linux/drivers/net/wireless/mwl8k.c
Joerg Albert 230f7af0d8 mwl8k: fix module re-insertion bug
swap mwl8k_remove and mwl8k_shutdown functions to allow
"rmmod mwl8k; modprobe mwl8k"

Signed-off-by: Joerg Albert <jal2@gmx.de>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-04-20 16:36:26 -04:00

3790 lines
90 KiB
C

/*
* drivers/net/wireless/mwl8k.c driver for Marvell TOPDOG 802.11 Wireless cards
*
* Copyright (C) 2008 Marvell Semiconductor Inc.
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/completion.h>
#include <linux/etherdevice.h>
#include <net/mac80211.h>
#include <linux/moduleparam.h>
#include <linux/firmware.h>
#include <linux/workqueue.h>
#define MWL8K_DESC "Marvell TOPDOG(R) 802.11 Wireless Network Driver"
#define MWL8K_NAME KBUILD_MODNAME
#define MWL8K_VERSION "0.9.1"
MODULE_DESCRIPTION(MWL8K_DESC);
MODULE_VERSION(MWL8K_VERSION);
MODULE_AUTHOR("Lennert Buytenhek <buytenh@marvell.com>");
MODULE_LICENSE("GPL");
static DEFINE_PCI_DEVICE_TABLE(mwl8k_table) = {
{ PCI_VDEVICE(MARVELL, 0x2a2b), .driver_data = 8687, },
{ PCI_VDEVICE(MARVELL, 0x2a30), .driver_data = 8687, },
{ }
};
MODULE_DEVICE_TABLE(pci, mwl8k_table);
#define IEEE80211_ADDR_LEN ETH_ALEN
/* Register definitions */
#define MWL8K_HIU_GEN_PTR 0x00000c10
#define MWL8K_MODE_STA 0x0000005a
#define MWL8K_MODE_AP 0x000000a5
#define MWL8K_HIU_INT_CODE 0x00000c14
#define MWL8K_FWSTA_READY 0xf0f1f2f4
#define MWL8K_FWAP_READY 0xf1f2f4a5
#define MWL8K_INT_CODE_CMD_FINISHED 0x00000005
#define MWL8K_HIU_SCRATCH 0x00000c40
/* Host->device communications */
#define MWL8K_HIU_H2A_INTERRUPT_EVENTS 0x00000c18
#define MWL8K_HIU_H2A_INTERRUPT_STATUS 0x00000c1c
#define MWL8K_HIU_H2A_INTERRUPT_MASK 0x00000c20
#define MWL8K_HIU_H2A_INTERRUPT_CLEAR_SEL 0x00000c24
#define MWL8K_HIU_H2A_INTERRUPT_STATUS_MASK 0x00000c28
#define MWL8K_H2A_INT_DUMMY (1 << 20)
#define MWL8K_H2A_INT_RESET (1 << 15)
#define MWL8K_H2A_INT_PS (1 << 2)
#define MWL8K_H2A_INT_DOORBELL (1 << 1)
#define MWL8K_H2A_INT_PPA_READY (1 << 0)
/* Device->host communications */
#define MWL8K_HIU_A2H_INTERRUPT_EVENTS 0x00000c2c
#define MWL8K_HIU_A2H_INTERRUPT_STATUS 0x00000c30
#define MWL8K_HIU_A2H_INTERRUPT_MASK 0x00000c34
#define MWL8K_HIU_A2H_INTERRUPT_CLEAR_SEL 0x00000c38
#define MWL8K_HIU_A2H_INTERRUPT_STATUS_MASK 0x00000c3c
#define MWL8K_A2H_INT_DUMMY (1 << 20)
#define MWL8K_A2H_INT_CHNL_SWITCHED (1 << 11)
#define MWL8K_A2H_INT_QUEUE_EMPTY (1 << 10)
#define MWL8K_A2H_INT_RADAR_DETECT (1 << 7)
#define MWL8K_A2H_INT_RADIO_ON (1 << 6)
#define MWL8K_A2H_INT_RADIO_OFF (1 << 5)
#define MWL8K_A2H_INT_MAC_EVENT (1 << 3)
#define MWL8K_A2H_INT_OPC_DONE (1 << 2)
#define MWL8K_A2H_INT_RX_READY (1 << 1)
#define MWL8K_A2H_INT_TX_DONE (1 << 0)
#define MWL8K_A2H_EVENTS (MWL8K_A2H_INT_DUMMY | \
MWL8K_A2H_INT_CHNL_SWITCHED | \
MWL8K_A2H_INT_QUEUE_EMPTY | \
MWL8K_A2H_INT_RADAR_DETECT | \
MWL8K_A2H_INT_RADIO_ON | \
MWL8K_A2H_INT_RADIO_OFF | \
MWL8K_A2H_INT_MAC_EVENT | \
MWL8K_A2H_INT_OPC_DONE | \
MWL8K_A2H_INT_RX_READY | \
MWL8K_A2H_INT_TX_DONE)
/* WME stream classes */
#define WME_AC_BE 0 /* best effort */
#define WME_AC_BK 1 /* background */
#define WME_AC_VI 2 /* video */
#define WME_AC_VO 3 /* voice */
#define MWL8K_RX_QUEUES 1
#define MWL8K_TX_QUEUES 4
struct mwl8k_rx_queue {
int rx_desc_count;
/* hw receives here */
int rx_head;
/* refill descs here */
int rx_tail;
struct mwl8k_rx_desc *rx_desc_area;
dma_addr_t rx_desc_dma;
struct sk_buff **rx_skb;
};
struct mwl8k_skb {
/*
* The DMA engine requires a modification to the payload.
* If the skbuff is shared/cloned, it needs to be unshared.
* This method is used to ensure the stack always gets back
* the skbuff it sent for transmission.
*/
struct sk_buff *clone;
struct sk_buff *skb;
};
struct mwl8k_tx_queue {
/* hw transmits here */
int tx_head;
/* sw appends here */
int tx_tail;
struct ieee80211_tx_queue_stats tx_stats;
struct mwl8k_tx_desc *tx_desc_area;
dma_addr_t tx_desc_dma;
struct mwl8k_skb *tx_skb;
};
/* Pointers to the firmware data and meta information about it. */
struct mwl8k_firmware {
/* Microcode */
struct firmware *ucode;
/* Boot helper code */
struct firmware *helper;
};
struct mwl8k_priv {
void __iomem *regs;
struct ieee80211_hw *hw;
struct pci_dev *pdev;
u8 name[16];
/* firmware access lock */
spinlock_t fw_lock;
/* firmware files and meta data */
struct mwl8k_firmware fw;
u32 part_num;
/* lock held over TX and TX reap */
spinlock_t tx_lock;
u32 int_mask;
struct ieee80211_vif *vif;
struct list_head vif_list;
struct ieee80211_channel *current_channel;
/* power management status cookie from firmware */
u32 *cookie;
dma_addr_t cookie_dma;
u16 num_mcaddrs;
u16 region_code;
u8 hw_rev;
__le32 fw_rev;
u32 wep_enabled;
/*
* Running count of TX packets in flight, to avoid
* iterating over the transmit rings each time.
*/
int pending_tx_pkts;
struct mwl8k_rx_queue rxq[MWL8K_RX_QUEUES];
struct mwl8k_tx_queue txq[MWL8K_TX_QUEUES];
/* PHY parameters */
struct ieee80211_supported_band band;
struct ieee80211_channel channels[14];
struct ieee80211_rate rates[12];
/* RF preamble: Short, Long or Auto */
u8 radio_preamble;
u8 radio_state;
/* WMM MODE 1 for enabled; 0 for disabled */
bool wmm_mode;
/* Set if PHY config is in progress */
bool inconfig;
/* XXX need to convert this to handle multiple interfaces */
bool capture_beacon;
u8 capture_bssid[IEEE80211_ADDR_LEN];
struct sk_buff *beacon_skb;
/*
* This FJ worker has to be global as it is scheduled from the
* RX handler. At this point we don't know which interface it
* belongs to until the list of bssids waiting to complete join
* is checked.
*/
struct work_struct finalize_join_worker;
/* Tasklet to reclaim TX descriptors and buffers after tx */
struct tasklet_struct tx_reclaim_task;
/* Work thread to serialize configuration requests */
struct workqueue_struct *config_wq;
struct completion *hostcmd_wait;
struct completion *tx_wait;
};
/* Per interface specific private data */
struct mwl8k_vif {
struct list_head node;
/* backpointer to parent config block */
struct mwl8k_priv *priv;
/* BSS config of AP or IBSS from mac80211*/
struct ieee80211_bss_conf bss_info;
/* BSSID of AP or IBSS */
u8 bssid[IEEE80211_ADDR_LEN];
u8 mac_addr[IEEE80211_ADDR_LEN];
/*
* Subset of supported legacy rates.
* Intersection of AP and STA supported rates.
*/
struct ieee80211_rate legacy_rates[12];
/* number of supported legacy rates */
u8 legacy_nrates;
/* Number of supported MCS rates. Work in progress */
u8 mcs_nrates;
/* Index into station database.Returned by update_sta_db call */
u8 peer_id;
/* Non AMPDU sequence number assigned by driver */
u16 seqno;
/* Note:There is no channel info,
* refer to the master channel info in priv
*/
};
#define MWL8K_VIF(_vif) (struct mwl8k_vif *)(&((_vif)->drv_priv))
static const struct ieee80211_channel mwl8k_channels[] = {
{ .center_freq = 2412, .hw_value = 1, },
{ .center_freq = 2417, .hw_value = 2, },
{ .center_freq = 2422, .hw_value = 3, },
{ .center_freq = 2427, .hw_value = 4, },
{ .center_freq = 2432, .hw_value = 5, },
{ .center_freq = 2437, .hw_value = 6, },
{ .center_freq = 2442, .hw_value = 7, },
{ .center_freq = 2447, .hw_value = 8, },
{ .center_freq = 2452, .hw_value = 9, },
{ .center_freq = 2457, .hw_value = 10, },
{ .center_freq = 2462, .hw_value = 11, },
};
static const struct ieee80211_rate mwl8k_rates[] = {
{ .bitrate = 10, .hw_value = 2, },
{ .bitrate = 20, .hw_value = 4, },
{ .bitrate = 55, .hw_value = 11, },
{ .bitrate = 60, .hw_value = 12, },
{ .bitrate = 90, .hw_value = 18, },
{ .bitrate = 110, .hw_value = 22, },
{ .bitrate = 120, .hw_value = 24, },
{ .bitrate = 180, .hw_value = 36, },
{ .bitrate = 240, .hw_value = 48, },
{ .bitrate = 360, .hw_value = 72, },
{ .bitrate = 480, .hw_value = 96, },
{ .bitrate = 540, .hw_value = 108, },
};
/* Radio settings */
#define MWL8K_RADIO_FORCE 0x2
#define MWL8K_RADIO_ENABLE 0x1
#define MWL8K_RADIO_DISABLE 0x0
#define MWL8K_RADIO_AUTO_PREAMBLE 0x0005
#define MWL8K_RADIO_SHORT_PREAMBLE 0x0003
#define MWL8K_RADIO_LONG_PREAMBLE 0x0001
/* WMM */
#define MWL8K_WMM_ENABLE 1
#define MWL8K_WMM_DISABLE 0
#define MWL8K_RADIO_DEFAULT_PREAMBLE MWL8K_RADIO_LONG_PREAMBLE
/* Slot time */
/* Short Slot: 9us slot time */
#define MWL8K_SHORT_SLOTTIME 1
/* Long slot: 20us slot time */
#define MWL8K_LONG_SLOTTIME 0
/* Set or get info from Firmware */
#define MWL8K_CMD_SET 0x0001
#define MWL8K_CMD_GET 0x0000
/* Firmware command codes */
#define MWL8K_CMD_CODE_DNLD 0x0001
#define MWL8K_CMD_GET_HW_SPEC 0x0003
#define MWL8K_CMD_MAC_MULTICAST_ADR 0x0010
#define MWL8K_CMD_GET_STAT 0x0014
#define MWL8K_CMD_RADIO_CONTROL 0x001C
#define MWL8K_CMD_RF_TX_POWER 0x001E
#define MWL8K_CMD_SET_PRE_SCAN 0x0107
#define MWL8K_CMD_SET_POST_SCAN 0x0108
#define MWL8K_CMD_SET_RF_CHANNEL 0x010A
#define MWL8K_CMD_SET_SLOT 0x0114
#define MWL8K_CMD_MIMO_CONFIG 0x0125
#define MWL8K_CMD_ENABLE_SNIFFER 0x0150
#define MWL8K_CMD_SET_WMM_MODE 0x0123
#define MWL8K_CMD_SET_EDCA_PARAMS 0x0115
#define MWL8K_CMD_SET_FINALIZE_JOIN 0x0111
#define MWL8K_CMD_UPDATE_STADB 0x1123
#define MWL8K_CMD_SET_RATEADAPT_MODE 0x0203
#define MWL8K_CMD_SET_LINKADAPT_MODE 0x0129
#define MWL8K_CMD_SET_AID 0x010d
#define MWL8K_CMD_SET_RATE 0x0110
#define MWL8K_CMD_USE_FIXED_RATE 0x0126
#define MWL8K_CMD_RTS_THRESHOLD 0x0113
#define MWL8K_CMD_ENCRYPTION 0x1122
static const char *mwl8k_cmd_name(u16 cmd, char *buf, int bufsize)
{
#define MWL8K_CMDNAME(x) case MWL8K_CMD_##x: do {\
snprintf(buf, bufsize, "%s", #x);\
return buf;\
} while (0)
switch (cmd & (~0x8000)) {
MWL8K_CMDNAME(CODE_DNLD);
MWL8K_CMDNAME(GET_HW_SPEC);
MWL8K_CMDNAME(MAC_MULTICAST_ADR);
MWL8K_CMDNAME(GET_STAT);
MWL8K_CMDNAME(RADIO_CONTROL);
MWL8K_CMDNAME(RF_TX_POWER);
MWL8K_CMDNAME(SET_PRE_SCAN);
MWL8K_CMDNAME(SET_POST_SCAN);
MWL8K_CMDNAME(SET_RF_CHANNEL);
MWL8K_CMDNAME(SET_SLOT);
MWL8K_CMDNAME(MIMO_CONFIG);
MWL8K_CMDNAME(ENABLE_SNIFFER);
MWL8K_CMDNAME(SET_WMM_MODE);
MWL8K_CMDNAME(SET_EDCA_PARAMS);
MWL8K_CMDNAME(SET_FINALIZE_JOIN);
MWL8K_CMDNAME(UPDATE_STADB);
MWL8K_CMDNAME(SET_RATEADAPT_MODE);
MWL8K_CMDNAME(SET_LINKADAPT_MODE);
MWL8K_CMDNAME(SET_AID);
MWL8K_CMDNAME(SET_RATE);
MWL8K_CMDNAME(USE_FIXED_RATE);
MWL8K_CMDNAME(RTS_THRESHOLD);
MWL8K_CMDNAME(ENCRYPTION);
default:
snprintf(buf, bufsize, "0x%x", cmd);
}
#undef MWL8K_CMDNAME
return buf;
}
/* Hardware and firmware reset */
static void mwl8k_hw_reset(struct mwl8k_priv *priv)
{
iowrite32(MWL8K_H2A_INT_RESET,
priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
iowrite32(MWL8K_H2A_INT_RESET,
priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
msleep(20);
}
/* Release fw image */
static void mwl8k_release_fw(struct firmware **fw)
{
if (*fw == NULL)
return;
release_firmware(*fw);
*fw = NULL;
}
static void mwl8k_release_firmware(struct mwl8k_priv *priv)
{
mwl8k_release_fw(&priv->fw.ucode);
mwl8k_release_fw(&priv->fw.helper);
}
/* Request fw image */
static int mwl8k_request_fw(struct mwl8k_priv *priv,
const char *fname, struct firmware **fw)
{
/* release current image */
if (*fw != NULL)
mwl8k_release_fw(fw);
return request_firmware((const struct firmware **)fw,
fname, &priv->pdev->dev);
}
static int mwl8k_request_firmware(struct mwl8k_priv *priv, u32 part_num)
{
u8 filename[64];
int rc;
priv->part_num = part_num;
snprintf(filename, sizeof(filename),
"mwl8k/helper_%u.fw", priv->part_num);
rc = mwl8k_request_fw(priv, filename, &priv->fw.helper);
if (rc) {
printk(KERN_ERR
"%s Error requesting helper firmware file %s\n",
pci_name(priv->pdev), filename);
return rc;
}
snprintf(filename, sizeof(filename),
"mwl8k/fmimage_%u.fw", priv->part_num);
rc = mwl8k_request_fw(priv, filename, &priv->fw.ucode);
if (rc) {
printk(KERN_ERR "%s Error requesting firmware file %s\n",
pci_name(priv->pdev), filename);
mwl8k_release_fw(&priv->fw.helper);
return rc;
}
return 0;
}
struct mwl8k_cmd_pkt {
__le16 code;
__le16 length;
__le16 seq_num;
__le16 result;
char payload[0];
} __attribute__((packed));
/*
* Firmware loading.
