linux/drivers/firmware/efi/vars.c
Jann Horn 4efa386ef9 efivars: Respect "block" flag in efivar_entry_set_safe()
commit 258dd90202 upstream.

When the "block" flag is false, the old code would sometimes still call
check_var_size(), which wrongly tells ->query_variable_store() that it can
block.

As far as I can tell, this can't really materialize as a bug at the moment,
because ->query_variable_store only does something on X86 with generic EFI,
and in that configuration we always take the efivar_entry_set_nonblocking()
path.

Fixes: ca0e30dcaa ("efi: Add nonblocking option to efi_query_variable_store()")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220218180559.1432559-1-jannh@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-03-08 19:12:47 +01:00

1223 lines
31 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Originally from efivars.c
*
* Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
* Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
*/
#include <linux/capability.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/smp.h>
#include <linux/efi.h>
#include <linux/sysfs.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/ctype.h>
#include <linux/ucs2_string.h>
/* Private pointer to registered efivars */
static struct efivars *__efivars;
/*
* efivars_lock protects three things:
* 1) efivarfs_list and efivars_sysfs_list
* 2) ->ops calls
* 3) (un)registration of __efivars
*/
static DEFINE_SEMAPHORE(efivars_lock);
static bool
validate_device_path(efi_char16_t *var_name, int match, u8 *buffer,
unsigned long len)
{
struct efi_generic_dev_path *node;
int offset = 0;
node = (struct efi_generic_dev_path *)buffer;
if (len < sizeof(*node))
return false;
while (offset <= len - sizeof(*node) &&
node->length >= sizeof(*node) &&
node->length <= len - offset) {
offset += node->length;
if ((node->type == EFI_DEV_END_PATH ||
node->type == EFI_DEV_END_PATH2) &&
node->sub_type == EFI_DEV_END_ENTIRE)
return true;
node = (struct efi_generic_dev_path *)(buffer + offset);
}
/*
* If we're here then either node->length pointed past the end
* of the buffer or we reached the end of the buffer without
* finding a device path end node.
*/
return false;
}
static bool
validate_boot_order(efi_char16_t *var_name, int match, u8 *buffer,
unsigned long len)
{
/* An array of 16-bit integers */
if ((len % 2) != 0)
return false;
return true;
}
static bool
validate_load_option(efi_char16_t *var_name, int match, u8 *buffer,
unsigned long len)
{
u16 filepathlength;
int i, desclength = 0, namelen;
namelen = ucs2_strnlen(var_name, EFI_VAR_NAME_LEN);
/* Either "Boot" or "Driver" followed by four digits of hex */
for (i = match; i < match+4; i++) {
if (var_name[i] > 127 ||
hex_to_bin(var_name[i] & 0xff) < 0)
return true;
}
/* Reject it if there's 4 digits of hex and then further content */
if (namelen > match + 4)
return false;
/* A valid entry must be at least 8 bytes */
if (len < 8)
return false;
filepathlength = buffer[4] | buffer[5] << 8;
/*
* There's no stored length for the description, so it has to be
* found by hand
*/
desclength = ucs2_strsize((efi_char16_t *)(buffer + 6), len - 6) + 2;
/* Each boot entry must have a descriptor */
if (!desclength)
return false;
/*
* If the sum of the length of the description, the claimed filepath
* length and the original header are greater than the length of the
* variable, it's malformed
*/
if ((desclength + filepathlength + 6) > len)
return false;
/*
* And, finally, check the filepath
*/
return validate_device_path(var_name, match, buffer + desclength + 6,
filepathlength);
}
static bool
validate_uint16(efi_char16_t *var_name, int match, u8 *buffer,
unsigned long len)
{
/* A single 16-bit integer */
if (len != 2)
return false;
return true;
}
static bool
validate_ascii_string(efi_char16_t *var_name, int match, u8 *buffer,
unsigned long len)
{
int i;
for (i = 0; i < len; i++) {
if (buffer[i] > 127)
return false;
if (buffer[i] == 0)
return true;
}
return false;
}
struct variable_validate {
efi_guid_t vendor;
char *name;
bool (*validate)(efi_char16_t *var_name, int match, u8 *data,
unsigned long len);
};
/*
* This is the list of variables we need to validate, as well as the
* whitelist for what we think is safe not to default to immutable.
