mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-23 14:24:25 +08:00
92a5e1fdb2
Since main() does not return a value explicitly, the return values from FAIL_IF() conditions are ignored and the tests can still pass irrespective of failures. This makes sure that we always explicitly return the correct test exit status. Fixes:1addb64447
("selftests/powerpc: Add test for execute-disabled pkeys") Fixes:c27f2fd170
("selftests/powerpc: Add test for pkey siginfo verification") Reported-by: Eirik Fuller <efuller@redhat.com> Signed-off-by: Sandipan Das <sandipan@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20210118093145.10134-1-sandipan@linux.ibm.com
295 lines
7.9 KiB
C
295 lines
7.9 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
|
|
/*
|
|
* Copyright 2020, Sandipan Das, IBM Corp.
|
|
*
|
|
* Test if applying execute protection on pages using memory
|
|
* protection keys works as expected.
|
|
*/
|
|
|
|
#define _GNU_SOURCE
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <signal.h>
|
|
|
|
#include <unistd.h>
|
|
|
|
#include "pkeys.h"
|
|
|
|
#define PPC_INST_NOP 0x60000000
|
|
#define PPC_INST_TRAP 0x7fe00008
|
|
#define PPC_INST_BLR 0x4e800020
|
|
|
|
static volatile sig_atomic_t fault_pkey, fault_code, fault_type;
|
|
static volatile sig_atomic_t remaining_faults;
|
|
static volatile unsigned int *fault_addr;
|
|
static unsigned long pgsize, numinsns;
|
|
static unsigned int *insns;
|
|
|
|
static void trap_handler(int signum, siginfo_t *sinfo, void *ctx)
|
|
{
|
|
/* Check if this fault originated from the expected address */
|
|
if (sinfo->si_addr != (void *) fault_addr)
|
|
sigsafe_err("got a fault for an unexpected address\n");
|
|
|
|
_exit(1);
|
|
}
|
|
|
|
static void segv_handler(int signum, siginfo_t *sinfo, void *ctx)
|
|
{
|
|
int signal_pkey;
|
|
|
|
signal_pkey = siginfo_pkey(sinfo);
|
|
fault_code = sinfo->si_code;
|
|
|
|
/* Check if this fault originated from the expected address */
|
|
if (sinfo->si_addr != (void *) fault_addr) {
|
|
sigsafe_err("got a fault for an unexpected address\n");
|
|
_exit(1);
|
|
}
|
|
|
|
/* Check if too many faults have occurred for a single test case */
|
|
if (!remaining_faults) {
|
|
sigsafe_err("got too many faults for the same address\n");
|
|
_exit(1);
|
|
}
|
|
|
|
|
|
/* Restore permissions in order to continue */
|
|
switch (fault_code) {
|
|
case SEGV_ACCERR:
|
|
if (mprotect(insns, pgsize, PROT_READ | PROT_WRITE)) {
|
|
sigsafe_err("failed to set access permissions\n");
|
|
_exit(1);
|
|
}
|
|
break;
|
|
case SEGV_PKUERR:
|
|
if (signal_pkey != fault_pkey) {
|
|
sigsafe_err("got a fault for an unexpected pkey\n");
|
|
_exit(1);
|
|
}
|
|
|
|
switch (fault_type) {
|
|
case PKEY_DISABLE_ACCESS:
|
|
pkey_set_rights(fault_pkey, 0);
|
|
break;
|
|
case PKEY_DISABLE_EXECUTE:
|
|
/*
|
|
* Reassociate the exec-only pkey with the region
|
|
* to be able to continue. Unlike AMR, we cannot
|
|
* set IAMR directly from userspace to restore the
|
|
* permissions.
