mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-24 23:04:17 +08:00
8cd1def4b8
Forward declare all syscall handler prototypes where a generic prototype is not provided in either linux/syscalls.h or linux/compat.h in asm/syscalls.h. This is required for compile-time type-checking for syscall handlers, which is implemented later in this series. 32-bit compatibility syscall handlers are expressed in terms of types in ppc32.h. Expose this header globally. Signed-off-by: Rohan McLure <rmclure@linux.ibm.com> Acked-by: Nicholas Piggin <npiggin@gmail.com> [mpe: Use standard include guard naming for syscalls_32.h] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20220921065605.1051927-17-rmclure@linux.ibm.com
1357 lines
38 KiB
C
1357 lines
38 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
|
|
*
|
|
* PowerPC version
|
|
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
|
|
* Copyright (C) 2001 IBM
|
|
* Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
|
|
* Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
|
|
*
|
|
* Derived from "arch/i386/kernel/signal.c"
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
* 1997-11-28 Modified for POSIX.1b signals by Richard Henderson
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/syscalls.h>
|
|
#ifdef CONFIG_PPC64
|
|
#include <linux/compat.h>
|
|
#else
|
|
#include <linux/wait.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/binfmts.h>
|
|
#endif
|
|
|
|
#include <linux/uaccess.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/syscalls.h>
|
|
#include <asm/sigcontext.h>
|
|
#include <asm/vdso.h>
|
|
#include <asm/switch_to.h>
|
|
#include <asm/tm.h>
|
|
#include <asm/asm-prototypes.h>
|
|
#ifdef CONFIG_PPC64
|
|
#include <asm/syscalls_32.h>
|
|
#include <asm/unistd.h>
|
|
#else
|
|
#include <asm/ucontext.h>
|
|
#endif
|
|
|
|
#include "signal.h"
|
|
|
|
|
|
#ifdef CONFIG_PPC64
|
|
#define old_sigaction old_sigaction32
|
|
#define sigcontext sigcontext32
|
|
#define mcontext mcontext32
|
|
#define ucontext ucontext32
|
|
|
|
/*
|
|
* Userspace code may pass a ucontext which doesn't include VSX added
|
|
* at the end. We need to check for this case.
|
|
*/
|
|
#define UCONTEXTSIZEWITHOUTVSX \
|
|
(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
|
|
|
|
/*
|
|
* Returning 0 means we return to userspace via
|
|
* ret_from_except and thus restore all user
|
|
* registers from *regs. This is what we need
|
|
* to do when a signal has been delivered.
|
|
*/
|
|
|
|
#define GP_REGS_SIZE min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
|
|
#undef __SIGNAL_FRAMESIZE
|
|
#define __SIGNAL_FRAMESIZE __SIGNAL_FRAMESIZE32
|
|
#undef ELF_NVRREG
|
|
#define ELF_NVRREG ELF_NVRREG32
|
|
|
|
/*
|
|
* Functions for flipping sigsets (thanks to brain dead generic
|
|
* implementation that makes things simple for little endian only)
|
|
*/
|
|
#define unsafe_put_sigset_t unsafe_put_compat_sigset
|
|
#define unsafe_get_sigset_t unsafe_get_compat_sigset
|
|
|
|
#define to_user_ptr(p) ptr_to_compat(p)
|
|
#define from_user_ptr(p) compat_ptr(p)
|
|
|
|
static __always_inline int
|
|
__unsafe_save_general_regs(struct pt_regs *regs, struct mcontext __user *frame)
|
|
{
|
|
elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
|
|
int val, i;
|
|
|
|
for (i = 0; i <= PT_RESULT; i ++) {
|
|
/* Force usr to alway see softe as 1 (interrupts enabled) */
|
|
if (i == PT_SOFTE)
|
|
val = 1;
|
|
else
|
|
val = gregs[i];
|
|
|
|
unsafe_put_user(val, &frame->mc_gregs[i], failed);
|
|
}
|
|
return 0;
|
|
|
|
failed:
|
|
return 1;
|
|
}
|
|
|
|
static __always_inline int
|
|
__unsafe_restore_general_regs(struct pt_regs *regs, struct mcontext __user *sr)
|
|
{
|
|
elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
|
|
int i;
|
|
|
|
for (i = 0; i <= PT_RESULT; i++) {
|
|
if ((i == PT_MSR) || (i == PT_SOFTE))
|
|
continue;
|
|
unsafe_get_user(gregs[i], &sr->mc_gregs[i], failed);
|
|
}
|
|
return 0;
|
|
|
|
failed:
|
|
return 1;
|
|
}
|
|
|
|
#else /* CONFIG_PPC64 */
|
|
|
|
#define GP_REGS_SIZE min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
|
|
|
|
#define unsafe_put_sigset_t(uset, set, label) do { \
|
|
sigset_t __user *__us = uset ; \
|
|
const sigset_t *__s = set; \
|
|
\
|
|
unsafe_copy_to_user(__us, __s, sizeof(*__us), label); \
|
|
} while (0)
|
|
|
|
#define unsafe_get_sigset_t unsafe_get_user_sigset
|
|
|
|
#define to_user_ptr(p) ((unsigned long)(p))
|
|
#define from_user_ptr(p) ((void __user *)(p))
|
|
|
|
static __always_inline int
|
|
__unsafe_save_general_regs(struct pt_regs *regs, struct mcontext __user *frame)
|
|
{
|
|
unsafe_copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE, failed);
|
|
return 0;
|
|
|
|
failed:
|
|
return 1;
|
|
}
|
|
|
|
static __always_inline
|
|
int __unsafe_restore_general_regs(struct pt_regs *regs, struct mcontext __user *sr)
|
|
{
|
|
/* copy up to but not including MSR */
|
|
unsafe_copy_from_user(regs, &sr->mc_gregs, PT_MSR * sizeof(elf_greg_t), failed);
|
|
|
|
/* copy from orig_r3 (the word after the MSR) up to the end */
|
|
unsafe_copy_from_user(®s->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
|
|
GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t), failed);
|
|
|
|
return 0;
|
|
|
|
failed:
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
#define unsafe_save_general_regs(regs, frame, label) do { \
|
|
if (__unsafe_save_general_regs(regs, frame)) \
|
|
goto label; \
|
|
} while (0)
|
|
|
|
#define unsafe_restore_general_regs(regs, frame, label) do { \
|
|
if (__unsafe_restore_general_regs(regs, frame)) \
|
|
goto label; \
|
|
} while (0)
|
|
|
|
/*
|
|
* When we have signals to deliver, we set up on the
|
|
* user stack, going down from the original stack pointer:
|
|
* an ABI gap of 56 words
|
|
* an mcontext struct
|
|
* a sigcontext struct
|
|
* a gap of __SIGNAL_FRAMESIZE bytes
|
|
*
|
|
* Each of these things must be a multiple of 16 bytes in size. The following
|
|
* structure represent all of this except the __SIGNAL_FRAMESIZE gap
|
|
*
|
|
*/
|
|
struct sigframe {
|
|
struct sigcontext sctx; /* the sigcontext */
|
|
struct mcontext mctx; /* all the register values */
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
struct sigcontext sctx_transact;
|
|
struct mcontext mctx_transact;
|
|
#endif
|
|
/*
|
|
* Programs using the rs6000/xcoff abi can save up to 19 gp
|
|
* regs and 18 fp regs below sp before decrementing it.