*
* If it has a validate() method that's not NULL, it'll go into the
* validation routine. If not, it is assumed valid, but still used for
* whitelisting.
*
* Note that it's sorted by {vendor,name}, but globbed names must come after
* any other name with the same prefix.
*/
static const struct variable_validate variable_validate[] = {
{ EFI_GLOBAL_VARIABLE_GUID, "BootNext", validate_uint16 },
{ EFI_GLOBAL_VARIABLE_GUID, "BootOrder", validate_boot_order },
{ EFI_GLOBAL_VARIABLE_GUID, "Boot*", validate_load_option },
{ EFI_GLOBAL_VARIABLE_GUID, "DriverOrder", validate_boot_order },
{ EFI_GLOBAL_VARIABLE_GUID, "Driver*", validate_load_option },
{ EFI_GLOBAL_VARIABLE_GUID, "ConIn", validate_device_path },
{ EFI_GLOBAL_VARIABLE_GUID, "ConInDev", validate_device_path },
{ EFI_GLOBAL_VARIABLE_GUID, "ConOut", validate_device_path },
{ EFI_GLOBAL_VARIABLE_GUID, "ConOutDev", validate_device_path },
{ EFI_GLOBAL_VARIABLE_GUID, "ErrOut", validate_device_path },
{ EFI_GLOBAL_VARIABLE_GUID, "ErrOutDev", validate_device_path },
{ EFI_GLOBAL_VARIABLE_GUID, "Lang", validate_ascii_string },
{ EFI_GLOBAL_VARIABLE_GUID, "OsIndications", NULL },
{ EFI_GLOBAL_VARIABLE_GUID, "PlatformLang", validate_ascii_string },
{ EFI_GLOBAL_VARIABLE_GUID, "Timeout", validate_uint16 },
{ LINUX_EFI_CRASH_GUID, "*", NULL },
{ NULL_GUID, "", NULL },
};
/*
* Check if @var_name matches the pattern given in @match_name.
*
* @var_name: an array of @len non-NUL characters.
* @match_name: a NUL-terminated pattern string, optionally ending in "*". A
* final "*" character matches any trailing characters @var_name,
* including the case when there are none left in @var_name.
* @match: on output, the number of non-wildcard characters in @match_name
* that @var_name matches, regardless of the return value.
* @return: whether @var_name fully matches @match_name.
*/
static bool
variable_matches(const char *var_name, size_t len, const char *match_name,
int *match)
{
for (*match = 0; ; (*match)++) {
char c = match_name[*match];
switch (c) {
case '*':
/* Wildcard in @match_name means we've matched. */
return true;
case '\0':
/* @match_name has ended. Has @var_name too? */
return (*match == len);
default:
/*
* We've reached a non-wildcard char in @match_name.
* Continue only if there's an identical character in
* @var_name.
*/
if (*match < len && c == var_name[*match])
continue;
return false;
}
}
}
bool
efivar_validate(efi_guid_t vendor, efi_char16_t *var_name, u8 *data,
unsigned long data_size)
{
int i;
unsigned long utf8_size;
u8 *utf8_name;
utf8_size = ucs2_utf8size(var_name);
utf8_name = kmalloc(utf8_size + 1, GFP_KERNEL);
if (!utf8_name)
return false;
ucs2_as_utf8(utf8_name, var_name, utf8_size);
utf8_name[utf8_size] = '\0';
for (i = 0; variable_validate[i].name[0] != '\0'; i++) {
const char *name = variable_validate[i].name;
int match = 0;
if (efi_guidcmp(vendor, variable_validate[i].vendor))
continue;
if (variable_matches(utf8_name, utf8_size+1, name, &match)) {
if (variable_validate[i].validate == NULL)
break;
kfree(utf8_name);
return variable_validate[i].validate(var_name, match,
data, data_size);
}
}
kfree(utf8_name);
return true;
}
EXPORT_SYMBOL_GPL(efivar_validate);
bool
efivar_variable_is_removable(efi_guid_t vendor, const char *var_name,
size_t len)
{
int i;
bool found = false;
int match = 0;
/*
* Check if our variable is in the validated variables list
*/
for (i = 0; variable_validate[i].name[0] != '\0'; i++) {
if (efi_guidcmp(variable_validate[i].vendor, vendor))
continue;
if (variable_matches(var_name, len,
variable_validate[i].name, &match)) {
found = true;
break;
}
}
/*
* If it's in our list, it is removable.
