linux/fs/btrfs/sysfs.c
Naohiro Aota 2761ece893 btrfs: introduce offload_csum_mode to tweak checksum offloading behavior
We disable offloading checksum to workqueues and do it synchronously when
the checksum algorithm is fast. However, as reported in the link below,
RAID0 with multiple devices may suffer from the sync checksum, because
"fast checksum" is still not fast enough to catch up with RAID0 writing.

We don't have an effective way to determine whether to offload or not,
for now add a sysfs knob so this can be debugged. This is intentionally
under CONFIG_BTRFS_DEBUG so ti's not exposed to users as it may be
removed in the future agin.

Introduce fs_devices->offload_csum_mode, so that a btrfs developer can
change the behavior by writing to /sys/fs/btrfs/<uuid>/offload_csum. The
default is "auto" which is the same as the previous behavior. Or, you
can set "on" or "off" (or "y" or "n" whatever kstrtobool() accepts) to
always/never offload checksum.

More benchmark need to be collected with this knob to implement a proper
criteria to enable/disable checksum offloading.

Link: https://lore.kernel.org/linux-btrfs/20230731152223.4EFB.409509F4@e16-tech.com/
Link: https://lore.kernel.org/linux-btrfs/p3vo3g7pqn664mhmdhlotu5dzcna6vjtcoc2hb2lsgo2fwct7k@xzaxclba5tae/
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-04 16:24:52 +01:00

2494 lines
66 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2007 Oracle. All rights reserved.
*/
#include <linux/sched.h>
#include <linux/sched/mm.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/completion.h>
#include <linux/bug.h>
#include <linux/list.h>
#include <crypto/hash.h>
#include "messages.h"
#include "ctree.h"
#include "discard.h"
#include "disk-io.h"
#include "send.h"
#include "transaction.h"
#include "sysfs.h"
#include "volumes.h"
#include "space-info.h"
#include "block-group.h"
#include "qgroup.h"
#include "misc.h"
#include "fs.h"
#include "accessors.h"
/*
* Structure name Path
* --------------------------------------------------------------------------
* btrfs_supported_static_feature_attrs /sys/fs/btrfs/features
* btrfs_supported_feature_attrs /sys/fs/btrfs/features and
* /sys/fs/btrfs/<uuid>/features
* btrfs_attrs /sys/fs/btrfs/<uuid>
* devid_attrs /sys/fs/btrfs/<uuid>/devinfo/<devid>
* allocation_attrs /sys/fs/btrfs/<uuid>/allocation
* qgroup_attrs /sys/fs/btrfs/<uuid>/qgroups/<level>_<qgroupid>
* space_info_attrs /sys/fs/btrfs/<uuid>/allocation/<bg-type>
* raid_attrs /sys/fs/btrfs/<uuid>/allocation/<bg-type>/<bg-profile>
* discard_attrs /sys/fs/btrfs/<uuid>/discard
*
* When built with BTRFS_CONFIG_DEBUG:
*
* btrfs_debug_feature_attrs /sys/fs/btrfs/debug
* btrfs_debug_mount_attrs /sys/fs/btrfs/<uuid>/debug
*/
struct btrfs_feature_attr {
struct kobj_attribute kobj_attr;
enum btrfs_feature_set feature_set;
u64 feature_bit;
};
/* For raid type sysfs entries */
struct raid_kobject {
u64 flags;
struct kobject kobj;
};
#define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \
{ \
.attr = { .name = __stringify(_name), .mode = _mode }, \
.show = _show, \
.store = _store, \
}
#define BTRFS_ATTR_W(_prefix, _name, _store) \
static struct kobj_attribute btrfs_attr_##_prefix##_##_name = \
__INIT_KOBJ_ATTR(_name, 0200, NULL, _store)
#define BTRFS_ATTR_RW(_prefix, _name, _show, _store) \
static struct kobj_attribute btrfs_attr_##_prefix##_##_name = \
__INIT_KOBJ_ATTR(_name, 0644, _show, _store)
#define BTRFS_ATTR(_prefix, _name, _show) \
static struct kobj_attribute btrfs_attr_##_prefix##_##_name = \
__INIT_KOBJ_ATTR(_name, 0444, _show, NULL)
#define BTRFS_ATTR_PTR(_prefix, _name) \
(&btrfs_attr_##_prefix##_##_name.attr)
#define BTRFS_FEAT_ATTR(_name, _feature_set, _feature_prefix, _feature_bit) \
static struct btrfs_feature_attr btrfs_attr_features_##_name = { \
.kobj_attr = __INIT_KOBJ_ATTR(_name, S_IRUGO, \
btrfs_feature_attr_show, \
btrfs_feature_attr_store), \
.feature_set = _feature_set, \
.feature_bit = _feature_prefix ##_## _feature_bit, \
}
#define BTRFS_FEAT_ATTR_PTR(_name) \
(&btrfs_attr_features_##_name.kobj_attr.attr)
#define BTRFS_FEAT_ATTR_COMPAT(name, feature) \
BTRFS_FEAT_ATTR(name, FEAT_COMPAT, BTRFS_FEATURE_COMPAT, feature)
#define BTRFS_FEAT_ATTR_COMPAT_RO(name, feature) \
BTRFS_FEAT_ATTR(name, FEAT_COMPAT_RO, BTRFS_FEATURE_COMPAT_RO, feature)
#define BTRFS_FEAT_ATTR_INCOMPAT(name, feature) \
BTRFS_FEAT_ATTR(name, FEAT_INCOMPAT, BTRFS_FEATURE_INCOMPAT, feature)
static inline struct btrfs_fs_info *to_fs_info(struct kobject *kobj);
static inline struct btrfs_fs_devices *to_fs_devs(struct kobject *kobj);
static struct kobject *get_btrfs_kobj(struct kobject *kobj);
static struct btrfs_feature_attr *to_btrfs_feature_attr(struct kobj_attribute *a)
{
return container_of(a, struct btrfs_feature_attr, kobj_attr);
}
static struct kobj_attribute *attr_to_btrfs_attr(struct attribute *attr)
{
return container_of(attr, struct kobj_attribute, attr);
}
static struct btrfs_feature_attr *attr_to_btrfs_feature_attr(
struct attribute *attr)
{
return to_btrfs_feature_attr(attr_to_btrfs_attr(attr));
}
static u64 get_features(struct btrfs_fs_info *fs_info,
enum btrfs_feature_set set)
{
struct btrfs_super_block *disk_super = fs_info->super_copy;
if (set == FEAT_COMPAT)
return btrfs_super_compat_flags(disk_super);
else if (set == FEAT_COMPAT_RO)
return btrfs_super_compat_ro_flags(disk_super);
else
return btrfs_super_incompat_flags(disk_super);
}
static void set_features(struct btrfs_fs_info *fs_info,
enum btrfs_feature_set set, u64 features)
{
struct btrfs_super_block *disk_super = fs_info->super_copy;
if (set == FEAT_COMPAT)
btrfs_set_super_compat_flags(disk_super, features);
else if (set == FEAT_COMPAT_RO)
btrfs_set_super_compat_ro_flags(disk_super, features);
else
btrfs_set_super_incompat_flags(disk_super, features);
}
static int can_modify_feature(struct btrfs_feature_attr *fa)
{
int val = 0;
u64 set, clear;
switch (fa->feature_set) {
case FEAT_COMPAT:
set = BTRFS_FEATURE_COMPAT_SAFE_SET;
clear = BTRFS_FEATURE_COMPAT_SAFE_CLEAR;
break;
case FEAT_COMPAT_RO:
set = BTRFS_FEATURE_COMPAT_RO_SAFE_SET;
clear = BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR;
break;
case FEAT_INCOMPAT:
set = BTRFS_FEATURE_INCOMPAT_SAFE_SET;
clear = BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR;
break;
default:
pr_warn("btrfs: sysfs: unknown feature set %d\n",
fa->feature_set);
return 0;
}
if (set & fa->feature_bit)
val |= 1;
if (clear & fa->feature_bit)
val |= 2;
return val;
}
static ssize_t btrfs_feature_attr_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
int val = 0;
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
struct btrfs_feature_attr *fa = to_btrfs_feature_attr(a);
if (fs_info) {
u64 features = get_features(fs_info, fa->feature_set);
if (features & fa->feature_bit)
val = 1;
} else
val = can_modify_feature(fa);
return sysfs_emit(buf, "%d\n", val);
}
static ssize_t btrfs_feature_attr_store(struct kobject *kobj,
struct kobj_attribute *a,
const char *buf, size_t count)
{
struct btrfs_fs_info *fs_info;
struct btrfs_feature_attr *fa = to_btrfs_feature_attr(a);
u64 features, set, clear;
unsigned long val;
int ret;
fs_info = to_fs_info(kobj);
if (!fs_info)
return -EPERM;
if (sb_rdonly(fs_info->sb))
return -EROFS;
ret = kstrtoul(skip_spaces(buf), 0, &val);
if (ret)
return ret;
if (fa->feature_set == FEAT_COMPAT) {
set = BTRFS_FEATURE_COMPAT_SAFE_SET;
clear = BTRFS_FEATURE_COMPAT_SAFE_CLEAR;
} else if (fa->feature_set == FEAT_COMPAT_RO) {
set = BTRFS_FEATURE_COMPAT_RO_SAFE_SET;
clear = BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR;
} else {
set = BTRFS_FEATURE_INCOMPAT_SAFE_SET;
clear = BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR;
}
features = get_features(fs_info, fa->feature_set);
/* Nothing to do */
if ((val && (features & fa->feature_bit)) ||
(!val && !(features & fa->feature_bit)))
return count;
if ((val && !(set & fa->feature_bit)) ||
(!val && !(clear & fa->feature_bit))) {
btrfs_info(fs_info,
"%sabling feature %s on mounted fs is not supported.",
val ? "En" : "Dis", fa->kobj_attr.attr.name);
return -EPERM;
}
btrfs_info(fs_info, "%s %s feature flag",
val ? "Setting" : "Clearing", fa->kobj_attr.attr.name);
spin_lock(&fs_info->super_lock);
features = get_features(fs_info, fa->feature_set);
if (val)
features |= fa->feature_bit;
else
features &= ~fa->feature_bit;
set_features(fs_info, fa->feature_set, features);
spin_unlock(&fs_info->super_lock);
/*
* We don't want to do full transaction commit from inside sysfs
*/
set_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
wake_up_process(fs_info->transaction_kthread);
return count;
}
static umode_t btrfs_feature_visible(struct kobject *kobj,
struct attribute *attr, int unused)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
umode_t mode = attr->mode;
if (fs_info) {
struct btrfs_feature_attr *fa;
u64 features;
fa = attr_to_btrfs_feature_attr(attr);
features = get_features(fs_info, fa->feature_set);
if (can_modify_feature(fa))
mode |= S_IWUSR;
else if (!(features & fa->feature_bit))
mode = 0;
}
return mode;
}
BTRFS_FEAT_ATTR_INCOMPAT(default_subvol, DEFAULT_SUBVOL);
BTRFS_FEAT_ATTR_INCOMPAT(mixed_groups, MIXED_GROUPS);
BTRFS_FEAT_ATTR_INCOMPAT(compress_lzo, COMPRESS_LZO);
BTRFS_FEAT_ATTR_INCOMPAT(compress_zstd, COMPRESS_ZSTD);
BTRFS_FEAT_ATTR_INCOMPAT(extended_iref, EXTENDED_IREF);
BTRFS_FEAT_ATTR_INCOMPAT(raid56, RAID56);
BTRFS_FEAT_ATTR_INCOMPAT(skinny_metadata, SKINNY_METADATA);
BTRFS_FEAT_ATTR_INCOMPAT(no_holes, NO_HOLES);
BTRFS_FEAT_ATTR_INCOMPAT(metadata_uuid, METADATA_UUID);
BTRFS_FEAT_ATTR_COMPAT_RO(free_space_tree, FREE_SPACE_TREE);
BTRFS_FEAT_ATTR_COMPAT_RO(block_group_tree, BLOCK_GROUP_TREE);
BTRFS_FEAT_ATTR_INCOMPAT(raid1c34, RAID1C34);
BTRFS_FEAT_ATTR_INCOMPAT(simple_quota, SIMPLE_QUOTA);
#ifdef CONFIG_BLK_DEV_ZONED
BTRFS_FEAT_ATTR_INCOMPAT(zoned, ZONED);
#endif
#ifdef CONFIG_BTRFS_DEBUG
/* Remove once support for extent tree v2 is feature complete */
BTRFS_FEAT_ATTR_INCOMPAT(extent_tree_v2, EXTENT_TREE_V2);
/* Remove once support for raid stripe tree is feature complete. */
BTRFS_FEAT_ATTR_INCOMPAT(raid_stripe_tree, RAID_STRIPE_TREE);
#endif
#ifdef CONFIG_FS_VERITY
BTRFS_FEAT_ATTR_COMPAT_RO(verity, VERITY);
#endif
/*
* Features which depend on feature bits and may differ between each fs.
