linux/tools/perf/util/cpumap.c
James Clark 8d4852b468 perf stat aggregation: Add separate thread member
A separate field isn't strictly required. The core field could be
re-used for thread IDs as a single field was used previously.

But separating them will avoid confusion and catch potential errors
where core IDs are read as thread IDs and vice versa.

Also remove the placeholder id field which is now no longer used.

Signed-off-by: James Clark <james.clark@arm.com>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Tested-by: John Garry <john.garry@huawei.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Richter <tmricht@linux.ibm.com>
Link: https://lore.kernel.org/r/20201126141328.6509-13-james.clark@arm.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-12-24 10:05:28 -03:00

646 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <api/fs/fs.h>
#include "cpumap.h"
#include "debug.h"
#include "event.h"
#include <assert.h>
#include <dirent.h>
#include <stdio.h>
#include <stdlib.h>
#include <linux/bitmap.h>
#include "asm/bug.h"
#include <linux/ctype.h>
#include <linux/zalloc.h>
static int max_cpu_num;
static int max_present_cpu_num;
static int max_node_num;
static int *cpunode_map;
static struct perf_cpu_map *cpu_map__from_entries(struct cpu_map_entries *cpus)
{
struct perf_cpu_map *map;
map = perf_cpu_map__empty_new(cpus->nr);
if (map) {
unsigned i;
for (i = 0; i < cpus->nr; i++) {
/*
* Special treatment for -1, which is not real cpu number,
* and we need to use (int) -1 to initialize map[i],
* otherwise it would become 65535.
*/
if (cpus->cpu[i] == (u16) -1)
map->map[i] = -1;
else
map->map[i] = (int) cpus->cpu[i];
}
}
return map;
}
static struct perf_cpu_map *cpu_map__from_mask(struct perf_record_record_cpu_map *mask)
{
struct perf_cpu_map *map;
int nr, nbits = mask->nr * mask->long_size * BITS_PER_BYTE;
nr = bitmap_weight(mask->mask, nbits);
map = perf_cpu_map__empty_new(nr);
if (map) {
int cpu, i = 0;
for_each_set_bit(cpu, mask->mask, nbits)
map->map[i++] = cpu;
}
return map;
}
struct perf_cpu_map *cpu_map__new_data(struct perf_record_cpu_map_data *data)
{
if (data->type == PERF_CPU_MAP__CPUS)
return cpu_map__from_entries((struct cpu_map_entries *)data->data);
else
return cpu_map__from_mask((struct perf_record_record_cpu_map *)data->data);
}
size_t cpu_map__fprintf(struct perf_cpu_map *map, FILE *fp)
{
#define BUFSIZE 1024
char buf[BUFSIZE];
cpu_map__snprint(map, buf, sizeof(buf));
return fprintf(fp, "%s\n", buf);
#undef BUFSIZE
}
struct perf_cpu_map *perf_cpu_map__empty_new(int nr)
{
struct perf_cpu_map *cpus = malloc(sizeof(*cpus) + sizeof(int) * nr);
if (cpus != NULL) {
int i;
cpus->nr = nr;
for (i = 0; i < nr; i++)
cpus->map[i] = -1;
refcount_set(&cpus->refcnt, 1);
}
return cpus;
}
struct cpu_aggr_map *cpu_aggr_map__empty_new(int nr)
{
struct cpu_aggr_map *cpus = malloc(sizeof(*cpus) + sizeof(struct aggr_cpu_id) * nr);
if (cpus != NULL) {
int i;
cpus->nr = nr;
for (i = 0; i < nr; i++)
cpus->map[i] = cpu_map__empty_aggr_cpu_id();
refcount_set(&cpus->refcnt, 1);
}
return cpus;