*/
return found;
}
EXPORT_SYMBOL_GPL(efivar_variable_is_removable);
static efi_status_t
check_var_size(u32 attributes, unsigned long size)
{
const struct efivar_operations *fops;
if (!__efivars)
return EFI_UNSUPPORTED;
fops = __efivars->ops;
if (!fops->query_variable_store)
return EFI_UNSUPPORTED;
return fops->query_variable_store(attributes, size, false);
}
static efi_status_t
check_var_size_nonblocking(u32 attributes, unsigned long size)
{
const struct efivar_operations *fops;
if (!__efivars)
return EFI_UNSUPPORTED;
fops = __efivars->ops;
if (!fops->query_variable_store)
return EFI_UNSUPPORTED;
return fops->query_variable_store(attributes, size, true);
}
static bool variable_is_present(efi_char16_t *variable_name, efi_guid_t *vendor,
struct list_head *head)
{
struct efivar_entry *entry, *n;
unsigned long strsize1, strsize2;
bool found = false;
strsize1 = ucs2_strsize(variable_name, 1024);
list_for_each_entry_safe(entry, n, head, list) {
strsize2 = ucs2_strsize(entry->var.VariableName, 1024);
if (strsize1 == strsize2 &&
!memcmp(variable_name, &(entry->var.VariableName),
strsize2) &&
!efi_guidcmp(entry->var.VendorGuid,
*vendor)) {
found = true;
break;
}
}
return found;
}
/*
* Returns the size of variable_name, in bytes, including the
* terminating NULL character, or variable_name_size if no NULL
* character is found among the first variable_name_size bytes.
*/
static unsigned long var_name_strnsize(efi_char16_t *variable_name,
unsigned long variable_name_size)
{
unsigned long len;
efi_char16_t c;
/*
* The variable name is, by definition, a NULL-terminated
* string, so make absolutely sure that variable_name_size is
* the value we expect it to be. If not, return the real size.
*/
for (len = 2; len <= variable_name_size; len += sizeof(c)) {
c = variable_name[(len / sizeof(c)) - 1];
if (!c)
break;
}
return min(len, variable_name_size);
}
/*
* Print a warning when duplicate EFI variables are encountered and
* disable the sysfs workqueue since the firmware is buggy.
*/
static void dup_variable_bug(efi_char16_t *str16, efi_guid_t *vendor_guid,
unsigned long len16)
{
size_t i, len8 = len16 / sizeof(efi_char16_t);
char *str8;
str8 = kzalloc(len8, GFP_KERNEL);
if (!str8)
return;
for (i = 0; i < len8; i++)
str8[i] = str16[i];
printk(KERN_WARNING "efivars: duplicate variable: %s-%pUl\n",
str8, vendor_guid);
kfree(str8);
}
/**
* efivar_init - build the initial list of EFI variables
* @func: callback function to invoke for every variable
* @data: function-specific data to pass to @func
* @duplicates: error if we encounter duplicates on @head?
* @head: initialised head of variable list
*
* Get every EFI variable from the firmware and invoke @func. @func
* should call efivar_entry_add() to build the list of variables.
*
* Returns 0 on success, or a kernel error code on failure.
*/
int efivar_init(int (*func)(efi_char16_t *, efi_guid_t, unsigned long, void *),
void *data, bool duplicates, struct list_head *head)
{
const struct efivar_operations *ops;
unsigned long variable_name_size = 1024;
efi_char16_t *variable_name;
efi_status_t status;
efi_guid_t vendor_guid;
int err = 0;
if (!__efivars)
return -EFAULT;
ops = __efivars->ops;
variable_name = kzalloc(variable_name_size, GFP_KERNEL);
if (!variable_name) {
printk(KERN_ERR "efivars: Memory allocation failed.\n");
return -ENOMEM;
}
if (down_interruptible(&efivars_lock)) {
err = -EINTR;
goto free;
}
/*
* Per EFI spec, the maximum storage allocated for both
* the variable name and variable data is 1024 bytes.
