, offset, val);
|
|
}
|
|
|
|
/**
|
|
* ice_write_prof_mask_enable_res - write profile mask enable register
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @prof_id: profile ID
|
|
* @enable_mask: enable mask
|
|
*/
|
|
static void
|
|
ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk,
|
|
u16 prof_id, u32 enable_mask)
|
|
{
|
|
u32 offset;
|
|
|
|
switch (blk) {
|
|
case ICE_BLK_RSS:
|
|
offset = GLQF_HMASK_SEL(prof_id);
|
|
break;
|
|
case ICE_BLK_FD:
|
|
offset = GLQF_FDMASK_SEL(prof_id);
|
|
break;
|
|
default:
|
|
ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
|
|
blk);
|
|
return;
|
|
}
|
|
|
|
wr32(hw, offset, enable_mask);
|
|
ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n",
|
|
blk, prof_id, offset, enable_mask);
|
|
}
|
|
|
|
/**
|
|
* ice_init_prof_masks - initial prof masks
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
*/
|
|
static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk)
|
|
{
|
|
u16 per_pf;
|
|
u16 i;
|
|
|
|
mutex_init(&hw->blk[blk].masks.lock);
|
|
|
|
per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs;
|
|
|
|
hw->blk[blk].masks.count = per_pf;
|
|
hw->blk[blk].masks.first = hw->pf_id * per_pf;
|
|
|
|
memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks));
|
|
|
|
for (i = hw->blk[blk].masks.first;
|
|
i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
|
|
ice_write_prof_mask_reg(hw, blk, i, 0, 0);
|
|
}
|
|
|
|
/**
|
|
* ice_init_all_prof_masks - initialize all prof masks
|
|
* @hw: pointer to the HW struct
|
|
*/
|
|
static void ice_init_all_prof_masks(struct ice_hw *hw)
|
|
{
|
|
ice_init_prof_masks(hw, ICE_BLK_RSS);
|
|
ice_init_prof_masks(hw, ICE_BLK_FD);
|
|
}
|
|
|
|
/**
|
|
* ice_alloc_prof_mask - allocate profile mask
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @idx: index of FV which will use the mask
|
|
* @mask: the 16-bit mask
|
|
* @mask_idx: variable to receive the mask index
|
|
*/
|
|
static int
|
|
ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask,
|
|
u16 *mask_idx)
|
|
{
|
|
bool found_unused = false, found_copy = false;
|
|
u16 unused_idx = 0, copy_idx = 0;
|
|
int status = -ENOSPC;
|
|
u16 i;
|
|
|
|
if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&hw->blk[blk].masks.lock);
|
|
|
|
for (i = hw->blk[blk].masks.first;
|
|
i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
|
|
if (hw->blk[blk].masks.masks[i].in_use) {
|
|
/* if mask is in use and it exactly duplicates the
|
|
* desired mask and index, then in can be reused
|
|
*/
|
|
if (hw->blk[blk].masks.masks[i].mask == mask &&
|
|
hw->blk[blk].masks.masks[i].idx == idx) {
|
|
found_copy = true;
|
|
copy_idx = i;
|
|
break;
|
|
}
|
|
} else {
|
|
/* save off unused index, but keep searching in case
|
|
* there is an exact match later on
|
|
*/
|
|
if (!found_unused) {
|
|
found_unused = true;
|
|
unused_idx = i;
|
|
}
|
|
}
|
|
|
|
if (found_copy)
|
|
i = copy_idx;
|
|
else if (found_unused)
|
|
i = unused_idx;
|
|
else
|
|
goto err_ice_alloc_prof_mask;
|
|
|
|
/* update mask for a new entry */
|
|
if (found_unused) {
|
|
hw->blk[blk].masks.masks[i].in_use = true;
|
|
hw->blk[blk].masks.masks[i].mask = mask;
|
|
hw->blk[blk].masks.masks[i].idx = idx;
|
|
hw->blk[blk].masks.masks[i].ref = 0;
|
|
ice_write_prof_mask_reg(hw, blk, i, idx, mask);
|
|
}
|
|
|
|
hw->blk[blk].masks.masks[i].ref++;
|
|
*mask_idx = i;
|
|
status = 0;
|
|
|
|
err_ice_alloc_prof_mask:
|
|
mutex_unlock(&hw->blk[blk].masks.lock);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_free_prof_mask - free profile mask
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @mask_idx: index of mask
|
|
*/
|
|
static int
|
|
ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx)
|
|
{
|
|
if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
|
|
return -EINVAL;
|
|
|
|
if (!(mask_idx >= hw->blk[blk].masks.first &&
|
|
mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count))
|
|
return -ENOENT;
|
|
|
|
mutex_lock(&hw->blk[blk].masks.lock);
|
|
|
|
if (!hw->blk[blk].masks.masks[mask_idx].in_use)
|
|
goto exit_ice_free_prof_mask;
|
|
|
|
if (hw->blk[blk].masks.masks[mask_idx].ref > 1) {
|
|
hw->blk[blk].masks.masks[mask_idx].ref--;
|
|
goto exit_ice_free_prof_mask;
|
|
}
|
|
|
|
/* remove mask */
|
|
hw->blk[blk].masks.masks[mask_idx].in_use = false;
|
|
hw->blk[blk].masks.masks[mask_idx].mask = 0;
|
|
hw->blk[blk].masks.masks[mask_idx].idx = 0;
|
|
|
|
/* update mask as unused entry */
|
|
ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk,
|
|
mask_idx);
|
|
ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0);
|
|
|
|
exit_ice_free_prof_mask:
|
|
mutex_unlock(&hw->blk[blk].masks.lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_free_prof_masks - free all profile masks for a profile
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @prof_id: profile ID
|
|
*/
|
|
static int
|
|
ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id)
|
|
{
|
|
u32 mask_bm;
|
|
u16 i;
|
|
|
|
if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
|
|
return -EINVAL;
|
|
|
|
mask_bm = hw->blk[blk].es.mask_ena[prof_id];
|
|
for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++)
|
|
if (mask_bm & BIT(i))
|
|
ice_free_prof_mask(hw, blk, i);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_shutdown_prof_masks - releases lock for masking
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
*
|
|
* This should be called before unloading the driver
|
|
*/
|
|
static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk)
|
|
{
|
|
u16 i;
|
|
|
|
mutex_lock(&hw->blk[blk].masks.lock);
|
|
|
|
for (i = hw->blk[blk].masks.first;
|
|
i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) {
|
|
ice_write_prof_mask_reg(hw, blk, i, 0, 0);
|
|
|
|
hw->blk[blk].masks.masks[i].in_use = false;
|
|
hw->blk[blk].masks.masks[i].idx = 0;
|
|
hw->blk[blk].masks.masks[i].mask = 0;
|
|
}
|
|
|
|
mutex_unlock(&hw->blk[blk].masks.lock);
|
|
mutex_destroy(&hw->blk[blk].masks.lock);
|
|
}
|
|
|
|
/**
|
|
* ice_shutdown_all_prof_masks - releases all locks for masking
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* This should be called before unloading the driver
|
|
*/
|
|
static void ice_shutdown_all_prof_masks(struct ice_hw *hw)
|
|
{
|
|
ice_shutdown_prof_masks(hw, ICE_BLK_RSS);
|
|
ice_shutdown_prof_masks(hw, ICE_BLK_FD);
|
|
}
|
|
|
|
/**
|
|
* ice_update_prof_masking - set registers according to masking
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @prof_id: profile ID
|
|
* @masks: masks
|
|
*/
|
|
static int
|
|
ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id,
|
|
u16 *masks)
|
|
{
|
|
bool err = false;
|
|
u32 ena_mask = 0;
|
|
u16 idx;
|
|
u16 i;
|
|
|
|
/* Only support FD and RSS masking, otherwise nothing to be done */
|
|
if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
|
|
return 0;
|
|
|
|
for (i = 0; i < hw->blk[blk].es.fvw; i++)
|
|
if (masks[i] && masks[i] != 0xFFFF) {
|
|
if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) {
|
|
ena_mask |= BIT(idx);
|
|
} else {
|
|
/* not enough bitmaps */
|
|
err = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (err) {
|
|
/* free any bitmaps we have allocated */
|
|
for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++)
|
|
if (ena_mask & BIT(i))
|
|
ice_free_prof_mask(hw, blk, i);
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
/* enable the masks for this profile */
|
|
ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask);
|
|
|
|
/* store enabled masks with profile so that they can be freed later */
|
|
hw->blk[blk].es.mask_ena[prof_id] = ena_mask;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_write_es - write an extraction sequence to hardware
|
|
* @hw: pointer to the HW struct
|
|
* @blk: the block in which to write the extraction sequence
|
|
* @prof_id: the profile ID to write
|
|
* @fv: pointer to the extraction sequence to write - NULL to clear extraction
|
|
*/
|
|
static void
|
|
ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id,
|
|
struct ice_fv_word *fv)
|
|
{
|
|
u16 off;
|
|
|
|
off = prof_id * hw->blk[blk].es.fvw;
|
|
if (!fv) {
|
|
memset(&hw->blk[blk].es.t[off], 0,
|
|
hw->blk[blk].es.fvw * sizeof(*fv));
|
|
hw->blk[blk].es.written[prof_id] = false;
|
|
} else {
|
|
memcpy(&hw->blk[blk].es.t[off], fv,
|
|
hw->blk[blk].es.fvw * sizeof(*fv));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_prof_dec_ref - decrement reference count for profile
|
|
* @hw: pointer to the HW struct
|
|
* @blk: the block from which to free the profile ID
|
|
* @prof_id: the profile ID for which to decrement the reference count
|
|
*/
|
|
static int
|
|
ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
|
|
{
|
|
if (prof_id > hw->blk[blk].es.count)
|
|
return -EINVAL;
|
|
|
|
if (hw->blk[blk].es.ref_count[prof_id] > 0) {
|
|
if (!--hw->blk[blk].es.ref_count[prof_id]) {
|
|
ice_write_es(hw, blk, prof_id, NULL);
|
|
ice_free_prof_masks(hw, blk, prof_id);
|
|
return ice_free_prof_id(hw, blk, prof_id);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Block / table section IDs */
|
|
static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
|
|
/* SWITCH */
|
|
{ ICE_SID_XLT1_SW,
|
|
ICE_SID_XLT2_SW,
|
|
ICE_SID_PROFID_TCAM_SW,
|
|
ICE_SID_PROFID_REDIR_SW,
|
|
ICE_SID_FLD_VEC_SW
|
|
},
|
|
|
|
/* ACL */
|
|
{ ICE_SID_XLT1_ACL,
|
|
ICE_SID_XLT2_ACL,
|
|
ICE_SID_PROFID_TCAM_ACL,
|
|
ICE_SID_PROFID_REDIR_ACL,
|
|
ICE_SID_FLD_VEC_ACL
|
|
},
|
|
|
|
/* FD */
|
|
{ ICE_SID_XLT1_FD,
|
|
ICE_SID_XLT2_FD,
|
|
ICE_SID_PROFID_TCAM_FD,
|
|
ICE_SID_PROFID_REDIR_FD,
|
|
ICE_SID_FLD_VEC_FD
|
|
},
|
|
|
|
/* RSS */
|
|
{ ICE_SID_XLT1_RSS,
|
|
ICE_SID_XLT2_RSS,
|
|
ICE_SID_PROFID_TCAM_RSS,
|
|
ICE_SID_PROFID_REDIR_RSS,
|
|
ICE_SID_FLD_VEC_RSS
|
|
},
|
|
|
|
/* PE */
|
|
{ ICE_SID_XLT1_PE,
|
|
ICE_SID_XLT2_PE,
|
|
ICE_SID_PROFID_TCAM_PE,
|
|
ICE_SID_PROFID_REDIR_PE,
|
|
ICE_SID_FLD_VEC_PE
|
|
}
|
|
};
|
|
|
|
/**
|
|
* ice_init_sw_xlt1_db - init software XLT1 database from HW tables
|
|
* @hw: pointer to the hardware structure
|
|
* @blk: the HW block to initialize
|
|
*/
|
|
static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
|
|
{
|
|
u16 pt;
|
|
|
|
for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
|
|
u8 ptg;
|
|
|
|
ptg = hw->blk[blk].xlt1.t[pt];
|
|
if (ptg != ICE_DEFAULT_PTG) {
|
|
ice_ptg_alloc_val(hw, blk, ptg);
|
|
ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_init_sw_xlt2_db - init software XLT2 database from HW tables
|
|
* @hw: pointer to the hardware structure
|
|
* @blk: the HW block to initialize
|
|
*/
|
|
static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
|
|
{
|
|
u16 vsi;
|
|
|
|
for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
|
|
u16 vsig;
|
|
|
|
vsig = hw->blk[blk].xlt2.t[vsi];
|
|
if (vsig) {
|
|
ice_vsig_alloc_val(hw, blk, vsig);
|
|
ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
|
|
/* no changes at this time, since this has been
|
|
* initialized from the original package
|
|
*/
|
|
hw->blk[blk].xlt2.vsis[vsi].changed = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_init_sw_db - init software database from HW tables
|
|
* @hw: pointer to the hardware structure
|
|
*/
|
|
static void ice_init_sw_db(struct ice_hw *hw)
|
|
{
|
|
u16 i;
|
|
|
|
for (i = 0; i < ICE_BLK_COUNT; i++) {
|
|
ice_init_sw_xlt1_db(hw, (enum ice_block)i);
|
|
ice_init_sw_xlt2_db(hw, (enum ice_block)i);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_fill_tbl - Reads content of a single table type into database
|
|
* @hw: pointer to the hardware structure
|
|
* @block_id: Block ID of the table to copy
|
|
* @sid: Section ID of the table to copy
|
|
*
|
|
* Will attempt to read the entire content of a given table of a single block
|
|
* into the driver database. We assume that the buffer will always
|
|
* be as large or larger than the data contained in the package. If
|
|
* this condition is not met, there is most likely an error in the package
|
|
* contents.