*/
static int
mwl8k_send_fw_load_cmd(struct mwl8k_priv *priv, void *data, int length)
{
void __iomem *regs = priv->regs;
dma_addr_t dma_addr;
int rc;
int loops;
dma_addr = pci_map_single(priv->pdev, data, length, PCI_DMA_TODEVICE);
if (pci_dma_mapping_error(priv->pdev, dma_addr))
return -ENOMEM;
iowrite32(dma_addr, regs + MWL8K_HIU_GEN_PTR);
iowrite32(0, regs + MWL8K_HIU_INT_CODE);
iowrite32(MWL8K_H2A_INT_DOORBELL,
regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
iowrite32(MWL8K_H2A_INT_DUMMY,
regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
rc = -ETIMEDOUT;
loops = 1000;
do {
u32 int_code;
int_code = ioread32(regs + MWL8K_HIU_INT_CODE);
if (int_code == MWL8K_INT_CODE_CMD_FINISHED) {
iowrite32(0, regs + MWL8K_HIU_INT_CODE);
rc = 0;
break;
}
udelay(1);
} while (--loops);
pci_unmap_single(priv->pdev, dma_addr, length, PCI_DMA_TODEVICE);
/*
* Clear 'command done' interrupt bit.
*/
loops = 1000;
do {
u32 status;
status = ioread32(priv->regs +
MWL8K_HIU_A2H_INTERRUPT_STATUS);
if (status & MWL8K_A2H_INT_OPC_DONE) {
iowrite32(~MWL8K_A2H_INT_OPC_DONE,
priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS);
ioread32(priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS);
break;
}
udelay(1);
} while (--loops);
return rc;
}
static int mwl8k_load_fw_image(struct mwl8k_priv *priv,
const u8 *data, size_t length)
{
struct mwl8k_cmd_pkt *cmd;
int done;
int rc = 0;
cmd = kmalloc(sizeof(*cmd) + 256, GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->code = cpu_to_le16(MWL8K_CMD_CODE_DNLD);
cmd->seq_num = 0;
cmd->result = 0;
done = 0;
while (length) {
int block_size = length > 256 ? 256 : length;
memcpy(cmd->payload, data + done, block_size);
cmd->length = cpu_to_le16(block_size);
rc = mwl8k_send_fw_load_cmd(priv, cmd,
sizeof(*cmd) + block_size);
if (rc)
break;
done += block_size;
length -= block_size;
}
if (!rc) {
cmd->length = 0;
rc = mwl8k_send_fw_load_cmd(priv, cmd, sizeof(*cmd));
}
kfree(cmd);
return rc;
}
static int mwl8k_feed_fw_image(struct mwl8k_priv *priv,
const u8 *data, size_t length)
{
unsigned char *buffer;
int may_continue, rc = 0;
u32 done, prev_block_size;
buffer = kmalloc(1024, GFP_KERNEL);
if (buffer == NULL)
return -ENOMEM;
done = 0;
prev_block_size = 0;
may_continue = 1000;
while (may_continue > 0) {
u32 block_size;
block_size = ioread32(priv->regs + MWL8K_HIU_SCRATCH);
if (block_size & 1) {
block_size &= ~1;
may_continue--;
} else {
done += prev_block_size;
length -= prev_block_size;
}
if (block_size > 1024 || block_size > length) {
rc = -EOVERFLOW;
break;
}
if (length == 0) {
rc = 0;
break;
}
if (block_size == 0) {
rc = -EPROTO;
may_continue--;
udelay(1);
continue;
}
prev_block_size = block_size;
memcpy(buffer, data + done, block_size);
rc = mwl8k_send_fw_load_cmd(priv, buffer, block_size);
if (rc)
break;
}
if (!rc && length != 0)
rc = -EREMOTEIO;
kfree(buffer);
return rc;
}
static int mwl8k_load_firmware(struct mwl8k_priv *priv)
{
int loops, rc;
const u8 *ucode = priv->fw.ucode->data;
size_t ucode_len = priv->fw.ucode->size;
const u8 *helper = priv->fw.helper->data;
size_t helper_len = priv->fw.helper->size;
if (!memcmp(ucode, "\x01\x00\x00\x00", 4)) {
rc = mwl8k_load_fw_image(priv, helper, helper_len);
if (rc) {
printk(KERN_ERR "%s: unable to load firmware "
"helper image\n", pci_name(priv->pdev));
return rc;
}
msleep(1);
rc = mwl8k_feed_fw_image(priv, ucode, ucode_len);
} else {
rc = mwl8k_load_fw_image(priv, ucode, ucode_len);
}
if (rc) {
printk(KERN_ERR "%s: unable to load firmware data\n",
pci_name(priv->pdev));
return rc;
}
iowrite32(MWL8K_MODE_STA, priv->regs + MWL8K_HIU_GEN_PTR);
msleep(1);
loops = 200000;
do {
if (ioread32(priv->regs + MWL8K_HIU_INT_CODE)
== MWL8K_FWSTA_READY)
break;
udelay(1);
} while (--loops);
return loops ? 0 : -ETIMEDOUT;
}
/*
* Defines shared between transmission and reception.
*/
/* HT control fields for firmware */
struct ewc_ht_info {
__le16 control1;
__le16 control2;
__le16 control3;
} __attribute__((packed));
/* Firmware Station database operations */
#define MWL8K_STA_DB_ADD_ENTRY 0
#define MWL8K_STA_DB_MODIFY_ENTRY 1
#define MWL8K_STA_DB_DEL_ENTRY 2
#define MWL8K_STA_DB_FLUSH 3
/* Peer Entry flags - used to define the type of the peer node */
#define MWL8K_PEER_TYPE_ACCESSPOINT 2
#define MWL8K_PEER_TYPE_ADHOC_STATION 4
#define MWL8K_IEEE_LEGACY_DATA_RATES 12
#define MWL8K_MCS_BITMAP_SIZE 16
#define pad_size 16
struct peer_capability_info {
/* Peer type - AP vs. STA. */
__u8 peer_type;
/* Basic 802.11 capabilities from assoc resp. */
__le16 basic_caps;
/* Set if peer supports 802.11n high throughput (HT). */
__u8 ht_support;
/* Valid if HT is supported. */
__le16 ht_caps;
__u8 extended_ht_caps;
struct ewc_ht_info ewc_info;
/* Legacy rate table. Intersection of our rates and peer rates. */
__u8 legacy_rates[MWL8K_IEEE_LEGACY_DATA_RATES];
/* HT rate table. Intersection of our rates and peer rates. */
__u8 ht_rates[MWL8K_MCS_BITMAP_SIZE];
__u8 pad[pad_size];
/* If set, interoperability mode, no proprietary extensions. */
__u8 interop;
__u8 pad2;
__u8 station_id;
__le16 amsdu_enabled;
} __attribute__((packed));
/* Inline functions to manipulate QoS field in data descriptor. */
static inline u16 mwl8k_qos_setbit_tid(u16 qos, u8 tid)
{
u16 val_mask = 0x000f;
u16 qos_mask = ~val_mask;
/* TID bits 0-3 */
return (qos & qos_mask) | (tid & val_mask);
}
static inline u16 mwl8k_qos_setbit_eosp(u16 qos)
{
u16 val_mask = 1 << 4;
/* End of Service Period Bit 4 */
return qos | val_mask;
}
static inline u16 mwl8k_qos_setbit_ack(u16 qos, u8 ack_policy)
{
u16 val_mask = 0x3;
u8 shift = 5;
u16 qos_mask = ~(val_mask << shift);
/* Ack Policy Bit 5-6 */
return (qos & qos_mask) | ((ack_policy & val_mask) << shift);
}
static inline u16 mwl8k_qos_setbit_amsdu(u16 qos)
{
u16 val_mask = 1 << 7;
/* AMSDU present Bit 7 */
return qos | val_mask;
}
static inline u16 mwl8k_qos_setbit_qlen(u16 qos, u8 len)
{
u16 val_mask = 0xff;
u8 shift = 8;
u16 qos_mask = ~(val_mask << shift);
/* Queue Length Bits 8-15 */
return (qos & qos_mask) | ((len & val_mask) << shift);
}
/* DMA header used by firmware and hardware. */
struct mwl8k_dma_data {
__le16 fwlen;
struct ieee80211_hdr wh;
} __attribute__((packed));
/* Routines to add/remove DMA header from skb. */
static inline int mwl8k_remove_dma_header(struct sk_buff *skb)
{
struct mwl8k_dma_data *tr = (struct mwl8k_dma_data *)(skb->data);
void *dst, *src = &tr->wh;
__le16 fc = tr->wh.frame_control;
int hdrlen = ieee80211_hdrlen(fc);
u16 space = sizeof(struct mwl8k_dma_data) - hdrlen;
dst = (void *)tr + space;
if (dst != src) {
memmove(dst, src, hdrlen);
skb_pull(skb, space);
}
return 0;
}
static inline struct sk_buff *mwl8k_add_dma_header(struct sk_buff *skb)
{
struct ieee80211_hdr *wh;
u32 hdrlen, pktlen;
struct mwl8k_dma_data *tr;
wh = (struct ieee80211_hdr *)skb->data;
hdrlen = ieee80211_hdrlen(wh->frame_control);
pktlen = skb->len;
/*
* Copy up/down the 802.11 header; the firmware requires
* we present a 2-byte payload length followed by a
* 4-address header (w/o QoS), followed (optionally) by
* any WEP/ExtIV header (but only filled in for CCMP).
*/
if (hdrlen != sizeof(struct mwl8k_dma_data))
skb_push(skb, sizeof(struct mwl8k_dma_data) - hdrlen);
tr = (struct mwl8k_dma_data *)skb->data;
if (wh != &tr->wh)
memmove(&tr->wh, wh, hdrlen);
/* Clear addr4 */
memset(tr->wh.addr4, 0, IEEE80211_ADDR_LEN);
/*
* Firmware length is the length of the fully formed "802.11
* payload". That is, everything except for the 802.11 header.
* This includes all crypto material including the MIC.
*/
tr->fwlen = cpu_to_le16(pktlen - hdrlen);
return skb;
}
/*
* Packet reception.