}
static int cpu__get_topology_int(int cpu, const char *name, int *value)
{
char path[PATH_MAX];
snprintf(path, PATH_MAX,
"devices/system/cpu/cpu%d/topology/%s", cpu, name);
return sysfs__read_int(path, value);
}
int cpu_map__get_socket_id(int cpu)
{
int value, ret = cpu__get_topology_int(cpu, "physical_package_id", &value);
return ret ?: value;
}
struct aggr_cpu_id cpu_map__get_socket(struct perf_cpu_map *map, int idx,
void *data __maybe_unused)
{
int cpu;
struct aggr_cpu_id id = cpu_map__empty_aggr_cpu_id();
if (idx > map->nr)
return id;
cpu = map->map[idx];
id.socket = cpu_map__get_socket_id(cpu);
return id;
}
static int cmp_aggr_cpu_id(const void *a_pointer, const void *b_pointer)
{
struct aggr_cpu_id *a = (struct aggr_cpu_id *)a_pointer;
struct aggr_cpu_id *b = (struct aggr_cpu_id *)b_pointer;
if (a->node != b->node)
return a->node - b->node;
else if (a->socket != b->socket)
return a->socket - b->socket;
else if (a->die != b->die)
return a->die - b->die;
else if (a->core != b->core)
return a->core - b->core;
else
return a->thread - b->thread;
}
int cpu_map__build_map(struct perf_cpu_map *cpus, struct cpu_aggr_map **res,
struct aggr_cpu_id (*f)(struct perf_cpu_map *map, int cpu, void *data),
void *data)
{
int nr = cpus->nr;
struct cpu_aggr_map *c = cpu_aggr_map__empty_new(nr);
int cpu, s2;
struct aggr_cpu_id s1;
if (!c)
return -1;
/* Reset size as it may only be partially filled */
c->nr = 0;
for (cpu = 0; cpu < nr; cpu++) {
s1 = f(cpus, cpu, data);
for (s2 = 0; s2 < c->nr; s2++) {
if (cpu_map__compare_aggr_cpu_id(s1, c->map[s2]))
break;
}
if (s2 == c->nr) {
c->map[c->nr] = s1;
c->nr++;
}
}
/* ensure we process id in increasing order */
qsort(c->map, c->nr, sizeof(struct aggr_cpu_id), cmp_aggr_cpu_id);
*res = c;
return 0;
}
int cpu_map__get_die_id(int cpu)
{
int value, ret = cpu__get_topology_int(cpu, "die_id", &value);
return ret ?: value;
}
struct aggr_cpu_id cpu_map__get_die(struct perf_cpu_map *map, int idx, void *data)
{
int cpu, die;
struct aggr_cpu_id id = cpu_map__empty_aggr_cpu_id();
if (idx > map->nr)
return id;
cpu = map->map[idx];
die = cpu_map__get_die_id(cpu);
/* There is no die_id on legacy system. */
if (die == -1)
die = 0;
/*
* die_id is relative to socket, so start
* with the socket ID and then add die to
* make a unique ID.
*/
id = cpu_map__get_socket(map, idx, data);
if (cpu_map__aggr_cpu_id_is_empty(id))
return id;
id.die = die;
return id;
}
int cpu_map__get_core_id(int cpu)
{
int value, ret = cpu__get_topology_int(cpu, "core_id", &value);
return ret ?: value;
}
int cpu_map__get_node_id(int cpu)
{
return cpu__get_node(cpu);
}
struct aggr_cpu_id cpu_map__get_core(struct perf_cpu_map *map, int idx, void *data)
{
int cpu;
struct aggr_cpu_id id = cpu_map__empty_aggr_cpu_id();
if (idx > map->nr)
return id;
cpu = map->map[idx];
cpu = cpu_map__get_core_id(cpu);
/* cpu_map__get_die returns a struct with socket and die set*/
id = cpu_map__get_die(map, idx, data);
if (cpu_map__aggr_cpu_id_is_empty(id))
return id;
/*
* core_id is relative to socket and die, we need a global id.