|
|
*/
|
|
static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
|
|
{
|
|
u32 dst_len, sect_len, offset = 0;
|
|
struct ice_prof_redir_section *pr;
|
|
struct ice_prof_id_section *pid;
|
|
struct ice_xlt1_section *xlt1;
|
|
struct ice_xlt2_section *xlt2;
|
|
struct ice_sw_fv_section *es;
|
|
struct ice_pkg_enum state;
|
|
u8 *src, *dst;
|
|
void *sect;
|
|
|
|
/* if the HW segment pointer is null then the first iteration of
|
|
* ice_pkg_enum_section() will fail. In this case the HW tables will
|
|
* not be filled and return success.
|
|
*/
|
|
if (!hw->seg) {
|
|
ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
|
|
return;
|
|
}
|
|
|
|
memset(&state, 0, sizeof(state));
|
|
|
|
sect = ice_pkg_enum_section(hw->seg, &state, sid);
|
|
|
|
while (sect) {
|
|
switch (sid) {
|
|
case ICE_SID_XLT1_SW:
|
|
case ICE_SID_XLT1_FD:
|
|
case ICE_SID_XLT1_RSS:
|
|
case ICE_SID_XLT1_ACL:
|
|
case ICE_SID_XLT1_PE:
|
|
xlt1 = sect;
|
|
src = xlt1->value;
|
|
sect_len = le16_to_cpu(xlt1->count) *
|
|
sizeof(*hw->blk[block_id].xlt1.t);
|
|
dst = hw->blk[block_id].xlt1.t;
|
|
dst_len = hw->blk[block_id].xlt1.count *
|
|
sizeof(*hw->blk[block_id].xlt1.t);
|
|
break;
|
|
case ICE_SID_XLT2_SW:
|
|
case ICE_SID_XLT2_FD:
|
|
case ICE_SID_XLT2_RSS:
|
|
case ICE_SID_XLT2_ACL:
|
|
case ICE_SID_XLT2_PE:
|
|
xlt2 = sect;
|
|
src = (__force u8 *)xlt2->value;
|
|
sect_len = le16_to_cpu(xlt2->count) *
|
|
sizeof(*hw->blk[block_id].xlt2.t);
|
|
dst = (u8 *)hw->blk[block_id].xlt2.t;
|
|
dst_len = hw->blk[block_id].xlt2.count *
|
|
sizeof(*hw->blk[block_id].xlt2.t);
|
|
break;
|
|
case ICE_SID_PROFID_TCAM_SW:
|
|
case ICE_SID_PROFID_TCAM_FD:
|
|
case ICE_SID_PROFID_TCAM_RSS:
|
|
case ICE_SID_PROFID_TCAM_ACL:
|
|
case ICE_SID_PROFID_TCAM_PE:
|
|
pid = sect;
|
|
src = (u8 *)pid->entry;
|
|
sect_len = le16_to_cpu(pid->count) *
|
|
sizeof(*hw->blk[block_id].prof.t);
|
|
dst = (u8 *)hw->blk[block_id].prof.t;
|
|
dst_len = hw->blk[block_id].prof.count *
|
|
sizeof(*hw->blk[block_id].prof.t);
|
|
break;
|
|
case ICE_SID_PROFID_REDIR_SW:
|
|
case ICE_SID_PROFID_REDIR_FD:
|
|
case ICE_SID_PROFID_REDIR_RSS:
|
|
case ICE_SID_PROFID_REDIR_ACL:
|
|
case ICE_SID_PROFID_REDIR_PE:
|
|
pr = sect;
|
|
src = pr->redir_value;
|
|
sect_len = le16_to_cpu(pr->count) *
|
|
sizeof(*hw->blk[block_id].prof_redir.t);
|
|
dst = hw->blk[block_id].prof_redir.t;
|
|
dst_len = hw->blk[block_id].prof_redir.count *
|
|
sizeof(*hw->blk[block_id].prof_redir.t);
|
|
break;
|
|
case ICE_SID_FLD_VEC_SW:
|
|
case ICE_SID_FLD_VEC_FD:
|
|
case ICE_SID_FLD_VEC_RSS:
|
|
case ICE_SID_FLD_VEC_ACL:
|
|
case ICE_SID_FLD_VEC_PE:
|
|
es = sect;
|
|
src = (u8 *)es->fv;
|
|
sect_len = (u32)(le16_to_cpu(es->count) *
|
|
hw->blk[block_id].es.fvw) *
|
|
sizeof(*hw->blk[block_id].es.t);
|
|
dst = (u8 *)hw->blk[block_id].es.t;
|
|
dst_len = (u32)(hw->blk[block_id].es.count *
|
|
hw->blk[block_id].es.fvw) *
|
|
sizeof(*hw->blk[block_id].es.t);
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
/* if the section offset exceeds destination length, terminate
|
|
* table fill.
|
|
*/
|
|
if (offset > dst_len)
|
|
return;
|
|
|
|
/* if the sum of section size and offset exceed destination size
|
|
* then we are out of bounds of the HW table size for that PF.
|
|
* Changing section length to fill the remaining table space
|
|
* of that PF.
|
|
*/
|
|
if ((offset + sect_len) > dst_len)
|
|
sect_len = dst_len - offset;
|
|
|
|
memcpy(dst + offset, src, sect_len);
|
|
offset += sect_len;
|
|
sect = ice_pkg_enum_section(NULL, &state, sid);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_fill_blk_tbls - Read package context for tables
|
|
* @hw: pointer to the hardware structure
|
|
*
|
|
* Reads the current package contents and populates the driver
|
|
* database with the data iteratively for all advanced feature
|
|
* blocks. Assume that the HW tables have been allocated.