|
|
*/
|
|
int abigap[56];
|
|
};
|
|
|
|
/*
|
|
* When we have rt signals to deliver, we set up on the
|
|
* user stack, going down from the original stack pointer:
|
|
* one rt_sigframe struct (siginfo + ucontext + ABI gap)
|
|
* a gap of __SIGNAL_FRAMESIZE+16 bytes
|
|
* (the +16 is to get the siginfo and ucontext in the same
|
|
* positions as in older kernels).
|
|
*
|
|
* Each of these things must be a multiple of 16 bytes in size.
|
|
*
|
|
*/
|
|
struct rt_sigframe {
|
|
#ifdef CONFIG_PPC64
|
|
compat_siginfo_t info;
|
|
#else
|
|
struct siginfo info;
|
|
#endif
|
|
struct ucontext uc;
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
struct ucontext uc_transact;
|
|
#endif
|
|
/*
|
|
* Programs using the rs6000/xcoff abi can save up to 19 gp
|
|
* regs and 18 fp regs below sp before decrementing it.
|
|
*/
|
|
int abigap[56];
|
|
};
|
|
|
|
unsigned long get_min_sigframe_size_32(void)
|
|
{
|
|
return max(sizeof(struct rt_sigframe) + __SIGNAL_FRAMESIZE + 16,
|
|
sizeof(struct sigframe) + __SIGNAL_FRAMESIZE);
|
|
}
|
|
|
|
/*
|
|
* Save the current user registers on the user stack.
|
|
* We only save the altivec/spe registers if the process has used
|
|
* altivec/spe instructions at some point.
|
|
*/
|
|
static void prepare_save_user_regs(int ctx_has_vsx_region)
|
|
{
|
|
/* Make sure floating point registers are stored in regs */
|
|
flush_fp_to_thread(current);
|
|
#ifdef CONFIG_ALTIVEC
|
|
if (current->thread.used_vr)
|
|
flush_altivec_to_thread(current);
|
|
if (cpu_has_feature(CPU_FTR_ALTIVEC))
|
|
current->thread.vrsave = mfspr(SPRN_VRSAVE);
|
|
#endif
|
|
#ifdef CONFIG_VSX
|
|
if (current->thread.used_vsr && ctx_has_vsx_region)
|
|
flush_vsx_to_thread(current);
|
|
#endif
|
|
#ifdef CONFIG_SPE
|
|
if (current->thread.used_spe)
|
|
flush_spe_to_thread(current);
|
|
#endif
|
|
}
|
|
|
|
static int __unsafe_save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
|
|
struct mcontext __user *tm_frame, int ctx_has_vsx_region)
|
|
{
|
|
unsigned long msr = regs->msr;
|
|
|
|
/* save general registers */
|
|
unsafe_save_general_regs(regs, frame, failed);
|
|
|
|
#ifdef CONFIG_ALTIVEC
|
|
/* save altivec registers */
|
|
if (current->thread.used_vr) {
|
|
unsafe_copy_to_user(&frame->mc_vregs, ¤t->thread.vr_state,
|
|
ELF_NVRREG * sizeof(vector128), failed);
|
|
/* set MSR_VEC in the saved MSR value to indicate that
|
|
frame->mc_vregs contains valid data */
|
|
msr |= MSR_VEC;
|
|
}
|
|
/* else assert((regs->msr & MSR_VEC) == 0) */
|
|
|
|
/* We always copy to/from vrsave, it's 0 if we don't have or don't
|
|
* use altivec. Since VSCR only contains 32 bits saved in the least
|
|
* significant bits of a vector, we "cheat" and stuff VRSAVE in the
|
|
* most significant bits of that same vector. --BenH
|
|
* Note that the current VRSAVE value is in the SPR at this point.
|
|
*/
|
|
unsafe_put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32],
|
|
failed);
|
|
#endif /* CONFIG_ALTIVEC */
|
|
unsafe_copy_fpr_to_user(&frame->mc_fregs, current, failed);
|
|
|
|
/*
|
|
* Clear the MSR VSX bit to indicate there is no valid state attached
|
|
* to this context, except in the specific case below where we set it.
|
|
*/
|
|
msr &= ~MSR_VSX;
|
|
#ifdef CONFIG_VSX
|
|
/*
|
|
* Copy VSR 0-31 upper half from thread_struct to local
|
|
* buffer, then write that to userspace. Also set MSR_VSX in
|
|
* the saved MSR value to indicate that frame->mc_vregs
|
|
* contains valid data
|
|
*/
|
|
if (current->thread.used_vsr && ctx_has_vsx_region) {
|
|
unsafe_copy_vsx_to_user(&frame->mc_vsregs, current, failed);
|
|
msr |= MSR_VSX;
|
|
}
|
|
#endif /* CONFIG_VSX */
|
|
#ifdef CONFIG_SPE
|
|
/* save spe registers */
|
|
if (current->thread.used_spe) {
|
|
unsafe_copy_to_user(&frame->mc_vregs, current->thread.evr,
|
|
ELF_NEVRREG * sizeof(u32), failed);
|
|
/* set MSR_SPE in the saved MSR value to indicate that
|
|
frame->mc_vregs contains valid data */
|
|
msr |= MSR_SPE;
|
|
}
|
|
/* else assert((regs->msr & MSR_SPE) == 0) */
|
|
|
|
/* We always copy to/from spefscr */
|
|
unsafe_put_user(current->thread.spefscr,
|
|
(u32 __user *)&frame->mc_vregs + ELF_NEVRREG, failed);
|
|
#endif /* CONFIG_SPE */
|
|
|
|
unsafe_put_user(msr, &frame->mc_gregs[PT_MSR], failed);
|
|
|
|
/* We need to write 0 the MSR top 32 bits in the tm frame so that we
|
|
* can check it on the restore to see if TM is active
|
|
*/
|
|
if (tm_frame)
|
|
unsafe_put_user(0, &tm_frame->mc_gregs[PT_MSR], failed);
|
|
|
|
return 0;
|
|
|
|
failed:
|
|
return 1;
|
|
}
|
|
|
|
#define unsafe_save_user_regs(regs, frame, tm_frame, has_vsx, label) do { \
|
|
if (__unsafe_save_user_regs(regs, frame, tm_frame, has_vsx)) \
|
|
goto label; \
|
|
} while (0)
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
/*
|
|
* Save the current user registers on the user stack.