*
* /sys/fs/btrfs/features - all available features implemented by this version
* /sys/fs/btrfs/UUID/features - features of the fs which are enabled or
* can be changed on a mounted filesystem.
*/
static struct attribute *btrfs_supported_feature_attrs[] = {
BTRFS_FEAT_ATTR_PTR(default_subvol),
BTRFS_FEAT_ATTR_PTR(mixed_groups),
BTRFS_FEAT_ATTR_PTR(compress_lzo),
BTRFS_FEAT_ATTR_PTR(compress_zstd),
BTRFS_FEAT_ATTR_PTR(extended_iref),
BTRFS_FEAT_ATTR_PTR(raid56),
BTRFS_FEAT_ATTR_PTR(skinny_metadata),
BTRFS_FEAT_ATTR_PTR(no_holes),
BTRFS_FEAT_ATTR_PTR(metadata_uuid),
BTRFS_FEAT_ATTR_PTR(free_space_tree),
BTRFS_FEAT_ATTR_PTR(raid1c34),
BTRFS_FEAT_ATTR_PTR(block_group_tree),
BTRFS_FEAT_ATTR_PTR(simple_quota),
#ifdef CONFIG_BLK_DEV_ZONED
BTRFS_FEAT_ATTR_PTR(zoned),
#endif
#ifdef CONFIG_BTRFS_DEBUG
BTRFS_FEAT_ATTR_PTR(extent_tree_v2),
BTRFS_FEAT_ATTR_PTR(raid_stripe_tree),
#endif
#ifdef CONFIG_FS_VERITY
BTRFS_FEAT_ATTR_PTR(verity),
#endif
NULL
};
static const struct attribute_group btrfs_feature_attr_group = {
.name = "features",
.is_visible = btrfs_feature_visible,
.attrs = btrfs_supported_feature_attrs,
};
static ssize_t rmdir_subvol_show(struct kobject *kobj,
struct kobj_attribute *ka, char *buf)
{
return sysfs_emit(buf, "0\n");
}
BTRFS_ATTR(static_feature, rmdir_subvol, rmdir_subvol_show);
static ssize_t supported_checksums_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
ssize_t ret = 0;
int i;
for (i = 0; i < btrfs_get_num_csums(); i++) {
/*
* This "trick" only works as long as 'enum btrfs_csum_type' has
* no holes in it
*/
ret += sysfs_emit_at(buf, ret, "%s%s", (i == 0 ? "" : " "),
btrfs_super_csum_name(i));
}
ret += sysfs_emit_at(buf, ret, "\n");
return ret;
}
BTRFS_ATTR(static_feature, supported_checksums, supported_checksums_show);
static ssize_t send_stream_version_show(struct kobject *kobj,
struct kobj_attribute *ka, char *buf)
{
return sysfs_emit(buf, "%d\n", BTRFS_SEND_STREAM_VERSION);
}
BTRFS_ATTR(static_feature, send_stream_version, send_stream_version_show);
static const char *rescue_opts[] = {
"usebackuproot",
"nologreplay",
"ignorebadroots",
"ignoredatacsums",
"all",
};
static ssize_t supported_rescue_options_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
ssize_t ret = 0;
int i;
for (i = 0; i < ARRAY_SIZE(rescue_opts); i++)
ret += sysfs_emit_at(buf, ret, "%s%s", (i ? " " : ""), rescue_opts[i]);
ret += sysfs_emit_at(buf, ret, "\n");
return ret;
}
BTRFS_ATTR(static_feature, supported_rescue_options,
supported_rescue_options_show);
static ssize_t supported_sectorsizes_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
ssize_t ret = 0;
/* An artificial limit to only support 4K and PAGE_SIZE */
if (PAGE_SIZE > SZ_4K)
ret += sysfs_emit_at(buf, ret, "%u ", SZ_4K);
ret += sysfs_emit_at(buf, ret, "%lu\n", PAGE_SIZE);
return ret;
}
BTRFS_ATTR(static_feature, supported_sectorsizes,
supported_sectorsizes_show);
static ssize_t acl_show(struct kobject *kobj, struct kobj_attribute *a, char *buf)
{
return sysfs_emit(buf, "%d\n", IS_ENABLED(CONFIG_BTRFS_FS_POSIX_ACL));
}
BTRFS_ATTR(static_feature, acl, acl_show);
static ssize_t temp_fsid_supported_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
return sysfs_emit(buf, "0\n");
}
BTRFS_ATTR(static_feature, temp_fsid, temp_fsid_supported_show);
/*
* Features which only depend on kernel version.
*
* These are listed in /sys/fs/btrfs/features along with
* btrfs_supported_feature_attrs.