|
|
*/
|
|
void ice_fill_blk_tbls(struct ice_hw *hw)
|
|
{
|
|
u8 i;
|
|
|
|
for (i = 0; i < ICE_BLK_COUNT; i++) {
|
|
enum ice_block blk_id = (enum ice_block)i;
|
|
|
|
ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
|
|
ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
|
|
ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
|
|
ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
|
|
ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
|
|
}
|
|
|
|
ice_init_sw_db(hw);
|
|
}
|
|
|
|
/**
|
|
* ice_free_prof_map - free profile map
|
|
* @hw: pointer to the hardware structure
|
|
* @blk_idx: HW block index
|
|
*/
|
|
static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx)
|
|
{
|
|
struct ice_es *es = &hw->blk[blk_idx].es;
|
|
struct ice_prof_map *del, *tmp;
|
|
|
|
mutex_lock(&es->prof_map_lock);
|
|
list_for_each_entry_safe(del, tmp, &es->prof_map, list) {
|
|
list_del(&del->list);
|
|
devm_kfree(ice_hw_to_dev(hw), del);
|
|
}
|
|
INIT_LIST_HEAD(&es->prof_map);
|
|
mutex_unlock(&es->prof_map_lock);
|
|
}
|
|
|
|
/**
|
|
* ice_free_flow_profs - free flow profile entries
|
|
* @hw: pointer to the hardware structure
|
|
* @blk_idx: HW block index
|
|
*/
|
|
static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx)
|
|
{
|
|
struct ice_flow_prof *p, *tmp;
|
|
|
|
mutex_lock(&hw->fl_profs_locks[blk_idx]);
|
|
list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) {
|
|
struct ice_flow_entry *e, *t;
|
|
|
|
list_for_each_entry_safe(e, t, &p->entries, l_entry)
|
|
ice_flow_rem_entry(hw, (enum ice_block)blk_idx,
|
|
ICE_FLOW_ENTRY_HNDL(e));
|
|
|
|
list_del(&p->l_entry);
|
|
|
|
mutex_destroy(&p->entries_lock);
|
|
devm_kfree(ice_hw_to_dev(hw), p);
|
|
}
|
|
mutex_unlock(&hw->fl_profs_locks[blk_idx]);
|
|
|
|
/* if driver is in reset and tables are being cleared
|
|
* re-initialize the flow profile list heads
|
|
*/
|
|
INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
|
|
}
|
|
|
|
/**
|
|
* ice_free_vsig_tbl - free complete VSIG table entries
|
|
* @hw: pointer to the hardware structure
|
|
* @blk: the HW block on which to free the VSIG table entries
|
|
*/
|
|
static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
|
|
{
|
|
u16 i;
|
|
|
|
if (!hw->blk[blk].xlt2.vsig_tbl)
|
|
return;
|
|
|
|
for (i = 1; i < ICE_MAX_VSIGS; i++)
|
|
if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
|
|
ice_vsig_free(hw, blk, i);
|
|
}
|
|
|
|
/**
|
|
* ice_free_hw_tbls - free hardware table memory
|
|
* @hw: pointer to the hardware structure
|
|
*/
|
|
void ice_free_hw_tbls(struct ice_hw *hw)
|
|
{
|
|
struct ice_rss_cfg *r, *rt;
|
|
u8 i;
|
|
|
|
for (i = 0; i < ICE_BLK_COUNT; i++) {
|
|
if (hw->blk[i].is_list_init) {
|
|
struct ice_es *es = &hw->blk[i].es;
|
|
|
|
ice_free_prof_map(hw, i);
|
|
mutex_destroy(&es->prof_map_lock);
|
|
|
|
ice_free_flow_profs(hw, i);
|
|
mutex_destroy(&hw->fl_profs_locks[i]);
|
|
|
|
hw->blk[i].is_list_init = false;
|
|
}
|
|
ice_free_vsig_tbl(hw, (enum ice_block)i);
|
|
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes);
|
|
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl);
|
|
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t);
|
|
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t);
|
|
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl);
|
|
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis);
|
|
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t);
|
|
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t);
|
|
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t);
|
|
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count);
|
|
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written);
|
|
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.mask_ena);
|
|
}
|
|
|
|
list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) {
|
|
list_del(&r->l_entry);
|
|
devm_kfree(ice_hw_to_dev(hw), r);
|
|
}
|
|
mutex_destroy(&hw->rss_locks);
|
|
ice_shutdown_all_prof_masks(hw);
|
|
memset(hw->blk, 0, sizeof(hw->blk));
|
|
}
|
|
|
|
/**
|
|
* ice_init_flow_profs - init flow profile locks and list heads
|
|
* @hw: pointer to the hardware structure
|
|
* @blk_idx: HW block index
|
|
*/
|
|
static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx)
|
|
{
|
|
mutex_init(&hw->fl_profs_locks[blk_idx]);
|
|
INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
|
|
}
|
|
|
|
/**
|
|
* ice_clear_hw_tbls - clear HW tables and flow profiles
|
|
* @hw: pointer to the hardware structure
|
|
*/
|
|
void ice_clear_hw_tbls(struct ice_hw *hw)
|
|
{
|
|
u8 i;
|
|
|
|
for (i = 0; i < ICE_BLK_COUNT; i++) {
|
|
struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
|
|
struct ice_prof_tcam *prof = &hw->blk[i].prof;
|
|
struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
|
|
struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
|
|
struct ice_es *es = &hw->blk[i].es;
|
|
|
|
if (hw->blk[i].is_list_init) {
|
|
ice_free_prof_map(hw, i);
|
|
ice_free_flow_profs(hw, i);
|
|
}
|
|
|
|
ice_free_vsig_tbl(hw, (enum ice_block)i);
|
|
|
|
memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes));
|
|
memset(xlt1->ptg_tbl, 0,
|
|
ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl));
|
|
memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t));
|
|
|
|
memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis));
|
|
memset(xlt2->vsig_tbl, 0,
|
|
xlt2->count * sizeof(*xlt2->vsig_tbl));
|
|
memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t));
|
|
|
|
memset(prof->t, 0, prof->count * sizeof(*prof->t));
|
|
memset(prof_redir->t, 0,
|
|
prof_redir->count * sizeof(*prof_redir->t));
|
|
|
|
memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw);
|
|
memset(es->ref_count, 0, es->count * sizeof(*es->ref_count));
|
|
memset(es->written, 0, es->count * sizeof(*es->written));
|
|
memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_init_hw_tbls - init hardware table memory
|
|
* @hw: pointer to the hardware structure
|
|
*/
|
|
int ice_init_hw_tbls(struct ice_hw *hw)
|
|
{
|
|
u8 i;
|
|
|
|
mutex_init(&hw->rss_locks);
|
|
INIT_LIST_HEAD(&hw->rss_list_head);
|
|
ice_init_all_prof_masks(hw);
|
|
for (i = 0; i < ICE_BLK_COUNT; i++) {
|
|
struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
|
|
struct ice_prof_tcam *prof = &hw->blk[i].prof;
|
|
struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
|
|
struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
|
|
struct ice_es *es = &hw->blk[i].es;
|
|
u16 j;
|
|
|
|
if (hw->blk[i].is_list_init)
|
|
continue;
|
|
|
|
ice_init_flow_profs(hw, i);
|
|
mutex_init(&es->prof_map_lock);
|
|
INIT_LIST_HEAD(&es->prof_map);
|
|
hw->blk[i].is_list_init = true;
|
|
|
|
hw->blk[i].overwrite = blk_sizes[i].overwrite;
|
|
es->reverse = blk_sizes[i].reverse;
|
|
|
|
xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
|
|
xlt1->count = blk_sizes[i].xlt1;
|
|
|
|
xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
|
|
sizeof(*xlt1->ptypes), GFP_KERNEL);
|
|
|
|
if (!xlt1->ptypes)
|
|
goto err;
|
|
|
|
xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS,
|
|
sizeof(*xlt1->ptg_tbl),
|
|
GFP_KERNEL);
|
|
|
|
if (!xlt1->ptg_tbl)
|
|
goto err;
|
|
|
|
xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
|
|
sizeof(*xlt1->t), GFP_KERNEL);
|
|
if (!xlt1->t)
|
|
goto err;
|
|
|
|
xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
|
|
xlt2->count = blk_sizes[i].xlt2;
|
|
|
|
xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
|
|
sizeof(*xlt2->vsis), GFP_KERNEL);
|
|
|
|
if (!xlt2->vsis)
|
|
goto err;
|
|
|
|
xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
|
|
sizeof(*xlt2->vsig_tbl),
|
|
GFP_KERNEL);
|
|
if (!xlt2->vsig_tbl)
|
|
goto err;
|
|
|
|
for (j = 0; j < xlt2->count; j++)
|
|
INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
|
|
|
|
xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
|
|
sizeof(*xlt2->t), GFP_KERNEL);
|
|
if (!xlt2->t)
|
|
goto err;
|
|
|
|
prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
|
|
prof->count = blk_sizes[i].prof_tcam;
|
|
prof->max_prof_id = blk_sizes[i].prof_id;
|
|
prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
|
|
prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count,
|
|
sizeof(*prof->t), GFP_KERNEL);
|
|
|
|
if (!prof->t)
|
|
goto err;
|
|
|
|
prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
|
|
prof_redir->count = blk_sizes[i].prof_redir;
|
|
prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw),
|
|
prof_redir->count,
|
|
sizeof(*prof_redir->t),
|
|
GFP_KERNEL);
|
|
|
|
if (!prof_redir->t)
|
|
goto err;
|
|
|
|
es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
|
|
es->count = blk_sizes[i].es;
|
|
es->fvw = blk_sizes[i].fvw;
|
|
es->t = devm_kcalloc(ice_hw_to_dev(hw),
|
|
(u32)(es->count * es->fvw),
|
|
sizeof(*es->t), GFP_KERNEL);
|
|
if (!es->t)
|
|
goto err;
|
|
|
|
es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count,
|
|
sizeof(*es->ref_count),
|
|
GFP_KERNEL);
|
|
if (!es->ref_count)
|
|
goto err;
|
|
|
|
es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count,
|
|
sizeof(*es->written), GFP_KERNEL);
|
|
if (!es->written)
|
|
goto err;
|
|
|
|
es->mask_ena = devm_kcalloc(ice_hw_to_dev(hw), es->count,
|
|
sizeof(*es->mask_ena), GFP_KERNEL);
|
|
if (!es->mask_ena)
|
|
goto err;
|
|
}
|
|
return 0;
|
|
|
|
err:
|
|
ice_free_hw_tbls(hw);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* ice_prof_gen_key - generate profile ID key
|
|
* @hw: pointer to the HW struct
|
|
* @blk: the block in which to write profile ID to
|
|
* @ptg: packet type group (PTG) portion of key
|
|
* @vsig: VSIG portion of key
|
|
* @cdid: CDID portion of key
|
|
* @flags: flag portion of key
|
|
* @vl_msk: valid mask
|
|
* @dc_msk: don't care mask
|
|
* @nm_msk: never match mask
|
|
* @key: output of profile ID key
|
|
*/
|
|
static int
|
|
ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig,
|
|
u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
|
|
u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],
|
|
u8 key[ICE_TCAM_KEY_SZ])
|
|
{
|
|
struct ice_prof_id_key inkey;
|
|
|
|
inkey.xlt1 = ptg;
|
|
inkey.xlt2_cdid = cpu_to_le16(vsig);
|
|
inkey.flags = cpu_to_le16(flags);
|
|
|
|
switch (hw->blk[blk].prof.cdid_bits) {
|
|
case 0:
|
|
break;
|
|
case 2:
|
|
#define ICE_CD_2_M 0xC000U
|
|
#define ICE_CD_2_S 14
|
|
inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M);
|
|
inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S);
|
|
break;
|
|
case 4:
|
|
#define ICE_CD_4_M 0xF000U
|
|
#define ICE_CD_4_S 12
|
|
inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M);
|
|
inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S);
|
|
break;
|
|
case 8:
|
|
#define ICE_CD_8_M 0xFF00U
|
|
#define ICE_CD_8_S 16
|
|
inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M);
|
|
inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S);
|
|
break;
|
|
default:
|
|
ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n");
|
|
break;
|
|
}
|
|
|
|
