mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-17 01:04:19 +08:00
2935e3c382
For this we create and use one or more new TX queues on the PTP channel, and enable sync events for it. Based on a patch by Martin Habets <mhabets@solarflare.com>. Signed-off-by: Edward Cree <ecree@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
906 lines
25 KiB
C
906 lines
25 KiB
C
/****************************************************************************
|
|
* Driver for Solarflare network controllers and boards
|
|
* Copyright 2005-2006 Fen Systems Ltd.
|
|
* Copyright 2005-2013 Solarflare Communications Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published
|
|
* by the Free Software Foundation, incorporated herein by reference.
|
|
*/
|
|
|
|
#include <linux/pci.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/in.h>
|
|
#include <linux/ipv6.h>
|
|
#include <linux/slab.h>
|
|
#include <net/ipv6.h>
|
|
#include <linux/if_ether.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/cache.h>
|
|
#include "net_driver.h"
|
|
#include "efx.h"
|
|
#include "io.h"
|
|
#include "nic.h"
|
|
#include "tx.h"
|
|
#include "workarounds.h"
|
|
#include "ef10_regs.h"
|
|
|
|
#ifdef EFX_USE_PIO
|
|
|
|
#define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
|
|
unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
|
|
|
|
#endif /* EFX_USE_PIO */
|
|
|
|
static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue,
|
|
struct efx_tx_buffer *buffer)
|
|
{
|
|
unsigned int index = efx_tx_queue_get_insert_index(tx_queue);
|
|
struct efx_buffer *page_buf =
|
|
&tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)];
|
|
unsigned int offset =
|
|
((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
|
|
|
|
if (unlikely(!page_buf->addr) &&
|
|
efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
|
|
GFP_ATOMIC))
|
|
return NULL;
|
|
buffer->dma_addr = page_buf->dma_addr + offset;
|
|
buffer->unmap_len = 0;
|
|
return (u8 *)page_buf->addr + offset;
|
|
}
|
|
|
|
u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue,
|
|
struct efx_tx_buffer *buffer, size_t len)
|
|
{
|
|
if (len > EFX_TX_CB_SIZE)
|
|
return NULL;
|
|
return efx_tx_get_copy_buffer(tx_queue, buffer);
|
|
}
|
|
|
|
static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
|
|
struct efx_tx_buffer *buffer,
|
|
unsigned int *pkts_compl,
|
|
unsigned int *bytes_compl)
|
|
{
|
|
if (buffer->unmap_len) {
|
|
struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
|
|
dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
|
|
if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
|
|
dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
|
|
DMA_TO_DEVICE);
|
|
else
|
|
dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
|
|
DMA_TO_DEVICE);
|
|
buffer->unmap_len = 0;
|
|
}
|
|
|
|
if (buffer->flags & EFX_TX_BUF_SKB) {
|
|
struct sk_buff *skb = (struct sk_buff *)buffer->skb;
|
|
|
|
EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
|
|
(*pkts_compl)++;
|
|
(*bytes_compl) += skb->len;
|
|
if (tx_queue->timestamping &&
|
|
(tx_queue->completed_timestamp_major ||
|
|
tx_queue->completed_timestamp_minor)) {
|
|
struct skb_shared_hwtstamps hwtstamp;
|
|
|
|
hwtstamp.hwtstamp =
|
|
efx_ptp_nic_to_kernel_time(tx_queue);
|
|
skb_tstamp_tx(skb, &hwtstamp);
|
|
|
|
tx_queue->completed_timestamp_major = 0;
|
|
tx_queue->completed_timestamp_minor = 0;
|
|
}
|
|
dev_consume_skb_any((struct sk_buff *)buffer->skb);
|
|
netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