|
|
*/
|
|
if (mprotect(insns, pgsize, PROT_EXEC)) {
|
|
sigsafe_err("failed to set execute permissions\n");
|
|
_exit(1);
|
|
}
|
|
break;
|
|
default:
|
|
sigsafe_err("got a fault with an unexpected type\n");
|
|
_exit(1);
|
|
}
|
|
break;
|
|
default:
|
|
sigsafe_err("got a fault with an unexpected code\n");
|
|
_exit(1);
|
|
}
|
|
|
|
remaining_faults--;
|
|
}
|
|
|
|
static int test(void)
|
|
{
|
|
struct sigaction segv_act, trap_act;
|
|
unsigned long rights;
|
|
int pkey, ret, i;
|
|
|
|
ret = pkeys_unsupported();
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Setup SIGSEGV handler */
|
|
segv_act.sa_handler = 0;
|
|
segv_act.sa_sigaction = segv_handler;
|
|
FAIL_IF(sigprocmask(SIG_SETMASK, 0, &segv_act.sa_mask) != 0);
|
|
segv_act.sa_flags = SA_SIGINFO;
|
|
segv_act.sa_restorer = 0;
|
|
FAIL_IF(sigaction(SIGSEGV, &segv_act, NULL) != 0);
|
|
|
|
/* Setup SIGTRAP handler */
|
|
trap_act.sa_handler = 0;
|
|
trap_act.sa_sigaction = trap_handler;
|
|
FAIL_IF(sigprocmask(SIG_SETMASK, 0, &trap_act.sa_mask) != 0);
|
|
trap_act.sa_flags = SA_SIGINFO;
|
|
trap_act.sa_restorer = 0;
|
|
FAIL_IF(sigaction(SIGTRAP, &trap_act, NULL) != 0);
|
|
|
|
/* Setup executable region */
|
|
pgsize = getpagesize();
|
|
numinsns = pgsize / sizeof(unsigned int);
|
|
insns = (unsigned int *) mmap(NULL, pgsize, PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
FAIL_IF(insns == MAP_FAILED);
|
|
|
|
/* Write the instruction words */
|
|
for (i = 1; i < numinsns - 1; i++)
|
|
insns[i] = PPC_INST_NOP;
|
|
|
|
/*
|
|
* Set the first instruction as an unconditional trap. If
|
|
* the last write to this address succeeds, this should
|
|
* get overwritten by a no-op.
|
|
*/
|
|
insns[0] = PPC_INST_TRAP;
|
|
|
|
/*
|
|
* Later, to jump to the executable region, we use a branch
|
|
* and link instruction (bctrl) which sets the return address
|
|
* automatically in LR. Use that to return back.
|
|
*/
|
|
insns[numinsns - 1] = PPC_INST_BLR;
|
|
|
|
/* Allocate a pkey that restricts execution */
|
|
rights = PKEY_DISABLE_EXECUTE;
|
|
pkey = sys_pkey_alloc(0, rights);
|
|
FAIL_IF(pkey < 0);
|
|
|
|
/*
|
|
* Pick the first instruction's address from the executable
|
|
* region.
|
|
*/
|
|
fault_addr = insns;
|
|
|
|
/* The following two cases will avoid SEGV_PKUERR */
|
|
fault_type = -1;
|
|
fault_pkey = -1;
|
|
|
|
/*
|
|
* Read an instruction word from the address when AMR bits
|
|
* are not set i.e. the pkey permits both read and write
|
|
* access.
|
|
*
|
|
* This should not generate a fault as having PROT_EXEC
|
|
* implies PROT_READ on GNU systems. The pkey currently
|
|
* restricts execution only based on the IAMR bits. The
|
|
* AMR bits are cleared.
|
|
*/
|
|
remaining_faults = 0;
|
|
FAIL_IF(sys_pkey_mprotect(insns, pgsize, PROT_EXEC, pkey) != 0);
|
|
printf("read from %p, pkey permissions are %s\n", fault_addr,
|
|
pkey_rights(rights));
|
|
i = *fault_addr;
|
|
FAIL_IF(remaining_faults != 0);
|
|
|
|
/*
|
|
* Write an instruction word to the address when AMR bits
|
|
* are not set i.e. the pkey permits both read and write
|
|
* access.
|
|
*
|
|
* This should generate an access fault as having just
|
|
* PROT_EXEC also restricts writes. The pkey currently
|
|
* restricts execution only based on the IAMR bits. The
|
|
* AMR bits are cleared.