return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk,
|
|
nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
|
|
}
|
|
|
|
/**
|
|
* ice_tcam_write_entry - write TCAM entry
|
|
* @hw: pointer to the HW struct
|
|
* @blk: the block in which to write profile ID to
|
|
* @idx: the entry index to write to
|
|
* @prof_id: profile ID
|
|
* @ptg: packet type group (PTG) portion of key
|
|
* @vsig: VSIG portion of key
|
|
* @cdid: CDID portion of key
|
|
* @flags: flag portion of key
|
|
* @vl_msk: valid mask
|
|
* @dc_msk: don't care mask
|
|
* @nm_msk: never match mask
|
|
*/
|
|
static int
|
|
ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx,
|
|
u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags,
|
|
u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
|
|
u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],
|
|
u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])
|
|
{
|
|
struct ice_prof_tcam_entry;
|
|
int status;
|
|
|
|
status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
|
|
dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
|
|
if (!status) {
|
|
hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx);
|
|
hw->blk[blk].prof.t[idx].prof_id = prof_id;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_vsig_get_ref - returns number of VSIs belong to a VSIG
|
|
* @hw: pointer to the hardware structure
|
|
* @blk: HW block
|
|
* @vsig: VSIG to query
|
|
* @refs: pointer to variable to receive the reference count
|
|
*/
|
|
static int
|
|
ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs)
|
|
{
|
|
u16 idx = vsig & ICE_VSIG_IDX_M;
|
|
struct ice_vsig_vsi *ptr;
|
|
|
|
*refs = 0;
|
|
|
|
if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
|
|
return -ENOENT;
|
|
|
|
ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
|
|
while (ptr) {
|
|
(*refs)++;
|
|
ptr = ptr->next_vsi;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_has_prof_vsig - check to see if VSIG has a specific profile
|
|
* @hw: pointer to the hardware structure
|
|
* @blk: HW block
|
|
* @vsig: VSIG to check against
|
|
* @hdl: profile handle
|
|
*/
|
|
static bool
|
|
ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl)
|
|
{
|
|
u16 idx = vsig & ICE_VSIG_IDX_M;
|
|
struct ice_vsig_prof *ent;
|
|
|
|
list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
|
|
list)
|
|
if (ent->profile_cookie == hdl)
|
|
return true;
|
|
|
|
ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n",
|
|
vsig);
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* ice_prof_bld_es - build profile ID extraction sequence changes
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @bld: the update package buffer build to add to
|
|
* @chgs: the list of changes to make in hardware
|
|
*/
|
|
static int
|
|
ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk,
|
|
struct ice_buf_build *bld, struct list_head *chgs)
|
|
{
|
|
u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word);
|
|
struct ice_chs_chg *tmp;
|
|
|
|
list_for_each_entry(tmp, chgs, list_entry)
|
|
if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) {
|
|
u16 off = tmp->prof_id * hw->blk[blk].es.fvw;
|
|
struct ice_pkg_es *p;
|
|
u32 id;
|
|
|
|
id = ice_sect_id(blk, ICE_VEC_TBL);
|
|
p = ice_pkg_buf_alloc_section(bld, id,
|
|
struct_size(p, es, 1) +
|
|
vec_size -
|
|
sizeof(p->es[0]));
|
|
|
|
if (!p)
|
|
return -ENOSPC;
|
|
|
|
p->count = cpu_to_le16(1);
|
|
p->offset = cpu_to_le16(tmp->prof_id);
|
|
|
|
memcpy(p->es, &hw->blk[blk].es.t[off], vec_size);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_prof_bld_tcam - build profile ID TCAM changes
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @bld: the update package buffer build to add to
|
|
* @chgs: the list of changes to make in hardware
|
|
*/
|
|
static int
|
|
ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk,
|
|
struct ice_buf_build *bld, struct list_head *chgs)
|
|
{
|
|
struct ice_chs_chg *tmp;
|
|
|
|
list_for_each_entry(tmp, chgs, list_entry)
|
|
if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) {
|
|
struct ice_prof_id_section *p;
|
|
u32 id;
|
|
|
|
id = ice_sect_id(blk, ICE_PROF_TCAM);
|
|
p = ice_pkg_buf_alloc_section(bld, id,
|
|
struct_size(p, entry, 1));
|
|
|
|
if (!p)
|
|
return -ENOSPC;
|
|
|
|
p->count = cpu_to_le16(1);
|
|
p->entry[0].addr = cpu_to_le16(tmp->tcam_idx);
|
|
p->entry[0].prof_id = tmp->prof_id;
|
|
|
|
memcpy(p->entry[0].key,
|
|
&hw->blk[blk].prof.t[tmp->tcam_idx].key,
|
|
sizeof(hw->blk[blk].prof.t->key));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_prof_bld_xlt1 - build XLT1 changes
|
|
* @blk: hardware block
|
|
* @bld: the update package buffer build to add to
|
|
* @chgs: the list of changes to make in hardware
|
|
*/
|
|
static int
|
|
ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld,
|
|
struct list_head *chgs)
|
|
{
|
|
struct ice_chs_chg *tmp;
|
|
|
|
list_for_each_entry(tmp, chgs, list_entry)
|
|
if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) {
|
|
struct ice_xlt1_section *p;
|
|
u32 id;
|
|
|
|
id = ice_sect_id(blk, ICE_XLT1);
|
|
p = ice_pkg_buf_alloc_section(bld, id,
|
|
struct_size(p, value, 1));
|
|
|
|
if (!p)
|
|
return -ENOSPC;
|
|
|
|
p->count = cpu_to_le16(1);
|
|
p->offset = cpu_to_le16(tmp->ptype);
|
|
p->value[0] = tmp->ptg;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_prof_bld_xlt2 - build XLT2 changes
|
|
* @blk: hardware block
|
|
* @bld: the update package buffer build to add to
|
|
* @chgs: the list of changes to make in hardware
|
|
*/
|
|
static int
|
|
ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld,
|
|
struct list_head *chgs)
|
|
{
|
|
struct ice_chs_chg *tmp;
|
|
|
|
list_for_each_entry(tmp, chgs, list_entry) {
|
|
struct ice_xlt2_section *p;
|
|
u32 id;
|
|
|
|
switch (tmp->type) {
|
|
case ICE_VSIG_ADD:
|
|
case ICE_VSI_MOVE:
|
|
case ICE_VSIG_REM:
|
|
id = ice_sect_id(blk, ICE_XLT2);
|
|
p = ice_pkg_buf_alloc_section(bld, id,
|
|
struct_size(p, value, 1));
|
|
|
|
if (!p)
|
|
return -ENOSPC;
|
|
|
|
p->count = cpu_to_le16(1);
|
|
p->offset = cpu_to_le16(tmp->vsi);
|
|
p->value[0] = cpu_to_le16(tmp->vsig);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_upd_prof_hw - update hardware using the change list
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @chgs: the list of changes to make in hardware
|
|
*/
|
|
static int
|
|
ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
|
|
struct list_head *chgs)
|
|
{
|
|
struct ice_buf_build *b;
|
|
struct ice_chs_chg *tmp;
|
|
u16 pkg_sects;
|
|
u16 xlt1 = 0;
|
|
u16 xlt2 = 0;
|
|
u16 tcam = 0;
|
|
u16 es = 0;
|
|
int status;
|
|
u16 sects;
|
|
|
|
/* count number of sections we need */
|
|
list_for_each_entry(tmp, chgs, list_entry) {
|
|
switch (tmp->type) {
|
|
case ICE_PTG_ES_ADD:
|
|
if (tmp->add_ptg)
|
|
xlt1++;
|
|
if (tmp->add_prof)
|
|
es++;
|
|
break;
|
|
case ICE_TCAM_ADD:
|
|
tcam++;
|
|
break;
|
|
case ICE_VSIG_ADD:
|
|
case ICE_VSI_MOVE:
|
|
case ICE_VSIG_REM:
|
|
xlt2++;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
sects = xlt1 + xlt2 + tcam + es;
|
|
|
|
if (!sects)
|
|
return 0;
|
|
|
|
/* Build update package buffer */
|
|
b = ice_pkg_buf_alloc(hw);
|
|
if (!b)
|
|
return -ENOMEM;
|
|
|
|
status = ice_pkg_buf_reserve_section(b, sects);
|
|
if (status)
|
|
goto error_tmp;
|
|
|
|
/* Preserve order of table update: ES, TCAM, PTG, VSIG */
|
|
if (es) {
|
|
status = ice_prof_bld_es(hw, blk, b, chgs);
|
|
if (status)
|
|
goto error_tmp;
|
|
}
|
|
|
|
if (tcam) {
|
|
status = ice_prof_bld_tcam(hw, blk, b, chgs);
|
|
if (status)
|
|
goto error_tmp;
|
|
}
|
|
|
|
if (xlt1) {
|
|
status = ice_prof_bld_xlt1(blk, b, chgs);
|
|
if (status)
|
|
goto error_tmp;
|
|
}
|
|
|
|
if (xlt2) {
|
|
status = ice_prof_bld_xlt2(blk, b, chgs);
|
|
if (status)
|
|
goto error_tmp;
|
|
}
|
|
|
|
/* After package buffer build check if the section count in buffer is
|
|
* non-zero and matches the number of sections detected for package
|
|
* update.
|
|
*/
|
|
pkg_sects = ice_pkg_buf_get_active_sections(b);
|
|
if (!pkg_sects || pkg_sects != sects) {
|
|
status = -EINVAL;
|
|
goto error_tmp;
|
|
}
|
|
|
|
/* update package */
|
|
status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
|
|
if (status == -EIO)
|
|
ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n");
|
|
|
|
error_tmp:
|
|
ice_pkg_buf_free(hw, b);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_update_fd_mask - set Flow Director Field Vector mask for a profile
|
|
* @hw: pointer to the HW struct
|
|
* @prof_id: profile ID
|
|
* @mask_sel: mask select
|
|
*
|
|
* This function enable any of the masks selected by the mask select parameter
|
|
* for the profile specified.
|
|
*/
|
|
static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel)
|
|
{
|
|
wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel);
|
|
|
|
ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id,
|
|
GLQF_FDMASK_SEL(prof_id), mask_sel);
|
|
}
|
|
|
|
struct ice_fd_src_dst_pair {
|
|
u8 prot_id;
|
|
u8 count;
|
|
u16 off;
|
|
};
|
|
|
|
static const struct ice_fd_src_dst_pair ice_fd_pairs[] = {
|
|
/* These are defined in pairs */
|
|
{ ICE_PROT_IPV4_OF_OR_S, 2, 12 },
|
|
{ ICE_PROT_IPV4_OF_OR_S, 2, 16 },
|
|
|
|
{ ICE_PROT_IPV4_IL, 2, 12 },
|
|
{ ICE_PROT_IPV4_IL, 2, 16 },
|
|
|
|
{ ICE_PROT_IPV6_OF_OR_S, 8, 8 },
|
|
{ ICE_PROT_IPV6_OF_OR_S, 8, 24 },
|
|
|
|
{ ICE_PROT_IPV6_IL, 8, 8 },
|
|
{ ICE_PROT_IPV6_IL, 8, 24 },
|
|
|
|
{ ICE_PROT_TCP_IL, 1, 0 },
|
|
{ ICE_PROT_TCP_IL, 1, 2 },
|
|
|
|
{ ICE_PROT_UDP_OF, 1, 0 },
|
|
{ ICE_PROT_UDP_OF, 1, 2 },
|
|
|
|
{ ICE_PROT_UDP_IL_OR_S, 1, 0 },
|
|
{ ICE_PROT_UDP_IL_OR_S, 1, 2 },
|
|
|
|
{ ICE_PROT_SCTP_IL, 1, 0 },
|
|
{ ICE_PROT_SCTP_IL, 1, 2 }
|
|
};
|
|
|
|
#define ICE_FD_SRC_DST_PAIR_COUNT ARRAY_SIZE(ice_fd_pairs)
|
|
|
|
/**
|
|
* ice_update_fd_swap - set register appropriately for a FD FV extraction
|
|
* @hw: pointer to the HW struct
|
|
* @prof_id: profile ID
|
|
* @es: extraction sequence (length of array is determined by the block)
|
|
*/
|
|
static int
|
|
ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es)
|
|
{
|
|
DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
|
|
u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 };
|
|
#define ICE_FD_FV_NOT_FOUND (-2)
|
|
s8 first_free = ICE_FD_FV_NOT_FOUND;
|
|
u8 used[ICE_MAX_FV_WORDS] = { 0 };
|
|
s8 orig_free, si;
|
|
u32 mask_sel = 0;
|
|
u8 i, j, k;
|
|
|
|
bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
|
|
|
|
/* This code assumes that the Flow Director field vectors are assigned
|
|
* from the end of the FV indexes working towards the zero index, that
|
|
* only complete fields will be included and will be consecutive, and
|
|
* that there are no gaps between valid indexes.
|
|
*/
|
|
|
|
/* Determine swap fields present */
|
|
for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) {
|
|
/* Find the first free entry, assuming right to left population.
|
|
* This is where we can start adding additional pairs if needed.