|
|
"TX queue %d transmission id %x complete\n",
|
|
tx_queue->queue, tx_queue->read_count);
|
|
}
|
|
|
|
buffer->len = 0;
|
|
buffer->flags = 0;
|
|
}
|
|
|
|
unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
|
|
{
|
|
/* Header and payload descriptor for each output segment, plus
|
|
* one for every input fragment boundary within a segment
|
|
*/
|
|
unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
|
|
|
|
/* Possibly one more per segment for option descriptors */
|
|
if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
|
|
max_descs += EFX_TSO_MAX_SEGS;
|
|
|
|
/* Possibly more for PCIe page boundaries within input fragments */
|
|
if (PAGE_SIZE > EFX_PAGE_SIZE)
|
|
max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
|
|
DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
|
|
|
|
return max_descs;
|
|
}
|
|
|
|
static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
|
|
{
|
|
/* We need to consider both queues that the net core sees as one */
|
|
struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
|
|
struct efx_nic *efx = txq1->efx;
|
|
unsigned int fill_level;
|
|
|
|
fill_level = max(txq1->insert_count - txq1->old_read_count,
|
|
txq2->insert_count - txq2->old_read_count);
|
|
if (likely(fill_level < efx->txq_stop_thresh))
|
|
return;
|
|
|
|
/* We used the stale old_read_count above, which gives us a
|
|
* pessimistic estimate of the fill level (which may even
|
|
* validly be >= efx->txq_entries). Now try again using
|
|
* read_count (more likely to be a cache miss).
|
|
*
|
|
* If we read read_count and then conditionally stop the
|
|
* queue, it is possible for the completion path to race with
|
|
* us and complete all outstanding descriptors in the middle,
|
|
* after which there will be no more completions to wake it.
|
|
* Therefore we stop the queue first, then read read_count
|
|
* (with a memory barrier to ensure the ordering), then
|
|
* restart the queue if the fill level turns out to be low
|
|
* enough.
|
|
*/
|
|
netif_tx_stop_queue(txq1->core_txq);
|
|
smp_mb();
|
|
txq1->old_read_count = READ_ONCE(txq1->read_count);
|
|
txq2->old_read_count = READ_ONCE(txq2->read_count);
|
|
|
|
fill_level = max(txq1->insert_count - txq1->old_read_count,
|
|
txq2->insert_count - txq2->old_read_count);
|
|
EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries);
|
|
if (likely(fill_level < efx->txq_stop_thresh)) {
|
|
smp_mb();
|
|
if (likely(!efx->loopback_selftest))
|
|
netif_tx_start_queue(txq1->core_txq);
|
|
}
|
|
}
|
|
|
|
static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue,
|
|
struct sk_buff *skb)
|
|
{
|
|
unsigned int copy_len = skb->len;
|
|
struct efx_tx_buffer *buffer;
|
|
u8 *copy_buffer;
|
|
int rc;
|
|
|
|
EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE);
|
|
|
|
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
|
|
|
|
copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer);
|
|
if (unlikely(!copy_buffer))
|
|
return -ENOMEM;
|
|
|
|
rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
|
|
EFX_WARN_ON_PARANOID(rc);
|
|
buffer->len = copy_len;
|
|
|
|
buffer->skb = skb;
|
|
buffer->flags = EFX_TX_BUF_SKB;
|
|
|
|
++tx_queue->insert_count;
|
|
return rc;
|
|
}
|
|
|
|
#ifdef EFX_USE_PIO
|
|
|
|
struct efx_short_copy_buffer {
|
|
int used;
|
|
u8 buf[L1_CACHE_BYTES];
|
|
};
|
|
|
|
/* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
|
|
* Advances piobuf pointer. Leaves additional data in the copy buffer.