*/
#define MWL8K_RX_CTRL_KEY_INDEX_MASK 0x30
#define MWL8K_RX_CTRL_OWNED_BY_HOST 0x02
#define MWL8K_RX_CTRL_AMPDU 0x01
struct mwl8k_rx_desc {
__le16 pkt_len;
__u8 link_quality;
__u8 noise_level;
__le32 pkt_phys_addr;
__le32 next_rx_desc_phys_addr;
__le16 qos_control;
__le16 rate_info;
__le32 pad0[4];
__u8 rssi;
__u8 channel;
__le16 pad1;
__u8 rx_ctrl;
__u8 rx_status;
__u8 pad2[2];
} __attribute__((packed));
#define MWL8K_RX_DESCS 256
#define MWL8K_RX_MAXSZ 3800
static int mwl8k_rxq_init(struct ieee80211_hw *hw, int index)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_rx_queue *rxq = priv->rxq + index;
int size;
int i;
rxq->rx_desc_count = 0;
rxq->rx_head = 0;
rxq->rx_tail = 0;
size = MWL8K_RX_DESCS * sizeof(struct mwl8k_rx_desc);
rxq->rx_desc_area =
pci_alloc_consistent(priv->pdev, size, &rxq->rx_desc_dma);
if (rxq->rx_desc_area == NULL) {
printk(KERN_ERR "%s: failed to alloc RX descriptors\n",
priv->name);
return -ENOMEM;
}
memset(rxq->rx_desc_area, 0, size);
rxq->rx_skb = kmalloc(MWL8K_RX_DESCS *
sizeof(*rxq->rx_skb), GFP_KERNEL);
if (rxq->rx_skb == NULL) {
printk(KERN_ERR "%s: failed to alloc RX skbuff list\n",
priv->name);
pci_free_consistent(priv->pdev, size,
rxq->rx_desc_area, rxq->rx_desc_dma);
return -ENOMEM;
}
memset(rxq->rx_skb, 0, MWL8K_RX_DESCS * sizeof(*rxq->rx_skb));
for (i = 0; i < MWL8K_RX_DESCS; i++) {
struct mwl8k_rx_desc *rx_desc;
int nexti;
rx_desc = rxq->rx_desc_area + i;
nexti = (i + 1) % MWL8K_RX_DESCS;
rx_desc->next_rx_desc_phys_addr =
cpu_to_le32(rxq->rx_desc_dma
+ nexti * sizeof(*rx_desc));
rx_desc->rx_ctrl =
cpu_to_le32(MWL8K_RX_CTRL_OWNED_BY_HOST);
}
return 0;
}
static int rxq_refill(struct ieee80211_hw *hw, int index, int limit)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_rx_queue *rxq = priv->rxq + index;
int refilled;
refilled = 0;
while (rxq->rx_desc_count < MWL8K_RX_DESCS && limit--) {
struct sk_buff *skb;
int rx;
skb = dev_alloc_skb(MWL8K_RX_MAXSZ);
if (skb == NULL)
break;
rxq->rx_desc_count++;
rx = rxq->rx_tail;
rxq->rx_tail = (rx + 1) % MWL8K_RX_DESCS;
rxq->rx_desc_area[rx].pkt_phys_addr =
cpu_to_le32(pci_map_single(priv->pdev, skb->data,
MWL8K_RX_MAXSZ, DMA_FROM_DEVICE));
rxq->rx_desc_area[rx].pkt_len = cpu_to_le16(MWL8K_RX_MAXSZ);
rxq->rx_skb[rx] = skb;
wmb();
rxq->rx_desc_area[rx].rx_ctrl = 0;
refilled++;
}
return refilled;
}
/* Must be called only when the card's reception is completely halted */
static void mwl8k_rxq_deinit(struct ieee80211_hw *hw, int index)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_rx_queue *rxq = priv->rxq + index;
int i;
for (i = 0; i < MWL8K_RX_DESCS; i++) {
if (rxq->rx_skb[i] != NULL) {
unsigned long addr;
addr = le32_to_cpu(rxq->rx_desc_area[i].pkt_phys_addr);
pci_unmap_single(priv->pdev, addr, MWL8K_RX_MAXSZ,
PCI_DMA_FROMDEVICE);
kfree_skb(rxq->rx_skb[i]);
rxq->rx_skb[i] = NULL;
}
}
kfree(rxq->rx_skb);
rxq->rx_skb = NULL;
pci_free_consistent(priv->pdev,
MWL8K_RX_DESCS * sizeof(struct mwl8k_rx_desc),
rxq->rx_desc_area, rxq->rx_desc_dma);
rxq->rx_desc_area = NULL;
}
/*
* Scan a list of BSSIDs to process for finalize join.
* Allows for extension to process multiple BSSIDs.
*/
static inline int
mwl8k_capture_bssid(struct mwl8k_priv *priv, struct ieee80211_hdr *wh)
{
return priv->capture_beacon &&
ieee80211_is_beacon(wh->frame_control) &&
!compare_ether_addr(wh->addr3, priv->capture_bssid);
}
static inline void mwl8k_save_beacon(struct mwl8k_priv *priv,
struct sk_buff *skb)
{
priv->capture_beacon = false;
memset(priv->capture_bssid, 0, IEEE80211_ADDR_LEN);
/*
* Use GFP_ATOMIC as rxq_process is called from
* the primary interrupt handler, memory allocation call
* must not sleep.
*/
priv->beacon_skb = skb_copy(skb, GFP_ATOMIC);
if (priv->beacon_skb != NULL)
queue_work(priv->config_wq,
&priv->finalize_join_worker);
}
static int rxq_process(struct ieee80211_hw *hw, int index, int limit)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_rx_queue *rxq = priv->rxq + index;
int processed;
processed = 0;
while (rxq->rx_desc_count && limit--) {
struct mwl8k_rx_desc *rx_desc;
struct sk_buff *skb;
struct ieee80211_rx_status status;
unsigned long addr;
struct ieee80211_hdr *wh;
rx_desc = rxq->rx_desc_area + rxq->rx_head;
if (!(rx_desc->rx_ctrl & MWL8K_RX_CTRL_OWNED_BY_HOST))
break;
rmb();
skb = rxq->rx_skb[rxq->rx_head];
rxq->rx_skb[rxq->rx_head] = NULL;
rxq->rx_head = (rxq->rx_head + 1) % MWL8K_RX_DESCS;
rxq->rx_desc_count--;
addr = le32_to_cpu(rx_desc->pkt_phys_addr);
pci_unmap_single(priv->pdev, addr,
MWL8K_RX_MAXSZ, PCI_DMA_FROMDEVICE);
skb_put(skb, le16_to_cpu(rx_desc->pkt_len));
if (mwl8k_remove_dma_header(skb)) {
dev_kfree_skb(skb);
continue;
}
wh = (struct ieee80211_hdr *)skb->data;
/*
* Check for pending join operation. save a copy of
* the beacon and schedule a tasklet to send finalize
* join command to the firmware.
*/
if (mwl8k_capture_bssid(priv, wh))
mwl8k_save_beacon(priv, skb);
memset(&status, 0, sizeof(status));
status.mactime = 0;
status.signal = -rx_desc->rssi;
status.noise = -rx_desc->noise_level;
status.qual = rx_desc->link_quality;
status.antenna = 1;
status.rate_idx = 1;
status.flag = 0;
status.band = IEEE80211_BAND_2GHZ;
status.freq = ieee80211_channel_to_frequency(rx_desc->channel);
ieee80211_rx_irqsafe(hw, skb, &status);
processed++;
}
return processed;
}
/*
* Packet transmission.
*/
/* Transmit queue assignment. */
enum {
MWL8K_WME_AC_BK = 0, /* background access */
MWL8K_WME_AC_BE = 1, /* best effort access */
MWL8K_WME_AC_VI = 2, /* video access */
MWL8K_WME_AC_VO = 3, /* voice access */
};
/* Transmit packet ACK policy */
#define MWL8K_TXD_ACK_POLICY_NORMAL 0
#define MWL8K_TXD_ACK_POLICY_NONE 1
#define MWL8K_TXD_ACK_POLICY_NO_EXPLICIT 2
#define MWL8K_TXD_ACK_POLICY_BLOCKACK 3
#define GET_TXQ(_ac) (\
((_ac) == WME_AC_VO) ? MWL8K_WME_AC_VO : \
((_ac) == WME_AC_VI) ? MWL8K_WME_AC_VI : \
((_ac) == WME_AC_BK) ? MWL8K_WME_AC_BK : \
MWL8K_WME_AC_BE)
#define MWL8K_TXD_STATUS_IDLE 0x00000000
#define MWL8K_TXD_STATUS_USED 0x00000001
#define MWL8K_TXD_STATUS_OK 0x00000001
#define MWL8K_TXD_STATUS_OK_RETRY 0x00000002
#define MWL8K_TXD_STATUS_OK_MORE_RETRY 0x00000004
#define MWL8K_TXD_STATUS_MULTICAST_TX 0x00000008
#define MWL8K_TXD_STATUS_BROADCAST_TX 0x00000010
#define MWL8K_TXD_STATUS_FAILED_LINK_ERROR 0x00000020
#define MWL8K_TXD_STATUS_FAILED_EXCEED_LIMIT 0x00000040
#define MWL8K_TXD_STATUS_FAILED_AGING 0x00000080
#define MWL8K_TXD_STATUS_HOST_CMD 0x40000000
#define MWL8K_TXD_STATUS_FW_OWNED 0x80000000
#define MWL8K_TXD_SOFTSTALE 0x80
#define MWL8K_TXD_SOFTSTALE_MGMT_RETRY 0x01
struct mwl8k_tx_desc {
__le32 status;
__u8 data_rate;
__u8 tx_priority;
__le16 qos_control;
__le32 pkt_phys_addr;
__le16 pkt_len;
__u8 dest_MAC_addr[IEEE80211_ADDR_LEN];
__le32 next_tx_desc_phys_addr;
__le32 reserved;
__le16 rate_info;
__u8 peer_id;
__u8 tx_frag_cnt;
} __attribute__((packed));
#define MWL8K_TX_DESCS 128
static int mwl8k_txq_init(struct ieee80211_hw *hw, int index)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_tx_queue *txq = priv->txq + index;
int size;
int i;
memset(&txq->tx_stats, 0,
sizeof(struct ieee80211_tx_queue_stats));
txq->tx_stats.limit = MWL8K_TX_DESCS;
txq->tx_head = 0;
txq->tx_tail = 0;
size = MWL8K_TX_DESCS * sizeof(struct mwl8k_tx_desc);
txq->tx_desc_area =
pci_alloc_consistent(priv->pdev, size, &txq->tx_desc_dma);
if (txq->tx_desc_area == NULL) {
printk(KERN_ERR "%s: failed to alloc TX descriptors\n",
priv->name);
return -ENOMEM;
}
memset(txq->tx_desc_area, 0, size);
txq->tx_skb = kmalloc(MWL8K_TX_DESCS * sizeof(*txq->tx_skb),
GFP_KERNEL);
if (txq->tx_skb == NULL) {
printk(KERN_ERR "%s: failed to alloc TX skbuff list\n",
priv->name);
pci_free_consistent(priv->pdev, size,
txq->tx_desc_area, txq->tx_desc_dma);
return -ENOMEM;
}
memset(txq->tx_skb, 0, MWL8K_TX_DESCS * sizeof(*txq->tx_skb));
for (i = 0; i < MWL8K_TX_DESCS; i++) {
struct mwl8k_tx_desc *tx_desc;
int nexti;
tx_desc = txq->tx_desc_area + i;
nexti = (i + 1) % MWL8K_TX_DESCS;
tx_desc->status = 0;
tx_desc->next_tx_desc_phys_addr =
cpu_to_le32(txq->tx_desc_dma +
nexti * sizeof(*tx_desc));
}
return 0;
}
static inline void mwl8k_tx_start(struct mwl8k_priv *priv)
{
iowrite32(MWL8K_H2A_INT_PPA_READY,
priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
iowrite32(MWL8K_H2A_INT_DUMMY,
priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
ioread32(priv->regs + MWL8K_HIU_INT_CODE);
}
static inline int mwl8k_txq_busy(struct mwl8k_priv *priv)
{
return priv->pending_tx_pkts;
}
struct mwl8k_txq_info {
u32 fw_owned;
u32 drv_owned;
u32 unused;
u32 len;
u32 head;
u32 tail;
};
static int mwl8k_scan_tx_ring(struct mwl8k_priv *priv,
struct mwl8k_txq_info txinfo[],
u32 num_queues)
{
int count, desc, status;
struct mwl8k_tx_queue *txq;
struct mwl8k_tx_desc *tx_desc;
int ndescs = 0;
memset(txinfo, 0, num_queues * sizeof(struct mwl8k_txq_info));
spin_lock_bh(&priv->tx_lock);
for (count = 0; count < num_queues; count++) {
txq = priv->txq + count;
txinfo[count].len = txq->tx_stats.len;
txinfo[count].head = txq->tx_head;
txinfo[count].tail = txq->tx_tail;
for (desc = 0; desc < MWL8K_TX_DESCS; desc++) {
tx_desc = txq->tx_desc_area + desc;
status = le32_to_cpu(tx_desc->status);
if (status & MWL8K_TXD_STATUS_FW_OWNED)
txinfo[count].fw_owned++;
else
txinfo[count].drv_owned++;
if (tx_desc->pkt_len == 0)
txinfo[count].unused++;
}
}
spin_unlock_bh(&priv->tx_lock);
return ndescs;
}
static int mwl8k_tx_wait_empty(struct ieee80211_hw *hw, u32 delay_ms)
{
u32 count = 0;
unsigned long timeout = 0;
struct mwl8k_priv *priv = hw->priv;
DECLARE_COMPLETION_ONSTACK(cmd_wait);
might_sleep();
if (priv->tx_wait != NULL)
printk(KERN_ERR "WARNING Previous TXWaitEmpty instance\n");
spin_lock_bh(&priv->tx_lock);
count = mwl8k_txq_busy(priv);
if (count) {
priv->tx_wait = &cmd_wait;
if (priv->radio_state)
mwl8k_tx_start(priv);
}
spin_unlock_bh(&priv->tx_lock);
if (count) {
struct mwl8k_txq_info txinfo[4];
int index;
int newcount;
timeout = wait_for_completion_timeout(&cmd_wait,
msecs_to_jiffies(delay_ms));
if (timeout)
return 0;
spin_lock_bh(&priv->tx_lock);
priv->tx_wait = NULL;
newcount = mwl8k_txq_busy(priv);
spin_unlock_bh(&priv->tx_lock);
printk(KERN_ERR "%s(%u) TIMEDOUT:%ums Pend:%u-->%u\n",
__func__, __LINE__, delay_ms, count, newcount);
mwl8k_scan_tx_ring(priv, txinfo, 4);
for (index = 0 ; index < 4; index++)
printk(KERN_ERR
"TXQ:%u L:%u H:%u T:%u FW:%u DRV:%u U:%u\n",
index,
txinfo[index].len,
txinfo[index].head,
txinfo[index].tail,
txinfo[index].fw_owned,
txinfo[index].drv_owned,
txinfo[index].unused);
return -ETIMEDOUT;
}
return 0;
}
#define MWL8K_TXD_OK (MWL8K_TXD_STATUS_OK | \
MWL8K_TXD_STATUS_OK_RETRY | \
MWL8K_TXD_STATUS_OK_MORE_RETRY)
#define MWL8K_TXD_SUCCESS(stat) ((stat) & MWL8K_TXD_OK)
#define MWL8K_TXD_FAIL_RETRY(stat) \
((stat) & (MWL8K_TXD_STATUS_FAILED_EXCEED_LIMIT))
static void mwl8k_txq_reclaim(struct ieee80211_hw *hw, int index, int force)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_tx_queue *txq = priv->txq + index;
int wake = 0;
while (txq->tx_stats.len > 0) {
int tx;
int rc;
struct mwl8k_tx_desc *tx_desc;
unsigned long addr;
size_t size;
struct sk_buff *skb;
struct ieee80211_tx_info *info;
u32 status;
rc = 0;
tx = txq->tx_head;
tx_desc = txq->tx_desc_area + tx;
status = le32_to_cpu(tx_desc->status);
if (status & MWL8K_TXD_STATUS_FW_OWNED) {
if (!force)
break;
tx_desc->status &=
~cpu_to_le32(MWL8K_TXD_STATUS_FW_OWNED);
}
txq->tx_head = (tx + 1) % MWL8K_TX_DESCS;
BUG_ON(txq->tx_stats.len == 0);
txq->tx_stats.len--;
priv->pending_tx_pkts--;
addr = le32_to_cpu(tx_desc->pkt_phys_addr);
size = (u32)(le16_to_cpu(tx_desc->pkt_len));
skb = txq->tx_skb[tx].skb;
txq->tx_skb[tx].skb = NULL;
BUG_ON(skb == NULL);
pci_unmap_single(priv->pdev, addr, size, PCI_DMA_TODEVICE);
rc = mwl8k_remove_dma_header(skb);
/* Mark descriptor as unused */
tx_desc->pkt_phys_addr = 0;
tx_desc->pkt_len = 0;
if (txq->tx_skb[tx].clone) {
/* Replace with original skb
* before returning to stack
* as buffer has been cloned
*/
dev_kfree_skb(skb);
skb = txq->tx_skb[tx].clone;
txq->tx_skb[tx].clone = NULL;
}
if (rc) {
/* Something has gone wrong here.