*/
static struct attribute *btrfs_supported_static_feature_attrs[] = {
BTRFS_ATTR_PTR(static_feature, acl),
BTRFS_ATTR_PTR(static_feature, rmdir_subvol),
BTRFS_ATTR_PTR(static_feature, supported_checksums),
BTRFS_ATTR_PTR(static_feature, send_stream_version),
BTRFS_ATTR_PTR(static_feature, supported_rescue_options),
BTRFS_ATTR_PTR(static_feature, supported_sectorsizes),
BTRFS_ATTR_PTR(static_feature, temp_fsid),
NULL
};
static const struct attribute_group btrfs_static_feature_attr_group = {
.name = "features",
.attrs = btrfs_supported_static_feature_attrs,
};
/*
* Discard statistics and tunables
*/
#define discard_to_fs_info(_kobj) to_fs_info(get_btrfs_kobj(_kobj))
static ssize_t btrfs_discardable_bytes_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_fs_info *fs_info = discard_to_fs_info(kobj);
return sysfs_emit(buf, "%lld\n",
atomic64_read(&fs_info->discard_ctl.discardable_bytes));
}
BTRFS_ATTR(discard, discardable_bytes, btrfs_discardable_bytes_show);
static ssize_t btrfs_discardable_extents_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_fs_info *fs_info = discard_to_fs_info(kobj);
return sysfs_emit(buf, "%d\n",
atomic_read(&fs_info->discard_ctl.discardable_extents));
}
BTRFS_ATTR(discard, discardable_extents, btrfs_discardable_extents_show);
static ssize_t btrfs_discard_bitmap_bytes_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_fs_info *fs_info = discard_to_fs_info(kobj);
return sysfs_emit(buf, "%llu\n",
fs_info->discard_ctl.discard_bitmap_bytes);
}
BTRFS_ATTR(discard, discard_bitmap_bytes, btrfs_discard_bitmap_bytes_show);
static ssize_t btrfs_discard_bytes_saved_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_fs_info *fs_info = discard_to_fs_info(kobj);
return sysfs_emit(buf, "%lld\n",
atomic64_read(&fs_info->discard_ctl.discard_bytes_saved));
}
BTRFS_ATTR(discard, discard_bytes_saved, btrfs_discard_bytes_saved_show);
static ssize_t btrfs_discard_extent_bytes_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_fs_info *fs_info = discard_to_fs_info(kobj);
return sysfs_emit(buf, "%llu\n",
fs_info->discard_ctl.discard_extent_bytes);
}
BTRFS_ATTR(discard, discard_extent_bytes, btrfs_discard_extent_bytes_show);
static ssize_t btrfs_discard_iops_limit_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_fs_info *fs_info = discard_to_fs_info(kobj);
return sysfs_emit(buf, "%u\n",
READ_ONCE(fs_info->discard_ctl.iops_limit));
}
static ssize_t btrfs_discard_iops_limit_store(struct kobject *kobj,
struct kobj_attribute *a,
const char *buf, size_t len)
{
struct btrfs_fs_info *fs_info = discard_to_fs_info(kobj);
struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl;
u32 iops_limit;
int ret;
ret = kstrtou32(buf, 10, &iops_limit);
if (ret)
return -EINVAL;
WRITE_ONCE(discard_ctl->iops_limit, iops_limit);
btrfs_discard_calc_delay(discard_ctl);
btrfs_discard_schedule_work(discard_ctl, true);
return len;
}
BTRFS_ATTR_RW(discard, iops_limit, btrfs_discard_iops_limit_show,
btrfs_discard_iops_limit_store);
static ssize_t btrfs_discard_kbps_limit_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_fs_info *fs_info = discard_to_fs_info(kobj);
return sysfs_emit(buf, "%u\n",
READ_ONCE(fs_info->discard_ctl.kbps_limit));
}
static ssize_t btrfs_discard_kbps_limit_store(struct kobject *kobj,
struct kobj_attribute *a,
const char *buf, size_t len)
{
struct btrfs_fs_info *fs_info = discard_to_fs_info(kobj);
struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl;
u32 kbps_limit;
int ret;
ret = kstrtou32(buf, 10, &kbps_limit);
if (ret)
return -EINVAL;
WRITE_ONCE(discard_ctl->kbps_limit, kbps_limit);
btrfs_discard_schedule_work(discard_ctl, true);
return len;
}
BTRFS_ATTR_RW(discard, kbps_limit, btrfs_discard_kbps_limit_show,
btrfs_discard_kbps_limit_store);
static ssize_t btrfs_discard_max_discard_size_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_fs_info *fs_info = discard_to_fs_info(kobj);
return sysfs_emit(buf, "%llu\n",
READ_ONCE(fs_info->discard_ctl.max_discard_size));
}
static ssize_t btrfs_discard_max_discard_size_store(struct kobject *kobj,
struct kobj_attribute *a,
const char *buf, size_t len)
{
struct btrfs_fs_info *fs_info = discard_to_fs_info(kobj);
struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl;
u64 max_discard_size;
int ret;
ret = kstrtou64(buf, 10, &max_discard_size);
if (ret)
return -EINVAL;
WRITE_ONCE(discard_ctl->max_discard_size, max_discard_size);
return len;
}
BTRFS_ATTR_RW(discard, max_discard_size, btrfs_discard_max_discard_size_show,
btrfs_discard_max_discard_size_store);
/*
* Per-filesystem stats for discard (when mounted with discard=async).
*
* Path: /sys/fs/btrfs/<uuid>/discard/
*/
static const struct attribute *discard_attrs[] = {
BTRFS_ATTR_PTR(discard, discardable_bytes),
BTRFS_ATTR_PTR(discard, discardable_extents),
BTRFS_ATTR_PTR(discard, discard_bitmap_bytes),
BTRFS_ATTR_PTR(discard, discard_bytes_saved),
BTRFS_ATTR_PTR(discard, discard_extent_bytes),
BTRFS_ATTR_PTR(discard, iops_limit),
BTRFS_ATTR_PTR(discard, kbps_limit),
BTRFS_ATTR_PTR(discard, max_discard_size),
NULL,
};
#ifdef CONFIG_BTRFS_DEBUG
/*
* Per-filesystem runtime debugging exported via sysfs.
*
* Path: /sys/fs/btrfs/UUID/debug/
*/
static const struct attribute *btrfs_debug_mount_attrs[] = {
NULL,
};
/*
* Runtime debugging exported via sysfs, applies to all mounted filesystems.
*
* Path: /sys/fs/btrfs/debug
*/
static struct attribute *btrfs_debug_feature_attrs[] = {
NULL
};
static const struct attribute_group btrfs_debug_feature_attr_group = {
.name = "debug",
.attrs = btrfs_debug_feature_attrs,
};
#endif
static ssize_t btrfs_show_u64(u64 *value_ptr, spinlock_t *lock, char *buf)
{
u64 val;
if (lock)
spin_lock(lock);
val = *value_ptr;
if (lock)
spin_unlock(lock);
return sysfs_emit(buf, "%llu\n", val);
}
static ssize_t global_rsv_size_show(struct kobject *kobj,
struct kobj_attribute *ka, char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj->parent);
struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
return btrfs_show_u64(&block_rsv->size, &block_rsv->lock, buf);
}
BTRFS_ATTR(allocation, global_rsv_size, global_rsv_size_show);
static ssize_t global_rsv_reserved_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj->parent);
struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
return btrfs_show_u64(&block_rsv->reserved, &block_rsv->lock, buf);
}
BTRFS_ATTR(allocation, global_rsv_reserved, global_rsv_reserved_show);
#define to_space_info(_kobj) container_of(_kobj, struct btrfs_space_info, kobj)
#define to_raid_kobj(_kobj) container_of(_kobj, struct raid_kobject, kobj)
static ssize_t raid_bytes_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf);
BTRFS_ATTR(raid, total_bytes, raid_bytes_show);
BTRFS_ATTR(raid, used_bytes, raid_bytes_show);
static ssize_t raid_bytes_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct btrfs_space_info *sinfo = to_space_info(kobj->parent);
struct btrfs_block_group *block_group;
int index = btrfs_bg_flags_to_raid_index(to_raid_kobj(kobj)->flags);
u64 val = 0;
down_read(&sinfo->groups_sem);
list_for_each_entry(block_group, &sinfo->block_groups[index], list) {
if (&attr->attr == BTRFS_ATTR_PTR(raid, total_bytes))
val += block_group->length;
else
val += block_group->used;
}
up_read(&sinfo->groups_sem);
return sysfs_emit(buf, "%llu\n", val);
}
/*
* Allocation information about block group profiles.
*
* Path: /sys/fs/btrfs/<uuid>/allocation/<bg-type>/<bg-profile>/
*/
static struct attribute *raid_attrs[] = {
BTRFS_ATTR_PTR(raid, total_bytes),
BTRFS_ATTR_PTR(raid, used_bytes),
NULL
};
ATTRIBUTE_GROUPS(raid);
static void release_raid_kobj(struct kobject *kobj)
{
kfree(to_raid_kobj(kobj));
}
static const struct kobj_type btrfs_raid_ktype = {
.sysfs_ops = &kobj_sysfs_ops,
.release = release_raid_kobj,
.default_groups = raid_groups,
};
#define SPACE_INFO_ATTR(field) \
static ssize_t btrfs_space_info_show_##field(struct kobject *kobj, \
struct kobj_attribute *a, \
char *buf) \
{ \
struct btrfs_space_info *sinfo = to_space_info(kobj); \
return btrfs_show_u64(&sinfo->field, &sinfo->lock, buf); \
} \
BTRFS_ATTR(space_info, field, btrfs_space_info_show_##field)
static ssize_t btrfs_chunk_size_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_space_info *sinfo = to_space_info(kobj);
return sysfs_emit(buf, "%llu\n", READ_ONCE(sinfo->chunk_size));
}
/*
* Store new chunk size in space info. Can be called on a read-only filesystem.
*
* If the new chunk size value is larger than 10% of free space it is reduced
* to match that limit. Alignment must be to 256M and the system chunk size
* cannot be set.
*/
static ssize_t btrfs_chunk_size_store(struct kobject *kobj,
struct kobj_attribute *a,
const char *buf, size_t len)
{
struct btrfs_space_info *space_info = to_space_info(kobj);
struct btrfs_fs_info *fs_info = to_fs_info(get_btrfs_kobj(kobj));
char *retptr;
u64 val;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (!fs_info->fs_devices)
return -EINVAL;
if (btrfs_is_zoned(fs_info))
return -EINVAL;
/* System block type must not be changed. */
if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
return -EPERM;
val = memparse(buf, &retptr);
/* There could be trailing '\n', also catch any typos after the value */
retptr = skip_spaces(retptr);
if (*retptr != 0 || val == 0)
return -EINVAL;
val = min(val, BTRFS_MAX_DATA_CHUNK_SIZE);
/* Limit stripe size to 10% of available space. */
val = min(mult_perc(fs_info->fs_devices->total_rw_bytes, 10), val);
/* Must be multiple of 256M. */
val &= ~((u64)SZ_256M - 1);
/* Must be at least 256M. */
if (val < SZ_256M)
return -EINVAL;
btrfs_update_space_info_chunk_size(space_info, val);
return len;
}
static ssize_t btrfs_size_classes_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_space_info *sinfo = to_space_info(kobj);
struct btrfs_block_group *bg;
u32 none = 0;
u32 small = 0;
u32 medium = 0;
u32 large = 0;
for (int i = 0; i < BTRFS_NR_RAID_TYPES; ++i) {
down_read(&sinfo->groups_sem);
list_for_each_entry(bg, &sinfo->block_groups[i], list) {
if (!btrfs_block_group_should_use_size_class(bg))
continue;
switch (bg->size_class) {
case BTRFS_BG_SZ_NONE:
none++;
break;
case BTRFS_BG_SZ_SMALL:
small++;
break;
case BTRFS_BG_SZ_MEDIUM:
medium++;
break;
case BTRFS_BG_SZ_LARGE:
large++;
break;
}
}
up_read(&sinfo->groups_sem);
}
return sysfs_emit(buf, "none %u\n"
"small %u\n"
"medium %u\n"
"large %u\n",
none, small, medium, large);
}
#ifdef CONFIG_BTRFS_DEBUG
/*
* Request chunk allocation with current chunk size.
*/
static ssize_t btrfs_force_chunk_alloc_store(struct kobject *kobj,
struct kobj_attribute *a,
const char *buf, size_t len)
{
struct btrfs_space_info *space_info = to_space_info(kobj);
struct btrfs_fs_info *fs_info = to_fs_info(get_btrfs_kobj(kobj));
struct btrfs_trans_handle *trans;
bool val;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (sb_rdonly(fs_info->sb))
return -EROFS;
ret = kstrtobool(buf, &val);
if (ret)
return ret;
if (!val)
return -EINVAL;
/*
* This is unsafe to be called from sysfs context and may cause
* unexpected problems.