|
|
*/
|
|
static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
|
|
u8 *data, int len,
|
|
struct efx_short_copy_buffer *copy_buf)
|
|
{
|
|
int block_len = len & ~(sizeof(copy_buf->buf) - 1);
|
|
|
|
__iowrite64_copy(*piobuf, data, block_len >> 3);
|
|
*piobuf += block_len;
|
|
len -= block_len;
|
|
|
|
if (len) {
|
|
data += block_len;
|
|
BUG_ON(copy_buf->used);
|
|
BUG_ON(len > sizeof(copy_buf->buf));
|
|
memcpy(copy_buf->buf, data, len);
|
|
copy_buf->used = len;
|
|
}
|
|
}
|
|
|
|
/* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
|
|
* Advances piobuf pointer. Leaves additional data in the copy buffer.
|
|
*/
|
|
static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
|
|
u8 *data, int len,
|
|
struct efx_short_copy_buffer *copy_buf)
|
|
{
|
|
if (copy_buf->used) {
|
|
/* if the copy buffer is partially full, fill it up and write */
|
|
int copy_to_buf =
|
|
min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
|
|
|
|
memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
|
|
copy_buf->used += copy_to_buf;
|
|
|
|
/* if we didn't fill it up then we're done for now */
|
|
if (copy_buf->used < sizeof(copy_buf->buf))
|
|
return;
|
|
|
|
__iowrite64_copy(*piobuf, copy_buf->buf,
|
|
sizeof(copy_buf->buf) >> 3);
|
|
*piobuf += sizeof(copy_buf->buf);
|
|
data += copy_to_buf;
|
|
len -= copy_to_buf;
|
|
copy_buf->used = 0;
|
|
}
|
|
|
|
efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
|
|
}
|
|
|
|
static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
|
|
struct efx_short_copy_buffer *copy_buf)
|
|
{
|
|
/* if there's anything in it, write the whole buffer, including junk */
|
|
if (copy_buf->used)
|
|
__iowrite64_copy(piobuf, copy_buf->buf,
|
|
sizeof(copy_buf->buf) >> 3);
|
|
}
|
|
|
|
/* Traverse skb structure and copy fragments in to PIO buffer.
|
|
* Advances piobuf pointer.
|
|
*/
|
|
static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
|
|
u8 __iomem **piobuf,
|
|
struct efx_short_copy_buffer *copy_buf)
|
|
{
|
|
int i;
|
|
|
|
efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
|
|
copy_buf);
|
|
|
|
for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
|
|
skb_frag_t *f = &skb_shinfo(skb)->frags[i];
|
|
u8 *vaddr;
|
|
|
|
vaddr = kmap_atomic(skb_frag_page(f));
|
|
|
|
efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
|
|
skb_frag_size(f), copy_buf);
|
|
kunmap_atomic(vaddr);
|
|
}
|
|
|
|
EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list);
|
|
}
|
|
|
|
static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct efx_tx_buffer *buffer =
|
|
efx_tx_queue_get_insert_buffer(tx_queue);
|
|
u8 __iomem *piobuf = tx_queue->piobuf;
|
|
|
|
/* Copy to PIO buffer. Ensure the writes are padded to the end
|
|
* of a cache line, as this is required for write-combining to be
|
|
* effective on at least x86.
|
|
*/
|
|
|
|
if (skb_shinfo(skb)->nr_frags) {
|
|
/* The size of the copy buffer will ensure all writes
|
|
* are the size of a cache line.
|
|
*/
|
|
struct efx_short_copy_buffer copy_buf;
|
|
|
|
copy_buf.used = 0;
|
|
|
|
efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
|
|
&piobuf, ©_buf);
|
|
efx_flush_copy_buffer(tx_queue->efx, piobuf, ©_buf);
|
|
} else {
|
|
/* Pad the write to the size of a cache line.
|
|
* We can do this because we know the skb_shared_info struct is
|
|
* after the source, and the destination buffer is big enough.