* Failed to remove DMA header.
* Print error message and drop packet.
*/
printk(KERN_ERR "%s: Error removing DMA header from "
"tx skb 0x%p.\n", priv->name, skb);
dev_kfree_skb(skb);
continue;
}
info = IEEE80211_SKB_CB(skb);
ieee80211_tx_info_clear_status(info);
/* Convert firmware status stuff into tx_status */
if (MWL8K_TXD_SUCCESS(status)) {
/* Transmit OK */
info->flags |= IEEE80211_TX_STAT_ACK;
}
ieee80211_tx_status_irqsafe(hw, skb);
wake = !priv->inconfig && priv->radio_state;
}
if (wake)
ieee80211_wake_queue(hw, index);
}
/* must be called only when the card's transmit is completely halted */
static void mwl8k_txq_deinit(struct ieee80211_hw *hw, int index)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_tx_queue *txq = priv->txq + index;
mwl8k_txq_reclaim(hw, index, 1);
kfree(txq->tx_skb);
txq->tx_skb = NULL;
pci_free_consistent(priv->pdev,
MWL8K_TX_DESCS * sizeof(struct mwl8k_tx_desc),
txq->tx_desc_area, txq->tx_desc_dma);
txq->tx_desc_area = NULL;
}
static int
mwl8k_txq_xmit(struct ieee80211_hw *hw, int index, struct sk_buff *skb)
{
struct mwl8k_priv *priv = hw->priv;
struct ieee80211_tx_info *tx_info;
struct ieee80211_hdr *wh;
struct mwl8k_tx_queue *txq;
struct mwl8k_tx_desc *tx;
struct mwl8k_dma_data *tr;
struct mwl8k_vif *mwl8k_vif;
struct sk_buff *org_skb = skb;
dma_addr_t dma;
u16 qos = 0;
bool qosframe = false, ampduframe = false;
bool mcframe = false, eapolframe = false;
bool amsduframe = false;
__le16 fc;
txq = priv->txq + index;
tx = txq->tx_desc_area + txq->tx_tail;
BUG_ON(txq->tx_skb[txq->tx_tail].skb != NULL);
/*
* Append HW DMA header to start of packet. Drop packet if
* there is not enough space or a failure to unshare/unclone
* the skb.
*/
skb = mwl8k_add_dma_header(skb);
if (skb == NULL) {
printk(KERN_DEBUG "%s: failed to prepend HW DMA "
"header, dropping TX frame.\n", priv->name);
dev_kfree_skb(org_skb);
return NETDEV_TX_OK;
}
tx_info = IEEE80211_SKB_CB(skb);
mwl8k_vif = MWL8K_VIF(tx_info->control.vif);
tr = (struct mwl8k_dma_data *)skb->data;
wh = &tr->wh;
fc = wh->frame_control;
qosframe = ieee80211_is_data_qos(fc);
mcframe = is_multicast_ether_addr(wh->addr1);
ampduframe = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
if (tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
u16 seqno = mwl8k_vif->seqno;
wh->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
wh->seq_ctrl |= cpu_to_le16(seqno << 4);
mwl8k_vif->seqno = seqno++ % 4096;
}
if (qosframe)
qos = le16_to_cpu(*((__le16 *)ieee80211_get_qos_ctl(wh)));
dma = pci_map_single(priv->pdev, skb->data,
skb->len, PCI_DMA_TODEVICE);
if (pci_dma_mapping_error(priv->pdev, dma)) {
printk(KERN_DEBUG "%s: failed to dma map skb, "
"dropping TX frame.\n", priv->name);
if (org_skb != NULL)
dev_kfree_skb(org_skb);
if (skb != NULL)
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
/* Set desc header, cpu bit order. */
tx->status = 0;
tx->data_rate = 0;
tx->tx_priority = index;
tx->qos_control = 0;
tx->rate_info = 0;
tx->peer_id = mwl8k_vif->peer_id;
amsduframe = !!(qos & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT);
/* Setup firmware control bit fields for each frame type. */
if (ieee80211_is_mgmt(fc) || ieee80211_is_ctl(fc)) {
tx->data_rate = 0;
qos = mwl8k_qos_setbit_eosp(qos);
/* Set Queue size to unspecified */
qos = mwl8k_qos_setbit_qlen(qos, 0xff);
} else if (ieee80211_is_data(fc)) {
tx->data_rate = 1;
if (mcframe)
tx->status |= MWL8K_TXD_STATUS_MULTICAST_TX;
/*
* Tell firmware to not send EAPOL pkts in an
* aggregate. Verify against mac80211 tx path. If
* stack turns off AMPDU for an EAPOL frame this
* check will be removed.
*/
if (eapolframe) {
qos = mwl8k_qos_setbit_ack(qos,
MWL8K_TXD_ACK_POLICY_NORMAL);
} else {
/* Send pkt in an aggregate if AMPDU frame. */
if (ampduframe)
qos = mwl8k_qos_setbit_ack(qos,
MWL8K_TXD_ACK_POLICY_BLOCKACK);
else
qos = mwl8k_qos_setbit_ack(qos,
MWL8K_TXD_ACK_POLICY_NORMAL);
if (amsduframe)
qos = mwl8k_qos_setbit_amsdu(qos);
}
}
/* Convert to little endian */
tx->qos_control = cpu_to_le16(qos);
tx->status = cpu_to_le32(tx->status);
tx->pkt_phys_addr = cpu_to_le32(dma);
tx->pkt_len = cpu_to_le16(skb->len);
txq->tx_skb[txq->tx_tail].skb = skb;
txq->tx_skb[txq->tx_tail].clone =
skb == org_skb ? NULL : org_skb;
spin_lock_bh(&priv->tx_lock);
tx->status = cpu_to_le32(MWL8K_TXD_STATUS_OK |
MWL8K_TXD_STATUS_FW_OWNED);
wmb();
txq->tx_stats.len++;
priv->pending_tx_pkts++;
txq->tx_stats.count++;
txq->tx_tail++;
if (txq->tx_tail == MWL8K_TX_DESCS)
txq->tx_tail = 0;
if (txq->tx_head == txq->tx_tail)
ieee80211_stop_queue(hw, index);
if (priv->inconfig) {
/*
* Silently queue packet when we are in the middle of
* a config cycle. Notify firmware only if we are
* waiting for TXQs to empty. If a packet is sent
* before .config() is complete, perhaps it is better
* to drop the packet, as the channel is being changed
* and the packet will end up on the wrong channel.
*/
printk(KERN_ERR "%s(): WARNING TX activity while "
"in config\n", __func__);
if (priv->tx_wait != NULL)
mwl8k_tx_start(priv);
} else
mwl8k_tx_start(priv);
spin_unlock_bh(&priv->tx_lock);
return NETDEV_TX_OK;
}
/*
* Command processing.
*/
/* Timeout firmware commands after 2000ms */
#define MWL8K_CMD_TIMEOUT_MS 2000
static int mwl8k_post_cmd(struct ieee80211_hw *hw, struct mwl8k_cmd_pkt *cmd)
{
DECLARE_COMPLETION_ONSTACK(cmd_wait);
struct mwl8k_priv *priv = hw->priv;
void __iomem *regs = priv->regs;
dma_addr_t dma_addr;
unsigned int dma_size;
int rc;
u16 __iomem *result;
unsigned long timeout = 0;
u8 buf[32];
cmd->result = 0xFFFF;
dma_size = le16_to_cpu(cmd->length);
dma_addr = pci_map_single(priv->pdev, cmd, dma_size,
PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(priv->pdev, dma_addr))
return -ENOMEM;
if (priv->hostcmd_wait != NULL)
printk(KERN_ERR "WARNING host command in progress\n");
spin_lock_irq(&priv->fw_lock);
priv->hostcmd_wait = &cmd_wait;
iowrite32(dma_addr, regs + MWL8K_HIU_GEN_PTR);
iowrite32(MWL8K_H2A_INT_DOORBELL,
regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
iowrite32(MWL8K_H2A_INT_DUMMY,
regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
spin_unlock_irq(&priv->fw_lock);
timeout = wait_for_completion_timeout(&cmd_wait,
msecs_to_jiffies(MWL8K_CMD_TIMEOUT_MS));
result = &cmd->result;
if (!timeout) {
spin_lock_irq(&priv->fw_lock);
priv->hostcmd_wait = NULL;
spin_unlock_irq(&priv->fw_lock);
printk(KERN_ERR "%s: Command %s timeout after %u ms\n",
priv->name,
mwl8k_cmd_name(cmd->code, buf, sizeof(buf)),
MWL8K_CMD_TIMEOUT_MS);
rc = -ETIMEDOUT;
} else {
rc = *result ? -EINVAL : 0;
if (rc)
printk(KERN_ERR "%s: Command %s error 0x%x\n",
priv->name,
mwl8k_cmd_name(cmd->code, buf, sizeof(buf)),
*result);
}
pci_unmap_single(priv->pdev, dma_addr, dma_size,
PCI_DMA_BIDIRECTIONAL);
return rc;
}
/*
* GET_HW_SPEC.
*/
struct mwl8k_cmd_get_hw_spec {
struct mwl8k_cmd_pkt header;
__u8 hw_rev;
__u8 host_interface;
__le16 num_mcaddrs;
__u8 perm_addr[IEEE80211_ADDR_LEN];
__le16 region_code;
__le32 fw_rev;
__le32 ps_cookie;
__le32 caps;
__u8 mcs_bitmap[16];
__le32 rx_queue_ptr;
__le32 num_tx_queues;
__le32 tx_queue_ptrs[MWL8K_TX_QUEUES];
__le32 caps2;
__le32 num_tx_desc_per_queue;
__le32 total_rx_desc;
} __attribute__((packed));
static int mwl8k_cmd_get_hw_spec(struct ieee80211_hw *hw)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_cmd_get_hw_spec *cmd;
int rc;
int i;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_GET_HW_SPEC);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
memset(cmd->perm_addr, 0xff, sizeof(cmd->perm_addr));
cmd->ps_cookie = cpu_to_le32(priv->cookie_dma);
cmd->rx_queue_ptr = cpu_to_le32(priv->rxq[0].rx_desc_dma);
cmd->num_tx_queues = MWL8K_TX_QUEUES;
for (i = 0; i < MWL8K_TX_QUEUES; i++)
cmd->tx_queue_ptrs[i] = cpu_to_le32(priv->txq[i].tx_desc_dma);
cmd->num_tx_desc_per_queue = MWL8K_TX_DESCS;
cmd->total_rx_desc = MWL8K_RX_DESCS;
rc = mwl8k_post_cmd(hw, &cmd->header);
if (!rc) {
SET_IEEE80211_PERM_ADDR(hw, cmd->perm_addr);
priv->num_mcaddrs = le16_to_cpu(cmd->num_mcaddrs);
priv->fw_rev = cmd->fw_rev;
priv->hw_rev = cmd->hw_rev;
priv->region_code = le16_to_cpu(cmd->region_code);
}
kfree(cmd);
return rc;
}
/*
* CMD_MAC_MULTICAST_ADR.
*/
struct mwl8k_cmd_mac_multicast_adr {
struct mwl8k_cmd_pkt header;
__le16 action;
__le16 numaddr;
__u8 addr[1][IEEE80211_ADDR_LEN];
};
#define MWL8K_ENABLE_RX_MULTICAST 0x000F
static int mwl8k_cmd_mac_multicast_adr(struct ieee80211_hw *hw,
int mc_count,
struct dev_addr_list *mclist)
{
struct mwl8k_cmd_mac_multicast_adr *cmd;
int index = 0;
int rc;
int size = sizeof(*cmd) + ((mc_count - 1) * IEEE80211_ADDR_LEN);
cmd = kzalloc(size, GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_MAC_MULTICAST_ADR);
cmd->header.length = cpu_to_le16(size);
cmd->action = cpu_to_le16(MWL8K_ENABLE_RX_MULTICAST);
cmd->numaddr = cpu_to_le16(mc_count);
while ((index < mc_count) && mclist) {
if (mclist->da_addrlen != IEEE80211_ADDR_LEN) {
rc = -EINVAL;
goto mwl8k_cmd_mac_multicast_adr_exit;
}
memcpy(cmd->addr[index], mclist->da_addr, IEEE80211_ADDR_LEN);
index++;
mclist = mclist->next;
}
rc = mwl8k_post_cmd(hw, &cmd->header);
mwl8k_cmd_mac_multicast_adr_exit:
kfree(cmd);
return rc;
}
/*
* CMD_802_11_GET_STAT.