|
|
* We only save the altivec/spe registers if the process has used
|
|
* altivec/spe instructions at some point.
|
|
* We also save the transactional registers to a second ucontext in the
|
|
* frame.
|
|
*
|
|
* See __unsafe_save_user_regs() and signal_64.c:setup_tm_sigcontexts().
|
|
*/
|
|
static void prepare_save_tm_user_regs(void)
|
|
{
|
|
WARN_ON(tm_suspend_disabled);
|
|
|
|
if (cpu_has_feature(CPU_FTR_ALTIVEC))
|
|
current->thread.ckvrsave = mfspr(SPRN_VRSAVE);
|
|
}
|
|
|
|
static int save_tm_user_regs_unsafe(struct pt_regs *regs, struct mcontext __user *frame,
|
|
struct mcontext __user *tm_frame, unsigned long msr)
|
|
{
|
|
/* Save both sets of general registers */
|
|
unsafe_save_general_regs(¤t->thread.ckpt_regs, frame, failed);
|
|
unsafe_save_general_regs(regs, tm_frame, failed);
|
|
|
|
/* Stash the top half of the 64bit MSR into the 32bit MSR word
|
|
* of the transactional mcontext. This way we have a backward-compatible
|
|
* MSR in the 'normal' (checkpointed) mcontext and additionally one can
|
|
* also look at what type of transaction (T or S) was active at the
|
|
* time of the signal.
|
|
*/
|
|
unsafe_put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR], failed);
|
|
|
|
/* save altivec registers */
|
|
if (current->thread.used_vr) {
|
|
unsafe_copy_to_user(&frame->mc_vregs, ¤t->thread.ckvr_state,
|
|
ELF_NVRREG * sizeof(vector128), failed);
|
|
if (msr & MSR_VEC)
|
|
unsafe_copy_to_user(&tm_frame->mc_vregs,
|
|
¤t->thread.vr_state,
|
|
ELF_NVRREG * sizeof(vector128), failed);
|
|
else
|
|
unsafe_copy_to_user(&tm_frame->mc_vregs,
|
|
¤t->thread.ckvr_state,
|
|
ELF_NVRREG * sizeof(vector128), failed);
|
|
|
|
/* set MSR_VEC in the saved MSR value to indicate that
|
|
* frame->mc_vregs contains valid data
|
|
*/
|
|
msr |= MSR_VEC;
|
|
}
|
|
|
|
/* We always copy to/from vrsave, it's 0 if we don't have or don't
|
|
* use altivec. Since VSCR only contains 32 bits saved in the least
|
|
* significant bits of a vector, we "cheat" and stuff VRSAVE in the
|
|
* most significant bits of that same vector. --BenH
|
|
*/
|
|
unsafe_put_user(current->thread.ckvrsave,
|
|
(u32 __user *)&frame->mc_vregs[32], failed);
|
|
if (msr & MSR_VEC)
|
|
unsafe_put_user(current->thread.vrsave,
|
|
(u32 __user *)&tm_frame->mc_vregs[32], failed);
|
|
else
|
|
unsafe_put_user(current->thread.ckvrsave,
|
|
(u32 __user *)&tm_frame->mc_vregs[32], failed);
|
|
|
|
unsafe_copy_ckfpr_to_user(&frame->mc_fregs, current, failed);
|
|
if (msr & MSR_FP)
|
|
unsafe_copy_fpr_to_user(&tm_frame->mc_fregs, current, failed);
|
|
else
|
|
unsafe_copy_ckfpr_to_user(&tm_frame->mc_fregs, current, failed);
|
|
|
|
/*
|
|
* Copy VSR 0-31 upper half from thread_struct to local
|
|
* buffer, then write that to userspace. Also set MSR_VSX in
|
|
* the saved MSR value to indicate that frame->mc_vregs
|
|
* contains valid data
|
|
*/
|
|
if (current->thread.used_vsr) {
|
|
unsafe_copy_ckvsx_to_user(&frame->mc_vsregs, current, failed);
|
|
if (msr & MSR_VSX)
|
|
unsafe_copy_vsx_to_user(&tm_frame->mc_vsregs, current, failed);
|
|
else
|
|
unsafe_copy_ckvsx_to_user(&tm_frame->mc_vsregs, current, failed);
|
|
|
|
msr |= MSR_VSX;
|
|
}
|
|
|
|
unsafe_put_user(msr, &frame->mc_gregs[PT_MSR], failed);
|
|
|
|
return 0;
|
|
|
|
failed:
|
|
return 1;
|
|
}
|
|
#else
|
|
static void prepare_save_tm_user_regs(void) { }
|
|
|
|
static int save_tm_user_regs_unsafe(struct pt_regs *regs, struct mcontext __user *frame,
|
|
struct mcontext __user *tm_frame, unsigned long msr)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#define unsafe_save_tm_user_regs(regs, frame, tm_frame, msr, label) do { \
|
|
if (save_tm_user_regs_unsafe(regs, frame, tm_frame, msr)) \
|
|
goto label; \
|
|
} while (0)
|
|
|
|
/*
|
|
* Restore the current user register values from the user stack,
|
|
* (except for MSR).
|
|
*/
|
|
static long restore_user_regs(struct pt_regs *regs,
|
|
struct mcontext __user *sr, int sig)
|
|
{
|
|
unsigned int save_r2 = 0;
|
|
unsigned long msr;
|
|
#ifdef CONFIG_VSX
|
|
int i;
|
|
#endif
|
|
|
|
if (!user_read_access_begin(sr, sizeof(*sr)))
|
|
return 1;
|
|
/*
|
|
* restore general registers but not including MSR or SOFTE. Also
|
|
* take care of keeping r2 (TLS) intact if not a signal
|
|
*/
|
|
if (!sig)
|
|
save_r2 = (unsigned int)regs->gpr[2];
|
|
unsafe_restore_general_regs(regs, sr, failed);
|
|
set_trap_norestart(regs);
|
|
unsafe_get_user(msr, &sr->mc_gregs[PT_MSR], failed);
|
|
if (!sig)
|
|
regs->gpr[2] = (unsigned long) save_r2;
|
|
|
|
/* if doing signal return, restore the previous little-endian mode */
|
|
if (sig)
|
|
regs_set_return_msr(regs, (regs->msr & ~MSR_LE) | (msr & MSR_LE));
|
|
|
|
#ifdef CONFIG_ALTIVEC
|
|
/*
|
|
* Force the process to reload the altivec registers from
|
|
* current->thread when it next does altivec instructions
|
|
*/
|
|
regs_set_return_msr(regs, regs->msr & ~MSR_VEC);
|
|
if (msr & MSR_VEC) {
|
|
/* restore altivec registers from the stack */
|
|
unsafe_copy_from_user(¤t->thread.vr_state, &sr->mc_vregs,
|
|
sizeof(sr->mc_vregs), failed);
|
|
current->thread.used_vr = true;
|
|
} else if (current->thread.used_vr)
|
|
memset(¤t->thread.vr_state, 0,
|
|
ELF_NVRREG * sizeof(vector128));
|
|
|
|
/* Always get VRSAVE back */
|
|
unsafe_get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32], failed);
|
|
if (cpu_has_feature(CPU_FTR_ALTIVEC))
|
|
mtspr(SPRN_VRSAVE, current->thread.vrsave);
|
|
#endif /* CONFIG_ALTIVEC */
|
|
unsafe_copy_fpr_from_user(current, &sr->mc_fregs, failed);
|
|
|
|
#ifdef CONFIG_VSX
|
|
/*
|
|
* Force the process to reload the VSX registers from
|
|
* current->thread when it next does VSX instruction.