*/
do {
variable_name_size = 1024;
status = ops->get_next_variable(&variable_name_size,
variable_name,
&vendor_guid);
switch (status) {
case EFI_SUCCESS:
if (duplicates)
up(&efivars_lock);
variable_name_size = var_name_strnsize(variable_name,
variable_name_size);
/*
* Some firmware implementations return the
* same variable name on multiple calls to
* get_next_variable(). Terminate the loop
* immediately as there is no guarantee that
* we'll ever see a different variable name,
* and may end up looping here forever.
*/
if (duplicates &&
variable_is_present(variable_name, &vendor_guid,
head)) {
dup_variable_bug(variable_name, &vendor_guid,
variable_name_size);
status = EFI_NOT_FOUND;
} else {
err = func(variable_name, vendor_guid,
variable_name_size, data);
if (err)
status = EFI_NOT_FOUND;
}
if (duplicates) {
if (down_interruptible(&efivars_lock)) {
err = -EINTR;
goto free;
}
}
break;
case EFI_UNSUPPORTED:
err = -EOPNOTSUPP;
status = EFI_NOT_FOUND;
break;
case EFI_NOT_FOUND:
break;
default:
printk(KERN_WARNING "efivars: get_next_variable: status=%lx\n",
status);
status = EFI_NOT_FOUND;
break;
}
} while (status != EFI_NOT_FOUND);
up(&efivars_lock);
free:
kfree(variable_name);
return err;
}
EXPORT_SYMBOL_GPL(efivar_init);
/**
* efivar_entry_add - add entry to variable list
* @entry: entry to add to list
* @head: list head
*
* Returns 0 on success, or a kernel error code on failure.
*/
int efivar_entry_add(struct efivar_entry *entry, struct list_head *head)
{
if (down_interruptible(&efivars_lock))
return -EINTR;
list_add(&entry->list, head);
up(&efivars_lock);
return 0;
}
EXPORT_SYMBOL_GPL(efivar_entry_add);
/**
* efivar_entry_remove - remove entry from variable list
* @entry: entry to remove from list
*
* Returns 0 on success, or a kernel error code on failure.
*/
int efivar_entry_remove(struct efivar_entry *entry)
{
if (down_interruptible(&efivars_lock))
return -EINTR;
list_del(&entry->list);
up(&efivars_lock);
return 0;
}
EXPORT_SYMBOL_GPL(efivar_entry_remove);
/*
* efivar_entry_list_del_unlock - remove entry from variable list
* @entry: entry to remove
*
* Remove @entry from the variable list and release the list lock.
*
* NOTE: slightly weird locking semantics here - we expect to be
* called with the efivars lock already held, and we release it before
* returning. This is because this function is usually called after
* set_variable() while the lock is still held.
*/
static void efivar_entry_list_del_unlock(struct efivar_entry *entry)
{
list_del(&entry->list);
up(&efivars_lock);
}
/**
* __efivar_entry_delete - delete an EFI variable
* @entry: entry containing EFI variable to delete
*
* Delete the variable from the firmware but leave @entry on the
* variable list.
*
* This function differs from efivar_entry_delete() because it does
* not remove @entry from the variable list. Also, it is safe to be
* called from within a efivar_entry_iter_begin() and
* efivar_entry_iter_end() region, unlike efivar_entry_delete().
*
* Returns 0 on success, or a converted EFI status code if
* set_variable() fails.
*/
int __efivar_entry_delete(struct efivar_entry *entry)
{
efi_status_t status;
if (!__efivars)
return -EINVAL;
status = __efivars->ops->set_variable(entry->var.VariableName,
&entry->var.VendorGuid,
0, 0, NULL);
return efi_status_to_err(status);
}
EXPORT_SYMBOL_GPL(__efivar_entry_delete);
/**
* efivar_entry_delete - delete variable and remove entry from list
* @entry: entry containing variable to delete
*
* Delete the variable from the firmware and remove @entry from the
* variable list. It is the caller's responsibility to free @entry
* once we return.
*
* Returns 0 on success, -EINTR if we can't grab the semaphore,
* converted EFI status code if set_variable() fails.