|
|
*/
|
|
remaining_faults = 1;
|
|
FAIL_IF(sys_pkey_mprotect(insns, pgsize, PROT_EXEC, pkey) != 0);
|
|
printf("write to %p, pkey permissions are %s\n", fault_addr,
|
|
pkey_rights(rights));
|
|
*fault_addr = PPC_INST_TRAP;
|
|
FAIL_IF(remaining_faults != 0 || fault_code != SEGV_ACCERR);
|
|
|
|
/* The following three cases will generate SEGV_PKUERR */
|
|
rights |= PKEY_DISABLE_ACCESS;
|
|
fault_type = PKEY_DISABLE_ACCESS;
|
|
fault_pkey = pkey;
|
|
|
|
/*
|
|
* Read an instruction word from the address when AMR bits
|
|
* are set i.e. the pkey permits neither read nor write
|
|
* access.
|
|
*
|
|
* This should generate a pkey fault based on AMR bits only
|
|
* as having PROT_EXEC implicitly allows reads.
|
|
*/
|
|
remaining_faults = 1;
|
|
FAIL_IF(sys_pkey_mprotect(insns, pgsize, PROT_EXEC, pkey) != 0);
|
|
pkey_set_rights(pkey, rights);
|
|
printf("read from %p, pkey permissions are %s\n", fault_addr,
|
|
pkey_rights(rights));
|
|
i = *fault_addr;
|
|
FAIL_IF(remaining_faults != 0 || fault_code != SEGV_PKUERR);
|
|
|
|
/*
|
|
* Write an instruction word to the address when AMR bits
|
|
* are set i.e. the pkey permits neither read nor write
|
|
* access.
|
|
*
|
|
* This should generate two faults. First, a pkey fault
|
|
* based on AMR bits and then an access fault since
|
|
* PROT_EXEC does not allow writes.
|
|
*/
|
|
remaining_faults = 2;
|
|
FAIL_IF(sys_pkey_mprotect(insns, pgsize, PROT_EXEC, pkey) != 0);
|
|
pkey_set_rights(pkey, rights);
|
|
printf("write to %p, pkey permissions are %s\n", fault_addr,
|
|
pkey_rights(rights));
|
|
*fault_addr = PPC_INST_NOP;
|
|
FAIL_IF(remaining_faults != 0 || fault_code != SEGV_ACCERR);
|
|
|
|
/* Free the current pkey */
|
|
sys_pkey_free(pkey);
|
|
|
|
rights = 0;
|
|
do {
|
|
/*
|
|
* Allocate pkeys with all valid combinations of read,
|
|
* write and execute restrictions.
|
|
*/
|
|
pkey = sys_pkey_alloc(0, rights);
|
|
FAIL_IF(pkey < 0);
|
|
|
|
/*
|
|
* Jump to the executable region. AMR bits may or may not
|
|
* be set but they should not affect execution.
|
|
*
|
|
* This should generate pkey faults based on IAMR bits which
|
|
* may be set to restrict execution.
|
|
*
|
|
* The first iteration also checks if the overwrite of the
|
|
* first instruction word from a trap to a no-op succeeded.
|
|
*/
|
|
fault_pkey = pkey;
|
|
fault_type = -1;
|
|
remaining_faults = 0;
|
|
if (rights & PKEY_DISABLE_EXECUTE) {
|
|
fault_type = PKEY_DISABLE_EXECUTE;
|
|
remaining_faults = 1;
|
|
}
|
|
|
|
FAIL_IF(sys_pkey_mprotect(insns, pgsize, PROT_EXEC, pkey) != 0);
|
|
printf("execute at %p, pkey permissions are %s\n", fault_addr,
|
|
pkey_rights(rights));
|
|
asm volatile("mtctr %0; bctrl" : : "r"(insns));
|
|
FAIL_IF(remaining_faults != 0);
|
|
if (rights & PKEY_DISABLE_EXECUTE)
|
|
FAIL_IF(fault_code != SEGV_PKUERR);
|
|
|
|
/* Free the current pkey */
|
|
sys_pkey_free(pkey);
|
|
|
|
/* Find next valid combination of pkey rights */
|
|
rights = next_pkey_rights(rights);
|
|
} while (rights);
|
|
|
|
/* Cleanup */
|
|
munmap((void *) insns, pgsize);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int main(void)
|
|
{
|
|
return test_harness(test, "pkey_exec_prot");
|
|
}
|