*/
struct mwl8k_cmd_802_11_get_stat {
struct mwl8k_cmd_pkt header;
__le16 action;
__le32 stats[64];
} __attribute__((packed));
#define MWL8K_STAT_ACK_FAILURE 9
#define MWL8K_STAT_RTS_FAILURE 12
#define MWL8K_STAT_FCS_ERROR 24
#define MWL8K_STAT_RTS_SUCCESS 11
static int mwl8k_cmd_802_11_get_stat(struct ieee80211_hw *hw,
struct ieee80211_low_level_stats *stats)
{
struct mwl8k_cmd_802_11_get_stat *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_GET_STAT);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le16(MWL8K_CMD_GET);
rc = mwl8k_post_cmd(hw, &cmd->header);
if (!rc) {
stats->dot11ACKFailureCount =
le32_to_cpu(cmd->stats[MWL8K_STAT_ACK_FAILURE]);
stats->dot11RTSFailureCount =
le32_to_cpu(cmd->stats[MWL8K_STAT_RTS_FAILURE]);
stats->dot11FCSErrorCount =
le32_to_cpu(cmd->stats[MWL8K_STAT_FCS_ERROR]);
stats->dot11RTSSuccessCount =
le32_to_cpu(cmd->stats[MWL8K_STAT_RTS_SUCCESS]);
}
kfree(cmd);
return rc;
}
/*
* CMD_802_11_RADIO_CONTROL.
*/
struct mwl8k_cmd_802_11_radio_control {
struct mwl8k_cmd_pkt header;
__le16 action;
__le16 control;
__le16 radio_on;
} __attribute__((packed));
static int mwl8k_cmd_802_11_radio_control(struct ieee80211_hw *hw, int enable)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_cmd_802_11_radio_control *cmd;
int rc;
if (((enable & MWL8K_RADIO_ENABLE) == priv->radio_state) &&
!(enable & MWL8K_RADIO_FORCE))
return 0;
enable &= MWL8K_RADIO_ENABLE;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_RADIO_CONTROL);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le16(MWL8K_CMD_SET);
cmd->control = cpu_to_le16(priv->radio_preamble);
cmd->radio_on = cpu_to_le16(enable ? 0x0001 : 0x0000);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
if (!rc)
priv->radio_state = enable;
return rc;
}
static int
mwl8k_set_radio_preamble(struct ieee80211_hw *hw, bool short_preamble)
{
struct mwl8k_priv *priv;
if (hw == NULL || hw->priv == NULL)
return -EINVAL;
priv = hw->priv;
priv->radio_preamble = (short_preamble ?
MWL8K_RADIO_SHORT_PREAMBLE :
MWL8K_RADIO_LONG_PREAMBLE);
return mwl8k_cmd_802_11_radio_control(hw,
MWL8K_RADIO_ENABLE | MWL8K_RADIO_FORCE);
}
/*
* CMD_802_11_RF_TX_POWER.
*/
#define MWL8K_TX_POWER_LEVEL_TOTAL 8
struct mwl8k_cmd_802_11_rf_tx_power {
struct mwl8k_cmd_pkt header;
__le16 action;
__le16 support_level;
__le16 current_level;
__le16 reserved;
__le16 power_level_list[MWL8K_TX_POWER_LEVEL_TOTAL];
} __attribute__((packed));
static int mwl8k_cmd_802_11_rf_tx_power(struct ieee80211_hw *hw, int dBm)
{
struct mwl8k_cmd_802_11_rf_tx_power *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_RF_TX_POWER);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le16(MWL8K_CMD_SET);
cmd->support_level = cpu_to_le16(dBm);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_PRE_SCAN.
*/
struct mwl8k_cmd_set_pre_scan {
struct mwl8k_cmd_pkt header;
} __attribute__((packed));
static int mwl8k_cmd_set_pre_scan(struct ieee80211_hw *hw)
{
struct mwl8k_cmd_set_pre_scan *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_PRE_SCAN);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_POST_SCAN.
*/
struct mwl8k_cmd_set_post_scan {
struct mwl8k_cmd_pkt header;
__le32 isibss;
__u8 bssid[IEEE80211_ADDR_LEN];
} __attribute__((packed));
static int
mwl8k_cmd_set_post_scan(struct ieee80211_hw *hw, __u8 mac[IEEE80211_ADDR_LEN])
{
struct mwl8k_cmd_set_post_scan *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_POST_SCAN);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->isibss = 0;
memcpy(cmd->bssid, mac, IEEE80211_ADDR_LEN);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_RF_CHANNEL.
*/
struct mwl8k_cmd_set_rf_channel {
struct mwl8k_cmd_pkt header;
__le16 action;
__u8 current_channel;
__le32 channel_flags;
} __attribute__((packed));
static int mwl8k_cmd_set_rf_channel(struct ieee80211_hw *hw,
struct ieee80211_channel *channel)
{
struct mwl8k_cmd_set_rf_channel *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_RF_CHANNEL);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le16(MWL8K_CMD_SET);
cmd->current_channel = channel->hw_value;
if (channel->band == IEEE80211_BAND_2GHZ)
cmd->channel_flags = cpu_to_le32(0x00000081);
else
cmd->channel_flags = cpu_to_le32(0x00000000);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_SLOT.
*/
struct mwl8k_cmd_set_slot {
struct mwl8k_cmd_pkt header;
__le16 action;
__u8 short_slot;
} __attribute__((packed));
static int mwl8k_cmd_set_slot(struct ieee80211_hw *hw, int slot_time)
{
struct mwl8k_cmd_set_slot *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_SLOT);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le16(MWL8K_CMD_SET);
cmd->short_slot = slot_time == MWL8K_SHORT_SLOTTIME ? 1 : 0;
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_MIMO_CONFIG.
*/
struct mwl8k_cmd_mimo_config {
struct mwl8k_cmd_pkt header;
__le32 action;
__u8 rx_antenna_map;
__u8 tx_antenna_map;
} __attribute__((packed));
static int mwl8k_cmd_mimo_config(struct ieee80211_hw *hw, __u8 rx, __u8 tx)
{
struct mwl8k_cmd_mimo_config *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_MIMO_CONFIG);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le32((u32)MWL8K_CMD_SET);
cmd->rx_antenna_map = rx;
cmd->tx_antenna_map = tx;
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_ENABLE_SNIFFER.
*/
struct mwl8k_cmd_enable_sniffer {
struct mwl8k_cmd_pkt header;
__le32 action;
} __attribute__((packed));
static int mwl8k_enable_sniffer(struct ieee80211_hw *hw, bool enable)
{
struct mwl8k_cmd_enable_sniffer *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_ENABLE_SNIFFER);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = enable ? cpu_to_le32((u32)MWL8K_CMD_SET) : 0;
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_RATE_ADAPT_MODE.
*/
struct mwl8k_cmd_set_rate_adapt_mode {
struct mwl8k_cmd_pkt header;
__le16 action;
__le16 mode;
} __attribute__((packed));
static int mwl8k_cmd_setrateadaptmode(struct ieee80211_hw *hw, __u16 mode)
{
struct mwl8k_cmd_set_rate_adapt_mode *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_RATEADAPT_MODE);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le16(MWL8K_CMD_SET);
cmd->mode = cpu_to_le16(mode);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_WMM_MODE.
*/
struct mwl8k_cmd_set_wmm {
struct mwl8k_cmd_pkt header;
__le16 action;
} __attribute__((packed));
static int mwl8k_set_wmm(struct ieee80211_hw *hw, bool enable)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_cmd_set_wmm *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_WMM_MODE);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = enable ? cpu_to_le16(MWL8K_CMD_SET) : 0;
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
if (!rc)
priv->wmm_mode = enable;
return rc;
}
/*
* CMD_SET_RTS_THRESHOLD.
*/
struct mwl8k_cmd_rts_threshold {
struct mwl8k_cmd_pkt header;
__le16 action;
__le16 threshold;
} __attribute__((packed));
static int mwl8k_rts_threshold(struct ieee80211_hw *hw,
u16 action, u16 *threshold)
{
struct mwl8k_cmd_rts_threshold *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_RTS_THRESHOLD);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le16(action);
cmd->threshold = cpu_to_le16(*threshold);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_EDCA_PARAMS.
*/
struct mwl8k_cmd_set_edca_params {
struct mwl8k_cmd_pkt header;
/* See MWL8K_SET_EDCA_XXX below */
__le16 action;
/* TX opportunity in units of 32 us */
__le16 txop;
/* Log exponent of max contention period: 0...15*/
__u8 log_cw_max;
/* Log exponent of min contention period: 0...15 */
__u8 log_cw_min;
/* Adaptive interframe spacing in units of 32us */
__u8 aifs;
/* TX queue to configure */
__u8 txq;
} __attribute__((packed));
#define MWL8K_GET_EDCA_ALL 0
#define MWL8K_SET_EDCA_CW 0x01
#define MWL8K_SET_EDCA_TXOP 0x02
#define MWL8K_SET_EDCA_AIFS 0x04
#define MWL8K_SET_EDCA_ALL (MWL8K_SET_EDCA_CW | \
MWL8K_SET_EDCA_TXOP | \
MWL8K_SET_EDCA_AIFS)
static int
mwl8k_set_edca_params(struct ieee80211_hw *hw, __u8 qnum,
__u16 cw_min, __u16 cw_max,
__u8 aifs, __u16 txop)
{
struct mwl8k_cmd_set_edca_params *cmd;
u32 log_cw_min, log_cw_max;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
log_cw_min = ilog2(cw_min+1);
log_cw_max = ilog2(cw_max+1);
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_EDCA_PARAMS);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le16(MWL8K_SET_EDCA_ALL);
cmd->txop = cpu_to_le16(txop);
cmd->log_cw_max = (u8)log_cw_max;
cmd->log_cw_min = (u8)log_cw_min;
cmd->aifs = aifs;
cmd->txq = qnum;
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_FINALIZE_JOIN.
*/
/* FJ beacon buffer size is compiled into the firmware. */
#define MWL8K_FJ_BEACON_MAXLEN 128
struct mwl8k_cmd_finalize_join {
struct mwl8k_cmd_pkt header;
__le32 sleep_interval; /* Number of beacon periods to sleep */
__u8 beacon_data[MWL8K_FJ_BEACON_MAXLEN];
} __attribute__((packed));
static int mwl8k_finalize_join(struct ieee80211_hw *hw, void *frame,
__u16 framelen, __u16 dtim)
{
struct mwl8k_cmd_finalize_join *cmd;
struct ieee80211_mgmt *payload = frame;
u16 hdrlen;
u32 payload_len;
int rc;
if (frame == NULL)
return -EINVAL;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_FINALIZE_JOIN);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
if (dtim)
cmd->sleep_interval = cpu_to_le32(dtim);
else
cmd->sleep_interval = cpu_to_le32(1);
hdrlen = ieee80211_hdrlen(payload->frame_control);
payload_len = framelen > hdrlen ? framelen - hdrlen : 0;
/* XXX TBD Might just have to abort and return an error */
if (payload_len > MWL8K_FJ_BEACON_MAXLEN)
printk(KERN_ERR "%s(): WARNING: Incomplete beacon "
"sent to firmware. Sz=%u MAX=%u\n", __func__,
payload_len, MWL8K_FJ_BEACON_MAXLEN);
payload_len = payload_len > MWL8K_FJ_BEACON_MAXLEN ?
MWL8K_FJ_BEACON_MAXLEN : payload_len;
if (payload && payload_len)
memcpy(cmd->beacon_data, &payload->u.beacon, payload_len);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_UPDATE_STADB.
*/
struct mwl8k_cmd_update_sta_db {
struct mwl8k_cmd_pkt header;
/* See STADB_ACTION_TYPE */
__le32 action;
/* Peer MAC address */
__u8 peer_addr[IEEE80211_ADDR_LEN];
__le32 reserved;
/* Peer info - valid during add/update. */
struct peer_capability_info peer_info;
} __attribute__((packed));
static int mwl8k_cmd_update_sta_db(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, __u32 action)
{
struct mwl8k_vif *mv_vif = MWL8K_VIF(vif);
struct ieee80211_bss_conf *info = &mv_vif->bss_info;
struct mwl8k_cmd_update_sta_db *cmd;
struct peer_capability_info *peer_info;
struct ieee80211_rate *bitrates = mv_vif->legacy_rates;
DECLARE_MAC_BUF(mac);
int rc;
__u8 count, *rates;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_UPDATE_STADB);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le32(action);
peer_info = &cmd->peer_info;
memcpy(cmd->peer_addr, mv_vif->bssid, IEEE80211_ADDR_LEN);
switch (action) {
case MWL8K_STA_DB_ADD_ENTRY:
case MWL8K_STA_DB_MODIFY_ENTRY:
/* Build peer_info block */
peer_info->peer_type = MWL8K_PEER_TYPE_ACCESSPOINT;
peer_info->basic_caps = cpu_to_le16(info->assoc_capability);
peer_info->interop = 1;
peer_info->amsdu_enabled = 0;
rates = peer_info->legacy_rates;
for (count = 0 ; count < mv_vif->legacy_nrates; count++)
rates[count] = bitrates[count].hw_value;
rc = mwl8k_post_cmd(hw, &cmd->header);
if (rc == 0)
mv_vif->peer_id = peer_info->station_id;
break;
case MWL8K_STA_DB_DEL_ENTRY:
case MWL8K_STA_DB_FLUSH:
default:
rc = mwl8k_post_cmd(hw, &cmd->header);
if (rc == 0)
mv_vif->peer_id = 0;
break;
}
kfree(cmd);
return rc;
}
/*
* CMD_SET_AID.