|
|
*/
|
|
if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id !=
|
|
ICE_PROT_INVALID)
|
|
first_free = i - 1;
|
|
|
|
for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
|
|
if (es[i].prot_id == ice_fd_pairs[j].prot_id &&
|
|
es[i].off == ice_fd_pairs[j].off) {
|
|
__set_bit(j, pair_list);
|
|
pair_start[j] = i;
|
|
}
|
|
}
|
|
|
|
orig_free = first_free;
|
|
|
|
/* determine missing swap fields that need to be added */
|
|
for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) {
|
|
u8 bit1 = test_bit(i + 1, pair_list);
|
|
u8 bit0 = test_bit(i, pair_list);
|
|
|
|
if (bit0 ^ bit1) {
|
|
u8 index;
|
|
|
|
/* add the appropriate 'paired' entry */
|
|
if (!bit0)
|
|
index = i;
|
|
else
|
|
index = i + 1;
|
|
|
|
/* check for room */
|
|
if (first_free + 1 < (s8)ice_fd_pairs[index].count)
|
|
return -ENOSPC;
|
|
|
|
/* place in extraction sequence */
|
|
for (k = 0; k < ice_fd_pairs[index].count; k++) {
|
|
es[first_free - k].prot_id =
|
|
ice_fd_pairs[index].prot_id;
|
|
es[first_free - k].off =
|
|
ice_fd_pairs[index].off + (k * 2);
|
|
|
|
if (k > first_free)
|
|
return -EIO;
|
|
|
|
/* keep track of non-relevant fields */
|
|
mask_sel |= BIT(first_free - k);
|
|
}
|
|
|
|
pair_start[index] = first_free;
|
|
first_free -= ice_fd_pairs[index].count;
|
|
}
|
|
}
|
|
|
|
/* fill in the swap array */
|
|
si = hw->blk[ICE_BLK_FD].es.fvw - 1;
|
|
while (si >= 0) {
|
|
u8 indexes_used = 1;
|
|
|
|
/* assume flat at this index */
|
|
#define ICE_SWAP_VALID 0x80
|
|
used[si] = si | ICE_SWAP_VALID;
|
|
|
|
if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) {
|
|
si -= indexes_used;
|
|
continue;
|
|
}
|
|
|
|
/* check for a swap location */
|
|
for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
|
|
if (es[si].prot_id == ice_fd_pairs[j].prot_id &&
|
|
es[si].off == ice_fd_pairs[j].off) {
|
|
u8 idx;
|
|
|
|
/* determine the appropriate matching field */
|
|
idx = j + ((j % 2) ? -1 : 1);
|
|
|
|
indexes_used = ice_fd_pairs[idx].count;
|
|
for (k = 0; k < indexes_used; k++) {
|
|
used[si - k] = (pair_start[idx] - k) |
|
|
ICE_SWAP_VALID;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
si -= indexes_used;
|
|
}
|
|
|
|
/* for each set of 4 swap and 4 inset indexes, write the appropriate
|
|
* register
|
|
*/
|
|
for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) {
|
|
u32 raw_swap = 0;
|
|
u32 raw_in = 0;
|
|
|
|
for (k = 0; k < 4; k++) {
|
|
u8 idx;
|
|
|
|
idx = (j * 4) + k;
|
|
if (used[idx] && !(mask_sel & BIT(idx))) {
|
|
raw_swap |= used[idx] << (k * BITS_PER_BYTE);
|
|
#define ICE_INSET_DFLT 0x9f
|
|
raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE);
|
|
}
|
|
}
|
|
|
|
/* write the appropriate swap register set */
|
|
wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap);
|
|
|
|
ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n",
|
|
prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap);
|
|
|
|
/* write the appropriate inset register set */
|
|
wr32(hw, GLQF_FDINSET(prof_id, j), raw_in);
|
|
|
|
ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n",
|
|
prof_id, j, GLQF_FDINSET(prof_id, j), raw_in);
|
|
}
|
|
|
|
/* initially clear the mask select for this profile */
|
|
ice_update_fd_mask(hw, prof_id, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* The entries here needs to match the order of enum ice_ptype_attrib */
|
|
static const struct ice_ptype_attrib_info ice_ptype_attributes[] = {
|
|
{ ICE_GTP_PDU_EH, ICE_GTP_PDU_FLAG_MASK },
|
|
{ ICE_GTP_SESSION, ICE_GTP_FLAGS_MASK },
|
|
{ ICE_GTP_DOWNLINK, ICE_GTP_FLAGS_MASK },
|
|
{ ICE_GTP_UPLINK, ICE_GTP_FLAGS_MASK },
|
|
};
|
|
|
|
/**
|
|
* ice_get_ptype_attrib_info - get PTYPE attribute information
|
|
* @type: attribute type
|
|
* @info: pointer to variable to the attribute information
|
|
*/
|
|
static void
|
|
ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type,
|
|
struct ice_ptype_attrib_info *info)
|
|
{
|
|
*info = ice_ptype_attributes[type];
|
|
}
|
|
|
|
/**
|
|
* ice_add_prof_attrib - add any PTG with attributes to profile
|
|
* @prof: pointer to the profile to which PTG entries will be added
|
|
* @ptg: PTG to be added
|
|
* @ptype: PTYPE that needs to be looked up
|
|
* @attr: array of attributes that will be considered
|
|
* @attr_cnt: number of elements in the attribute array
|
|
*/
|
|
static int
|
|
ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype,
|
|
const struct ice_ptype_attributes *attr, u16 attr_cnt)
|
|
{
|
|
bool found = false;
|
|
u16 i;
|
|
|
|
for (i = 0; i < attr_cnt; i++)
|
|
if (attr[i].ptype == ptype) {
|
|
found = true;
|
|
|
|
prof->ptg[prof->ptg_cnt] = ptg;
|
|
ice_get_ptype_attrib_info(attr[i].attrib,
|
|
&prof->attr[prof->ptg_cnt]);
|
|
|
|
if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
|
|
return -ENOSPC;
|
|
}
|
|
|
|
if (!found)
|
|
return -ENOENT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_add_prof - add profile
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @id: profile tracking ID
|
|
* @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits)
|
|
* @attr: array of attributes
|
|
* @attr_cnt: number of elements in attr array
|
|
* @es: extraction sequence (length of array is determined by the block)
|
|
* @masks: mask for extraction sequence
|
|
*
|
|
* This function registers a profile, which matches a set of PTYPES with a
|
|
* particular extraction sequence. While the hardware profile is allocated
|
|
* it will not be written until the first call to ice_add_flow that specifies
|
|
* the ID value used here.
|
|
*/
|
|
int
|
|
ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[],
|
|
const struct ice_ptype_attributes *attr, u16 attr_cnt,
|
|
struct ice_fv_word *es, u16 *masks)
|
|
{
|
|
u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE);
|
|
DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
|
|
struct ice_prof_map *prof;
|
|
u8 byte = 0;
|
|
u8 prof_id;
|
|
int status;
|
|
|
|
bitmap_zero(ptgs_used, ICE_XLT1_CNT);
|
|
|
|
mutex_lock(&hw->blk[blk].es.prof_map_lock);
|
|
|
|
/* search for existing profile */
|
|
status = ice_find_prof_id_with_mask(hw, blk, es, masks, &prof_id);
|
|
if (status) {
|
|
/* allocate profile ID */
|
|
status = ice_alloc_prof_id(hw, blk, &prof_id);
|
|
if (status)
|
|
goto err_ice_add_prof;
|
|
if (blk == ICE_BLK_FD) {
|
|
/* For Flow Director block, the extraction sequence may
|
|
* need to be altered in the case where there are paired
|
|
* fields that have no match. This is necessary because
|
|
* for Flow Director, src and dest fields need to paired
|
|
* for filter programming and these values are swapped
|
|
* during Tx.
|
|
*/
|
|
status = ice_update_fd_swap(hw, prof_id, es);
|
|
if (status)
|
|
goto err_ice_add_prof;
|
|
}
|
|
status = ice_update_prof_masking(hw, blk, prof_id, masks);
|
|
if (status)
|
|
goto err_ice_add_prof;
|
|
|
|
/* and write new es */
|
|
ice_write_es(hw, blk, prof_id, es);
|
|
}
|
|
|
|
ice_prof_inc_ref(hw, blk, prof_id);
|
|
|
|
/* add profile info */
|
|
prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL);
|
|
if (!prof) {
|
|
status = -ENOMEM;
|
|
goto err_ice_add_prof;
|
|
}
|
|
|
|
prof->profile_cookie = id;
|
|
prof->prof_id = prof_id;
|
|
prof->ptg_cnt = 0;
|
|
prof->context = 0;
|
|
|
|
/* build list of ptgs */
|
|
while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) {
|
|
u8 bit;
|
|
|
|
if (!ptypes[byte]) {
|
|
bytes--;
|
|
byte++;
|
|
continue;
|
|
}
|
|
|
|
/* Examine 8 bits per byte */
|
|
for_each_set_bit(bit, (unsigned long *)&ptypes[byte],
|
|
BITS_PER_BYTE) {
|
|
u16 ptype;
|
|
u8 ptg;
|
|
|
|
ptype = byte * BITS_PER_BYTE + bit;
|
|
|
|
/* The package should place all ptypes in a non-zero
|
|
* PTG, so the following call should never fail.
|
|
*/
|
|
if (ice_ptg_find_ptype(hw, blk, ptype, &ptg))
|
|
continue;
|
|
|
|
/* If PTG is already added, skip and continue */
|
|
if (test_bit(ptg, ptgs_used))
|
|
continue;
|
|
|
|
__set_bit(ptg, ptgs_used);
|
|
/* Check to see there are any attributes for
|
|
* this PTYPE, and add them if found.
|
|
*/
|
|
status = ice_add_prof_attrib(prof, ptg, ptype,
|
|
attr, attr_cnt);
|
|
if (status == -ENOSPC)
|
|
break;
|
|
if (status) {
|
|
/* This is simple a PTYPE/PTG with no
|
|
* attribute
|
|
*/
|
|
prof->ptg[prof->ptg_cnt] = ptg;
|
|
prof->attr[prof->ptg_cnt].flags = 0;
|
|
prof->attr[prof->ptg_cnt].mask = 0;
|
|
|
|
if (++prof->ptg_cnt >=
|
|
ICE_MAX_PTG_PER_PROFILE)
|
|
break;
|
|
}
|
|
}
|
|
|
|
bytes--;
|
|
byte++;
|
|
}
|
|
|
|
list_add(&prof->list, &hw->blk[blk].es.prof_map);
|
|
status = 0;
|
|
|
|
err_ice_add_prof:
|
|
mutex_unlock(&hw->blk[blk].es.prof_map_lock);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_search_prof_id - Search for a profile tracking ID
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @id: profile tracking ID
|
|
*
|
|
* This will search for a profile tracking ID which was previously added.
|
|
* The profile map lock should be held before calling this function.