* So we combine the result from cpu_map__get_die with the core id
*/
id.core = cpu;
return id;
}
struct aggr_cpu_id cpu_map__get_node(struct perf_cpu_map *map, int idx, void *data __maybe_unused)
{
struct aggr_cpu_id id = cpu_map__empty_aggr_cpu_id();
if (idx < 0 || idx >= map->nr)
return id;
id.node = cpu_map__get_node_id(map->map[idx]);
return id;
}
int cpu_map__build_socket_map(struct perf_cpu_map *cpus, struct cpu_aggr_map **sockp)
{
return cpu_map__build_map(cpus, sockp, cpu_map__get_socket, NULL);
}
int cpu_map__build_die_map(struct perf_cpu_map *cpus, struct cpu_aggr_map **diep)
{
return cpu_map__build_map(cpus, diep, cpu_map__get_die, NULL);
}
int cpu_map__build_core_map(struct perf_cpu_map *cpus, struct cpu_aggr_map **corep)
{
return cpu_map__build_map(cpus, corep, cpu_map__get_core, NULL);
}
int cpu_map__build_node_map(struct perf_cpu_map *cpus, struct cpu_aggr_map **numap)
{
return cpu_map__build_map(cpus, numap, cpu_map__get_node, NULL);
}
/* setup simple routines to easily access node numbers given a cpu number */
static int get_max_num(char *path, int *max)
{
size_t num;
char *buf;
int err = 0;
if (filename__read_str(path, &buf, &num))
return -1;
buf[num] = '\0';
/* start on the right, to find highest node num */
while (--num) {
if ((buf[num] == ',') || (buf[num] == '-')) {
num++;
break;
}
}
if (sscanf(&buf[num], "%d", max) < 1) {
err = -1;
goto out;
}
/* convert from 0-based to 1-based */
(*max)++;
out:
free(buf);
return err;
}
/* Determine highest possible cpu in the system for sparse allocation */
static void set_max_cpu_num(void)
{
const char *mnt;
char path[PATH_MAX];
int ret = -1;
/* set up default */
max_cpu_num = 4096;
max_present_cpu_num = 4096;
mnt = sysfs__mountpoint();
if (!mnt)
goto out;
/* get the highest possible cpu number for a sparse allocation */
ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/possible", mnt);
if (ret >= PATH_MAX) {
pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
goto out;
}
ret = get_max_num(path, &max_cpu_num);
if (ret)
goto out;
/* get the highest present cpu number for a sparse allocation */
ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/present", mnt);
if (ret >= PATH_MAX) {
pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
goto out;
}
ret = get_max_num(path, &max_present_cpu_num);
out:
if (ret)
pr_err("Failed to read max cpus, using default of %d\n", max_cpu_num);
}
/* Determine highest possible node in the system for sparse allocation */
static void set_max_node_num(void)
{
const char *mnt;
char path[PATH_MAX];
int ret = -1;
/* set up default */
max_node_num = 8;
mnt = sysfs__mountpoint();
if (!mnt)
goto out;
/* get the highest possible cpu number for a sparse allocation */
ret = snprintf(path, PATH_MAX, "%s/devices/system/node/possible", mnt);
if (ret >= PATH_MAX) {
pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
goto out;
}
ret = get_max_num(path, &max_node_num);
out:
if (ret)
pr_err("Failed to read max nodes, using default of %d\n", max_node_num);
}
int cpu__max_node(void)
{
if (unlikely(!max_node_num))
set_max_node_num();
return max_node_num;
}
int cpu__max_cpu(void)
{
if (unlikely(!max_cpu_num))
set_max_cpu_num();
return max_cpu_num;
}
int cpu__max_present_cpu(void)
{
if (unlikely(!max_present_cpu_num))
set_max_cpu_num();
return max_present_cpu_num;
}
int cpu__get_node(int cpu)
{
if (unlikely(cpunode_map == NULL)) {
pr_debug("cpu_map not initialized\n");
return -1;
}
return cpunode_map[cpu];
}
static int init_cpunode_map(void)
{
int i;
set_max_cpu_num();
set_max_node_num();
cpunode_map = calloc(max_cpu_num, sizeof(int));