*/
int efivar_entry_delete(struct efivar_entry *entry)
{
const struct efivar_operations *ops;
efi_status_t status;
if (down_interruptible(&efivars_lock))
return -EINTR;
if (!__efivars) {
up(&efivars_lock);
return -EINVAL;
}
ops = __efivars->ops;
status = ops->set_variable(entry->var.VariableName,
&entry->var.VendorGuid,
0, 0, NULL);
if (!(status == EFI_SUCCESS || status == EFI_NOT_FOUND)) {
up(&efivars_lock);
return efi_status_to_err(status);
}
efivar_entry_list_del_unlock(entry);
return 0;
}
EXPORT_SYMBOL_GPL(efivar_entry_delete);
/**
* efivar_entry_set - call set_variable()
* @entry: entry containing the EFI variable to write
* @attributes: variable attributes
* @size: size of @data buffer
* @data: buffer containing variable data
* @head: head of variable list
*
* Calls set_variable() for an EFI variable. If creating a new EFI
* variable, this function is usually followed by efivar_entry_add().
*
* Before writing the variable, the remaining EFI variable storage
* space is checked to ensure there is enough room available.
*
* If @head is not NULL a lookup is performed to determine whether
* the entry is already on the list.
*
* Returns 0 on success, -EINTR if we can't grab the semaphore,
* -EEXIST if a lookup is performed and the entry already exists on
* the list, or a converted EFI status code if set_variable() fails.
*/
int efivar_entry_set(struct efivar_entry *entry, u32 attributes,
unsigned long size, void *data, struct list_head *head)
{
const struct efivar_operations *ops;
efi_status_t status;
efi_char16_t *name = entry->var.VariableName;
efi_guid_t vendor = entry->var.VendorGuid;
if (down_interruptible(&efivars_lock))
return -EINTR;
if (!__efivars) {
up(&efivars_lock);
return -EINVAL;
}
ops = __efivars->ops;
if (head && efivar_entry_find(name, vendor, head, false)) {
up(&efivars_lock);
return -EEXIST;
}
status = check_var_size(attributes, size + ucs2_strsize(name, 1024));
if (status == EFI_SUCCESS || status == EFI_UNSUPPORTED)
status = ops->set_variable(name, &vendor,
attributes, size, data);
up(&efivars_lock);
return efi_status_to_err(status);
}
EXPORT_SYMBOL_GPL(efivar_entry_set);
/*
* efivar_entry_set_nonblocking - call set_variable_nonblocking()
*
* This function is guaranteed to not block and is suitable for calling
* from crash/panic handlers.
*
* Crucially, this function will not block if it cannot acquire
* efivars_lock. Instead, it returns -EBUSY.
*/
static int
efivar_entry_set_nonblocking(efi_char16_t *name, efi_guid_t vendor,
u32 attributes, unsigned long size, void *data)
{
const struct efivar_operations *ops;
efi_status_t status;
if (down_trylock(&efivars_lock))
return -EBUSY;
if (!__efivars) {
up(&efivars_lock);
return -EINVAL;
}
status = check_var_size_nonblocking(attributes,
size + ucs2_strsize(name, 1024));
if (status != EFI_SUCCESS) {
up(&efivars_lock);
return -ENOSPC;
}
ops = __efivars->ops;
status = ops->set_variable_nonblocking(name, &vendor, attributes,
size, data);
up(&efivars_lock);
return efi_status_to_err(status);
}
/**
* efivar_entry_set_safe - call set_variable() if enough space in firmware
* @name: buffer containing the variable name
* @vendor: variable vendor guid
* @attributes: variable attributes
* @block: can we block in this context?
* @size: size of @data buffer
* @data: buffer containing variable data
*
* Ensures there is enough free storage in the firmware for this variable, and
* if so, calls set_variable(). If creating a new EFI variable, this function
* is usually followed by efivar_entry_add().
*
* Returns 0 on success, -ENOSPC if the firmware does not have enough
* space for set_variable() to succeed, or a converted EFI status code
* if set_variable() fails.