*/
#define IEEE80211_OPMODE_DISABLED 0x00
#define IEEE80211_OPMODE_NON_MEMBER_PROT_MODE 0x01
#define IEEE80211_OPMODE_ONE_20MHZ_STA_PROT_MODE 0x02
#define IEEE80211_OPMODE_HTMIXED_PROT_MODE 0x03
#define MWL8K_RATE_INDEX_MAX_ARRAY 14
#define MWL8K_FRAME_PROT_DISABLED 0x00
#define MWL8K_FRAME_PROT_11G 0x07
#define MWL8K_FRAME_PROT_11N_HT_40MHZ_ONLY 0x02
#define MWL8K_FRAME_PROT_11N_HT_ALL 0x06
#define MWL8K_FRAME_PROT_MASK 0x07
struct mwl8k_cmd_update_set_aid {
struct mwl8k_cmd_pkt header;
__le16 aid;
/* AP's MAC address (BSSID) */
__u8 bssid[IEEE80211_ADDR_LEN];
__le16 protection_mode;
__u8 supp_rates[MWL8K_RATE_INDEX_MAX_ARRAY];
} __attribute__((packed));
static int mwl8k_cmd_set_aid(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct mwl8k_vif *mv_vif = MWL8K_VIF(vif);
struct ieee80211_bss_conf *info = &mv_vif->bss_info;
struct mwl8k_cmd_update_set_aid *cmd;
struct ieee80211_rate *bitrates = mv_vif->legacy_rates;
int count;
u16 prot_mode;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_AID);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->aid = cpu_to_le16(info->aid);
memcpy(cmd->bssid, mv_vif->bssid, IEEE80211_ADDR_LEN);
prot_mode = MWL8K_FRAME_PROT_DISABLED;
if (info->use_cts_prot) {
prot_mode = MWL8K_FRAME_PROT_11G;
} else {
switch (info->ht.operation_mode &
IEEE80211_HT_OP_MODE_PROTECTION) {
case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ:
prot_mode = MWL8K_FRAME_PROT_11N_HT_40MHZ_ONLY;
break;
case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED:
prot_mode = MWL8K_FRAME_PROT_11N_HT_ALL;
break;
default:
prot_mode = MWL8K_FRAME_PROT_DISABLED;
break;
}
}
cmd->protection_mode = cpu_to_le16(prot_mode);
for (count = 0; count < mv_vif->legacy_nrates; count++)
cmd->supp_rates[count] = bitrates[count].hw_value;
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_RATE.
*/
struct mwl8k_cmd_update_rateset {
struct mwl8k_cmd_pkt header;
__u8 legacy_rates[MWL8K_RATE_INDEX_MAX_ARRAY];
/* Bitmap for supported MCS codes. */
__u8 mcs_set[MWL8K_IEEE_LEGACY_DATA_RATES];
__u8 reserved[MWL8K_IEEE_LEGACY_DATA_RATES];
} __attribute__((packed));
static int mwl8k_update_rateset(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct mwl8k_vif *mv_vif = MWL8K_VIF(vif);
struct mwl8k_cmd_update_rateset *cmd;
struct ieee80211_rate *bitrates = mv_vif->legacy_rates;
int count;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_RATE);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
for (count = 0; count < mv_vif->legacy_nrates; count++)
cmd->legacy_rates[count] = bitrates[count].hw_value;
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_USE_FIXED_RATE.
*/
#define MWL8K_RATE_TABLE_SIZE 8
#define MWL8K_UCAST_RATE 0
#define MWL8K_MCAST_RATE 1
#define MWL8K_BCAST_RATE 2
#define MWL8K_USE_FIXED_RATE 0x0001
#define MWL8K_USE_AUTO_RATE 0x0002
struct mwl8k_rate_entry {
/* Set to 1 if HT rate, 0 if legacy. */
__le32 is_ht_rate;
/* Set to 1 to use retry_count field. */
__le32 enable_retry;
/* Specified legacy rate or MCS. */
__le32 rate;
/* Number of allowed retries. */
__le32 retry_count;
} __attribute__((packed));
struct mwl8k_rate_table {
/* 1 to allow specified rate and below */
__le32 allow_rate_drop;
__le32 num_rates;
struct mwl8k_rate_entry rate_entry[MWL8K_RATE_TABLE_SIZE];
} __attribute__((packed));
struct mwl8k_cmd_use_fixed_rate {
struct mwl8k_cmd_pkt header;
__le32 action;
struct mwl8k_rate_table rate_table;
/* Unicast, Broadcast or Multicast */
__le32 rate_type;
__le32 reserved1;
__le32 reserved2;
} __attribute__((packed));
static int mwl8k_cmd_use_fixed_rate(struct ieee80211_hw *hw,
u32 action, u32 rate_type, struct mwl8k_rate_table *rate_table)
{
struct mwl8k_cmd_use_fixed_rate *cmd;
int count;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_USE_FIXED_RATE);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le32(action);
cmd->rate_type = cpu_to_le32(rate_type);
if (rate_table != NULL) {
/* Copy over each field manually so
* that bitflipping can be done
*/
cmd->rate_table.allow_rate_drop =
cpu_to_le32(rate_table->allow_rate_drop);
cmd->rate_table.num_rates =
cpu_to_le32(rate_table->num_rates);
for (count = 0; count < rate_table->num_rates; count++) {
struct mwl8k_rate_entry *dst =
&cmd->rate_table.rate_entry[count];
struct mwl8k_rate_entry *src =
&rate_table->rate_entry[count];
dst->is_ht_rate = cpu_to_le32(src->is_ht_rate);
dst->enable_retry = cpu_to_le32(src->enable_retry);
dst->rate = cpu_to_le32(src->rate);
dst->retry_count = cpu_to_le32(src->retry_count);
}
}
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* Interrupt handling.
*/
static irqreturn_t mwl8k_interrupt(int irq, void *dev_id)
{
struct ieee80211_hw *hw = dev_id;
struct mwl8k_priv *priv = hw->priv;
u32 status;
status = ioread32(priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS);
iowrite32(~status, priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS);
status &= priv->int_mask;
if (!status)
return IRQ_NONE;
if (status & MWL8K_A2H_INT_TX_DONE)
tasklet_schedule(&priv->tx_reclaim_task);
if (status & MWL8K_A2H_INT_RX_READY) {
while (rxq_process(hw, 0, 1))
rxq_refill(hw, 0, 1);
}
if (status & MWL8K_A2H_INT_OPC_DONE) {
if (priv->hostcmd_wait != NULL) {
complete(priv->hostcmd_wait);
priv->hostcmd_wait = NULL;
}
}
if (status & MWL8K_A2H_INT_QUEUE_EMPTY) {
if (!priv->inconfig &&
priv->radio_state &&
mwl8k_txq_busy(priv))
mwl8k_tx_start(priv);
}
return IRQ_HANDLED;
}
/*
* Core driver operations.
*/
static int mwl8k_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
{
struct mwl8k_priv *priv = hw->priv;
int index = skb_get_queue_mapping(skb);
int rc;
if (priv->current_channel == NULL) {
printk(KERN_DEBUG "%s: dropped TX frame since radio "
"disabled\n", priv->name);
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
rc = mwl8k_txq_xmit(hw, index, skb);
return rc;
}
struct mwl8k_work_struct {
/* Initialized by mwl8k_queue_work(). */
struct work_struct wt;
/* Required field passed in to mwl8k_queue_work(). */
struct ieee80211_hw *hw;
/* Required field passed in to mwl8k_queue_work(). */
int (*wfunc)(struct work_struct *w);
/* Initialized by mwl8k_queue_work(). */
struct completion *cmd_wait;
/* Result code. */
int rc;
/*
* Optional field. Refer to explanation of MWL8K_WQ_XXX_XXX
* flags for explanation. Defaults to MWL8K_WQ_DEFAULT_OPTIONS.
*/
u32 options;
/* Optional field. Defaults to MWL8K_CONFIG_TIMEOUT_MS. */
unsigned long timeout_ms;
/* Optional field. Defaults to MWL8K_WQ_TXWAIT_ATTEMPTS. */
u32 txwait_attempts;
/* Optional field. Defaults to MWL8K_TXWAIT_MS. */
u32 tx_timeout_ms;
u32 step;
};
/* Flags controlling behavior of config queue requests */
/* Caller spins while waiting for completion. */
#define MWL8K_WQ_SPIN 0x00000001
/* Wait for TX queues to empty before proceeding with configuration. */
#define MWL8K_WQ_TX_WAIT_EMPTY 0x00000002
/* Queue request and return immediately. */
#define MWL8K_WQ_POST_REQUEST 0x00000004
/*
* Caller sleeps and waits for task complete notification.
* Do not use in atomic context.
*/
#define MWL8K_WQ_SLEEP 0x00000008
/* Free work struct when task is done. */
#define MWL8K_WQ_FREE_WORKSTRUCT 0x00000010
/*
* Config request is queued and returns to caller imediately. Use
* this in atomic context. Work struct is freed by mwl8k_queue_work()
* when this flag is set.
*/
#define MWL8K_WQ_QUEUE_ONLY (MWL8K_WQ_POST_REQUEST | \
MWL8K_WQ_FREE_WORKSTRUCT)
/* Default work queue behavior is to sleep and wait for tx completion. */
#define MWL8K_WQ_DEFAULT_OPTIONS (MWL8K_WQ_SLEEP | MWL8K_WQ_TX_WAIT_EMPTY)
/*
* Default config request timeout. Add adjustments to make sure the
* config thread waits long enough for both tx wait and cmd wait before
* timing out.
*/
/* Time to wait for all TXQs to drain. TX Doorbell is pressed each time. */
#define MWL8K_TXWAIT_TIMEOUT_MS 1000
/* Default number of TX wait attempts. */
#define MWL8K_WQ_TXWAIT_ATTEMPTS 4
/* Total time to wait for TXQ to drain. */
#define MWL8K_TXWAIT_MS (MWL8K_TXWAIT_TIMEOUT_MS * \
MWL8K_WQ_TXWAIT_ATTEMPTS)
/* Scheduling slop. */
#define MWL8K_OS_SCHEDULE_OVERHEAD_MS 200
#define MWL8K_CONFIG_TIMEOUT_MS (MWL8K_CMD_TIMEOUT_MS + \
MWL8K_TXWAIT_MS + \
MWL8K_OS_SCHEDULE_OVERHEAD_MS)
static void mwl8k_config_thread(struct work_struct *wt)
{
struct mwl8k_work_struct *worker = (struct mwl8k_work_struct *)wt;
struct ieee80211_hw *hw = worker->hw;
struct mwl8k_priv *priv = hw->priv;
int rc = 0;
spin_lock_irq(&priv->tx_lock);
priv->inconfig = true;
spin_unlock_irq(&priv->tx_lock);
ieee80211_stop_queues(hw);
/*
* Wait for host queues to drain before doing PHY
* reconfiguration. This avoids interrupting any in-flight
* DMA transfers to the hardware.
*/
if (worker->options & MWL8K_WQ_TX_WAIT_EMPTY) {
u32 timeout;
u32 time_remaining;
u32 iter;
u32 tx_wait_attempts = worker->txwait_attempts;
time_remaining = worker->tx_timeout_ms;
if (!tx_wait_attempts)
tx_wait_attempts = 1;
timeout = worker->tx_timeout_ms/tx_wait_attempts;
if (!timeout)
timeout = 1;
iter = tx_wait_attempts;
do {
int wait_time;
if (time_remaining > timeout) {
time_remaining -= timeout;
wait_time = timeout;
} else
wait_time = time_remaining;
if (!wait_time)
wait_time = 1;
rc = mwl8k_tx_wait_empty(hw, wait_time);
if (rc)
printk(KERN_ERR "%s() txwait timeout=%ums "
"Retry:%u/%u\n", __func__, timeout,
tx_wait_attempts - iter + 1,
tx_wait_attempts);
} while (rc && --iter);
rc = iter ? 0 : -ETIMEDOUT;
}
if (!rc)
rc = worker->wfunc(wt);
spin_lock_irq(&priv->tx_lock);
priv->inconfig = false;
if (priv->pending_tx_pkts && priv->radio_state)
mwl8k_tx_start(priv);
spin_unlock_irq(&priv->tx_lock);
ieee80211_wake_queues(hw);
worker->rc = rc;
if (worker->options & MWL8K_WQ_SLEEP)
complete(worker->cmd_wait);
if (worker->options & MWL8K_WQ_FREE_WORKSTRUCT)
kfree(wt);
}
static int mwl8k_queue_work(struct ieee80211_hw *hw,
struct mwl8k_work_struct *worker,
struct workqueue_struct *wqueue,
int (*wfunc)(struct work_struct *w))
{
unsigned long timeout = 0;
int rc = 0;
DECLARE_COMPLETION_ONSTACK(cmd_wait);
if (!worker->timeout_ms)
worker->timeout_ms = MWL8K_CONFIG_TIMEOUT_MS;
if (!worker->options)
worker->options = MWL8K_WQ_DEFAULT_OPTIONS;
if (!worker->txwait_attempts)
worker->txwait_attempts = MWL8K_WQ_TXWAIT_ATTEMPTS;
if (!worker->tx_timeout_ms)
worker->tx_timeout_ms = MWL8K_TXWAIT_MS;
worker->hw = hw;
worker->cmd_wait = &cmd_wait;
worker->rc = 1;
worker->wfunc = wfunc;
INIT_WORK(&worker->wt, mwl8k_config_thread);
queue_work(wqueue, &worker->wt);
if (worker->options & MWL8K_WQ_POST_REQUEST) {
rc = 0;
} else {
if (worker->options & MWL8K_WQ_SPIN) {
timeout = worker->timeout_ms;
while (timeout && (worker->rc > 0)) {
mdelay(1);
timeout--;
}
} else if (worker->options & MWL8K_WQ_SLEEP)
timeout = wait_for_completion_timeout(&cmd_wait,
msecs_to_jiffies(worker->timeout_ms));
if (timeout)
rc = worker->rc;
else {
cancel_work_sync(&worker->wt);
rc = -ETIMEDOUT;
}
}
return rc;
}
struct mwl8k_start_worker {
struct mwl8k_work_struct header;
};
static int mwl8k_start_wt(struct work_struct *wt)
{
struct mwl8k_start_worker *worker = (struct mwl8k_start_worker *)wt;
struct ieee80211_hw *hw = worker->header.hw;
struct mwl8k_priv *priv = hw->priv;
int rc = 0;
if (priv->vif != NULL) {
rc = -EIO;
goto mwl8k_start_exit;
}
/* Turn on radio */
if (mwl8k_cmd_802_11_radio_control(hw, MWL8K_RADIO_ENABLE)) {
rc = -EIO;
goto mwl8k_start_exit;
}
/* Purge TX/RX HW queues */
if (mwl8k_cmd_set_pre_scan(hw)) {
rc = -EIO;
goto mwl8k_start_exit;
}
if (mwl8k_cmd_set_post_scan(hw, "\x00\x00\x00\x00\x00\x00")) {
rc = -EIO;
goto mwl8k_start_exit;
}
/* Enable firmware rate adaptation */
if (mwl8k_cmd_setrateadaptmode(hw, 0)) {
rc = -EIO;
goto mwl8k_start_exit;
}
/* Disable WMM. WMM gets enabled when stack sends WMM parms */
if (mwl8k_set_wmm(hw, MWL8K_WMM_DISABLE)) {
rc = -EIO;
goto mwl8k_start_exit;
}
/* Disable sniffer mode */
if (mwl8k_enable_sniffer(hw, 0))
rc = -EIO;
mwl8k_start_exit:
return rc;
}
static int mwl8k_start(struct ieee80211_hw *hw)
{
struct mwl8k_start_worker *worker;
struct mwl8k_priv *priv = hw->priv;
int rc;
/* Enable tx reclaim tasklet */
tasklet_enable(&priv->tx_reclaim_task);
rc = request_irq(priv->pdev->irq, &mwl8k_interrupt,
IRQF_SHARED, MWL8K_NAME, hw);
if (rc) {
printk(KERN_ERR "%s: failed to register IRQ handler\n",
priv->name);
rc = -EIO;
goto mwl8k_start_disable_tasklet;
}
/* Enable interrupts */
iowrite32(priv->int_mask, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
worker = kzalloc(sizeof(*worker), GFP_KERNEL);
if (worker == NULL) {
rc = -ENOMEM;
goto mwl8k_start_disable_irq;
}
rc = mwl8k_queue_work(hw, &worker->header,
priv->config_wq, mwl8k_start_wt);
kfree(worker);
if (!rc)
return rc;
if (rc == -ETIMEDOUT)
printk(KERN_ERR "%s() timed out\n", __func__);
rc = -EIO;
mwl8k_start_disable_irq:
spin_lock_irq(&priv->tx_lock);
iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
spin_unlock_irq(&priv->tx_lock);
free_irq(priv->pdev->irq, hw);
mwl8k_start_disable_tasklet:
tasklet_disable(&priv->tx_reclaim_task);
return rc;
}
struct mwl8k_stop_worker {
struct mwl8k_work_struct header;
};
static int mwl8k_stop_wt(struct work_struct *wt)
{
struct mwl8k_stop_worker *worker = (struct mwl8k_stop_worker *)wt;
struct ieee80211_hw *hw = worker->header.hw;
int rc;
rc = mwl8k_cmd_802_11_radio_control(hw, MWL8K_RADIO_DISABLE);
return rc;
}
static void mwl8k_stop(struct ieee80211_hw *hw)
{
int rc;
struct mwl8k_stop_worker *worker;
struct mwl8k_priv *priv = hw->priv;
int i;
if (priv->vif != NULL)
return;
ieee80211_stop_queues(hw);
worker = kzalloc(sizeof(*worker), GFP_KERNEL);
if (worker == NULL)
return;
rc = mwl8k_queue_work(hw, &worker->header,
priv->config_wq, mwl8k_stop_wt);
kfree(worker);
if (rc == -ETIMEDOUT)
printk(KERN_ERR "%s() timed out\n", __func__);
/* Disable interrupts */
spin_lock_irq(&priv->tx_lock);
iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
spin_unlock_irq(&priv->tx_lock);
free_irq(priv->pdev->irq, hw);
/* Stop finalize join worker */
cancel_work_sync(&priv->finalize_join_worker);
if (priv->beacon_skb != NULL)
dev_kfree_skb(priv->beacon_skb);
/* Stop tx reclaim tasklet */
tasklet_disable(&priv->tx_reclaim_task);
/* Stop config thread */
flush_workqueue(priv->config_wq);
/* Return all skbs to mac80211 */
for (i = 0; i < MWL8K_TX_QUEUES; i++)
mwl8k_txq_reclaim(hw, i, 1);
}
static int mwl8k_add_interface(struct ieee80211_hw *hw,
struct ieee80211_if_init_conf *conf)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_vif *mwl8k_vif;
/*
* We only support one active interface at a time.