|
|
*/
|
|
regs_set_return_msr(regs, regs->msr & ~MSR_VSX);
|
|
if (msr & MSR_VSX) {
|
|
/*
|
|
* Restore altivec registers from the stack to a local
|
|
* buffer, then write this out to the thread_struct
|
|
*/
|
|
unsafe_copy_vsx_from_user(current, &sr->mc_vsregs, failed);
|
|
current->thread.used_vsr = true;
|
|
} else if (current->thread.used_vsr)
|
|
for (i = 0; i < 32 ; i++)
|
|
current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
|
|
#endif /* CONFIG_VSX */
|
|
/*
|
|
* force the process to reload the FP registers from
|
|
* current->thread when it next does FP instructions
|
|
*/
|
|
regs_set_return_msr(regs, regs->msr & ~(MSR_FP | MSR_FE0 | MSR_FE1));
|
|
|
|
#ifdef CONFIG_SPE
|
|
/*
|
|
* Force the process to reload the spe registers from
|
|
* current->thread when it next does spe instructions.
|
|
* Since this is user ABI, we must enforce the sizing.
|
|
*/
|
|
BUILD_BUG_ON(sizeof(current->thread.spe) != ELF_NEVRREG * sizeof(u32));
|
|
regs_set_return_msr(regs, regs->msr & ~MSR_SPE);
|
|
if (msr & MSR_SPE) {
|
|
/* restore spe registers from the stack */
|
|
unsafe_copy_from_user(¤t->thread.spe, &sr->mc_vregs,
|
|
sizeof(current->thread.spe), failed);
|
|
current->thread.used_spe = true;
|
|
} else if (current->thread.used_spe)
|
|
memset(¤t->thread.spe, 0, sizeof(current->thread.spe));
|
|
|
|
/* Always get SPEFSCR back */
|
|
unsafe_get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG, failed);
|
|
#endif /* CONFIG_SPE */
|
|
|
|
user_read_access_end();
|
|
return 0;
|
|
|
|
failed:
|
|
user_read_access_end();
|
|
return 1;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
/*
|
|
* Restore the current user register values from the user stack, except for
|
|
* MSR, and recheckpoint the original checkpointed register state for processes
|
|
* in transactions.
|
|
*/
|
|
static long restore_tm_user_regs(struct pt_regs *regs,
|
|
struct mcontext __user *sr,
|
|
struct mcontext __user *tm_sr)
|
|
{
|
|
unsigned long msr, msr_hi;
|
|
int i;
|
|
|
|
if (tm_suspend_disabled)
|
|
return 1;
|
|
/*
|
|
* restore general registers but not including MSR or SOFTE. Also
|
|
* take care of keeping r2 (TLS) intact if not a signal.
|
|
* See comment in signal_64.c:restore_tm_sigcontexts();
|
|
* TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
|
|
* were set by the signal delivery.
|
|
*/
|
|
if (!user_read_access_begin(sr, sizeof(*sr)))
|
|
return 1;
|
|
|
|
unsafe_restore_general_regs(¤t->thread.ckpt_regs, sr, failed);
|
|
unsafe_get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP], failed);
|
|
unsafe_get_user(msr, &sr->mc_gregs[PT_MSR], failed);
|
|
|
|
/* Restore the previous little-endian mode */
|
|
regs_set_return_msr(regs, (regs->msr & ~MSR_LE) | (msr & MSR_LE));
|
|
|
|
regs_set_return_msr(regs, regs->msr & ~MSR_VEC);
|
|
if (msr & MSR_VEC) {
|
|
/* restore altivec registers from the stack */
|
|
unsafe_copy_from_user(¤t->thread.ckvr_state, &sr->mc_vregs,
|
|
sizeof(sr->mc_vregs), failed);
|
|
current->thread.used_vr = true;
|
|
} else if (current->thread.used_vr) {
|
|
memset(¤t->thread.vr_state, 0,
|
|
ELF_NVRREG * sizeof(vector128));
|
|
memset(¤t->thread.ckvr_state, 0,
|
|
ELF_NVRREG * sizeof(vector128));
|
|
}
|
|
|
|
/* Always get VRSAVE back */
|
|
unsafe_get_user(current->thread.ckvrsave,
|
|
(u32 __user *)&sr->mc_vregs[32], failed);
|
|
if (cpu_has_feature(CPU_FTR_ALTIVEC))
|
|
mtspr(SPRN_VRSAVE, current->thread.ckvrsave);
|
|
|
|
regs_set_return_msr(regs, regs->msr & ~(MSR_FP | MSR_FE0 | MSR_FE1));
|
|
|
|
unsafe_copy_fpr_from_user(current, &sr->mc_fregs, failed);
|
|
|
|
regs_set_return_msr(regs, regs->msr & ~MSR_VSX);
|
|
if (msr & MSR_VSX) {
|
|
/*
|
|
* Restore altivec registers from the stack to a local
|
|
* buffer, then write this out to the thread_struct
|
|
*/
|
|
unsafe_copy_ckvsx_from_user(current, &sr->mc_vsregs, failed);
|
|
current->thread.used_vsr = true;
|
|
} else if (current->thread.used_vsr)
|
|
for (i = 0; i < 32 ; i++) {
|
|
current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
|
|
current->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
|
|
}
|
|
|
|
user_read_access_end();
|
|
|
|
if (!user_read_access_begin(tm_sr, sizeof(*tm_sr)))
|
|
return 1;
|
|
|
|
unsafe_restore_general_regs(regs, tm_sr, failed);
|
|
|
|
/* restore altivec registers from the stack */
|
|
if (msr & MSR_VEC)
|
|
unsafe_copy_from_user(¤t->thread.vr_state, &tm_sr->mc_vregs,
|
|
sizeof(sr->mc_vregs), failed);
|
|
|
|
/* Always get VRSAVE back */
|
|
unsafe_get_user(current->thread.vrsave,
|
|
(u32 __user *)&tm_sr->mc_vregs[32], failed);
|
|
|
|
unsafe_copy_ckfpr_from_user(current, &tm_sr->mc_fregs, failed);
|
|
|
|
if (msr & MSR_VSX) {
|
|
/*
|
|
* Restore altivec registers from the stack to a local
|
|
* buffer, then write this out to the thread_struct
|
|
*/
|
|
unsafe_copy_vsx_from_user(current, &tm_sr->mc_vsregs, failed);
|
|
current->thread.used_vsr = true;
|
|
}
|
|
|
|
/* Get the top half of the MSR from the user context */
|
|
unsafe_get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR], failed);
|
|
msr_hi <<= 32;
|
|
|
|
user_read_access_end();
|
|
|
|
/* If TM bits are set to the reserved value, it's an invalid context */
|
|
if (MSR_TM_RESV(msr_hi))
|
|
return 1;
|
|
|
|
/*
|
|
* Disabling preemption, since it is unsafe to be preempted
|
|
* with MSR[TS] set without recheckpointing.