if (!cpunode_map) {
pr_err("%s: calloc failed\n", __func__);
return -1;
}
for (i = 0; i < max_cpu_num; i++)
cpunode_map[i] = -1;
return 0;
}
int cpu__setup_cpunode_map(void)
{
struct dirent *dent1, *dent2;
DIR *dir1, *dir2;
unsigned int cpu, mem;
char buf[PATH_MAX];
char path[PATH_MAX];
const char *mnt;
int n;
/* initialize globals */
if (init_cpunode_map())
return -1;
mnt = sysfs__mountpoint();
if (!mnt)
return 0;
n = snprintf(path, PATH_MAX, "%s/devices/system/node", mnt);
if (n >= PATH_MAX) {
pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
return -1;
}
dir1 = opendir(path);
if (!dir1)
return 0;
/* walk tree and setup map */
while ((dent1 = readdir(dir1)) != NULL) {
if (dent1->d_type != DT_DIR || sscanf(dent1->d_name, "node%u", &mem) < 1)
continue;
n = snprintf(buf, PATH_MAX, "%s/%s", path, dent1->d_name);
if (n >= PATH_MAX) {
pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
continue;
}
dir2 = opendir(buf);
if (!dir2)
continue;
while ((dent2 = readdir(dir2)) != NULL) {
if (dent2->d_type != DT_LNK || sscanf(dent2->d_name, "cpu%u", &cpu) < 1)
continue;
cpunode_map[cpu] = mem;
}
closedir(dir2);
}
closedir(dir1);
return 0;
}
bool cpu_map__has(struct perf_cpu_map *cpus, int cpu)
{
return perf_cpu_map__idx(cpus, cpu) != -1;
}
int cpu_map__cpu(struct perf_cpu_map *cpus, int idx)
{
return cpus->map[idx];
}
size_t cpu_map__snprint(struct perf_cpu_map *map, char *buf, size_t size)
{
int i, cpu, start = -1;
bool first = true;
size_t ret = 0;
#define COMMA first ? "" : ","
for (i = 0; i < map->nr + 1; i++) {
bool last = i == map->nr;
cpu = last ? INT_MAX : map->map[i];
if (start == -1) {
start = i;
if (last) {
ret += snprintf(buf + ret, size - ret,
"%s%d", COMMA,
map->map[i]);
}
} else if (((i - start) != (cpu - map->map[start])) || last) {
int end = i - 1;
if (start == end) {
ret += snprintf(buf + ret, size - ret,
"%s%d", COMMA,
map->map[start]);
} else {
ret += snprintf(buf + ret, size - ret,
"%s%d-%d", COMMA,
map->map[start], map->map[end]);
}
first = false;
start = i;
}
}
#undef COMMA
pr_debug2("cpumask list: %s\n", buf);
return ret;
}
static char hex_char(unsigned char val)
{
if (val < 10)
return val + '0';
if (val < 16)
return val - 10 + 'a';
return '?';
}
size_t cpu_map__snprint_mask(struct perf_cpu_map *map, char *buf, size_t size)
{
int i, cpu;
char *ptr = buf;
unsigned char *bitmap;
int last_cpu = cpu_map__cpu(map, map->nr - 1);
if (buf == NULL)
return 0;
bitmap = zalloc(last_cpu / 8 + 1);
if (bitmap == NULL) {
buf[0] = '\0';
return 0;
}
for (i = 0; i < map->nr; i++) {
cpu = cpu_map__cpu(map, i);
bitmap[cpu / 8] |= 1 << (cpu % 8);
}
for (cpu = last_cpu / 4 * 4; cpu >= 0; cpu -= 4) {
unsigned char bits = bitmap[cpu / 8];
if (cpu % 8)
bits >>= 4;
else
bits &= 0xf;
*ptr++ = hex_char(bits);
if ((cpu % 32) == 0 && cpu > 0)
*ptr++ = ',';
}
*ptr = '\0';
free(bitmap);
buf[size - 1] = '\0';
return ptr - buf;
}
const struct perf_cpu_map *cpu_map__online(void) /* thread unsafe */
{
static const struct perf_cpu_map *online = NULL;
if (!online)
online = perf_cpu_map__new(NULL); /* from /sys/devices/system/cpu/online */
return online;
}
bool cpu_map__compare_aggr_cpu_id(struct aggr_cpu_id a, struct aggr_cpu_id b)
{
return a.thread == b.thread &&
a.node == b.node &&
a.socket == b.socket &&
a.die == b.die &&
a.core == b.core;
}
bool cpu_map__aggr_cpu_id_is_empty(struct aggr_cpu_id a)
{
return a.thread == -1 &&
a.node == -1 &&
a.socket == -1 &&
a.die == -1 &&
a.core == -1;
}
struct aggr_cpu_id cpu_map__empty_aggr_cpu_id(void)
{
struct aggr_cpu_id ret = {
.thread = -1,
.node = -1,
.socket = -1,
.die = -1,
.core = -1
};
return ret;
}