*/
trans = btrfs_start_transaction(fs_info->tree_root, 0);
if (IS_ERR(trans))
return PTR_ERR(trans);
ret = btrfs_force_chunk_alloc(trans, space_info->flags);
btrfs_end_transaction(trans);
if (ret == 1)
return len;
return -ENOSPC;
}
BTRFS_ATTR_W(space_info, force_chunk_alloc, btrfs_force_chunk_alloc_store);
#endif
SPACE_INFO_ATTR(flags);
SPACE_INFO_ATTR(total_bytes);
SPACE_INFO_ATTR(bytes_used);
SPACE_INFO_ATTR(bytes_pinned);
SPACE_INFO_ATTR(bytes_reserved);
SPACE_INFO_ATTR(bytes_may_use);
SPACE_INFO_ATTR(bytes_readonly);
SPACE_INFO_ATTR(bytes_zone_unusable);
SPACE_INFO_ATTR(disk_used);
SPACE_INFO_ATTR(disk_total);
BTRFS_ATTR_RW(space_info, chunk_size, btrfs_chunk_size_show, btrfs_chunk_size_store);
BTRFS_ATTR(space_info, size_classes, btrfs_size_classes_show);
static ssize_t btrfs_sinfo_bg_reclaim_threshold_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_space_info *space_info = to_space_info(kobj);
return sysfs_emit(buf, "%d\n", READ_ONCE(space_info->bg_reclaim_threshold));
}
static ssize_t btrfs_sinfo_bg_reclaim_threshold_store(struct kobject *kobj,
struct kobj_attribute *a,
const char *buf, size_t len)
{
struct btrfs_space_info *space_info = to_space_info(kobj);
int thresh;
int ret;
ret = kstrtoint(buf, 10, &thresh);
if (ret)
return ret;
if (thresh < 0 || thresh > 100)
return -EINVAL;
WRITE_ONCE(space_info->bg_reclaim_threshold, thresh);
return len;
}
BTRFS_ATTR_RW(space_info, bg_reclaim_threshold,
btrfs_sinfo_bg_reclaim_threshold_show,
btrfs_sinfo_bg_reclaim_threshold_store);
/*
* Allocation information about block group types.
*
* Path: /sys/fs/btrfs/<uuid>/allocation/<bg-type>/
*/
static struct attribute *space_info_attrs[] = {
BTRFS_ATTR_PTR(space_info, flags),
BTRFS_ATTR_PTR(space_info, total_bytes),
BTRFS_ATTR_PTR(space_info, bytes_used),
BTRFS_ATTR_PTR(space_info, bytes_pinned),
BTRFS_ATTR_PTR(space_info, bytes_reserved),
BTRFS_ATTR_PTR(space_info, bytes_may_use),
BTRFS_ATTR_PTR(space_info, bytes_readonly),
BTRFS_ATTR_PTR(space_info, bytes_zone_unusable),
BTRFS_ATTR_PTR(space_info, disk_used),
BTRFS_ATTR_PTR(space_info, disk_total),
BTRFS_ATTR_PTR(space_info, bg_reclaim_threshold),
BTRFS_ATTR_PTR(space_info, chunk_size),
BTRFS_ATTR_PTR(space_info, size_classes),
#ifdef CONFIG_BTRFS_DEBUG
BTRFS_ATTR_PTR(space_info, force_chunk_alloc),
#endif
NULL,
};
ATTRIBUTE_GROUPS(space_info);
static void space_info_release(struct kobject *kobj)
{
struct btrfs_space_info *sinfo = to_space_info(kobj);
kfree(sinfo);
}
static const struct kobj_type space_info_ktype = {
.sysfs_ops = &kobj_sysfs_ops,
.release = space_info_release,
.default_groups = space_info_groups,
};
/*
* Allocation information about block groups.
*
* Path: /sys/fs/btrfs/<uuid>/allocation/
*/
static const struct attribute *allocation_attrs[] = {
BTRFS_ATTR_PTR(allocation, global_rsv_reserved),
BTRFS_ATTR_PTR(allocation, global_rsv_size),
NULL,
};
static ssize_t btrfs_label_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
char *label = fs_info->super_copy->label;
ssize_t ret;
spin_lock(&fs_info->super_lock);
ret = sysfs_emit(buf, label[0] ? "%s\n" : "%s", label);
spin_unlock(&fs_info->super_lock);
return ret;
}
static ssize_t btrfs_label_store(struct kobject *kobj,
struct kobj_attribute *a,
const char *buf, size_t len)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
size_t p_len;
if (!fs_info)
return -EPERM;
if (sb_rdonly(fs_info->sb))
return -EROFS;
/*
* p_len is the len until the first occurrence of either
* '\n' or '\0'
*/
p_len = strcspn(buf, "\n");
if (p_len >= BTRFS_LABEL_SIZE)
return -EINVAL;
spin_lock(&fs_info->super_lock);
memset(fs_info->super_copy->label, 0, BTRFS_LABEL_SIZE);
memcpy(fs_info->super_copy->label, buf, p_len);
spin_unlock(&fs_info->super_lock);
/*
* We don't want to do full transaction commit from inside sysfs
*/
set_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
wake_up_process(fs_info->transaction_kthread);
return len;
}
BTRFS_ATTR_RW(, label, btrfs_label_show, btrfs_label_store);
static ssize_t btrfs_nodesize_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
return sysfs_emit(buf, "%u\n", fs_info->super_copy->nodesize);
}
BTRFS_ATTR(, nodesize, btrfs_nodesize_show);
static ssize_t btrfs_sectorsize_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
return sysfs_emit(buf, "%u\n", fs_info->super_copy->sectorsize);
}
BTRFS_ATTR(, sectorsize, btrfs_sectorsize_show);
static ssize_t btrfs_commit_stats_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
return sysfs_emit(buf,
"commits %llu\n"
"last_commit_ms %llu\n"
"max_commit_ms %llu\n"
"total_commit_ms %llu\n",
fs_info->commit_stats.commit_count,
div_u64(fs_info->commit_stats.last_commit_dur, NSEC_PER_MSEC),
div_u64(fs_info->commit_stats.max_commit_dur, NSEC_PER_MSEC),
div_u64(fs_info->commit_stats.total_commit_dur, NSEC_PER_MSEC));
}
static ssize_t btrfs_commit_stats_store(struct kobject *kobj,
struct kobj_attribute *a,
const char *buf, size_t len)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
unsigned long val;
int ret;
if (!fs_info)
return -EPERM;
if (!capable(CAP_SYS_RESOURCE))
return -EPERM;
ret = kstrtoul(buf, 10, &val);
if (ret)
return ret;
if (val)
return -EINVAL;
WRITE_ONCE(fs_info->commit_stats.max_commit_dur, 0);
return len;
}
BTRFS_ATTR_RW(, commit_stats, btrfs_commit_stats_show, btrfs_commit_stats_store);
static ssize_t btrfs_clone_alignment_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
return sysfs_emit(buf, "%u\n", fs_info->super_copy->sectorsize);
}
BTRFS_ATTR(, clone_alignment, btrfs_clone_alignment_show);
static ssize_t quota_override_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
int quota_override;
quota_override = test_bit(BTRFS_FS_QUOTA_OVERRIDE, &fs_info->flags);
return sysfs_emit(buf, "%d\n", quota_override);
}
static ssize_t quota_override_store(struct kobject *kobj,
struct kobj_attribute *a,
const char *buf, size_t len)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
unsigned long knob;
int err;
if (!fs_info)
return -EPERM;
if (!capable(CAP_SYS_RESOURCE))
return -EPERM;
err = kstrtoul(buf, 10, &knob);
if (err)
return err;
if (knob > 1)
return -EINVAL;
if (knob)
set_bit(BTRFS_FS_QUOTA_OVERRIDE, &fs_info->flags);
else
clear_bit(BTRFS_FS_QUOTA_OVERRIDE, &fs_info->flags);
return len;
}
BTRFS_ATTR_RW(, quota_override, quota_override_show, quota_override_store);
static ssize_t btrfs_metadata_uuid_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
return sysfs_emit(buf, "%pU\n", fs_info->fs_devices->metadata_uuid);
}
BTRFS_ATTR(, metadata_uuid, btrfs_metadata_uuid_show);
static ssize_t btrfs_checksum_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
u16 csum_type = btrfs_super_csum_type(fs_info->super_copy);
return sysfs_emit(buf, "%s (%s)\n",
btrfs_super_csum_name(csum_type),
crypto_shash_driver_name(fs_info->csum_shash));
}
BTRFS_ATTR(, checksum, btrfs_checksum_show);
static ssize_t btrfs_exclusive_operation_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
const char *str;
switch (READ_ONCE(fs_info->exclusive_operation)) {
case BTRFS_EXCLOP_NONE:
str = "none\n";
break;
case BTRFS_EXCLOP_BALANCE:
str = "balance\n";
break;
case BTRFS_EXCLOP_BALANCE_PAUSED:
str = "balance paused\n";
break;
case BTRFS_EXCLOP_DEV_ADD:
str = "device add\n";
break;
case BTRFS_EXCLOP_DEV_REMOVE:
str = "device remove\n";
break;
case BTRFS_EXCLOP_DEV_REPLACE:
str = "device replace\n";
break;
case BTRFS_EXCLOP_RESIZE:
str = "resize\n";
break;
case BTRFS_EXCLOP_SWAP_ACTIVATE:
str = "swap activate\n";
break;
default:
str = "UNKNOWN\n";
break;
}
return sysfs_emit(buf, "%s", str);
}
BTRFS_ATTR(, exclusive_operation, btrfs_exclusive_operation_show);
static ssize_t btrfs_generation_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
return sysfs_emit(buf, "%llu\n", btrfs_get_fs_generation(fs_info));
}
BTRFS_ATTR(, generation, btrfs_generation_show);
static ssize_t btrfs_temp_fsid_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
return sysfs_emit(buf, "%d\n", fs_info->fs_devices->temp_fsid);
}
BTRFS_ATTR(, temp_fsid, btrfs_temp_fsid_show);
static const char * const btrfs_read_policy_name[] = { "pid" };