|
|
*/
|
|
preempt_disable();
|
|
|
|
/*
|
|
* CAUTION:
|
|
* After regs->MSR[TS] being updated, make sure that get_user(),
|
|
* put_user() or similar functions are *not* called. These
|
|
* functions can generate page faults which will cause the process
|
|
* to be de-scheduled with MSR[TS] set but without calling
|
|
* tm_recheckpoint(). This can cause a bug.
|
|
*
|
|
* Pull in the MSR TM bits from the user context
|
|
*/
|
|
regs_set_return_msr(regs, (regs->msr & ~MSR_TS_MASK) | (msr_hi & MSR_TS_MASK));
|
|
/* Now, recheckpoint. This loads up all of the checkpointed (older)
|
|
* registers, including FP and V[S]Rs. After recheckpointing, the
|
|
* transactional versions should be loaded.
|
|
*/
|
|
tm_enable();
|
|
/* Make sure the transaction is marked as failed */
|
|
current->thread.tm_texasr |= TEXASR_FS;
|
|
/* This loads the checkpointed FP/VEC state, if used */
|
|
tm_recheckpoint(¤t->thread);
|
|
|
|
/* This loads the speculative FP/VEC state, if used */
|
|
msr_check_and_set(msr & (MSR_FP | MSR_VEC));
|
|
if (msr & MSR_FP) {
|
|
load_fp_state(¤t->thread.fp_state);
|
|
regs_set_return_msr(regs, regs->msr | (MSR_FP | current->thread.fpexc_mode));
|
|
}
|
|
if (msr & MSR_VEC) {
|
|
load_vr_state(¤t->thread.vr_state);
|
|
regs_set_return_msr(regs, regs->msr | MSR_VEC);
|
|
}
|
|
|
|
preempt_enable();
|
|
|
|
return 0;
|
|
|
|
failed:
|
|
user_read_access_end();
|
|
return 1;
|
|
}
|
|
#else
|
|
static long restore_tm_user_regs(struct pt_regs *regs, struct mcontext __user *sr,
|
|
struct mcontext __user *tm_sr)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_PPC64
|
|
|
|
#define copy_siginfo_to_user copy_siginfo_to_user32
|
|
|
|
#endif /* CONFIG_PPC64 */
|
|
|
|
/*
|
|
* Set up a signal frame for a "real-time" signal handler
|
|
* (one which gets siginfo).
|
|
*/
|
|
int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset,
|
|
struct task_struct *tsk)
|
|
{
|
|
struct rt_sigframe __user *frame;
|
|
struct mcontext __user *mctx;
|
|
struct mcontext __user *tm_mctx = NULL;
|
|
unsigned long newsp = 0;
|
|
unsigned long tramp;
|
|
struct pt_regs *regs = tsk->thread.regs;
|
|
/* Save the thread's msr before get_tm_stackpointer() changes it */
|
|
unsigned long msr = regs->msr;
|
|
|
|
/* Set up Signal Frame */
|
|
frame = get_sigframe(ksig, tsk, sizeof(*frame), 1);
|
|
mctx = &frame->uc.uc_mcontext;
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
tm_mctx = &frame->uc_transact.uc_mcontext;
|
|
#endif
|
|
if (MSR_TM_ACTIVE(msr))
|
|
prepare_save_tm_user_regs();
|
|
else
|
|
prepare_save_user_regs(1);
|
|
|
|
if (!user_access_begin(frame, sizeof(*frame)))
|
|
goto badframe;
|
|
|
|
/* Put the siginfo & fill in most of the ucontext */
|
|
unsafe_put_user(0, &frame->uc.uc_flags, failed);
|
|
#ifdef CONFIG_PPC64
|
|
unsafe_compat_save_altstack(&frame->uc.uc_stack, regs->gpr[1], failed);
|
|
#else
|
|
unsafe_save_altstack(&frame->uc.uc_stack, regs->gpr[1], failed);
|
|
#endif
|
|
unsafe_put_user(to_user_ptr(&frame->uc.uc_mcontext), &frame->uc.uc_regs, failed);
|
|
|
|
if (MSR_TM_ACTIVE(msr)) {
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
unsafe_put_user((unsigned long)&frame->uc_transact,
|
|
&frame->uc.uc_link, failed);
|
|
unsafe_put_user((unsigned long)tm_mctx,
|
|
&frame->uc_transact.uc_regs, failed);
|
|
#endif
|
|
unsafe_save_tm_user_regs(regs, mctx, tm_mctx, msr, failed);
|
|
} else {
|
|
unsafe_put_user(0, &frame->uc.uc_link, failed);
|
|
unsafe_save_user_regs(regs, mctx, tm_mctx, 1, failed);
|
|
}
|
|
|
|
/* Save user registers on the stack */
|
|
if (tsk->mm->context.vdso) {
|
|
tramp = VDSO32_SYMBOL(tsk->mm->context.vdso, sigtramp_rt32);
|
|
} else {
|
|
tramp = (unsigned long)mctx->mc_pad;
|
|
unsafe_put_user(PPC_RAW_LI(_R0, __NR_rt_sigreturn), &mctx->mc_pad[0], failed);
|
|
unsafe_put_user(PPC_RAW_SC(), &mctx->mc_pad[1], failed);
|
|
asm("dcbst %y0; sync; icbi %y0; sync" :: "Z" (mctx->mc_pad[0]));
|
|
}
|
|
unsafe_put_sigset_t(&frame->uc.uc_sigmask, oldset, failed);
|
|
|
|
user_access_end();
|
|
|
|
if (copy_siginfo_to_user(&frame->info, &ksig->info))
|
|
goto badframe;
|
|
|
|
regs->link = tramp;
|
|
|
|
#ifdef CONFIG_PPC_FPU_REGS
|
|
tsk->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */
|
|
#endif
|
|
|
|
/* create a stack frame for the caller of the handler */
|
|
newsp = ((unsigned long)frame) - (__SIGNAL_FRAMESIZE + 16);
|
|
if (put_user(regs->gpr[1], (u32 __user *)newsp))
|
|
goto badframe;
|
|
|
|
/* Fill registers for signal handler */
|
|
regs->gpr[1] = newsp;
|
|
regs->gpr[3] = ksig->sig;
|
|
regs->gpr[4] = (unsigned long)&frame->info;
|
|
regs->gpr[5] = (unsigned long)&frame->uc;
|
|
regs->gpr[6] = (unsigned long)frame;
|
|
regs_set_return_ip(regs, (unsigned long) ksig->ka.sa.sa_handler);
|
|
/* enter the signal handler in native-endian mode */
|
|
regs_set_return_msr(regs, (regs->msr & ~MSR_LE) | (MSR_KERNEL & MSR_LE));
|
|
|
|
return 0;
|
|
|
|
failed:
|
|
user_access_end();
|
|
|
|
badframe:
|
|
signal_fault(tsk, regs, "handle_rt_signal32", frame);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* OK, we're invoking a handler