*/
int efivar_entry_set_safe(efi_char16_t *name, efi_guid_t vendor, u32 attributes,
bool block, unsigned long size, void *data)
{
const struct efivar_operations *ops;
efi_status_t status;
unsigned long varsize;
if (!__efivars)
return -EINVAL;
ops = __efivars->ops;
if (!ops->query_variable_store)
return -ENOSYS;
/*
* If the EFI variable backend provides a non-blocking
* ->set_variable() operation and we're in a context where we
* cannot block, then we need to use it to avoid live-locks,
* since the implication is that the regular ->set_variable()
* will block.
*
* If no ->set_variable_nonblocking() is provided then
* ->set_variable() is assumed to be non-blocking.
*/
if (!block && ops->set_variable_nonblocking)
return efivar_entry_set_nonblocking(name, vendor, attributes,
size, data);
varsize = size + ucs2_strsize(name, 1024);
if (!block) {
if (down_trylock(&efivars_lock))
return -EBUSY;
status = check_var_size_nonblocking(attributes, varsize);
} else {
if (down_interruptible(&efivars_lock))
return -EINTR;
status = check_var_size(attributes, varsize);
}
if (status != EFI_SUCCESS) {
up(&efivars_lock);
return -ENOSPC;
}
status = ops->set_variable(name, &vendor, attributes, size, data);
up(&efivars_lock);
return efi_status_to_err(status);
}
EXPORT_SYMBOL_GPL(efivar_entry_set_safe);
/**
* efivar_entry_find - search for an entry
* @name: the EFI variable name
* @guid: the EFI variable vendor's guid
* @head: head of the variable list
* @remove: should we remove the entry from the list?
*
* Search for an entry on the variable list that has the EFI variable
* name @name and vendor guid @guid. If an entry is found on the list
* and @remove is true, the entry is removed from the list.
*
* The caller MUST call efivar_entry_iter_begin() and
* efivar_entry_iter_end() before and after the invocation of this
* function, respectively.
*
* Returns the entry if found on the list, %NULL otherwise.
*/
struct efivar_entry *efivar_entry_find(efi_char16_t *name, efi_guid_t guid,
struct list_head *head, bool remove)
{
struct efivar_entry *entry, *n;
int strsize1, strsize2;
bool found = false;
list_for_each_entry_safe(entry, n, head, list) {
strsize1 = ucs2_strsize(name, 1024);
strsize2 = ucs2_strsize(entry->var.VariableName, 1024);
if (strsize1 == strsize2 &&
!memcmp(name, &(entry->var.VariableName), strsize1) &&
!efi_guidcmp(guid, entry->var.VendorGuid)) {
found = true;
break;
}
}
if (!found)
return NULL;
if (remove) {
if (entry->scanning) {
/*
* The entry will be deleted
* after scanning is completed.
*/
entry->deleting = true;
} else
list_del(&entry->list);
}
return entry;
}
EXPORT_SYMBOL_GPL(efivar_entry_find);
/**
* efivar_entry_size - obtain the size of a variable
* @entry: entry for this variable
* @size: location to store the variable's size
*/
int efivar_entry_size(struct efivar_entry *entry, unsigned long *size)
{
const struct efivar_operations *ops;
efi_status_t status;
*size = 0;
if (down_interruptible(&efivars_lock))
return -EINTR;
if (!__efivars) {
up(&efivars_lock);
return -EINVAL;
}
ops = __efivars->ops;
status = ops->get_variable(entry->var.VariableName,
&entry->var.VendorGuid, NULL, size, NULL);
up(&efivars_lock);
if (status != EFI_BUFFER_TOO_SMALL)
return efi_status_to_err(status);
return 0;
}
EXPORT_SYMBOL_GPL(efivar_entry_size);
/**
* __efivar_entry_get - call get_variable()
* @entry: read data for this variable
* @attributes: variable attributes
* @size: size of @data buffer
* @data: buffer to store variable data
*
* The caller MUST call efivar_entry_iter_begin() and
* efivar_entry_iter_end() before and after the invocation of this
* function, respectively.