static ssize_t btrfs_read_policy_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_fs_devices *fs_devices = to_fs_devs(kobj);
const enum btrfs_read_policy policy = READ_ONCE(fs_devices->read_policy);
ssize_t ret = 0;
int i;
for (i = 0; i < BTRFS_NR_READ_POLICY; i++) {
if (policy == i)
ret += sysfs_emit_at(buf, ret, "%s[%s]",
(ret == 0 ? "" : " "),
btrfs_read_policy_name[i]);
else
ret += sysfs_emit_at(buf, ret, "%s%s",
(ret == 0 ? "" : " "),
btrfs_read_policy_name[i]);
}
ret += sysfs_emit_at(buf, ret, "\n");
return ret;
}
static ssize_t btrfs_read_policy_store(struct kobject *kobj,
struct kobj_attribute *a,
const char *buf, size_t len)
{
struct btrfs_fs_devices *fs_devices = to_fs_devs(kobj);
int i;
for (i = 0; i < BTRFS_NR_READ_POLICY; i++) {
if (sysfs_streq(buf, btrfs_read_policy_name[i])) {
if (i != READ_ONCE(fs_devices->read_policy)) {
WRITE_ONCE(fs_devices->read_policy, i);
btrfs_info(fs_devices->fs_info,
"read policy set to '%s'",
btrfs_read_policy_name[i]);
}
return len;
}
}
return -EINVAL;
}
BTRFS_ATTR_RW(, read_policy, btrfs_read_policy_show, btrfs_read_policy_store);
static ssize_t btrfs_bg_reclaim_threshold_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
return sysfs_emit(buf, "%d\n", READ_ONCE(fs_info->bg_reclaim_threshold));
}
static ssize_t btrfs_bg_reclaim_threshold_store(struct kobject *kobj,
struct kobj_attribute *a,
const char *buf, size_t len)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
int thresh;
int ret;
ret = kstrtoint(buf, 10, &thresh);
if (ret)
return ret;
#ifdef CONFIG_BTRFS_DEBUG
if (thresh != 0 && (thresh > 100))
return -EINVAL;
#else
if (thresh != 0 && (thresh <= 50 || thresh > 100))
return -EINVAL;
#endif
WRITE_ONCE(fs_info->bg_reclaim_threshold, thresh);
return len;
}
BTRFS_ATTR_RW(, bg_reclaim_threshold, btrfs_bg_reclaim_threshold_show,
btrfs_bg_reclaim_threshold_store);
#ifdef CONFIG_BTRFS_DEBUG
static ssize_t btrfs_offload_csum_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_fs_devices *fs_devices = to_fs_devs(kobj);
switch (READ_ONCE(fs_devices->offload_csum_mode)) {
case BTRFS_OFFLOAD_CSUM_AUTO:
return sysfs_emit(buf, "auto\n");
case BTRFS_OFFLOAD_CSUM_FORCE_ON:
return sysfs_emit(buf, "1\n");
case BTRFS_OFFLOAD_CSUM_FORCE_OFF:
return sysfs_emit(buf, "0\n");
default:
WARN_ON(1);
return -EINVAL;
}
}
static ssize_t btrfs_offload_csum_store(struct kobject *kobj,
struct kobj_attribute *a, const char *buf,
size_t len)
{
struct btrfs_fs_devices *fs_devices = to_fs_devs(kobj);
int ret;
bool val;
ret = kstrtobool(buf, &val);
if (ret == 0)
WRITE_ONCE(fs_devices->offload_csum_mode,
val ? BTRFS_OFFLOAD_CSUM_FORCE_ON : BTRFS_OFFLOAD_CSUM_FORCE_OFF);
else if (ret == -EINVAL && sysfs_streq(buf, "auto"))
WRITE_ONCE(fs_devices->offload_csum_mode, BTRFS_OFFLOAD_CSUM_AUTO);
else
return -EINVAL;
return len;
}
BTRFS_ATTR_RW(, offload_csum, btrfs_offload_csum_show, btrfs_offload_csum_store);
#endif
/*
* Per-filesystem information and stats.
*
* Path: /sys/fs/btrfs/<uuid>/
*/
static const struct attribute *btrfs_attrs[] = {
BTRFS_ATTR_PTR(, label),
BTRFS_ATTR_PTR(, nodesize),
BTRFS_ATTR_PTR(, sectorsize),
BTRFS_ATTR_PTR(, clone_alignment),
BTRFS_ATTR_PTR(, quota_override),
BTRFS_ATTR_PTR(, metadata_uuid),
BTRFS_ATTR_PTR(, checksum),
BTRFS_ATTR_PTR(, exclusive_operation),
BTRFS_ATTR_PTR(, generation),
BTRFS_ATTR_PTR(, read_policy),
BTRFS_ATTR_PTR(, bg_reclaim_threshold),
BTRFS_ATTR_PTR(, commit_stats),
BTRFS_ATTR_PTR(, temp_fsid),
#ifdef CONFIG_BTRFS_DEBUG
BTRFS_ATTR_PTR(, offload_csum),
#endif
NULL,
};
static void btrfs_release_fsid_kobj(struct kobject *kobj)
{
struct btrfs_fs_devices *fs_devs = to_fs_devs(kobj);
memset(&fs_devs->fsid_kobj, 0, sizeof(struct kobject));
complete(&fs_devs->kobj_unregister);
}
static const struct kobj_type btrfs_ktype = {
.sysfs_ops = &kobj_sysfs_ops,
.release = btrfs_release_fsid_kobj,
};
static inline struct btrfs_fs_devices *to_fs_devs(struct kobject *kobj)
{
if (kobj->ktype != &btrfs_ktype)
return NULL;
return container_of(kobj, struct btrfs_fs_devices, fsid_kobj);
}
static inline struct btrfs_fs_info *to_fs_info(struct kobject *kobj)
{
if (kobj->ktype != &btrfs_ktype)
return NULL;
return to_fs_devs(kobj)->fs_info;
}
static struct kobject *get_btrfs_kobj(struct kobject *kobj)
{
while (kobj) {
if (kobj->ktype == &btrfs_ktype)
return kobj;
kobj = kobj->parent;
}
return NULL;
}
#define NUM_FEATURE_BITS 64
#define BTRFS_FEATURE_NAME_MAX 13
static char btrfs_unknown_feature_names[FEAT_MAX][NUM_FEATURE_BITS][BTRFS_FEATURE_NAME_MAX];
static struct btrfs_feature_attr btrfs_feature_attrs[FEAT_MAX][NUM_FEATURE_BITS];
static_assert(ARRAY_SIZE(btrfs_unknown_feature_names) ==
ARRAY_SIZE(btrfs_feature_attrs));
static_assert(ARRAY_SIZE(btrfs_unknown_feature_names[0]) ==
ARRAY_SIZE(btrfs_feature_attrs[0]));
static const u64 supported_feature_masks[FEAT_MAX] = {
[FEAT_COMPAT] = BTRFS_FEATURE_COMPAT_SUPP,
[FEAT_COMPAT_RO] = BTRFS_FEATURE_COMPAT_RO_SUPP,
[FEAT_INCOMPAT] = BTRFS_FEATURE_INCOMPAT_SUPP,
};
static int addrm_unknown_feature_attrs(struct btrfs_fs_info *fs_info, bool add)
{
int set;
for (set = 0; set < FEAT_MAX; set++) {
int i;
struct attribute *attrs[2];
struct attribute_group agroup = {
.name = "features",
.attrs = attrs,
};
u64 features = get_features(fs_info, set);
features &= ~supported_feature_masks[set];
if (!features)
continue;
attrs[1] = NULL;
for (i = 0; i < NUM_FEATURE_BITS; i++) {
struct btrfs_feature_attr *fa;
if (!(features & (1ULL << i)))
continue;
fa = &btrfs_feature_attrs[set][i];
attrs[0] = &fa->kobj_attr.attr;
if (add) {
int ret;
ret = sysfs_merge_group(&fs_info->fs_devices->fsid_kobj,
&agroup);
if (ret)
return ret;
} else
sysfs_unmerge_group(&fs_info->fs_devices->fsid_kobj,
&agroup);
}
}
return 0;
}
static void __btrfs_sysfs_remove_fsid(struct btrfs_fs_devices *fs_devs)
{
if (fs_devs->devinfo_kobj) {
kobject_del(fs_devs->devinfo_kobj);
kobject_put(fs_devs->devinfo_kobj);
fs_devs->devinfo_kobj = NULL;
}
if (fs_devs->devices_kobj) {
kobject_del(fs_devs->devices_kobj);
kobject_put(fs_devs->devices_kobj);
fs_devs->devices_kobj = NULL;
}
if (fs_devs->fsid_kobj.state_initialized) {
kobject_del(&fs_devs->fsid_kobj);
kobject_put(&fs_devs->fsid_kobj);
wait_for_completion(&fs_devs->kobj_unregister);
}
}
/* when fs_devs is NULL it will remove all fsid kobject */
void btrfs_sysfs_remove_fsid(struct btrfs_fs_devices *fs_devs)
{
struct list_head *fs_uuids = btrfs_get_fs_uuids();
if (fs_devs) {
__btrfs_sysfs_remove_fsid(fs_devs);
return;
}
list_for_each_entry(fs_devs, fs_uuids, fs_list) {
__btrfs_sysfs_remove_fsid(fs_devs);
}
}
static void btrfs_sysfs_remove_fs_devices(struct btrfs_fs_devices *fs_devices)
{
struct btrfs_device *device;
struct btrfs_fs_devices *seed;
list_for_each_entry(device, &fs_devices->devices, dev_list)
btrfs_sysfs_remove_device(device);
list_for_each_entry(seed, &fs_devices->seed_list, seed_list) {
list_for_each_entry(device, &seed->devices, dev_list)
btrfs_sysfs_remove_device(device);
}
}
void btrfs_sysfs_remove_mounted(struct btrfs_fs_info *fs_info)
{
struct kobject *fsid_kobj = &fs_info->fs_devices->fsid_kobj;
sysfs_remove_link(fsid_kobj, "bdi");
if (fs_info->space_info_kobj) {
sysfs_remove_files(fs_info->space_info_kobj, allocation_attrs);
kobject_del(fs_info->space_info_kobj);
kobject_put(fs_info->space_info_kobj);
}
if (fs_info->discard_kobj) {
sysfs_remove_files(fs_info->discard_kobj, discard_attrs);
kobject_del(fs_info->discard_kobj);
kobject_put(fs_info->discard_kobj);
}
#ifdef CONFIG_BTRFS_DEBUG
if (fs_info->debug_kobj) {
sysfs_remove_files(fs_info->debug_kobj, btrfs_debug_mount_attrs);
kobject_del(fs_info->debug_kobj);
kobject_put(fs_info->debug_kobj);
}
#endif
addrm_unknown_feature_attrs(fs_info, false);
sysfs_remove_group(fsid_kobj, &btrfs_feature_attr_group);
sysfs_remove_files(fsid_kobj, btrfs_attrs);
btrfs_sysfs_remove_fs_devices(fs_info->fs_devices);
}
static const char * const btrfs_feature_set_names[FEAT_MAX] = {
[FEAT_COMPAT] = "compat",
[FEAT_COMPAT_RO] = "compat_ro",
[FEAT_INCOMPAT] = "incompat",
};
const char *btrfs_feature_set_name(enum btrfs_feature_set set)
{
return btrfs_feature_set_names[set];