|
|
*/
|
|
int handle_signal32(struct ksignal *ksig, sigset_t *oldset,
|
|
struct task_struct *tsk)
|
|
{
|
|
struct sigcontext __user *sc;
|
|
struct sigframe __user *frame;
|
|
struct mcontext __user *mctx;
|
|
struct mcontext __user *tm_mctx = NULL;
|
|
unsigned long newsp = 0;
|
|
unsigned long tramp;
|
|
struct pt_regs *regs = tsk->thread.regs;
|
|
/* Save the thread's msr before get_tm_stackpointer() changes it */
|
|
unsigned long msr = regs->msr;
|
|
|
|
/* Set up Signal Frame */
|
|
frame = get_sigframe(ksig, tsk, sizeof(*frame), 1);
|
|
mctx = &frame->mctx;
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
tm_mctx = &frame->mctx_transact;
|
|
#endif
|
|
if (MSR_TM_ACTIVE(msr))
|
|
prepare_save_tm_user_regs();
|
|
else
|
|
prepare_save_user_regs(1);
|
|
|
|
if (!user_access_begin(frame, sizeof(*frame)))
|
|
goto badframe;
|
|
sc = (struct sigcontext __user *) &frame->sctx;
|
|
|
|
#if _NSIG != 64
|
|
#error "Please adjust handle_signal()"
|
|
#endif
|
|
unsafe_put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler, failed);
|
|
unsafe_put_user(oldset->sig[0], &sc->oldmask, failed);
|
|
#ifdef CONFIG_PPC64
|
|
unsafe_put_user((oldset->sig[0] >> 32), &sc->_unused[3], failed);
|
|
#else
|
|
unsafe_put_user(oldset->sig[1], &sc->_unused[3], failed);
|
|
#endif
|
|
unsafe_put_user(to_user_ptr(mctx), &sc->regs, failed);
|
|
unsafe_put_user(ksig->sig, &sc->signal, failed);
|
|
|
|
if (MSR_TM_ACTIVE(msr))
|
|
unsafe_save_tm_user_regs(regs, mctx, tm_mctx, msr, failed);
|
|
else
|
|
unsafe_save_user_regs(regs, mctx, tm_mctx, 1, failed);
|
|
|
|
if (tsk->mm->context.vdso) {
|
|
tramp = VDSO32_SYMBOL(tsk->mm->context.vdso, sigtramp32);
|
|
} else {
|
|
tramp = (unsigned long)mctx->mc_pad;
|
|
unsafe_put_user(PPC_RAW_LI(_R0, __NR_sigreturn), &mctx->mc_pad[0], failed);
|
|
unsafe_put_user(PPC_RAW_SC(), &mctx->mc_pad[1], failed);
|
|
asm("dcbst %y0; sync; icbi %y0; sync" :: "Z" (mctx->mc_pad[0]));
|
|
}
|
|
user_access_end();
|
|
|
|
regs->link = tramp;
|
|
|
|
#ifdef CONFIG_PPC_FPU_REGS
|
|
tsk->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */
|
|
#endif
|
|
|
|
/* create a stack frame for the caller of the handler */
|
|
newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
|
|
if (put_user(regs->gpr[1], (u32 __user *)newsp))
|
|
goto badframe;
|
|
|
|
regs->gpr[1] = newsp;
|
|
regs->gpr[3] = ksig->sig;
|
|
regs->gpr[4] = (unsigned long) sc;
|
|
regs_set_return_ip(regs, (unsigned long) ksig->ka.sa.sa_handler);
|
|
/* enter the signal handler in native-endian mode */
|
|
regs_set_return_msr(regs, (regs->msr & ~MSR_LE) | (MSR_KERNEL & MSR_LE));
|
|
|
|
return 0;
|
|
|
|
failed:
|
|
user_access_end();
|
|
|
|
badframe:
|
|
signal_fault(tsk, regs, "handle_signal32", frame);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
|
|
{
|
|
sigset_t set;
|
|
struct mcontext __user *mcp;
|
|
|
|
if (!user_read_access_begin(ucp, sizeof(*ucp)))
|
|
return -EFAULT;
|
|
|
|
unsafe_get_sigset_t(&set, &ucp->uc_sigmask, failed);
|
|
#ifdef CONFIG_PPC64
|
|
{
|
|
u32 cmcp;
|
|
|
|
unsafe_get_user(cmcp, &ucp->uc_regs, failed);
|
|
mcp = (struct mcontext __user *)(u64)cmcp;
|
|
}
|
|
#else
|
|
unsafe_get_user(mcp, &ucp->uc_regs, failed);
|
|
#endif
|
|
user_read_access_end();
|
|
|
|
set_current_blocked(&set);
|
|
if (restore_user_regs(regs, mcp, sig))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
|
|
failed:
|
|
user_read_access_end();
|
|
return -EFAULT;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
static int do_setcontext_tm(struct ucontext __user *ucp,
|
|
struct ucontext __user *tm_ucp,
|
|
struct pt_regs *regs)
|
|
{
|
|
sigset_t set;
|
|
struct mcontext __user *mcp;
|
|
struct mcontext __user *tm_mcp;
|
|
u32 cmcp;
|
|
u32 tm_cmcp;
|
|
|
|
if (!user_read_access_begin(ucp, sizeof(*ucp)))
|
|
return -EFAULT;
|
|
|
|
unsafe_get_sigset_t(&set, &ucp->uc_sigmask, failed);
|
|
unsafe_get_user(cmcp, &ucp->uc_regs, failed);
|
|
|
|
user_read_access_end();
|
|
|
|
if (__get_user(tm_cmcp, &tm_ucp->uc_regs))
|
|
return -EFAULT;
|
|
mcp = (struct mcontext __user *)(u64)cmcp;
|
|
tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
|
|
/* no need to check access_ok(mcp), since mcp < 4GB */
|
|
|
|
set_current_blocked(&set);
|
|
if (restore_tm_user_regs(regs, mcp, tm_mcp))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
|
|
failed:
|
|
user_read_access_end();
|
|
return -EFAULT;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_PPC64
|
|
COMPAT_SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx,
|
|
struct ucontext __user *, new_ctx, int, ctx_size)
|
|
#else
|
|
SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx,
|
|
struct ucontext __user *, new_ctx, long, ctx_size)
|
|
#endif
|
|
{
|
|
struct pt_regs *regs = current_pt_regs();
|
|
int ctx_has_vsx_region = 0;
|
|
|
|
#ifdef CONFIG_PPC64
|
|
unsigned long new_msr = 0;
|
|
|
|
if (new_ctx) {
|
|
struct mcontext __user *mcp;
|
|
u32 cmcp;
|
|
|
|
/*
|
|
* Get pointer to the real mcontext. No need for
|
|
* access_ok since we are dealing with compat
|
|
* pointers.