|
|
*/
|
|
static struct ice_prof_map *
|
|
ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id)
|
|
{
|
|
struct ice_prof_map *entry = NULL;
|
|
struct ice_prof_map *map;
|
|
|
|
list_for_each_entry(map, &hw->blk[blk].es.prof_map, list)
|
|
if (map->profile_cookie == id) {
|
|
entry = map;
|
|
break;
|
|
}
|
|
|
|
return entry;
|
|
}
|
|
|
|
/**
|
|
* ice_vsig_prof_id_count - count profiles in a VSIG
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @vsig: VSIG to remove the profile from
|
|
*/
|
|
static u16
|
|
ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig)
|
|
{
|
|
u16 idx = vsig & ICE_VSIG_IDX_M, count = 0;
|
|
struct ice_vsig_prof *p;
|
|
|
|
list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
|
|
list)
|
|
count++;
|
|
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* ice_rel_tcam_idx - release a TCAM index
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @idx: the index to release
|
|
*/
|
|
static int ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx)
|
|
{
|
|
/* Masks to invoke a never match entry */
|
|
u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
|
|
u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF };
|
|
u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
|
|
int status;
|
|
|
|
/* write the TCAM entry */
|
|
status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk,
|
|
dc_msk, nm_msk);
|
|
if (status)
|
|
return status;
|
|
|
|
/* release the TCAM entry */
|
|
status = ice_free_tcam_ent(hw, blk, idx);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_rem_prof_id - remove one profile from a VSIG
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @prof: pointer to profile structure to remove
|
|
*/
|
|
static int
|
|
ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk,
|
|
struct ice_vsig_prof *prof)
|
|
{
|
|
int status;
|
|
u16 i;
|
|
|
|
for (i = 0; i < prof->tcam_count; i++)
|
|
if (prof->tcam[i].in_use) {
|
|
prof->tcam[i].in_use = false;
|
|
status = ice_rel_tcam_idx(hw, blk,
|
|
prof->tcam[i].tcam_idx);
|
|
if (status)
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_rem_vsig - remove VSIG
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @vsig: the VSIG to remove
|
|
* @chg: the change list
|
|
*/
|
|
static int
|
|
ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
|
|
struct list_head *chg)
|
|
{
|
|
u16 idx = vsig & ICE_VSIG_IDX_M;
|
|
struct ice_vsig_vsi *vsi_cur;
|
|
struct ice_vsig_prof *d, *t;
|
|
int status;
|
|
|
|
/* remove TCAM entries */
|
|
list_for_each_entry_safe(d, t,
|
|
&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
|
|
list) {
|
|
status = ice_rem_prof_id(hw, blk, d);
|
|
if (status)
|
|
return status;
|
|
|
|
list_del(&d->list);
|
|
devm_kfree(ice_hw_to_dev(hw), d);
|
|
}
|
|
|
|
/* Move all VSIS associated with this VSIG to the default VSIG */
|
|
vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
|
|
/* If the VSIG has at least 1 VSI then iterate through the list
|
|
* and remove the VSIs before deleting the group.
|
|
*/
|
|
if (vsi_cur)
|
|
do {
|
|
struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
|
|
struct ice_chs_chg *p;
|
|
|
|
p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
|
|
GFP_KERNEL);
|
|
if (!p)
|
|
return -ENOMEM;
|
|
|
|
p->type = ICE_VSIG_REM;
|
|
p->orig_vsig = vsig;
|
|
p->vsig = ICE_DEFAULT_VSIG;
|
|
p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis;
|
|
|
|
list_add(&p->list_entry, chg);
|
|
|
|
vsi_cur = tmp;
|
|
} while (vsi_cur);
|
|
|
|
return ice_vsig_free(hw, blk, vsig);
|
|
}
|
|
|
|
/**
|
|
* ice_rem_prof_id_vsig - remove a specific profile from a VSIG
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @vsig: VSIG to remove the profile from
|
|
* @hdl: profile handle indicating which profile to remove
|
|
* @chg: list to receive a record of changes
|
|
*/
|
|
static int
|
|
ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
|
|
struct list_head *chg)
|
|
{
|
|
u16 idx = vsig & ICE_VSIG_IDX_M;
|
|
struct ice_vsig_prof *p, *t;
|
|
int status;
|
|
|
|
list_for_each_entry_safe(p, t,
|
|
&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
|
|
list)
|
|
if (p->profile_cookie == hdl) {
|
|
if (ice_vsig_prof_id_count(hw, blk, vsig) == 1)
|
|
/* this is the last profile, remove the VSIG */
|
|
return ice_rem_vsig(hw, blk, vsig, chg);
|
|
|
|
status = ice_rem_prof_id(hw, blk, p);
|
|
if (!status) {
|
|
list_del(&p->list);
|
|
devm_kfree(ice_hw_to_dev(hw), p);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
/**
|
|
* ice_rem_flow_all - remove all flows with a particular profile
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @id: profile tracking ID
|
|
*/
|
|
static int ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id)
|
|
{
|
|
struct ice_chs_chg *del, *tmp;
|
|
struct list_head chg;
|
|
int status;
|
|
u16 i;
|
|
|
|
INIT_LIST_HEAD(&chg);
|
|
|
|
for (i = 1; i < ICE_MAX_VSIGS; i++)
|
|
if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) {
|
|
if (ice_has_prof_vsig(hw, blk, i, id)) {
|
|
status = ice_rem_prof_id_vsig(hw, blk, i, id,
|
|
&chg);
|
|
if (status)
|
|
goto err_ice_rem_flow_all;
|
|
}
|
|
}
|
|
|
|
status = ice_upd_prof_hw(hw, blk, &chg);
|
|
|
|
err_ice_rem_flow_all:
|
|
list_for_each_entry_safe(del, tmp, &chg, list_entry) {
|
|
list_del(&del->list_entry);
|
|
devm_kfree(ice_hw_to_dev(hw), del);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_rem_prof - remove profile
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @id: profile tracking ID
|
|
*
|
|
* This will remove the profile specified by the ID parameter, which was
|
|
* previously created through ice_add_prof. If any existing entries
|
|
* are associated with this profile, they will be removed as well.
|
|
*/
|
|
int ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id)
|
|
{
|
|
struct ice_prof_map *pmap;
|
|
int status;
|
|
|
|
mutex_lock(&hw->blk[blk].es.prof_map_lock);
|
|
|
|
pmap = ice_search_prof_id(hw, blk, id);
|
|
if (!pmap) {
|
|
status = -ENOENT;
|
|
goto err_ice_rem_prof;
|
|
}
|
|
|
|
/* remove all flows with this profile */
|
|
status = ice_rem_flow_all(hw, blk, pmap->profile_cookie);
|
|
if (status)
|
|
goto err_ice_rem_prof;
|
|
|
|
/* dereference profile, and possibly remove */
|
|
ice_prof_dec_ref(hw, blk, pmap->prof_id);
|
|
|
|
list_del(&pmap->list);
|
|
devm_kfree(ice_hw_to_dev(hw), pmap);
|
|
|
|
err_ice_rem_prof:
|
|
mutex_unlock(&hw->blk[blk].es.prof_map_lock);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_get_prof - get profile
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @hdl: profile handle
|
|
* @chg: change list
|
|
*/
|
|
static int
|
|
ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl,
|
|
struct list_head *chg)
|
|
{
|
|
struct ice_prof_map *map;
|
|
struct ice_chs_chg *p;
|
|
int status = 0;
|
|
u16 i;
|
|
|
|
mutex_lock(&hw->blk[blk].es.prof_map_lock);
|
|
/* Get the details on the profile specified by the handle ID */
|
|
map = ice_search_prof_id(hw, blk, hdl);
|
|
if (!map) {
|
|
status = -ENOENT;
|
|
goto err_ice_get_prof;
|
|
}
|
|
|
|
for (i = 0; i < map->ptg_cnt; i++)
|
|
if (!hw->blk[blk].es.written[map->prof_id]) {
|
|
/* add ES to change list */
|
|
p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
|
|
GFP_KERNEL);
|
|
if (!p) {
|
|
status = -ENOMEM;
|
|
goto err_ice_get_prof;
|
|
}
|
|
|
|
p->type = ICE_PTG_ES_ADD;
|
|
p->ptype = 0;
|
|
p->ptg = map->ptg[i];
|
|
p->add_ptg = 0;
|
|
|
|
p->add_prof = 1;
|
|
p->prof_id = map->prof_id;
|
|
|
|
hw->blk[blk].es.written[map->prof_id] = true;
|
|
|
|
list_add(&p->list_entry, chg);
|
|
}
|
|
|
|
err_ice_get_prof:
|
|
mutex_unlock(&hw->blk[blk].es.prof_map_lock);
|
|
/* let caller clean up the change list */
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_get_profs_vsig - get a copy of the list of profiles from a VSIG
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @vsig: VSIG from which to copy the list
|
|
* @lst: output list
|
|
*
|
|
* This routine makes a copy of the list of profiles in the specified VSIG.
|
|
*/
|
|
static int
|
|
ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
|
|
struct list_head *lst)
|
|
{
|
|
struct ice_vsig_prof *ent1, *ent2;
|
|
u16 idx = vsig & ICE_VSIG_IDX_M;
|
|
|
|
list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
|
|
list) {
|
|
struct ice_vsig_prof *p;
|
|
|
|
/* copy to the input list */
|
|
p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p),
|
|
GFP_KERNEL);
|
|
if (!p)
|
|
goto err_ice_get_profs_vsig;
|
|
|
|
list_add_tail(&p->list, lst);
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_ice_get_profs_vsig:
|
|
list_for_each_entry_safe(ent1, ent2, lst, list) {
|
|
list_del(&ent1->list);
|
|
devm_kfree(ice_hw_to_dev(hw), ent1);
|
|
}
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* ice_add_prof_to_lst - add profile entry to a list
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @lst: the list to be added to
|
|
* @hdl: profile handle of entry to add
|
|
*/
|
|
static int
|
|
ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk,
|
|
struct list_head *lst, u64 hdl)
|
|
{
|
|
struct ice_prof_map *map;
|
|
struct ice_vsig_prof *p;
|
|
int status = 0;
|
|
u16 i;
|
|
|
|
mutex_lock(&hw->blk[blk].es.prof_map_lock);
|
|
map = ice_search_prof_id(hw, blk, hdl);
|
|
if (!map) {
|
|
status = -ENOENT;
|
|
goto err_ice_add_prof_to_lst;
|
|
}
|
|
|
|
p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
|
|
if (!p) {
|
|
status = -ENOMEM;
|
|
goto err_ice_add_prof_to_lst;
|
|
}
|
|
|
|
p->profile_cookie = map->profile_cookie;
|
|
p->prof_id = map->prof_id;
|
|
p->tcam_count = map->ptg_cnt;
|
|
|
|
for (i = 0; i < map->ptg_cnt; i++) {
|
|
p->tcam[i].prof_id = map->prof_id;
|
|
p->tcam[i].tcam_idx = ICE_INVALID_TCAM;
|
|
p->tcam[i].ptg = map->ptg[i];
|
|
}
|
|
|
|
list_add(&p->list, lst);
|
|
|
|
err_ice_add_prof_to_lst:
|
|
mutex_unlock(&hw->blk[blk].es.prof_map_lock);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_move_vsi - move VSI to another VSIG
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @vsi: the VSI to move
|
|
* @vsig: the VSIG to move the VSI to
|
|
* @chg: the change list
|
|
*/
|
|
static int
|
|
ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig,
|
|
struct list_head *chg)
|
|
{
|
|
struct ice_chs_chg *p;
|
|
u16 orig_vsig;
|
|
int status;
|
|
|
|
p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
|
|
if (!p)
|
|
return -ENOMEM;
|
|
|
|
status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
|
|
if (!status)
|
|
status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
|
|
|
|
if (status) {
|
|
devm_kfree(ice_hw_to_dev(hw), p);
|
|
return status;
|
|
}
|
|
|
|
p->type = ICE_VSI_MOVE;
|
|
p->vsi = vsi;
|
|
p->orig_vsig = orig_vsig;
|
|
p->vsig = vsig;
|
|
|
|
list_add(&p->list_entry, chg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list
|
|
* @hw: pointer to the HW struct
|
|
* @idx: the index of the TCAM entry to remove
|
|
* @chg: the list of change structures to search
|
|
*/
|
|
static void
|
|
ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg)
|
|
{
|
|
struct ice_chs_chg *pos, *tmp;
|
|
|
|
list_for_each_entry_safe(tmp, pos, chg, list_entry)
|
|
if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) {
|
|
list_del(&tmp->list_entry);
|
|
devm_kfree(ice_hw_to_dev(hw), tmp);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_prof_tcam_ena_dis - add enable or disable TCAM change
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @enable: true to enable, false to disable
|
|
* @vsig: the VSIG of the TCAM entry
|
|
* @tcam: pointer the TCAM info structure of the TCAM to disable
|
|
* @chg: the change list
|
|
*
|
|
* This function appends an enable or disable TCAM entry in the change log
|
|
*/
|
|
static int
|
|
ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable,
|
|
u16 vsig, struct ice_tcam_inf *tcam,
|
|
struct list_head *chg)
|
|
{
|
|
struct ice_chs_chg *p;
|
|
int status;
|
|
|
|
u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
|
|
u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
|
|
u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
|
|
|
|
/* if disabling, free the TCAM */
|
|
if (!enable) {
|
|
status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx);
|
|
|
|
/* if we have already created a change for this TCAM entry, then
|
|
* we need to remove that entry, in order to prevent writing to
|
|
* a TCAM entry we no longer will have ownership of.