}
char *btrfs_printable_features(enum btrfs_feature_set set, u64 flags)
{
size_t bufsize = 4096; /* safe max, 64 names * 64 bytes */
int len = 0;
int i;
char *str;
str = kmalloc(bufsize, GFP_KERNEL);
if (!str)
return str;
for (i = 0; i < ARRAY_SIZE(btrfs_feature_attrs[set]); i++) {
const char *name;
if (!(flags & (1ULL << i)))
continue;
name = btrfs_feature_attrs[set][i].kobj_attr.attr.name;
len += scnprintf(str + len, bufsize - len, "%s%s",
len ? "," : "", name);
}
return str;
}
static void init_feature_attrs(void)
{
struct btrfs_feature_attr *fa;
int set, i;
memset(btrfs_feature_attrs, 0, sizeof(btrfs_feature_attrs));
memset(btrfs_unknown_feature_names, 0,
sizeof(btrfs_unknown_feature_names));
for (i = 0; btrfs_supported_feature_attrs[i]; i++) {
struct btrfs_feature_attr *sfa;
struct attribute *a = btrfs_supported_feature_attrs[i];
int bit;
sfa = attr_to_btrfs_feature_attr(a);
bit = ilog2(sfa->feature_bit);
fa = &btrfs_feature_attrs[sfa->feature_set][bit];
fa->kobj_attr.attr.name = sfa->kobj_attr.attr.name;
}
for (set = 0; set < FEAT_MAX; set++) {
for (i = 0; i < ARRAY_SIZE(btrfs_feature_attrs[set]); i++) {
char *name = btrfs_unknown_feature_names[set][i];
fa = &btrfs_feature_attrs[set][i];
if (fa->kobj_attr.attr.name)
continue;
snprintf(name, BTRFS_FEATURE_NAME_MAX, "%s:%u",
btrfs_feature_set_names[set], i);
fa->kobj_attr.attr.name = name;
fa->kobj_attr.attr.mode = S_IRUGO;
fa->feature_set = set;
fa->feature_bit = 1ULL << i;
}
}
}
/*
* Create a sysfs entry for a given block group type at path
* /sys/fs/btrfs/UUID/allocation/data/TYPE
*/
void btrfs_sysfs_add_block_group_type(struct btrfs_block_group *cache)
{
struct btrfs_fs_info *fs_info = cache->fs_info;
struct btrfs_space_info *space_info = cache->space_info;
struct raid_kobject *rkobj;
const int index = btrfs_bg_flags_to_raid_index(cache->flags);
unsigned int nofs_flag;
int ret;
/*
* Setup a NOFS context because kobject_add(), deep in its call chain,
* does GFP_KERNEL allocations, and we are often called in a context
* where if reclaim is triggered we can deadlock (we are either holding
* a transaction handle or some lock required for a transaction
* commit).
*/
nofs_flag = memalloc_nofs_save();
rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
if (!rkobj) {
memalloc_nofs_restore(nofs_flag);
btrfs_warn(cache->fs_info,
"couldn't alloc memory for raid level kobject");
return;
}
rkobj->flags = cache->flags;
kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
/*
* We call this either on mount, or if we've created a block group for a
* new index type while running (i.e. when restriping). The running
* case is tricky because we could race with other threads, so we need
* to have this check to make sure we didn't already init the kobject.
*
* We don't have to protect on the free side because it only happens on
* unmount.
*/
spin_lock(&space_info->lock);
if (space_info->block_group_kobjs[index]) {
spin_unlock(&space_info->lock);
kobject_put(&rkobj->kobj);
return;
} else {
space_info->block_group_kobjs[index] = &rkobj->kobj;
}
spin_unlock(&space_info->lock);
ret = kobject_add(&rkobj->kobj, &space_info->kobj, "%s",
btrfs_bg_type_to_raid_name(rkobj->flags));
memalloc_nofs_restore(nofs_flag);
if (ret) {
spin_lock(&space_info->lock);
space_info->block_group_kobjs[index] = NULL;
spin_unlock(&space_info->lock);
kobject_put(&rkobj->kobj);
btrfs_warn(fs_info,
"failed to add kobject for block cache, ignoring");
return;
}
}
/*
* Remove sysfs directories for all block group types of a given space info and
* the space info as well
*/
void btrfs_sysfs_remove_space_info(struct btrfs_space_info *space_info)
{
int i;
for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
struct kobject *kobj;
kobj = space_info->block_group_kobjs[i];
space_info->block_group_kobjs[i] = NULL;
if (kobj) {
kobject_del(kobj);
kobject_put(kobj);
}
}
kobject_del(&space_info->kobj);
kobject_put(&space_info->kobj);
}
static const char *alloc_name(u64 flags)
{
switch (flags) {
case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
return "mixed";
case BTRFS_BLOCK_GROUP_METADATA:
return "metadata";
case BTRFS_BLOCK_GROUP_DATA:
return "data";
case BTRFS_BLOCK_GROUP_SYSTEM:
return "system";
default:
WARN_ON(1);
return "invalid-combination";
}
}
/*
* Create a sysfs entry for a space info type at path
* /sys/fs/btrfs/UUID/allocation/TYPE
*/
int btrfs_sysfs_add_space_info_type(struct btrfs_fs_info *fs_info,
struct btrfs_space_info *space_info)
{
int ret;
ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
fs_info->space_info_kobj, "%s",
alloc_name(space_info->flags));
if (ret) {
kobject_put(&space_info->kobj);
return ret;
}
return 0;
}
void btrfs_sysfs_remove_device(struct btrfs_device *device)
{
struct kobject *devices_kobj;
/*
* Seed fs_devices devices_kobj aren't used, fetch kobject from the
* fs_info::fs_devices.
*/
devices_kobj = device->fs_info->fs_devices->devices_kobj;
ASSERT(devices_kobj);
if (device->bdev)
sysfs_remove_link(devices_kobj, bdev_kobj(device->bdev)->name);
if (device->devid_kobj.state_initialized) {
kobject_del(&device->devid_kobj);
kobject_put(&device->devid_kobj);
wait_for_completion(&device->kobj_unregister);
}
}
static ssize_t btrfs_devinfo_in_fs_metadata_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
int val;
struct btrfs_device *device = container_of(kobj, struct btrfs_device,
devid_kobj);
val = !!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
return sysfs_emit(buf, "%d\n", val);
}
BTRFS_ATTR(devid, in_fs_metadata, btrfs_devinfo_in_fs_metadata_show);
static ssize_t btrfs_devinfo_missing_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
int val;
struct btrfs_device *device = container_of(kobj, struct btrfs_device,
devid_kobj);
val = !!test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
return sysfs_emit(buf, "%d\n", val);
}
BTRFS_ATTR(devid, missing, btrfs_devinfo_missing_show);
static ssize_t btrfs_devinfo_replace_target_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
int val;
struct btrfs_device *device = container_of(kobj, struct btrfs_device,
devid_kobj);
val = !!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
return sysfs_emit(buf, "%d\n", val);
}
BTRFS_ATTR(devid, replace_target, btrfs_devinfo_replace_target_show);
static ssize_t btrfs_devinfo_scrub_speed_max_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_device *device = container_of(kobj, struct btrfs_device,
devid_kobj);
return sysfs_emit(buf, "%llu\n", READ_ONCE(device->scrub_speed_max));
}
static ssize_t btrfs_devinfo_scrub_speed_max_store(struct kobject *kobj,
struct kobj_attribute *a,
const char *buf, size_t len)
{
struct btrfs_device *device = container_of(kobj, struct btrfs_device,
devid_kobj);
char *endptr;
unsigned long long limit;
limit = memparse(buf, &endptr);
/* There could be trailing '\n', also catch any typos after the value. */
endptr = skip_spaces(endptr);
if (*endptr != 0)
return -EINVAL;
WRITE_ONCE(device->scrub_speed_max, limit);
return len;
}
BTRFS_ATTR_RW(devid, scrub_speed_max, btrfs_devinfo_scrub_speed_max_show,
btrfs_devinfo_scrub_speed_max_store);
static ssize_t btrfs_devinfo_writeable_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
int val;
struct btrfs_device *device = container_of(kobj, struct btrfs_device,
devid_kobj);
val = !!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
return sysfs_emit(buf, "%d\n", val);
}
BTRFS_ATTR(devid, writeable, btrfs_devinfo_writeable_show);
static ssize_t btrfs_devinfo_fsid_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_device *device = container_of(kobj, struct btrfs_device,
devid_kobj);
return sysfs_emit(buf, "%pU\n", device->fs_devices->fsid);
}
BTRFS_ATTR(devid, fsid, btrfs_devinfo_fsid_show);
static ssize_t btrfs_devinfo_error_stats_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_device *device = container_of(kobj, struct btrfs_device,
devid_kobj);
if (!device->dev_stats_valid)
return sysfs_emit(buf, "invalid\n");
/*
* Print all at once so we get a snapshot of all values from the same
* time. Keep them in sync and in order of definition of
* btrfs_dev_stat_values.