|
|
*/
|
|
if (__get_user(cmcp, &new_ctx->uc_regs))
|
|
return -EFAULT;
|
|
mcp = (struct mcontext __user *)(u64)cmcp;
|
|
if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
|
|
return -EFAULT;
|
|
}
|
|
/*
|
|
* Check that the context is not smaller than the original
|
|
* size (with VMX but without VSX)
|
|
*/
|
|
if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
|
|
return -EINVAL;
|
|
/*
|
|
* If the new context state sets the MSR VSX bits but
|
|
* it doesn't provide VSX state.
|
|
*/
|
|
if ((ctx_size < sizeof(struct ucontext)) &&
|
|
(new_msr & MSR_VSX))
|
|
return -EINVAL;
|
|
/* Does the context have enough room to store VSX data? */
|
|
if (ctx_size >= sizeof(struct ucontext))
|
|
ctx_has_vsx_region = 1;
|
|
#else
|
|
/* Context size is for future use. Right now, we only make sure
|
|
* we are passed something we understand
|
|
*/
|
|
if (ctx_size < sizeof(struct ucontext))
|
|
return -EINVAL;
|
|
#endif
|
|
if (old_ctx != NULL) {
|
|
struct mcontext __user *mctx;
|
|
|
|
/*
|
|
* old_ctx might not be 16-byte aligned, in which
|
|
* case old_ctx->uc_mcontext won't be either.
|
|
* Because we have the old_ctx->uc_pad2 field
|
|
* before old_ctx->uc_mcontext, we need to round down
|
|
* from &old_ctx->uc_mcontext to a 16-byte boundary.
|
|
*/
|
|
mctx = (struct mcontext __user *)
|
|
((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
|
|
prepare_save_user_regs(ctx_has_vsx_region);
|
|
if (!user_write_access_begin(old_ctx, ctx_size))
|
|
return -EFAULT;
|
|
unsafe_save_user_regs(regs, mctx, NULL, ctx_has_vsx_region, failed);
|
|
unsafe_put_sigset_t(&old_ctx->uc_sigmask, ¤t->blocked, failed);
|
|
unsafe_put_user(to_user_ptr(mctx), &old_ctx->uc_regs, failed);
|
|
user_write_access_end();
|
|
}
|
|
if (new_ctx == NULL)
|
|
return 0;
|
|
if (!access_ok(new_ctx, ctx_size) ||
|
|
fault_in_readable((char __user *)new_ctx, ctx_size))
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* If we get a fault copying the context into the kernel's
|
|
* image of the user's registers, we can't just return -EFAULT
|
|
* because the user's registers will be corrupted. For instance
|
|
* the NIP value may have been updated but not some of the
|
|
* other registers. Given that we have done the access_ok
|
|
* and successfully read the first and last bytes of the region
|
|
* above, this should only happen in an out-of-memory situation
|
|
* or if another thread unmaps the region containing the context.
|
|
* We kill the task with a SIGSEGV in this situation.
|
|
*/
|
|
if (do_setcontext(new_ctx, regs, 0)) {
|
|
force_exit_sig(SIGSEGV);
|
|
return -EFAULT;
|
|
}
|
|
|
|
set_thread_flag(TIF_RESTOREALL);
|
|
return 0;
|
|
|
|
failed:
|
|
user_write_access_end();
|
|
return -EFAULT;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC64
|
|
COMPAT_SYSCALL_DEFINE0(rt_sigreturn)
|
|
#else
|
|
SYSCALL_DEFINE0(rt_sigreturn)
|
|
#endif
|
|
{
|
|
struct rt_sigframe __user *rt_sf;
|
|
struct pt_regs *regs = current_pt_regs();
|
|
int tm_restore = 0;
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
struct ucontext __user *uc_transact;
|
|
unsigned long msr_hi;
|
|
unsigned long tmp;
|
|
#endif
|
|
/* Always make any pending restarted system calls return -EINTR */
|
|
current->restart_block.fn = do_no_restart_syscall;
|
|
|
|
rt_sf = (struct rt_sigframe __user *)
|
|
(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
|
|
if (!access_ok(rt_sf, sizeof(*rt_sf)))
|
|
goto bad;
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
/*
|
|
* If there is a transactional state then throw it away.
|
|
* The purpose of a sigreturn is to destroy all traces of the
|
|
* signal frame, this includes any transactional state created
|
|
* within in. We only check for suspended as we can never be
|
|
* active in the kernel, we are active, there is nothing better to
|
|
* do than go ahead and Bad Thing later.
|
|
* The cause is not important as there will never be a
|
|
* recheckpoint so it's not user visible.
|
|
*/
|
|
if (MSR_TM_SUSPENDED(mfmsr()))
|
|
tm_reclaim_current(0);
|
|
|
|
if (__get_user(tmp, &rt_sf->uc.uc_link))
|
|
goto bad;
|
|
uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
|
|
if (uc_transact) {
|
|
u32 cmcp;
|
|
struct mcontext __user *mcp;
|
|
|
|
if (__get_user(cmcp, &uc_transact->uc_regs))
|
|
return -EFAULT;
|
|
mcp = (struct mcontext __user *)(u64)cmcp;
|
|
/* The top 32 bits of the MSR are stashed in the transactional
|
|
* ucontext. */
|
|
if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
|
|
goto bad;
|
|
|
|
if (MSR_TM_ACTIVE(msr_hi<<32)) {
|
|
/* Trying to start TM on non TM system */
|
|
if (!cpu_has_feature(CPU_FTR_TM))
|
|
goto bad;
|
|
/* We only recheckpoint on return if we're
|
|
* transaction.