*/
int __efivar_entry_get(struct efivar_entry *entry, u32 *attributes,
unsigned long *size, void *data)
{
efi_status_t status;
if (!__efivars)
return -EINVAL;
status = __efivars->ops->get_variable(entry->var.VariableName,
&entry->var.VendorGuid,
attributes, size, data);
return efi_status_to_err(status);
}
EXPORT_SYMBOL_GPL(__efivar_entry_get);
/**
* efivar_entry_get - call get_variable()
* @entry: read data for this variable
* @attributes: variable attributes
* @size: size of @data buffer
* @data: buffer to store variable data
*/
int efivar_entry_get(struct efivar_entry *entry, u32 *attributes,
unsigned long *size, void *data)
{
efi_status_t status;
if (down_interruptible(&efivars_lock))
return -EINTR;
if (!__efivars) {
up(&efivars_lock);
return -EINVAL;
}
status = __efivars->ops->get_variable(entry->var.VariableName,
&entry->var.VendorGuid,
attributes, size, data);
up(&efivars_lock);
return efi_status_to_err(status);
}
EXPORT_SYMBOL_GPL(efivar_entry_get);
/**
* efivar_entry_set_get_size - call set_variable() and get new size (atomic)
* @entry: entry containing variable to set and get
* @attributes: attributes of variable to be written
* @size: size of data buffer
* @data: buffer containing data to write
* @set: did the set_variable() call succeed?
*
* This is a pretty special (complex) function. See efivarfs_file_write().
*
* Atomically call set_variable() for @entry and if the call is
* successful, return the new size of the variable from get_variable()
* in @size. The success of set_variable() is indicated by @set.
*
* Returns 0 on success, -EINVAL if the variable data is invalid,
* -ENOSPC if the firmware does not have enough available space, or a
* converted EFI status code if either of set_variable() or
* get_variable() fail.
*
* If the EFI variable does not exist when calling set_variable()
* (EFI_NOT_FOUND), @entry is removed from the variable list.
*/
int efivar_entry_set_get_size(struct efivar_entry *entry, u32 attributes,
unsigned long *size, void *data, bool *set)
{
const struct efivar_operations *ops;
efi_char16_t *name = entry->var.VariableName;
efi_guid_t *vendor = &entry->var.VendorGuid;
efi_status_t status;
int err;
*set = false;
if (efivar_validate(*vendor, name, data, *size) == false)
return -EINVAL;
/*
* The lock here protects the get_variable call, the conditional
* set_variable call, and removal of the variable from the efivars
* list (in the case of an authenticated delete).
*/
if (down_interruptible(&efivars_lock))
return -EINTR;
if (!__efivars) {
err = -EINVAL;
goto out;
}
/*
* Ensure that the available space hasn't shrunk below the safe level
*/
status = check_var_size(attributes, *size + ucs2_strsize(name, 1024));
if (status != EFI_SUCCESS) {
if (status != EFI_UNSUPPORTED) {
err = efi_status_to_err(status);
goto out;
}
if (*size > 65536) {
err = -ENOSPC;
goto out;
}
}
ops = __efivars->ops;
status = ops->set_variable(name, vendor, attributes, *size, data);
if (status != EFI_SUCCESS) {
err = efi_status_to_err(status);
goto out;
}
*set = true;
/*
* Writing to the variable may have caused a change in size (which
* could either be an append or an overwrite), or the variable to be
* deleted. Perform a GetVariable() so we can tell what actually
* happened.
*/
*size = 0;
status = ops->get_variable(entry->var.VariableName,
&entry->var.VendorGuid,
NULL, size, NULL);
if (status == EFI_NOT_FOUND)
efivar_entry_list_del_unlock(entry);
else
up(&efivars_lock);
if (status && status != EFI_BUFFER_TOO_SMALL)
return efi_status_to_err(status);
return 0;
out:
up(&efivars_lock);
return err;
}
EXPORT_SYMBOL_GPL(efivar_entry_set_get_size);
/**
* efivar_entry_iter_begin - begin iterating the variable list
*
* Lock the variable list to prevent entry insertion and removal until
* efivar_entry_iter_end() is called. This function is usually used in
* conjunction with __efivar_entry_iter() or efivar_entry_iter().
*/
int efivar_entry_iter_begin(void)
{
return down_interruptible(&efivars_lock);
}
EXPORT_SYMBOL_GPL(efivar_entry_iter_begin);
/**
* efivar_entry_iter_end - finish iterating the variable list
*
* Unlock the variable list and allow modifications to the list again.