*/
return sysfs_emit(buf,
"write_errs %d\n"
"read_errs %d\n"
"flush_errs %d\n"
"corruption_errs %d\n"
"generation_errs %d\n",
btrfs_dev_stat_read(device, BTRFS_DEV_STAT_WRITE_ERRS),
btrfs_dev_stat_read(device, BTRFS_DEV_STAT_READ_ERRS),
btrfs_dev_stat_read(device, BTRFS_DEV_STAT_FLUSH_ERRS),
btrfs_dev_stat_read(device, BTRFS_DEV_STAT_CORRUPTION_ERRS),
btrfs_dev_stat_read(device, BTRFS_DEV_STAT_GENERATION_ERRS));
}
BTRFS_ATTR(devid, error_stats, btrfs_devinfo_error_stats_show);
/*
* Information about one device.
*
* Path: /sys/fs/btrfs/<uuid>/devinfo/<devid>/
*/
static struct attribute *devid_attrs[] = {
BTRFS_ATTR_PTR(devid, error_stats),
BTRFS_ATTR_PTR(devid, fsid),
BTRFS_ATTR_PTR(devid, in_fs_metadata),
BTRFS_ATTR_PTR(devid, missing),
BTRFS_ATTR_PTR(devid, replace_target),
BTRFS_ATTR_PTR(devid, scrub_speed_max),
BTRFS_ATTR_PTR(devid, writeable),
NULL
};
ATTRIBUTE_GROUPS(devid);
static void btrfs_release_devid_kobj(struct kobject *kobj)
{
struct btrfs_device *device = container_of(kobj, struct btrfs_device,
devid_kobj);
memset(&device->devid_kobj, 0, sizeof(struct kobject));
complete(&device->kobj_unregister);
}
static const struct kobj_type devid_ktype = {
.sysfs_ops = &kobj_sysfs_ops,
.default_groups = devid_groups,
.release = btrfs_release_devid_kobj,
};
int btrfs_sysfs_add_device(struct btrfs_device *device)
{
int ret;
unsigned int nofs_flag;
struct kobject *devices_kobj;
struct kobject *devinfo_kobj;
/*
* Make sure we use the fs_info::fs_devices to fetch the kobjects even
* for the seed fs_devices
*/
devices_kobj = device->fs_info->fs_devices->devices_kobj;
devinfo_kobj = device->fs_info->fs_devices->devinfo_kobj;
ASSERT(devices_kobj);
ASSERT(devinfo_kobj);
nofs_flag = memalloc_nofs_save();
if (device->bdev) {
struct kobject *disk_kobj = bdev_kobj(device->bdev);
ret = sysfs_create_link(devices_kobj, disk_kobj, disk_kobj->name);
if (ret) {
btrfs_warn(device->fs_info,
"creating sysfs device link for devid %llu failed: %d",
device->devid, ret);
goto out;
}
}
init_completion(&device->kobj_unregister);
ret = kobject_init_and_add(&device->devid_kobj, &devid_ktype,
devinfo_kobj, "%llu", device->devid);
if (ret) {
kobject_put(&device->devid_kobj);
btrfs_warn(device->fs_info,
"devinfo init for devid %llu failed: %d",
device->devid, ret);
}
out:
memalloc_nofs_restore(nofs_flag);
return ret;
}
static int btrfs_sysfs_add_fs_devices(struct btrfs_fs_devices *fs_devices)
{
int ret;
struct btrfs_device *device;
struct btrfs_fs_devices *seed;
list_for_each_entry(device, &fs_devices->devices, dev_list) {
ret = btrfs_sysfs_add_device(device);
if (ret)
goto fail;
}
list_for_each_entry(seed, &fs_devices->seed_list, seed_list) {
list_for_each_entry(device, &seed->devices, dev_list) {
ret = btrfs_sysfs_add_device(device);
if (ret)
goto fail;
}
}
return 0;
fail:
btrfs_sysfs_remove_fs_devices(fs_devices);
return ret;
}
void btrfs_kobject_uevent(struct block_device *bdev, enum kobject_action action)
{
int ret;
ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
if (ret)
pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
action, kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
&disk_to_dev(bdev->bd_disk)->kobj);
}
void btrfs_sysfs_update_sprout_fsid(struct btrfs_fs_devices *fs_devices)
{
char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
/*
* Sprouting changes fsid of the mounted filesystem, rename the fsid
* directory
*/
snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU", fs_devices->fsid);
if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
btrfs_warn(fs_devices->fs_info,
"sysfs: failed to create fsid for sprout");
}
void btrfs_sysfs_update_devid(struct btrfs_device *device)
{
char tmp[24];
snprintf(tmp, sizeof(tmp), "%llu", device->devid);
if (kobject_rename(&device->devid_kobj, tmp))
btrfs_warn(device->fs_devices->fs_info,
"sysfs: failed to update devid for %llu",
device->devid);
}
/* /sys/fs/btrfs/ entry */
static struct kset *btrfs_kset;
/*
* Creates:
* /sys/fs/btrfs/UUID
*
* Can be called by the device discovery thread.
*/
int btrfs_sysfs_add_fsid(struct btrfs_fs_devices *fs_devs)
{
int error;
init_completion(&fs_devs->kobj_unregister);
fs_devs->fsid_kobj.kset = btrfs_kset;
error = kobject_init_and_add(&fs_devs->fsid_kobj, &btrfs_ktype, NULL,
"%pU", fs_devs->fsid);
if (error) {
kobject_put(&fs_devs->fsid_kobj);
return error;
}
fs_devs->devices_kobj = kobject_create_and_add("devices",
&fs_devs->fsid_kobj);
if (!fs_devs->devices_kobj) {
btrfs_err(fs_devs->fs_info,
"failed to init sysfs device interface");
btrfs_sysfs_remove_fsid(fs_devs);
return -ENOMEM;
}
fs_devs->devinfo_kobj = kobject_create_and_add("devinfo",
&fs_devs->fsid_kobj);
if (!fs_devs->devinfo_kobj) {
btrfs_err(fs_devs->fs_info,
"failed to init sysfs devinfo kobject");
btrfs_sysfs_remove_fsid(fs_devs);
return -ENOMEM;
}
return 0;
}
int btrfs_sysfs_add_mounted(struct btrfs_fs_info *fs_info)
{
int error;
struct btrfs_fs_devices *fs_devs = fs_info->fs_devices;
struct kobject *fsid_kobj = &fs_devs->fsid_kobj;
error = btrfs_sysfs_add_fs_devices(fs_devs);
if (error)
return error;
error = sysfs_create_files(fsid_kobj, btrfs_attrs);
if (error) {
btrfs_sysfs_remove_fs_devices(fs_devs);
return error;
}
error = sysfs_create_group(fsid_kobj,
&btrfs_feature_attr_group);
if (error)
goto failure;
#ifdef CONFIG_BTRFS_DEBUG
fs_info->debug_kobj = kobject_create_and_add("debug", fsid_kobj);
if (!fs_info->debug_kobj) {
error = -ENOMEM;
goto failure;
}
error = sysfs_create_files(fs_info->debug_kobj, btrfs_debug_mount_attrs);
if (error)
goto failure;
#endif
/* Discard directory */
fs_info->discard_kobj = kobject_create_and_add("discard", fsid_kobj);
if (!fs_info->discard_kobj) {
error = -ENOMEM;
goto failure;
}
error = sysfs_create_files(fs_info->discard_kobj, discard_attrs);
if (error)
goto failure;
error = addrm_unknown_feature_attrs(fs_info, true);
if (error)
goto failure;
error = sysfs_create_link(fsid_kobj, &fs_info->sb->s_bdi->dev->kobj, "bdi");
if (error)
goto failure;
fs_info->space_info_kobj = kobject_create_and_add("allocation",
fsid_kobj);
if (!fs_info->space_info_kobj) {
error = -ENOMEM;
goto failure;
}
error = sysfs_create_files(fs_info->space_info_kobj, allocation_attrs);
if (error)
goto failure;
return 0;
failure:
btrfs_sysfs_remove_mounted(fs_info);
return error;
}
static ssize_t qgroup_enabled_show(struct kobject *qgroups_kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(qgroups_kobj->parent);
bool enabled;
spin_lock(&fs_info->qgroup_lock);
enabled = fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_ON;
spin_unlock(&fs_info->qgroup_lock);
return sysfs_emit(buf, "%d\n", enabled);
}
BTRFS_ATTR(qgroups, enabled, qgroup_enabled_show);
static ssize_t qgroup_mode_show(struct kobject *qgroups_kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(qgroups_kobj->parent);
ssize_t ret = 0;
spin_lock(&fs_info->qgroup_lock);
ASSERT(btrfs_qgroup_enabled(fs_info));
switch (btrfs_qgroup_mode(fs_info)) {
case BTRFS_QGROUP_MODE_FULL:
ret = sysfs_emit(buf, "qgroup\n");
break;
case BTRFS_QGROUP_MODE_SIMPLE:
ret = sysfs_emit(buf, "squota\n");
break;
default:
btrfs_warn(fs_info, "unexpected qgroup mode %d\n",
btrfs_qgroup_mode(fs_info));
break;
}
spin_unlock(&fs_info->qgroup_lock);
return ret;
}
BTRFS_ATTR(qgroups, mode, qgroup_mode_show);
static ssize_t qgroup_inconsistent_show(struct kobject *qgroups_kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(qgroups_kobj->parent);
bool inconsistent;
spin_lock(&fs_info->qgroup_lock);