|
|
*/
|
|
BUILD_BUG_ON(L1_CACHE_BYTES >
|
|
SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
|
|
__iowrite64_copy(tx_queue->piobuf, skb->data,
|
|
ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
|
|
}
|
|
|
|
buffer->skb = skb;
|
|
buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION;
|
|
|
|
EFX_POPULATE_QWORD_5(buffer->option,
|
|
ESF_DZ_TX_DESC_IS_OPT, 1,
|
|
ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
|
|
ESF_DZ_TX_PIO_CONT, 0,
|
|
ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
|
|
ESF_DZ_TX_PIO_BUF_ADDR,
|
|
tx_queue->piobuf_offset);
|
|
++tx_queue->insert_count;
|
|
return 0;
|
|
}
|
|
#endif /* EFX_USE_PIO */
|
|
|
|
static struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
|
|
dma_addr_t dma_addr,
|
|
size_t len)
|
|
{
|
|
const struct efx_nic_type *nic_type = tx_queue->efx->type;
|
|
struct efx_tx_buffer *buffer;
|
|
unsigned int dma_len;
|
|
|
|
/* Map the fragment taking account of NIC-dependent DMA limits. */
|
|
do {
|
|
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
|
|
dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
|
|
|
|
buffer->len = dma_len;
|
|
buffer->dma_addr = dma_addr;
|
|
buffer->flags = EFX_TX_BUF_CONT;
|
|
len -= dma_len;
|
|
dma_addr += dma_len;
|
|
++tx_queue->insert_count;
|
|
} while (len);
|
|
|
|
return buffer;
|
|
}
|
|
|
|
/* Map all data from an SKB for DMA and create descriptors on the queue.
|
|
*/
|
|
static int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
|
|
unsigned int segment_count)
|
|
{
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
struct device *dma_dev = &efx->pci_dev->dev;
|
|
unsigned int frag_index, nr_frags;
|
|
dma_addr_t dma_addr, unmap_addr;
|
|
unsigned short dma_flags;
|
|
size_t len, unmap_len;
|
|
|
|
nr_frags = skb_shinfo(skb)->nr_frags;
|
|
frag_index = 0;
|
|
|
|
/* Map header data. */
|
|
len = skb_headlen(skb);
|
|
dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
|
|
dma_flags = EFX_TX_BUF_MAP_SINGLE;
|
|
unmap_len = len;
|
|
unmap_addr = dma_addr;
|
|
|
|
if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
|
|
return -EIO;
|
|
|
|
if (segment_count) {
|
|
/* For TSO we need to put the header in to a separate
|
|
* descriptor. Map this separately if necessary.
|
|
*/
|
|
size_t header_len = skb_transport_header(skb) - skb->data +
|
|
(tcp_hdr(skb)->doff << 2u);
|
|
|
|
if (header_len != len) {
|
|
tx_queue->tso_long_headers++;
|
|
efx_tx_map_chunk(tx_queue, dma_addr, header_len);
|
|
len -= header_len;
|
|
dma_addr += header_len;
|
|
}
|
|
}
|
|
|
|
/* Add descriptors for each fragment. */
|
|
do {
|
|
struct efx_tx_buffer *buffer;
|
|
skb_frag_t *fragment;
|
|
|
|
buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
|
|
|
|
/* The final descriptor for a fragment is responsible for
|
|
* unmapping the whole fragment.
|
|
*/
|
|
buffer->flags = EFX_TX_BUF_CONT | dma_flags;
|
|
buffer->unmap_len = unmap_len;
|
|
buffer->dma_offset = buffer->dma_addr - unmap_addr;
|
|
|
|
if (frag_index >= nr_frags) {
|
|
/* Store SKB details with the final buffer for
|
|
* the completion.
|
|
*/
|
|
buffer->skb = skb;
|
|
buffer->flags = EFX_TX_BUF_SKB | dma_flags;
|
|
return 0;
|
|
}
|
|
|
|
/* Move on to the next fragment. */
|
|
fragment = &skb_shinfo(skb)->frags[frag_index++];
|
|
len = skb_frag_size(fragment);
|
|
dma_addr = skb_frag_dma_map(dma_dev, fragment,
|
|
0, len, DMA_TO_DEVICE);
|
|
dma_flags = 0;
|
|
unmap_len = len;
|
|
unmap_addr = dma_addr;
|
|
|
|
if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
|
|
return -EIO;
|
|
} while (1);
|
|
}
|
|
|
|
/* Remove buffers put into a tx_queue. None of the buffers must have
|
|
* an skb attached.