|
|
*/
|
|
ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg);
|
|
tcam->tcam_idx = 0;
|
|
tcam->in_use = 0;
|
|
return status;
|
|
}
|
|
|
|
/* for re-enabling, reallocate a TCAM */
|
|
/* for entries with empty attribute masks, allocate entry from
|
|
* the bottom of the TCAM table; otherwise, allocate from the
|
|
* top of the table in order to give it higher priority
|
|
*/
|
|
status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0,
|
|
&tcam->tcam_idx);
|
|
if (status)
|
|
return status;
|
|
|
|
/* add TCAM to change list */
|
|
p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
|
|
if (!p)
|
|
return -ENOMEM;
|
|
|
|
status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id,
|
|
tcam->ptg, vsig, 0, tcam->attr.flags,
|
|
vl_msk, dc_msk, nm_msk);
|
|
if (status)
|
|
goto err_ice_prof_tcam_ena_dis;
|
|
|
|
tcam->in_use = 1;
|
|
|
|
p->type = ICE_TCAM_ADD;
|
|
p->add_tcam_idx = true;
|
|
p->prof_id = tcam->prof_id;
|
|
p->ptg = tcam->ptg;
|
|
p->vsig = 0;
|
|
p->tcam_idx = tcam->tcam_idx;
|
|
|
|
/* log change */
|
|
list_add(&p->list_entry, chg);
|
|
|
|
return 0;
|
|
|
|
err_ice_prof_tcam_ena_dis:
|
|
devm_kfree(ice_hw_to_dev(hw), p);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_adj_prof_priorities - adjust profile based on priorities
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @vsig: the VSIG for which to adjust profile priorities
|
|
* @chg: the change list
|
|
*/
|
|
static int
|
|
ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig,
|
|
struct list_head *chg)
|
|
{
|
|
DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
|
|
struct ice_vsig_prof *t;
|
|
int status;
|
|
u16 idx;
|
|
|
|
bitmap_zero(ptgs_used, ICE_XLT1_CNT);
|
|
idx = vsig & ICE_VSIG_IDX_M;
|
|
|
|
/* Priority is based on the order in which the profiles are added. The
|
|
* newest added profile has highest priority and the oldest added
|
|
* profile has the lowest priority. Since the profile property list for
|
|
* a VSIG is sorted from newest to oldest, this code traverses the list
|
|
* in order and enables the first of each PTG that it finds (that is not
|
|
* already enabled); it also disables any duplicate PTGs that it finds
|
|
* in the older profiles (that are currently enabled).
|
|
*/
|
|
|
|
list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
|
|
list) {
|
|
u16 i;
|
|
|
|
for (i = 0; i < t->tcam_count; i++) {
|
|
/* Scan the priorities from newest to oldest.
|
|
* Make sure that the newest profiles take priority.
|
|
*/
|
|
if (test_bit(t->tcam[i].ptg, ptgs_used) &&
|
|
t->tcam[i].in_use) {
|
|
/* need to mark this PTG as never match, as it
|
|
* was already in use and therefore duplicate
|
|
* (and lower priority)
|
|
*/
|
|
status = ice_prof_tcam_ena_dis(hw, blk, false,
|
|
vsig,
|
|
&t->tcam[i],
|
|
chg);
|
|
if (status)
|
|
return status;
|
|
} else if (!test_bit(t->tcam[i].ptg, ptgs_used) &&
|
|
!t->tcam[i].in_use) {
|
|
/* need to enable this PTG, as it in not in use
|
|
* and not enabled (highest priority)
|
|
*/
|
|
status = ice_prof_tcam_ena_dis(hw, blk, true,
|
|
vsig,
|
|
&t->tcam[i],
|
|
chg);
|
|
if (status)
|
|
return status;
|
|
}
|
|
|
|
/* keep track of used ptgs */
|
|
__set_bit(t->tcam[i].ptg, ptgs_used);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_add_prof_id_vsig - add profile to VSIG
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @vsig: the VSIG to which this profile is to be added
|
|
* @hdl: the profile handle indicating the profile to add
|
|
* @rev: true to add entries to the end of the list
|
|
* @chg: the change list
|
|
*/
|
|
static int
|
|
ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
|
|
bool rev, struct list_head *chg)
|
|
{
|
|
/* Masks that ignore flags */
|
|
u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
|
|
u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
|
|
u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
|
|
struct ice_prof_map *map;
|
|
struct ice_vsig_prof *t;
|
|
struct ice_chs_chg *p;
|
|
u16 vsig_idx, i;
|
|
int status = 0;
|
|
|
|
/* Error, if this VSIG already has this profile */
|
|
if (ice_has_prof_vsig(hw, blk, vsig, hdl))
|
|
return -EEXIST;
|
|
|
|
/* new VSIG profile structure */
|
|
t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL);
|
|
if (!t)
|
|
return -ENOMEM;
|
|
|
|
mutex_lock(&hw->blk[blk].es.prof_map_lock);
|
|
/* Get the details on the profile specified by the handle ID */
|
|
map = ice_search_prof_id(hw, blk, hdl);
|
|
if (!map) {
|
|
status = -ENOENT;
|
|
goto err_ice_add_prof_id_vsig;
|
|
}
|
|
|
|
t->profile_cookie = map->profile_cookie;
|
|
t->prof_id = map->prof_id;
|
|
t->tcam_count = map->ptg_cnt;
|
|
|
|
/* create TCAM entries */
|
|
for (i = 0; i < map->ptg_cnt; i++) {
|
|
u16 tcam_idx;
|
|
|
|
/* add TCAM to change list */
|
|
p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
|
|
if (!p) {
|
|
status = -ENOMEM;
|
|
goto err_ice_add_prof_id_vsig;
|
|
}
|
|
|
|
/* allocate the TCAM entry index */
|
|
/* for entries with empty attribute masks, allocate entry from
|
|
* the bottom of the TCAM table; otherwise, allocate from the
|
|
* top of the table in order to give it higher priority
|
|
*/
|
|
status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0,
|
|
&tcam_idx);
|
|
if (status) {
|
|
devm_kfree(ice_hw_to_dev(hw), p);
|
|
goto err_ice_add_prof_id_vsig;
|
|
}
|
|
|
|
t->tcam[i].ptg = map->ptg[i];
|
|
t->tcam[i].prof_id = map->prof_id;
|
|
t->tcam[i].tcam_idx = tcam_idx;
|
|
t->tcam[i].attr = map->attr[i];
|
|
t->tcam[i].in_use = true;
|
|
|
|
p->type = ICE_TCAM_ADD;
|
|
p->add_tcam_idx = true;
|
|
p->prof_id = t->tcam[i].prof_id;
|
|
p->ptg = t->tcam[i].ptg;
|
|
p->vsig = vsig;
|
|
p->tcam_idx = t->tcam[i].tcam_idx;
|
|
|
|
/* write the TCAM entry */
|
|
status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx,
|
|
t->tcam[i].prof_id,
|
|
t->tcam[i].ptg, vsig, 0, 0,
|
|
vl_msk, dc_msk, nm_msk);
|
|
if (status) {
|
|
devm_kfree(ice_hw_to_dev(hw), p);
|
|
goto err_ice_add_prof_id_vsig;
|
|
}
|
|
|
|
/* log change */
|
|
list_add(&p->list_entry, chg);
|
|
}
|
|
|
|
/* add profile to VSIG */
|
|
vsig_idx = vsig & ICE_VSIG_IDX_M;
|
|
if (rev)
|
|
list_add_tail(&t->list,
|
|
&hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
|
|
else
|
|
list_add(&t->list,
|
|
&hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
|
|
|
|
mutex_unlock(&hw->blk[blk].es.prof_map_lock);
|
|
return status;
|
|
|
|
err_ice_add_prof_id_vsig:
|
|
mutex_unlock(&hw->blk[blk].es.prof_map_lock);
|
|
/* let caller clean up the change list */
|
|
devm_kfree(ice_hw_to_dev(hw), t);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_create_prof_id_vsig - add a new VSIG with a single profile
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @vsi: the initial VSI that will be in VSIG
|
|
* @hdl: the profile handle of the profile that will be added to the VSIG
|
|
* @chg: the change list
|
|
*/
|
|
static int
|
|
ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl,
|
|
struct list_head *chg)
|
|
{
|
|
struct ice_chs_chg *p;
|
|
u16 new_vsig;
|
|
int status;
|
|
|
|
p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
|
|
if (!p)
|
|
return -ENOMEM;
|
|
|
|
new_vsig = ice_vsig_alloc(hw, blk);
|
|
if (!new_vsig) {
|
|
status = -EIO;
|
|
goto err_ice_create_prof_id_vsig;
|
|
}
|
|
|
|
status = ice_move_vsi(hw, blk, vsi, new_vsig, chg);
|
|
if (status)
|
|
goto err_ice_create_prof_id_vsig;
|
|
|
|
status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg);
|
|
if (status)
|
|
goto err_ice_create_prof_id_vsig;
|
|
|
|
p->type = ICE_VSIG_ADD;
|
|
p->vsi = vsi;
|
|
p->orig_vsig = ICE_DEFAULT_VSIG;
|
|
p->vsig = new_vsig;
|
|
|
|
list_add(&p->list_entry, chg);
|
|
|
|
return 0;
|
|
|
|
err_ice_create_prof_id_vsig:
|
|
/* let caller clean up the change list */
|
|
devm_kfree(ice_hw_to_dev(hw), p);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_create_vsig_from_lst - create a new VSIG with a list of profiles
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @vsi: the initial VSI that will be in VSIG
|
|
* @lst: the list of profile that will be added to the VSIG
|
|
* @new_vsig: return of new VSIG
|
|
* @chg: the change list
|
|
*/
|
|
static int
|
|
ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi,
|
|
struct list_head *lst, u16 *new_vsig,
|
|
struct list_head *chg)
|
|
{
|
|
struct ice_vsig_prof *t;
|
|
int status;
|
|
u16 vsig;
|
|
|
|
vsig = ice_vsig_alloc(hw, blk);
|
|
if (!vsig)
|
|
return -EIO;
|
|
|
|
status = ice_move_vsi(hw, blk, vsi, vsig, chg);
|
|
if (status)
|
|
return status;
|
|
|
|
list_for_each_entry(t, lst, list) {
|
|
/* Reverse the order here since we are copying the list */
|
|
status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie,
|
|
true, chg);
|
|
if (status)
|
|
return status;
|
|
}
|
|
|
|
*new_vsig = vsig;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_find_prof_vsig - find a VSIG with a specific profile handle
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @hdl: the profile handle of the profile to search for
|
|
* @vsig: returns the VSIG with the matching profile
|
|
*/
|
|
static bool
|
|
ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig)
|
|
{
|
|
struct ice_vsig_prof *t;
|
|
struct list_head lst;
|
|
int status;
|
|
|
|
INIT_LIST_HEAD(&lst);
|
|
|
|
t = kzalloc(sizeof(*t), GFP_KERNEL);
|
|
if (!t)
|
|
return false;
|
|
|
|
t->profile_cookie = hdl;
|
|
list_add(&t->list, &lst);
|
|
|
|
status = ice_find_dup_props_vsig(hw, blk, &lst, vsig);
|
|
|
|
list_del(&t->list);
|
|
kfree(t);
|
|
|
|
return !status;
|
|
}
|
|
|
|
/**
|
|
* ice_add_prof_id_flow - add profile flow
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @vsi: the VSI to enable with the profile specified by ID
|
|
* @hdl: profile handle
|
|
*
|
|
* Calling this function will update the hardware tables to enable the
|
|
* profile indicated by the ID parameter for the VSIs specified in the VSI
|
|
* array. Once successfully called, the flow will be enabled.