inconsistent = (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT);
spin_unlock(&fs_info->qgroup_lock);
return sysfs_emit(buf, "%d\n", inconsistent);
}
BTRFS_ATTR(qgroups, inconsistent, qgroup_inconsistent_show);
static ssize_t qgroup_drop_subtree_thres_show(struct kobject *qgroups_kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(qgroups_kobj->parent);
u8 result;
spin_lock(&fs_info->qgroup_lock);
result = fs_info->qgroup_drop_subtree_thres;
spin_unlock(&fs_info->qgroup_lock);
return sysfs_emit(buf, "%d\n", result);
}
static ssize_t qgroup_drop_subtree_thres_store(struct kobject *qgroups_kobj,
struct kobj_attribute *a,
const char *buf, size_t len)
{
struct btrfs_fs_info *fs_info = to_fs_info(qgroups_kobj->parent);
u8 new_thres;
int ret;
ret = kstrtou8(buf, 10, &new_thres);
if (ret)
return -EINVAL;
if (new_thres > BTRFS_MAX_LEVEL)
return -EINVAL;
spin_lock(&fs_info->qgroup_lock);
fs_info->qgroup_drop_subtree_thres = new_thres;
spin_unlock(&fs_info->qgroup_lock);
return len;
}
BTRFS_ATTR_RW(qgroups, drop_subtree_threshold, qgroup_drop_subtree_thres_show,
qgroup_drop_subtree_thres_store);
/*
* Qgroups global info
*
* Path: /sys/fs/btrfs/<uuid>/qgroups/
*/
static struct attribute *qgroups_attrs[] = {
BTRFS_ATTR_PTR(qgroups, enabled),
BTRFS_ATTR_PTR(qgroups, inconsistent),
BTRFS_ATTR_PTR(qgroups, drop_subtree_threshold),
BTRFS_ATTR_PTR(qgroups, mode),
NULL
};
ATTRIBUTE_GROUPS(qgroups);
static void qgroups_release(struct kobject *kobj)
{
kfree(kobj);
}
static const struct kobj_type qgroups_ktype = {
.sysfs_ops = &kobj_sysfs_ops,
.default_groups = qgroups_groups,
.release = qgroups_release,
};
static inline struct btrfs_fs_info *qgroup_kobj_to_fs_info(struct kobject *kobj)
{
return to_fs_info(kobj->parent->parent);
}
#define QGROUP_ATTR(_member, _show_name) \
static ssize_t btrfs_qgroup_show_##_member(struct kobject *qgroup_kobj, \
struct kobj_attribute *a, \
char *buf) \
{ \
struct btrfs_fs_info *fs_info = qgroup_kobj_to_fs_info(qgroup_kobj); \
struct btrfs_qgroup *qgroup = container_of(qgroup_kobj, \
struct btrfs_qgroup, kobj); \
return btrfs_show_u64(&qgroup->_member, &fs_info->qgroup_lock, buf); \
} \
BTRFS_ATTR(qgroup, _show_name, btrfs_qgroup_show_##_member)
#define QGROUP_RSV_ATTR(_name, _type) \
static ssize_t btrfs_qgroup_rsv_show_##_name(struct kobject *qgroup_kobj, \
struct kobj_attribute *a, \
char *buf) \
{ \
struct btrfs_fs_info *fs_info = qgroup_kobj_to_fs_info(qgroup_kobj); \
struct btrfs_qgroup *qgroup = container_of(qgroup_kobj, \
struct btrfs_qgroup, kobj); \
return btrfs_show_u64(&qgroup->rsv.values[_type], \
&fs_info->qgroup_lock, buf); \
} \
BTRFS_ATTR(qgroup, rsv_##_name, btrfs_qgroup_rsv_show_##_name)
QGROUP_ATTR(rfer, referenced);
QGROUP_ATTR(excl, exclusive);
QGROUP_ATTR(max_rfer, max_referenced);
QGROUP_ATTR(max_excl, max_exclusive);
QGROUP_ATTR(lim_flags, limit_flags);
QGROUP_RSV_ATTR(data, BTRFS_QGROUP_RSV_DATA);
QGROUP_RSV_ATTR(meta_pertrans, BTRFS_QGROUP_RSV_META_PERTRANS);
QGROUP_RSV_ATTR(meta_prealloc, BTRFS_QGROUP_RSV_META_PREALLOC);
/*
* Qgroup information.
*
* Path: /sys/fs/btrfs/<uuid>/qgroups/<level>_<qgroupid>/
*/
static struct attribute *qgroup_attrs[] = {
BTRFS_ATTR_PTR(qgroup, referenced),
BTRFS_ATTR_PTR(qgroup, exclusive),
BTRFS_ATTR_PTR(qgroup, max_referenced),
BTRFS_ATTR_PTR(qgroup, max_exclusive),
BTRFS_ATTR_PTR(qgroup, limit_flags),
BTRFS_ATTR_PTR(qgroup, rsv_data),
BTRFS_ATTR_PTR(qgroup, rsv_meta_pertrans),
BTRFS_ATTR_PTR(qgroup, rsv_meta_prealloc),
NULL
};
ATTRIBUTE_GROUPS(qgroup);
static void qgroup_release(struct kobject *kobj)
{
struct btrfs_qgroup *qgroup = container_of(kobj, struct btrfs_qgroup, kobj);
memset(&qgroup->kobj, 0, sizeof(*kobj));
}
static const struct kobj_type qgroup_ktype = {
.sysfs_ops = &kobj_sysfs_ops,
.release = qgroup_release,
.default_groups = qgroup_groups,
};
int btrfs_sysfs_add_one_qgroup(struct btrfs_fs_info *fs_info,
struct btrfs_qgroup *qgroup)
{
struct kobject *qgroups_kobj = fs_info->qgroups_kobj;
int ret;
if (test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state))
return 0;
if (qgroup->kobj.state_initialized)
return 0;
if (!qgroups_kobj)
return -EINVAL;
ret = kobject_init_and_add(&qgroup->kobj, &qgroup_ktype, qgroups_kobj,
"%hu_%llu", btrfs_qgroup_level(qgroup->qgroupid),
btrfs_qgroup_subvolid(qgroup->qgroupid));
if (ret < 0)
kobject_put(&qgroup->kobj);
return ret;
}
void btrfs_sysfs_del_qgroups(struct btrfs_fs_info *fs_info)
{
struct btrfs_qgroup *qgroup;
struct btrfs_qgroup *next;
if (test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state))
return;
rbtree_postorder_for_each_entry_safe(qgroup, next,
&fs_info->qgroup_tree, node)
btrfs_sysfs_del_one_qgroup(fs_info, qgroup);
if (fs_info->qgroups_kobj) {
kobject_del(fs_info->qgroups_kobj);
kobject_put(fs_info->qgroups_kobj);
fs_info->qgroups_kobj = NULL;
}
}
/* Called when qgroups get initialized, thus there is no need for locking */
int btrfs_sysfs_add_qgroups(struct btrfs_fs_info *fs_info)
{
struct kobject *fsid_kobj = &fs_info->fs_devices->fsid_kobj;
struct btrfs_qgroup *qgroup;
struct btrfs_qgroup *next;
int ret = 0;
if (test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state))
return 0;
ASSERT(fsid_kobj);
if (fs_info->qgroups_kobj)
return 0;
fs_info->qgroups_kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
if (!fs_info->qgroups_kobj)
return -ENOMEM;
ret = kobject_init_and_add(fs_info->qgroups_kobj, &qgroups_ktype,
fsid_kobj, "qgroups");
if (ret < 0)
goto out;
rbtree_postorder_for_each_entry_safe(qgroup, next,
&fs_info->qgroup_tree, node) {
ret = btrfs_sysfs_add_one_qgroup(fs_info, qgroup);
if (ret < 0)
goto out;
}
out:
if (ret < 0)
btrfs_sysfs_del_qgroups(fs_info);
return ret;
}
void btrfs_sysfs_del_one_qgroup(struct btrfs_fs_info *fs_info,
struct btrfs_qgroup *qgroup)
{
if (test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state))
return;
if (qgroup->kobj.state_initialized) {
kobject_del(&qgroup->kobj);
kobject_put(&qgroup->kobj);
}
}
/*
* Change per-fs features in /sys/fs/btrfs/UUID/features to match current
* values in superblock. Call after any changes to incompat/compat_ro flags
*/
void btrfs_sysfs_feature_update(struct btrfs_fs_info *fs_info)
{
struct kobject *fsid_kobj;
int ret;
if (!fs_info)
return;
fsid_kobj = &fs_info->fs_devices->fsid_kobj;
if (!fsid_kobj->state_initialized)
return;
ret = sysfs_update_group(fsid_kobj, &btrfs_feature_attr_group);
if (ret < 0)
btrfs_warn(fs_info,
"failed to update /sys/fs/btrfs/%pU/features: %d",
fs_info->fs_devices->fsid, ret);
}
int __init btrfs_init_sysfs(void)
{
int ret;
btrfs_kset = kset_create_and_add("btrfs", NULL, fs_kobj);
if (!btrfs_kset)
return -ENOMEM;
init_feature_attrs();
ret = sysfs_create_group(&btrfs_kset->kobj, &btrfs_feature_attr_group);
if (ret)
goto out2;
ret = sysfs_merge_group(&btrfs_kset->kobj,
&btrfs_static_feature_attr_group);
if (ret)
goto out_remove_group;
#ifdef CONFIG_BTRFS_DEBUG
ret = sysfs_create_group(&btrfs_kset->kobj, &btrfs_debug_feature_attr_group);
if (ret) {
sysfs_unmerge_group(&btrfs_kset->kobj,
&btrfs_static_feature_attr_group);
goto out_remove_group;
}
#endif
return 0;
out_remove_group:
sysfs_remove_group(&btrfs_kset->kobj, &btrfs_feature_attr_group);
out2:
kset_unregister(btrfs_kset);
return ret;
}
void __cold btrfs_exit_sysfs(void)
{
sysfs_unmerge_group(&btrfs_kset->kobj,
&btrfs_static_feature_attr_group);
sysfs_remove_group(&btrfs_kset->kobj, &btrfs_feature_attr_group);
#ifdef CONFIG_BTRFS_DEBUG
sysfs_remove_group(&btrfs_kset->kobj, &btrfs_debug_feature_attr_group);
#endif
kset_unregister(btrfs_kset);
}