|
|
*/
|
|
static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
|
|
{
|
|
struct efx_tx_buffer *buffer;
|
|
unsigned int bytes_compl = 0;
|
|
unsigned int pkts_compl = 0;
|
|
|
|
/* Work backwards until we hit the original insert pointer value */
|
|
while (tx_queue->insert_count != tx_queue->write_count) {
|
|
--tx_queue->insert_count;
|
|
buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
|
|
efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fallback to software TSO.
|
|
*
|
|
* This is used if we are unable to send a GSO packet through hardware TSO.
|
|
* This should only ever happen due to per-queue restrictions - unsupported
|
|
* packets should first be filtered by the feature flags.
|
|
*
|
|
* Returns 0 on success, error code otherwise.
|
|
*/
|
|
static int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct sk_buff *segments, *next;
|
|
|
|
segments = skb_gso_segment(skb, 0);
|
|
if (IS_ERR(segments))
|
|
return PTR_ERR(segments);
|
|
|
|
dev_kfree_skb_any(skb);
|
|
skb = segments;
|
|
|
|
while (skb) {
|
|
next = skb->next;
|
|
skb->next = NULL;
|
|
|
|
if (next)
|
|
skb->xmit_more = true;
|
|
efx_enqueue_skb(tx_queue, skb);
|
|
skb = next;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Add a socket buffer to a TX queue
|
|
*
|
|
* This maps all fragments of a socket buffer for DMA and adds them to
|
|
* the TX queue. The queue's insert pointer will be incremented by
|
|
* the number of fragments in the socket buffer.
|
|
*
|
|
* If any DMA mapping fails, any mapped fragments will be unmapped,
|
|
* the queue's insert pointer will be restored to its original value.
|
|
*
|
|
* This function is split out from efx_hard_start_xmit to allow the
|
|
* loopback test to direct packets via specific TX queues.
|
|
*
|
|
* Returns NETDEV_TX_OK.
|
|
* You must hold netif_tx_lock() to call this function.
|
|
*/
|
|
netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
|
|
{
|
|
bool data_mapped = false;
|
|
unsigned int segments;
|
|
unsigned int skb_len;
|
|
int rc;
|
|
|
|
skb_len = skb->len;
|
|
segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
|
|
if (segments == 1)
|
|
segments = 0; /* Don't use TSO for a single segment. */
|
|
|
|
/* Handle TSO first - it's *possible* (although unlikely) that we might
|
|
* be passed a packet to segment that's smaller than the copybreak/PIO
|
|
* size limit.
|
|
*/
|
|
if (segments) {
|
|
EFX_WARN_ON_ONCE_PARANOID(!tx_queue->handle_tso);
|
|
rc = tx_queue->handle_tso(tx_queue, skb, &data_mapped);
|
|
if (rc == -EINVAL) {
|
|
rc = efx_tx_tso_fallback(tx_queue, skb);
|
|
tx_queue->tso_fallbacks++;
|
|
if (rc == 0)
|
|
return 0;
|
|
}
|
|
if (rc)
|
|
goto err;
|
|
#ifdef EFX_USE_PIO
|
|
} else if (skb_len <= efx_piobuf_size && !skb->xmit_more &&
|
|
efx_nic_may_tx_pio(tx_queue)) {
|
|
/* Use PIO for short packets with an empty queue. */
|
|
if (efx_enqueue_skb_pio(tx_queue, skb))
|
|
goto err;
|
|
tx_queue->pio_packets++;
|
|
data_mapped = true;
|
|
#endif
|
|
} else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) {
|
|
/* Pad short packets or coalesce short fragmented packets. */
|
|
if (efx_enqueue_skb_copy(tx_queue, skb))
|
|
goto err;
|
|
tx_queue->cb_packets++;
|
|
data_mapped = true;
|
|
}
|
|
|
|
/* Map for DMA and create descriptors if we haven't done so already. */
|
|
if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments)))
|
|
goto err;
|
|
|
|
/* Update BQL */
|
|
netdev_tx_sent_queue(tx_queue->core_txq, skb_len);
|
|
|
|
/* Pass off to hardware */
|
|
if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq)) {
|
|
struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
|
|
|
|
/* There could be packets left on the partner queue if those
|
|
* SKBs had skb->xmit_more set. If we do not push those they
|
|
* could be left for a long time and cause a netdev watchdog.