*/
if (priv->vif != NULL)
return -EBUSY;
/*
* We only support managed interfaces for now.
*/
if (conf->type != NL80211_IFTYPE_STATION &&
conf->type != NL80211_IFTYPE_MONITOR)
return -EINVAL;
/* Clean out driver private area */
mwl8k_vif = MWL8K_VIF(conf->vif);
memset(mwl8k_vif, 0, sizeof(*mwl8k_vif));
/* Save the mac address */
memcpy(mwl8k_vif->mac_addr, conf->mac_addr, IEEE80211_ADDR_LEN);
/* Back pointer to parent config block */
mwl8k_vif->priv = priv;
/* Setup initial PHY parameters */
memcpy(mwl8k_vif->legacy_rates ,
priv->rates, sizeof(mwl8k_vif->legacy_rates));
mwl8k_vif->legacy_nrates = ARRAY_SIZE(priv->rates);
/* Set Initial sequence number to zero */
mwl8k_vif->seqno = 0;
priv->vif = conf->vif;
priv->current_channel = NULL;
return 0;
}
static void mwl8k_remove_interface(struct ieee80211_hw *hw,
struct ieee80211_if_init_conf *conf)
{
struct mwl8k_priv *priv = hw->priv;
if (priv->vif == NULL)
return;
priv->vif = NULL;
}
struct mwl8k_config_worker {
struct mwl8k_work_struct header;
u32 changed;
};
static int mwl8k_config_wt(struct work_struct *wt)
{
struct mwl8k_config_worker *worker =
(struct mwl8k_config_worker *)wt;
struct ieee80211_hw *hw = worker->header.hw;
struct ieee80211_conf *conf = &hw->conf;
struct mwl8k_priv *priv = hw->priv;
int rc = 0;
if (!conf->radio_enabled) {
mwl8k_cmd_802_11_radio_control(hw, MWL8K_RADIO_DISABLE);
priv->current_channel = NULL;
rc = 0;
goto mwl8k_config_exit;
}
if (mwl8k_cmd_802_11_radio_control(hw, MWL8K_RADIO_ENABLE)) {
rc = -EINVAL;
goto mwl8k_config_exit;
}
priv->current_channel = conf->channel;
if (mwl8k_cmd_set_rf_channel(hw, conf->channel)) {
rc = -EINVAL;
goto mwl8k_config_exit;
}
if (conf->power_level > 18)
conf->power_level = 18;
if (mwl8k_cmd_802_11_rf_tx_power(hw, conf->power_level)) {
rc = -EINVAL;
goto mwl8k_config_exit;
}
if (mwl8k_cmd_mimo_config(hw, 0x7, 0x7))
rc = -EINVAL;
mwl8k_config_exit:
return rc;
}
static int mwl8k_config(struct ieee80211_hw *hw, u32 changed)
{
int rc = 0;
struct mwl8k_config_worker *worker;
struct mwl8k_priv *priv = hw->priv;
worker = kzalloc(sizeof(*worker), GFP_KERNEL);
if (worker == NULL)
return -ENOMEM;
worker->changed = changed;
rc = mwl8k_queue_work(hw, &worker->header,
priv->config_wq, mwl8k_config_wt);
if (rc == -ETIMEDOUT) {
printk(KERN_ERR "%s() timed out.\n", __func__);
rc = -EINVAL;
}
kfree(worker);
/*
* mac80211 will crash on anything other than -EINVAL on
* error. Looks like wireless extensions which calls mac80211
* may be the actual culprit...
*/
return rc ? -EINVAL : 0;
}
static int mwl8k_config_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_if_conf *conf)
{
struct mwl8k_vif *mv_vif = MWL8K_VIF(vif);
u32 changed = conf->changed;
if (changed & IEEE80211_IFCC_BSSID)
memcpy(mv_vif->bssid, conf->bssid, IEEE80211_ADDR_LEN);
return 0;
}
struct mwl8k_bss_info_changed_worker {
struct mwl8k_work_struct header;
struct ieee80211_vif *vif;
struct ieee80211_bss_conf *info;
u32 changed;
};
static int mwl8k_bss_info_changed_wt(struct work_struct *wt)
{
struct mwl8k_bss_info_changed_worker *worker =
(struct mwl8k_bss_info_changed_worker *)wt;
struct ieee80211_hw *hw = worker->header.hw;
struct ieee80211_vif *vif = worker->vif;
struct ieee80211_bss_conf *info = worker->info;
u32 changed;
int rc;
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_vif *mwl8k_vif = MWL8K_VIF(vif);
changed = worker->changed;
priv->capture_beacon = false;
if (info->assoc) {
memcpy(&mwl8k_vif->bss_info, info,
sizeof(struct ieee80211_bss_conf));
/* Install rates */
if (mwl8k_update_rateset(hw, vif))
goto mwl8k_bss_info_changed_exit;
/* Turn on rate adaptation */
if (mwl8k_cmd_use_fixed_rate(hw, MWL8K_USE_AUTO_RATE,
MWL8K_UCAST_RATE, NULL))
goto mwl8k_bss_info_changed_exit;
/* Set radio preamble */
if (mwl8k_set_radio_preamble(hw,
info->use_short_preamble))
goto mwl8k_bss_info_changed_exit;
/* Set slot time */
if (mwl8k_cmd_set_slot(hw, info->use_short_slot ?
MWL8K_SHORT_SLOTTIME : MWL8K_LONG_SLOTTIME))
goto mwl8k_bss_info_changed_exit;
/* Update peer rate info */
if (mwl8k_cmd_update_sta_db(hw, vif,
MWL8K_STA_DB_MODIFY_ENTRY))
goto mwl8k_bss_info_changed_exit;
/* Set AID */
if (mwl8k_cmd_set_aid(hw, vif))
goto mwl8k_bss_info_changed_exit;
/*
* Finalize the join. Tell rx handler to process
* next beacon from our BSSID.
*/
memcpy(priv->capture_bssid,
mwl8k_vif->bssid, IEEE80211_ADDR_LEN);
priv->capture_beacon = true;
} else {
mwl8k_cmd_update_sta_db(hw, vif, MWL8K_STA_DB_DEL_ENTRY);
memset(&mwl8k_vif->bss_info, 0,
sizeof(struct ieee80211_bss_conf));
memset(mwl8k_vif->bssid, 0, IEEE80211_ADDR_LEN);
}
mwl8k_bss_info_changed_exit:
rc = 0;
return rc;
}
static void mwl8k_bss_info_changed(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *info,
u32 changed)
{
struct mwl8k_bss_info_changed_worker *worker;
struct mwl8k_priv *priv = hw->priv;
int rc;
if ((changed & BSS_CHANGED_ASSOC) == 0)
return;
worker = kzalloc(sizeof(*worker), GFP_KERNEL);
if (worker == NULL)
return;
worker->vif = vif;
worker->info = info;
worker->changed = changed;
rc = mwl8k_queue_work(hw, &worker->header,
priv->config_wq,
mwl8k_bss_info_changed_wt);
kfree(worker);
if (rc == -ETIMEDOUT)
printk(KERN_ERR "%s() timed out\n", __func__);
}
struct mwl8k_configure_filter_worker {
struct mwl8k_work_struct header;
unsigned int changed_flags;
unsigned int *total_flags;
int mc_count;
struct dev_addr_list *mclist;
};
#define MWL8K_SUPPORTED_IF_FLAGS FIF_BCN_PRBRESP_PROMISC
static int mwl8k_configure_filter_wt(struct work_struct *wt)
{
struct mwl8k_configure_filter_worker *worker =
(struct mwl8k_configure_filter_worker *)wt;
struct ieee80211_hw *hw = worker->header.hw;
unsigned int changed_flags = worker->changed_flags;
unsigned int *total_flags = worker->total_flags;
int mc_count = worker->mc_count;
struct dev_addr_list *mclist = worker->mclist;
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_vif *mv_vif;
int rc = 0;
if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
rc = mwl8k_cmd_set_pre_scan(hw);
else {
mv_vif = MWL8K_VIF(priv->vif);
rc = mwl8k_cmd_set_post_scan(hw, mv_vif->bssid);
}
}
if (rc)
goto mwl8k_configure_filter_exit;
if (mc_count) {
mc_count = mc_count < priv->num_mcaddrs ?