|
|
*/
|
|
int
|
|
ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
|
|
{
|
|
struct ice_vsig_prof *tmp1, *del1;
|
|
struct ice_chs_chg *tmp, *del;
|
|
struct list_head union_lst;
|
|
struct list_head chg;
|
|
int status;
|
|
u16 vsig;
|
|
|
|
INIT_LIST_HEAD(&union_lst);
|
|
INIT_LIST_HEAD(&chg);
|
|
|
|
/* Get profile */
|
|
status = ice_get_prof(hw, blk, hdl, &chg);
|
|
if (status)
|
|
return status;
|
|
|
|
/* determine if VSI is already part of a VSIG */
|
|
status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
|
|
if (!status && vsig) {
|
|
bool only_vsi;
|
|
u16 or_vsig;
|
|
u16 ref;
|
|
|
|
/* found in VSIG */
|
|
or_vsig = vsig;
|
|
|
|
/* make sure that there is no overlap/conflict between the new
|
|
* characteristics and the existing ones; we don't support that
|
|
* scenario
|
|
*/
|
|
if (ice_has_prof_vsig(hw, blk, vsig, hdl)) {
|
|
status = -EEXIST;
|
|
goto err_ice_add_prof_id_flow;
|
|
}
|
|
|
|
/* last VSI in the VSIG? */
|
|
status = ice_vsig_get_ref(hw, blk, vsig, &ref);
|
|
if (status)
|
|
goto err_ice_add_prof_id_flow;
|
|
only_vsi = (ref == 1);
|
|
|
|
/* create a union of the current profiles and the one being
|
|
* added
|
|
*/
|
|
status = ice_get_profs_vsig(hw, blk, vsig, &union_lst);
|
|
if (status)
|
|
goto err_ice_add_prof_id_flow;
|
|
|
|
status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl);
|
|
if (status)
|
|
goto err_ice_add_prof_id_flow;
|
|
|
|
/* search for an existing VSIG with an exact charc match */
|
|
status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig);
|
|
if (!status) {
|
|
/* move VSI to the VSIG that matches */
|
|
status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
|
|
if (status)
|
|
goto err_ice_add_prof_id_flow;
|
|
|
|
/* VSI has been moved out of or_vsig. If the or_vsig had
|
|
* only that VSI it is now empty and can be removed.
|
|
*/
|
|
if (only_vsi) {
|
|
status = ice_rem_vsig(hw, blk, or_vsig, &chg);
|
|
if (status)
|
|
goto err_ice_add_prof_id_flow;
|
|
}
|
|
} else if (only_vsi) {
|
|
/* If the original VSIG only contains one VSI, then it
|
|
* will be the requesting VSI. In this case the VSI is
|
|
* not sharing entries and we can simply add the new
|
|
* profile to the VSIG.
|
|
*/
|
|
status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false,
|
|
&chg);
|
|
if (status)
|
|
goto err_ice_add_prof_id_flow;
|
|
|
|
/* Adjust priorities */
|
|
status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
|
|
if (status)
|
|
goto err_ice_add_prof_id_flow;
|
|
} else {
|
|
/* No match, so we need a new VSIG */
|
|
status = ice_create_vsig_from_lst(hw, blk, vsi,
|
|
&union_lst, &vsig,
|
|
&chg);
|
|
if (status)
|
|
goto err_ice_add_prof_id_flow;
|
|
|
|
/* Adjust priorities */
|
|
status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
|
|
if (status)
|
|
goto err_ice_add_prof_id_flow;
|
|
}
|
|
} else {
|
|
/* need to find or add a VSIG */
|
|
/* search for an existing VSIG with an exact charc match */
|
|
if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) {
|
|
/* found an exact match */
|
|
/* add or move VSI to the VSIG that matches */
|
|
status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
|
|
if (status)
|
|
goto err_ice_add_prof_id_flow;
|
|
} else {
|
|
/* we did not find an exact match */
|
|
/* we need to add a VSIG */
|
|
status = ice_create_prof_id_vsig(hw, blk, vsi, hdl,
|
|
&chg);
|
|
if (status)
|
|
goto err_ice_add_prof_id_flow;
|
|
}
|
|
}
|
|
|
|
/* update hardware */
|
|
if (!status)
|
|
status = ice_upd_prof_hw(hw, blk, &chg);
|
|
|
|
err_ice_add_prof_id_flow:
|
|
list_for_each_entry_safe(del, tmp, &chg, list_entry) {
|
|
list_del(&del->list_entry);
|
|
devm_kfree(ice_hw_to_dev(hw), del);
|
|
}
|
|
|
|
list_for_each_entry_safe(del1, tmp1, &union_lst, list) {
|
|
list_del(&del1->list);
|
|
devm_kfree(ice_hw_to_dev(hw), del1);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_rem_prof_from_list - remove a profile from list
|
|
* @hw: pointer to the HW struct
|
|
* @lst: list to remove the profile from
|
|
* @hdl: the profile handle indicating the profile to remove
|
|
*/
|
|
static int
|
|
ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl)
|
|
{
|
|
struct ice_vsig_prof *ent, *tmp;
|
|
|
|
list_for_each_entry_safe(ent, tmp, lst, list)
|
|
if (ent->profile_cookie == hdl) {
|
|
list_del(&ent->list);
|
|
devm_kfree(ice_hw_to_dev(hw), ent);
|
|
return 0;
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
/**
|
|
* ice_rem_prof_id_flow - remove flow
|
|
* @hw: pointer to the HW struct
|
|
* @blk: hardware block
|
|
* @vsi: the VSI from which to remove the profile specified by ID
|
|
* @hdl: profile tracking handle
|
|
*
|
|
* Calling this function will update the hardware tables to remove the
|
|
* profile indicated by the ID parameter for the VSIs specified in the VSI
|
|
* array. Once successfully called, the flow will be disabled.
|
|
*/
|
|
int
|
|
ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
|
|
{
|
|
struct ice_vsig_prof *tmp1, *del1;
|
|
struct ice_chs_chg *tmp, *del;
|
|
struct list_head chg, copy;
|
|
int status;
|
|
u16 vsig;
|
|
|
|
INIT_LIST_HEAD(©);
|
|
INIT_LIST_HEAD(&chg);
|
|
|
|
/* determine if VSI is already part of a VSIG */
|
|
status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
|
|
if (!status && vsig) {
|
|
bool last_profile;
|
|
bool only_vsi;
|
|
u16 ref;
|
|
|
|
/* found in VSIG */
|
|
last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1;
|
|
status = ice_vsig_get_ref(hw, blk, vsig, &ref);
|
|
if (status)
|
|
goto err_ice_rem_prof_id_flow;
|
|
only_vsi = (ref == 1);
|
|
|
|
if (only_vsi) {
|
|
/* If the original VSIG only contains one reference,
|
|
* which will be the requesting VSI, then the VSI is not
|
|
* sharing entries and we can simply remove the specific
|
|
* characteristics from the VSIG.
|
|
*/
|
|
|
|
if (last_profile) {
|
|
/* If there are no profiles left for this VSIG,
|
|
* then simply remove the VSIG.
|
|
*/
|
|
status = ice_rem_vsig(hw, blk, vsig, &chg);
|
|
if (status)
|
|
goto err_ice_rem_prof_id_flow;
|
|
} else {
|
|
status = ice_rem_prof_id_vsig(hw, blk, vsig,
|
|
hdl, &chg);
|
|
if (status)
|
|
goto err_ice_rem_prof_id_flow;
|
|
|
|
/* Adjust priorities */
|
|
status = ice_adj_prof_priorities(hw, blk, vsig,
|
|
&chg);
|
|
if (status)
|
|
goto err_ice_rem_prof_id_flow;
|
|
}
|
|
|
|
} else {
|
|
/* Make a copy of the VSIG's list of Profiles */
|
|
status = ice_get_profs_vsig(hw, blk, vsig, ©);
|
|
if (status)
|
|
goto err_ice_rem_prof_id_flow;
|
|
|
|
/* Remove specified profile entry from the list */
|
|
status = ice_rem_prof_from_list(hw, ©, hdl);
|
|
if (status)
|
|
goto err_ice_rem_prof_id_flow;
|
|
|
|
if (list_empty(©)) {
|
|
status = ice_move_vsi(hw, blk, vsi,
|
|
ICE_DEFAULT_VSIG, &chg);
|
|
if (status)
|
|
goto err_ice_rem_prof_id_flow;
|
|
|
|
} else if (!ice_find_dup_props_vsig(hw, blk, ©,
|
|
&vsig)) {
|
|
/* found an exact match */
|
|
/* add or move VSI to the VSIG that matches */
|
|
/* Search for a VSIG with a matching profile
|
|
* list
|
|
*/
|
|
|
|
/* Found match, move VSI to the matching VSIG */
|
|
status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
|
|
if (status)
|
|
goto err_ice_rem_prof_id_flow;
|
|
} else {
|
|
/* since no existing VSIG supports this
|
|
* characteristic pattern, we need to create a
|
|
* new VSIG and TCAM entries
|
|
*/
|
|
status = ice_create_vsig_from_lst(hw, blk, vsi,
|
|
©, &vsig,
|
|
&chg);
|
|
if (status)
|
|
goto err_ice_rem_prof_id_flow;
|
|
|
|
/* Adjust priorities */
|
|
status = ice_adj_prof_priorities(hw, blk, vsig,
|
|
&chg);
|
|
if (status)
|
|
goto err_ice_rem_prof_id_flow;
|
|
}
|
|
}
|
|
} else {
|
|
status = -ENOENT;
|
|
}
|
|
|
|
/* update hardware tables */
|
|
if (!status)
|
|
status = ice_upd_prof_hw(hw, blk, &chg);
|
|
|
|
err_ice_rem_prof_id_flow:
|
|
list_for_each_entry_safe(del, tmp, &chg, list_entry) {
|
|
list_del(&del->list_entry);
|
|
devm_kfree(ice_hw_to_dev(hw), del);
|
|
}
|
|
|
|
list_for_each_entry_safe(del1, tmp1, ©, list) {
|
|
list_del(&del1->list);
|
|
devm_kfree(ice_hw_to_dev(hw), del1);
|
|
}
|
|
|
|
return status;
|
|
}
|