|
|
*/
|
|
if (txq2->xmit_more_available)
|
|
efx_nic_push_buffers(txq2);
|
|
|
|
efx_nic_push_buffers(tx_queue);
|
|
} else {
|
|
tx_queue->xmit_more_available = skb->xmit_more;
|
|
}
|
|
|
|
if (segments) {
|
|
tx_queue->tso_bursts++;
|
|
tx_queue->tso_packets += segments;
|
|
tx_queue->tx_packets += segments;
|
|
} else {
|
|
tx_queue->tx_packets++;
|
|
}
|
|
|
|
efx_tx_maybe_stop_queue(tx_queue);
|
|
|
|
return NETDEV_TX_OK;
|
|
|
|
|
|
err:
|
|
efx_enqueue_unwind(tx_queue);
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/* Remove packets from the TX queue
|
|
*
|
|
* This removes packets from the TX queue, up to and including the
|
|
* specified index.
|
|
*/
|
|
static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
|
|
unsigned int index,
|
|
unsigned int *pkts_compl,
|
|
unsigned int *bytes_compl)
|
|
{
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
unsigned int stop_index, read_ptr;
|
|
|
|
stop_index = (index + 1) & tx_queue->ptr_mask;
|
|
read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
|
|
|
|
while (read_ptr != stop_index) {
|
|
struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
|
|
|
|
if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
|
|
unlikely(buffer->len == 0)) {
|
|
netif_err(efx, tx_err, efx->net_dev,
|
|
"TX queue %d spurious TX completion id %x\n",
|
|
tx_queue->queue, read_ptr);
|
|
efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
|
|
return;
|
|
}
|
|
|
|
efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
|
|
|
|
++tx_queue->read_count;
|
|
read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
|
|
}
|
|
}
|
|
|
|
/* Initiate a packet transmission. We use one channel per CPU
|
|
* (sharing when we have more CPUs than channels). On Falcon, the TX
|
|
* completion events will be directed back to the CPU that transmitted
|
|
* the packet, which should be cache-efficient.
|
|
*
|
|
* Context: non-blocking.
|
|
* Note that returning anything other than NETDEV_TX_OK will cause the
|
|
* OS to free the skb.