mc_count : priv->num_mcaddrs;
rc = mwl8k_cmd_mac_multicast_adr(hw, mc_count, mclist);
if (rc)
printk(KERN_ERR
"%s()Error setting multicast addresses\n",
__func__);
}
mwl8k_configure_filter_exit:
return rc;
}
static void mwl8k_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *total_flags,
int mc_count,
struct dev_addr_list *mclist)
{
struct mwl8k_configure_filter_worker *worker;
struct mwl8k_priv *priv = hw->priv;
/* Clear unsupported feature flags */
*total_flags &= MWL8K_SUPPORTED_IF_FLAGS;
if (!(changed_flags & MWL8K_SUPPORTED_IF_FLAGS) && !mc_count)
return;
worker = kzalloc(sizeof(*worker), GFP_ATOMIC);
if (worker == NULL)
return;
worker->header.options = MWL8K_WQ_QUEUE_ONLY | MWL8K_WQ_TX_WAIT_EMPTY;
worker->changed_flags = changed_flags;
worker->total_flags = total_flags;
worker->mc_count = mc_count;
worker->mclist = mclist;
mwl8k_queue_work(hw, &worker->header, priv->config_wq,
mwl8k_configure_filter_wt);
}
struct mwl8k_set_rts_threshold_worker {
struct mwl8k_work_struct header;
u32 value;
};
static int mwl8k_set_rts_threshold_wt(struct work_struct *wt)
{
struct mwl8k_set_rts_threshold_worker *worker =
(struct mwl8k_set_rts_threshold_worker *)wt;
struct ieee80211_hw *hw = worker->header.hw;
u16 threshold = (u16)(worker->value);
int rc;
rc = mwl8k_rts_threshold(hw, MWL8K_CMD_SET, &threshold);
return rc;
}
static int mwl8k_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
{
int rc;
struct mwl8k_set_rts_threshold_worker *worker;
struct mwl8k_priv *priv = hw->priv;
worker = kzalloc(sizeof(*worker), GFP_KERNEL);
if (worker == NULL)
return -ENOMEM;
worker->value = value;
rc = mwl8k_queue_work(hw, &worker->header,
priv->config_wq,
mwl8k_set_rts_threshold_wt);
kfree(worker);
if (rc == -ETIMEDOUT) {
printk(KERN_ERR "%s() timed out\n", __func__);
rc = -EINVAL;
}
return rc;
}
struct mwl8k_conf_tx_worker {
struct mwl8k_work_struct header;
u16 queue;
const struct ieee80211_tx_queue_params *params;
};
static int mwl8k_conf_tx_wt(struct work_struct *wt)
{
struct mwl8k_conf_tx_worker *worker =
(struct mwl8k_conf_tx_worker *)wt;
struct ieee80211_hw *hw = worker->header.hw;
u16 queue = worker->queue;
const struct ieee80211_tx_queue_params *params = worker->params;
struct mwl8k_priv *priv = hw->priv;
int rc = 0;
if (priv->wmm_mode == MWL8K_WMM_DISABLE)
if (mwl8k_set_wmm(hw, MWL8K_WMM_ENABLE)) {
rc = -EINVAL;
goto mwl8k_conf_tx_exit;
}
if (mwl8k_set_edca_params(hw, GET_TXQ(queue), params->cw_min,
params->cw_max, params->aifs, params->txop))
rc = -EINVAL;
mwl8k_conf_tx_exit:
return rc;
}
static int mwl8k_conf_tx(struct ieee80211_hw *hw, u16 queue,
const struct ieee80211_tx_queue_params *params)
{
int rc;
struct mwl8k_conf_tx_worker *worker;
struct mwl8k_priv *priv = hw->priv;
worker = kzalloc(sizeof(*worker), GFP_KERNEL);
if (worker == NULL)
return -ENOMEM;
worker->queue = queue;
worker->params = params;
rc = mwl8k_queue_work(hw, &worker->header,
priv->config_wq, mwl8k_conf_tx_wt);
kfree(worker);
if (rc == -ETIMEDOUT) {
printk(KERN_ERR "%s() timed out\n", __func__);
rc = -EINVAL;
}
return rc;
}
static int mwl8k_get_tx_stats(struct ieee80211_hw *hw,
struct ieee80211_tx_queue_stats *stats)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_tx_queue *txq;
int index;
spin_lock_bh(&priv->tx_lock);
for (index = 0; index < MWL8K_TX_QUEUES; index++) {
txq = priv->txq + index;
memcpy(&stats[index], &txq->tx_stats,
sizeof(struct ieee80211_tx_queue_stats));
}
spin_unlock_bh(&priv->tx_lock);
return 0;
}
struct mwl8k_get_stats_worker {
struct mwl8k_work_struct header;
struct ieee80211_low_level_stats *stats;
};
static int mwl8k_get_stats_wt(struct work_struct *wt)
{
struct mwl8k_get_stats_worker *worker =
(struct mwl8k_get_stats_worker *)wt;
return mwl8k_cmd_802_11_get_stat(worker->header.hw, worker->stats);
}
static int mwl8k_get_stats(struct ieee80211_hw *hw,
struct ieee80211_low_level_stats *stats)
{
int rc;
struct mwl8k_get_stats_worker *worker;
struct mwl8k_priv *priv = hw->priv;
worker = kzalloc(sizeof(*worker), GFP_KERNEL);
if (worker == NULL)
return -ENOMEM;
worker->stats = stats;
rc = mwl8k_queue_work(hw, &worker->header,
priv->config_wq, mwl8k_get_stats_wt);
kfree(worker);
if (rc == -ETIMEDOUT) {
printk(KERN_ERR "%s() timed out\n", __func__);
rc = -EINVAL;
}
return rc;
}
static const struct ieee80211_ops mwl8k_ops = {
.tx = mwl8k_tx,
.start = mwl8k_start,
.stop = mwl8k_stop,
.add_interface = mwl8k_add_interface,
.remove_interface = mwl8k_remove_interface,
.config = mwl8k_config,
.config_interface = mwl8k_config_interface,
.bss_info_changed = mwl8k_bss_info_changed,
.configure_filter = mwl8k_configure_filter,
.set_rts_threshold = mwl8k_set_rts_threshold,
.conf_tx = mwl8k_conf_tx,
.get_tx_stats = mwl8k_get_tx_stats,
.get_stats = mwl8k_get_stats,
};
static void mwl8k_tx_reclaim_handler(unsigned long data)
{
int i;
struct ieee80211_hw *hw = (struct ieee80211_hw *) data;
struct mwl8k_priv *priv = hw->priv;
spin_lock_bh(&priv->tx_lock);
for (i = 0; i < MWL8K_TX_QUEUES; i++)
mwl8k_txq_reclaim(hw, i, 0);
if (priv->tx_wait != NULL) {
int count = mwl8k_txq_busy(priv);
if (count == 0) {
complete(priv->tx_wait);
priv->tx_wait = NULL;
}
}
spin_unlock_bh(&priv->tx_lock);
}
static void mwl8k_finalize_join_worker(struct work_struct *work)
{
struct mwl8k_priv *priv =
container_of(work, struct mwl8k_priv, finalize_join_worker);
struct sk_buff *skb = priv->beacon_skb;
u8 dtim = (MWL8K_VIF(priv->vif))->bss_info.dtim_period;
mwl8k_finalize_join(priv->hw, skb->data, skb->len, dtim);
dev_kfree_skb(skb);
priv->beacon_skb = NULL;
}
static int __devinit mwl8k_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct ieee80211_hw *hw;
struct mwl8k_priv *priv;
DECLARE_MAC_BUF(mac);
int rc;
int i;
u8 *fw;
rc = pci_enable_device(pdev);
if (rc) {
printk(KERN_ERR "%s: Cannot enable new PCI device\n",
MWL8K_NAME);
return rc;
}
rc = pci_request_regions(pdev, MWL8K_NAME);
if (rc) {
printk(KERN_ERR "%s: Cannot obtain PCI resources\n",
MWL8K_NAME);
return rc;
}
pci_set_master(pdev);
hw = ieee80211_alloc_hw(sizeof(*priv), &mwl8k_ops);
if (hw == NULL) {
printk(KERN_ERR "%s: ieee80211 alloc failed\n", MWL8K_NAME);
rc = -ENOMEM;
goto err_free_reg;
}
priv = hw->priv;
priv->hw = hw;
priv->pdev = pdev;
priv->hostcmd_wait = NULL;
priv->tx_wait = NULL;
priv->inconfig = false;
priv->wep_enabled = 0;
priv->wmm_mode = false;
priv->pending_tx_pkts = 0;
strncpy(priv->name, MWL8K_NAME, sizeof(priv->name));
spin_lock_init(&priv->fw_lock);
SET_IEEE80211_DEV(hw, &pdev->dev);
pci_set_drvdata(pdev, hw);
priv->regs = pci_iomap(pdev, 1, 0x10000);
if (priv->regs == NULL) {
printk(KERN_ERR "%s: Cannot map device memory\n", priv->name);
goto err_iounmap;
}
memcpy(priv->channels, mwl8k_channels, sizeof(mwl8k_channels));
priv->band.band = IEEE80211_BAND_2GHZ;
priv->band.channels = priv->channels;
priv->band.n_channels = ARRAY_SIZE(mwl8k_channels);
priv->band.bitrates = priv->rates;
priv->band.n_bitrates = ARRAY_SIZE(mwl8k_rates);
hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &priv->band;
BUILD_BUG_ON(sizeof(priv->rates) != sizeof(mwl8k_rates));
memcpy(priv->rates, mwl8k_rates, sizeof(mwl8k_rates));
/*
* Extra headroom is the size of the required DMA header
* minus the size of the smallest 802.11 frame (CTS frame).
*/
hw->extra_tx_headroom =
sizeof(struct mwl8k_dma_data) - sizeof(struct ieee80211_cts);
hw->channel_change_time = 10;
hw->queues = MWL8K_TX_QUEUES;
hw->wiphy->interface_modes =
BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_MONITOR);
/* Set rssi and noise values to dBm */
hw->flags |= (IEEE80211_HW_SIGNAL_DBM | IEEE80211_HW_NOISE_DBM);
hw->vif_data_size = sizeof(struct mwl8k_vif);
priv->vif = NULL;
/* Set default radio state and preamble */
priv->radio_preamble = MWL8K_RADIO_DEFAULT_PREAMBLE;
priv->radio_state = MWL8K_RADIO_DISABLE;
/* Finalize join worker */
INIT_WORK(&priv->finalize_join_worker, mwl8k_finalize_join_worker);
/* TX reclaim tasklet */
tasklet_init(&priv->tx_reclaim_task,
mwl8k_tx_reclaim_handler, (unsigned long)hw);
tasklet_disable(&priv->tx_reclaim_task);
/* Config workthread */
priv->config_wq = create_singlethread_workqueue("mwl8k_config");
if (priv->config_wq == NULL)
goto err_iounmap;
/* Power management cookie */
priv->cookie = pci_alloc_consistent(priv->pdev, 4, &priv->cookie_dma);
if (priv->cookie == NULL)
goto err_iounmap;
rc = mwl8k_rxq_init(hw, 0);
if (rc)
goto err_iounmap;
rxq_refill(hw, 0, INT_MAX);
spin_lock_init(&priv->tx_lock);
for (i = 0; i < MWL8K_TX_QUEUES; i++) {
rc = mwl8k_txq_init(hw, i);
if (rc)
goto err_free_queues;
}
iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS);
priv->int_mask = 0;
iowrite32(priv->int_mask, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_CLEAR_SEL);
iowrite32(0xffffffff, priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS_MASK);
rc = request_irq(priv->pdev->irq, &mwl8k_interrupt,
IRQF_SHARED, MWL8K_NAME, hw);
if (rc) {
printk(KERN_ERR "%s: failed to register IRQ handler\n",
priv->name);
goto err_free_queues;
}
/* Reset firmware and hardware */
mwl8k_hw_reset(priv);
/* Ask userland hotplug daemon for the device firmware */
rc = mwl8k_request_firmware(priv, (u32)id->driver_data);
if (rc) {
printk(KERN_ERR "%s: Firmware files not found\n", priv->name);
goto err_free_irq;
}
/* Load firmware into hardware */
rc = mwl8k_load_firmware(priv);
if (rc) {
printk(KERN_ERR "%s: Cannot start firmware\n", priv->name);
goto err_stop_firmware;
}
/* Reclaim memory once firmware is successfully loaded */
mwl8k_release_firmware(priv);
/*
* Temporarily enable interrupts. Initial firmware host
* commands use interrupts and avoids polling. Disable
* interrupts when done.
*/
priv->int_mask |= MWL8K_A2H_EVENTS;
iowrite32(priv->int_mask, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
/* Get config data, mac addrs etc */
rc = mwl8k_cmd_get_hw_spec(hw);
if (rc) {
printk(KERN_ERR "%s: Cannot initialise firmware\n", priv->name);
goto err_stop_firmware;
}
/* Turn radio off */
rc = mwl8k_cmd_802_11_radio_control(hw, MWL8K_RADIO_DISABLE);
if (rc) {
printk(KERN_ERR "%s: Cannot disable\n", priv->name);
goto err_stop_firmware;
}
/* Disable interrupts */
spin_lock_irq(&priv->tx_lock);
iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
spin_unlock_irq(&priv->tx_lock);
free_irq(priv->pdev->irq, hw);
rc = ieee80211_register_hw(hw);
if (rc) {
printk(KERN_ERR "%s: Cannot register device\n", priv->name);
goto err_stop_firmware;
}
fw = (u8 *)&priv->fw_rev;
printk(KERN_INFO "%s: 88W%u %s\n", priv->name, priv->part_num,
MWL8K_DESC);
printk(KERN_INFO "%s: Driver Ver:%s Firmware Ver:%u.%u.%u.%u\n",
priv->name, MWL8K_VERSION, fw[3], fw[2], fw[1], fw[0]);
printk(KERN_INFO "%s: MAC Address: %s\n", priv->name,
print_mac(mac, hw->wiphy->perm_addr));
return 0;
err_stop_firmware:
mwl8k_hw_reset(priv);
mwl8k_release_firmware(priv);
err_free_irq:
spin_lock_irq(&priv->tx_lock);
iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
spin_unlock_irq(&priv->tx_lock);
free_irq(priv->pdev->irq, hw);
err_free_queues:
for (i = 0; i < MWL8K_TX_QUEUES; i++)
mwl8k_txq_deinit(hw, i);
mwl8k_rxq_deinit(hw, 0);
err_iounmap:
if (priv->cookie != NULL)
pci_free_consistent(priv->pdev, 4,
priv->cookie, priv->cookie_dma);
if (priv->regs != NULL)
pci_iounmap(pdev, priv->regs);
if (priv->config_wq != NULL)
destroy_workqueue(priv->config_wq);
pci_set_drvdata(pdev, NULL);
ieee80211_free_hw(hw);
err_free_reg:
pci_release_regions(pdev);
pci_disable_device(pdev);
return rc;
}
static void __devexit mwl8k_shutdown(struct pci_dev *pdev)
{
printk(KERN_ERR "===>%s(%u)\n", __func__, __LINE__);
}
static void __devexit mwl8k_remove(struct pci_dev *pdev)
{
struct ieee80211_hw *hw = pci_get_drvdata(pdev);
struct mwl8k_priv *priv;
int i;
if (hw == NULL)
return;
priv = hw->priv;
ieee80211_stop_queues(hw);
/* Remove tx reclaim tasklet */
tasklet_kill(&priv->tx_reclaim_task);
/* Stop config thread */
destroy_workqueue(priv->config_wq);
/* Stop hardware */
mwl8k_hw_reset(priv);
/* Return all skbs to mac80211 */
for (i = 0; i < MWL8K_TX_QUEUES; i++)
mwl8k_txq_reclaim(hw, i, 1);
ieee80211_unregister_hw(hw);
for (i = 0; i < MWL8K_TX_QUEUES; i++)
mwl8k_txq_deinit(hw, i);
mwl8k_rxq_deinit(hw, 0);
pci_free_consistent(priv->pdev, 4,
priv->cookie, priv->cookie_dma);
pci_iounmap(pdev, priv->regs);
pci_set_drvdata(pdev, NULL);
ieee80211_free_hw(hw);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
static struct pci_driver mwl8k_driver = {
.name = MWL8K_NAME,
.id_table = mwl8k_table,
.probe = mwl8k_probe,
.remove = __devexit_p(mwl8k_remove),
.shutdown = __devexit_p(mwl8k_shutdown),
};
static int __init mwl8k_init(void)
{
return pci_register_driver(&mwl8k_driver);
}
static void __exit mwl8k_exit(void)
{
pci_unregister_driver(&mwl8k_driver);
}
module_init(mwl8k_init);
module_exit(mwl8k_exit);