*/
void efivar_entry_iter_end(void)
{
up(&efivars_lock);
}
EXPORT_SYMBOL_GPL(efivar_entry_iter_end);
/**
* __efivar_entry_iter - iterate over variable list
* @func: callback function
* @head: head of the variable list
* @data: function-specific data to pass to callback
* @prev: entry to begin iterating from
*
* Iterate over the list of EFI variables and call @func with every
* entry on the list. It is safe for @func to remove entries in the
* list via efivar_entry_delete().
*
* You MUST call efivar_entry_iter_begin() before this function, and
* efivar_entry_iter_end() afterwards.
*
* It is possible to begin iteration from an arbitrary entry within
* the list by passing @prev. @prev is updated on return to point to
* the last entry passed to @func. To begin iterating from the
* beginning of the list @prev must be %NULL.
*
* The restrictions for @func are the same as documented for
* efivar_entry_iter().
*/
int __efivar_entry_iter(int (*func)(struct efivar_entry *, void *),
struct list_head *head, void *data,
struct efivar_entry **prev)
{
struct efivar_entry *entry, *n;
int err = 0;
if (!prev || !*prev) {
list_for_each_entry_safe(entry, n, head, list) {
err = func(entry, data);
if (err)
break;
}
if (prev)
*prev = entry;
return err;
}
list_for_each_entry_safe_continue((*prev), n, head, list) {
err = func(*prev, data);
if (err)
break;
}
return err;
}
EXPORT_SYMBOL_GPL(__efivar_entry_iter);
/**
* efivar_entry_iter - iterate over variable list
* @func: callback function
* @head: head of variable list
* @data: function-specific data to pass to callback
*
* Iterate over the list of EFI variables and call @func with every
* entry on the list. It is safe for @func to remove entries in the
* list via efivar_entry_delete() while iterating.
*
* Some notes for the callback function:
* - a non-zero return value indicates an error and terminates the loop
* - @func is called from atomic context
*/
int efivar_entry_iter(int (*func)(struct efivar_entry *, void *),
struct list_head *head, void *data)
{
int err = 0;
err = efivar_entry_iter_begin();
if (err)
return err;
err = __efivar_entry_iter(func, head, data, NULL);
efivar_entry_iter_end();
return err;
}
EXPORT_SYMBOL_GPL(efivar_entry_iter);
/**
* efivars_kobject - get the kobject for the registered efivars
*
* If efivars_register() has not been called we return NULL,
* otherwise return the kobject used at registration time.
*/
struct kobject *efivars_kobject(void)
{
if (!__efivars)
return NULL;
return __efivars->kobject;
}
EXPORT_SYMBOL_GPL(efivars_kobject);
/**
* efivars_register - register an efivars
* @efivars: efivars to register
* @ops: efivars operations
* @kobject: @efivars-specific kobject
*
* Only a single efivars can be registered at any time.
*/
int efivars_register(struct efivars *efivars,
const struct efivar_operations *ops,
struct kobject *kobject)
{
if (down_interruptible(&efivars_lock))
return -EINTR;
efivars->ops = ops;
efivars->kobject = kobject;
__efivars = efivars;
pr_info("Registered efivars operations\n");
up(&efivars_lock);
return 0;
}
EXPORT_SYMBOL_GPL(efivars_register);
/**
* efivars_unregister - unregister an efivars
* @efivars: efivars to unregister
*
* The caller must have already removed every entry from the list,
* failure to do so is an error.
*/
int efivars_unregister(struct efivars *efivars)
{
int rv;
if (down_interruptible(&efivars_lock))
return -EINTR;
if (!__efivars) {
printk(KERN_ERR "efivars not registered\n");
rv = -EINVAL;
goto out;
}
if (__efivars != efivars) {
rv = -EINVAL;
goto out;
}
pr_info("Unregistered efivars operations\n");
__efivars = NULL;
rv = 0;
out:
up(&efivars_lock);
return rv;
}
EXPORT_SYMBOL_GPL(efivars_unregister);
int efivar_supports_writes(void)
{
return __efivars && __efivars->ops->set_variable;
}
EXPORT_SYMBOL_GPL(efivar_supports_writes);