|
|
*/
|
|
netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
|
|
struct net_device *net_dev)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(net_dev);
|
|
struct efx_tx_queue *tx_queue;
|
|
unsigned index, type;
|
|
|
|
EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
|
|
|
|
/* PTP "event" packet */
|
|
if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
|
|
unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
|
|
return efx_ptp_tx(efx, skb);
|
|
}
|
|
|
|
index = skb_get_queue_mapping(skb);
|
|
type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
|
|
if (index >= efx->n_tx_channels) {
|
|
index -= efx->n_tx_channels;
|
|
type |= EFX_TXQ_TYPE_HIGHPRI;
|
|
}
|
|
tx_queue = efx_get_tx_queue(efx, index, type);
|
|
|
|
return efx_enqueue_skb(tx_queue, skb);
|
|
}
|
|
|
|
void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
|
|
{
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
|
|
/* Must be inverse of queue lookup in efx_hard_start_xmit() */
|
|
tx_queue->core_txq =
|
|
netdev_get_tx_queue(efx->net_dev,
|
|
tx_queue->queue / EFX_TXQ_TYPES +
|
|
((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
|
|
efx->n_tx_channels : 0));
|
|
}
|
|
|
|
int efx_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
|
|
void *type_data)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(net_dev);
|
|
struct tc_mqprio_qopt *mqprio = type_data;
|
|
struct efx_channel *channel;
|
|
struct efx_tx_queue *tx_queue;
|
|
unsigned tc, num_tc;
|
|
int rc;
|
|
|
|
if (type != TC_SETUP_QDISC_MQPRIO)
|
|
return -EOPNOTSUPP;
|
|
|
|
num_tc = mqprio->num_tc;
|
|
|
|
if (num_tc > EFX_MAX_TX_TC)
|
|
return -EINVAL;
|
|
|
|
mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
|
|
|
|
if (num_tc == net_dev->num_tc)
|
|
return 0;
|
|
|
|
for (tc = 0; tc < num_tc; tc++) {
|
|
net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
|
|
net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
|
|
}
|
|
|
|
if (num_tc > net_dev->num_tc) {
|
|
/* Initialise high-priority queues as necessary */
|
|
efx_for_each_channel(channel, efx) {
|
|
efx_for_each_possible_channel_tx_queue(tx_queue,
|
|
channel) {
|
|
if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
|
|
continue;
|
|
if (!tx_queue->buffer) {
|
|
rc = efx_probe_tx_queue(tx_queue);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
if (!tx_queue->initialised)
|
|
efx_init_tx_queue(tx_queue);
|
|
efx_init_tx_queue_core_txq(tx_queue);
|
|
}
|
|
}
|
|
} else {
|
|
/* Reduce number of classes before number of queues */
|
|
net_dev->num_tc = num_tc;
|
|
}
|
|
|
|
rc = netif_set_real_num_tx_queues(net_dev,
|
|
max_t(int, num_tc, 1) *
|
|
efx->n_tx_channels);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Do not destroy high-priority queues when they become
|
|
* unused. We would have to flush them first, and it is
|
|
* fairly difficult to flush a subset of TX queues. Leave
|
|
* it to efx_fini_channels().
|
|
*/
|
|
|
|
net_dev->num_tc = num_tc;
|
|
return 0;
|
|
}
|
|
|
|
void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
|
|
{
|
|
unsigned fill_level;
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
struct efx_tx_queue *txq2;
|
|
unsigned int pkts_compl = 0, bytes_compl = 0;
|
|
|
|
EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
|
|
|
|
efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
|
|
tx_queue->pkts_compl += pkts_compl;
|
|
tx_queue->bytes_compl += bytes_compl;
|
|
|
|
if (pkts_compl > 1)
|
|
++tx_queue->merge_events;
|
|
|
|
/* See if we need to restart the netif queue. This memory
|
|
* barrier ensures that we write read_count (inside
|
|
* efx_dequeue_buffers()) before reading the queue status.
|
|
*/
|
|
smp_mb();
|
|
if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
|
|
likely(efx->port_enabled) &&
|
|
likely(netif_device_present(efx->net_dev))) {
|
|
txq2 = efx_tx_queue_partner(tx_queue);
|
|
fill_level = max(tx_queue->insert_count - tx_queue->read_count,
|
|
txq2->insert_count - txq2->read_count);
|
|
if (fill_level <= efx->txq_wake_thresh)
|
|
netif_tx_wake_queue(tx_queue->core_txq);
|
|
}
|
|
|
|
/* Check whether the hardware queue is now empty */
|
|
if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
|
|
tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
|
|
if (tx_queue->read_count == tx_queue->old_write_count) {
|
|
smp_mb();
|
|
tx_queue->empty_read_count =
|
|
tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
|
|
}
|
|
}
|
|
}
|
|
|
|
static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
|
|
{
|
|
return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EFX_TX_CB_ORDER);
|
|
}
|
|
|
|
int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
|
|
{
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
unsigned int entries;
|
|
int rc;
|
|
|
|
/* Create the smallest power-of-two aligned ring */
|
|
entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
|
|
EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
|
|
tx_queue->ptr_mask = entries - 1;
|
|
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"creating TX queue %d size %#x mask %#x\n",
|
|
tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
|
|
|
|
/* Allocate software ring */
|
|
tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
|
|
GFP_KERNEL);
|
|
if (!tx_queue->buffer)
|
|
return -ENOMEM;
|
|
|
|
tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
|
|
sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
|
|
if (!tx_queue->cb_page) {
|
|
rc = -ENOMEM;
|
|
goto fail1;
|
|
}
|
|
|
|
/* Allocate hardware ring */
|
|
rc = efx_nic_probe_tx(tx_queue);
|
|
if (rc)
|
|
goto fail2;
|
|
|
|
return 0;
|
|
|
|
fail2:
|
|
kfree(tx_queue->cb_page);
|
|
tx_queue->cb_page = NULL;
|
|
fail1:
|
|
kfree(tx_queue->buffer);
|
|
tx_queue->buffer = NULL;
|
|
return rc;
|
|
}
|
|
|
|
void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
|
|
{
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
|
|
netif_dbg(efx, drv, efx->net_dev,
|
|
"initialising TX queue %d\n", tx_queue->queue);
|
|
|
|
tx_queue->insert_count = 0;
|
|
tx_queue->write_count = 0;
|
|
tx_queue->packet_write_count = 0;
|
|
tx_queue->old_write_count = 0;
|
|
tx_queue->read_count = 0;
|
|
tx_queue->old_read_count = 0;
|
|
tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
|
|
tx_queue->xmit_more_available = false;
|
|
tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
|
|
tx_queue->channel == efx_ptp_channel(efx));
|
|
tx_queue->completed_desc_ptr = tx_queue->ptr_mask;
|
|
tx_queue->completed_timestamp_major = 0;
|
|
tx_queue->completed_timestamp_minor = 0;
|
|
|
|
/* Set up default function pointers. These may get replaced by
|
|
* efx_nic_init_tx() based off NIC/queue capabilities.
|
|
*/
|
|
tx_queue->handle_tso = efx_enqueue_skb_tso;
|
|
|
|
/* Set up TX descriptor ring */
|
|
efx_nic_init_tx(tx_queue);
|
|
|
|
tx_queue->initialised = true;
|
|
}
|
|
|
|
void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
|
|
{
|
|
struct efx_tx_buffer *buffer;
|
|
|
|
netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
|
|
"shutting down TX queue %d\n", tx_queue->queue);
|
|
|
|
if (!tx_queue->buffer)
|
|
return;
|
|
|
|
/* Free any buffers left in the ring */
|
|
while (tx_queue->read_count != tx_queue->write_count) {
|
|
unsigned int pkts_compl = 0, bytes_compl = 0;
|
|
buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
|
|
efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
|
|
|
|
++tx_queue->read_count;
|
|
}
|
|
tx_queue->xmit_more_available = false;
|
|
netdev_tx_reset_queue(tx_queue->core_txq);
|
|
}
|
|
|
|
void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
|
|
{
|
|
int i;
|
|
|
|
if (!tx_queue->buffer)
|
|
return;
|
|
|
|
netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
|
|
"destroying TX queue %d\n", tx_queue->queue);
|
|
efx_nic_remove_tx(tx_queue);
|
|
|
|
if (tx_queue->cb_page) {
|
|
for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
|
|
efx_nic_free_buffer(tx_queue->efx,
|
|
&tx_queue->cb_page[i]);
|
|
kfree(tx_queue->cb_page);
|
|
tx_queue->cb_page = NULL;
|
|
}
|
|
|
|
kfree(tx_queue->buffer);
|
|
tx_queue->buffer = NULL;
|
|
}
|