|
|
*/
|
|
tm_restore = 1;
|
|
if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
|
|
goto bad;
|
|
}
|
|
}
|
|
if (!tm_restore) {
|
|
/*
|
|
* Unset regs->msr because ucontext MSR TS is not
|
|
* set, and recheckpoint was not called. This avoid
|
|
* hitting a TM Bad thing at RFID
|
|
*/
|
|
regs_set_return_msr(regs, regs->msr & ~MSR_TS_MASK);
|
|
}
|
|
/* Fall through, for non-TM restore */
|
|
#endif
|
|
if (!tm_restore)
|
|
if (do_setcontext(&rt_sf->uc, regs, 1))
|
|
goto bad;
|
|
|
|
/*
|
|
* It's not clear whether or why it is desirable to save the
|
|
* sigaltstack setting on signal delivery and restore it on
|
|
* signal return. But other architectures do this and we have
|
|
* always done it up until now so it is probably better not to
|
|
* change it. -- paulus
|
|
*/
|
|
#ifdef CONFIG_PPC64
|
|
if (compat_restore_altstack(&rt_sf->uc.uc_stack))
|
|
goto bad;
|
|
#else
|
|
if (restore_altstack(&rt_sf->uc.uc_stack))
|
|
goto bad;
|
|
#endif
|
|
set_thread_flag(TIF_RESTOREALL);
|
|
return 0;
|
|
|
|
bad:
|
|
signal_fault(current, regs, "sys_rt_sigreturn", rt_sf);
|
|
|
|
force_sig(SIGSEGV);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC32
|
|
SYSCALL_DEFINE3(debug_setcontext, struct ucontext __user *, ctx,
|
|
int, ndbg, struct sig_dbg_op __user *, dbg)
|
|
{
|
|
struct pt_regs *regs = current_pt_regs();
|
|
struct sig_dbg_op op;
|
|
int i;
|
|
unsigned long new_msr = regs->msr;
|
|
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
|
|
unsigned long new_dbcr0 = current->thread.debug.dbcr0;
|
|
#endif
|
|
|
|
for (i=0; i<ndbg; i++) {
|
|
if (copy_from_user(&op, dbg + i, sizeof(op)))
|
|
return -EFAULT;
|
|
switch (op.dbg_type) {
|
|
case SIG_DBG_SINGLE_STEPPING:
|
|
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
|
|
if (op.dbg_value) {
|
|
new_msr |= MSR_DE;
|
|
new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
|
|
} else {
|
|
new_dbcr0 &= ~DBCR0_IC;
|
|
if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
|
|
current->thread.debug.dbcr1)) {
|
|
new_msr &= ~MSR_DE;
|
|
new_dbcr0 &= ~DBCR0_IDM;
|
|
}
|
|
}
|
|
#else
|
|
if (op.dbg_value)
|
|
new_msr |= MSR_SE;
|
|
else
|
|
new_msr &= ~MSR_SE;
|
|
#endif
|
|
break;
|
|
case SIG_DBG_BRANCH_TRACING:
|
|
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
|
|
return -EINVAL;
|
|
#else
|
|
if (op.dbg_value)
|
|
new_msr |= MSR_BE;
|
|
else
|
|
new_msr &= ~MSR_BE;
|
|
#endif
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* We wait until here to actually install the values in the
|
|
registers so if we fail in the above loop, it will not
|
|
affect the contents of these registers. After this point,
|
|
failure is a problem, anyway, and it's very unlikely unless
|
|
the user is really doing something wrong. */
|
|
regs_set_return_msr(regs, new_msr);
|
|
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
|
|
current->thread.debug.dbcr0 = new_dbcr0;
|
|
#endif
|
|
|
|
if (!access_ok(ctx, sizeof(*ctx)) ||
|
|
fault_in_readable((char __user *)ctx, sizeof(*ctx)))
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* If we get a fault copying the context into the kernel's
|
|
* image of the user's registers, we can't just return -EFAULT
|
|
* because the user's registers will be corrupted. For instance
|
|
* the NIP value may have been updated but not some of the
|
|
* other registers. Given that we have done the access_ok
|
|
* and successfully read the first and last bytes of the region
|
|
* above, this should only happen in an out-of-memory situation
|
|
* or if another thread unmaps the region containing the context.
|
|
* We kill the task with a SIGSEGV in this situation.
|
|
*/
|
|
if (do_setcontext(ctx, regs, 1)) {
|
|
signal_fault(current, regs, "sys_debug_setcontext", ctx);
|
|
|
|
force_sig(SIGSEGV);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* It's not clear whether or why it is desirable to save the
|
|
* sigaltstack setting on signal delivery and restore it on
|
|
* signal return. But other architectures do this and we have
|
|
* always done it up until now so it is probably better not to
|
|
* change it. -- paulus
|
|
*/
|
|
restore_altstack(&ctx->uc_stack);
|
|
|
|
set_thread_flag(TIF_RESTOREALL);
|
|
out:
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Do a signal return; undo the signal stack.
|
|
*/
|
|
#ifdef CONFIG_PPC64
|
|
COMPAT_SYSCALL_DEFINE0(sigreturn)
|
|
#else
|
|
SYSCALL_DEFINE0(sigreturn)
|
|
#endif
|
|
{
|
|
struct pt_regs *regs = current_pt_regs();
|
|
struct sigframe __user *sf;
|
|
struct sigcontext __user *sc;
|
|
struct sigcontext sigctx;
|
|
struct mcontext __user *sr;
|
|
sigset_t set;
|
|
struct mcontext __user *mcp;
|
|
struct mcontext __user *tm_mcp = NULL;
|
|
unsigned long long msr_hi = 0;
|
|
|
|
/* Always make any pending restarted system calls return -EINTR */
|
|
current->restart_block.fn = do_no_restart_syscall;
|
|
|
|
sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
|
|
sc = &sf->sctx;
|
|
if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
|
|
goto badframe;
|
|
|
|
#ifdef CONFIG_PPC64
|
|
/*
|
|
* Note that PPC32 puts the upper 32 bits of the sigmask in the
|
|
* unused part of the signal stackframe
|
|
*/
|
|
set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
|
|
#else
|
|
set.sig[0] = sigctx.oldmask;
|
|
set.sig[1] = sigctx._unused[3];
|
|
#endif
|
|
set_current_blocked(&set);
|
|
|
|
mcp = (struct mcontext __user *)&sf->mctx;
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
|
|
if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
|
|
goto badframe;
|
|
#endif
|
|
if (MSR_TM_ACTIVE(msr_hi<<32)) {
|
|
if (!cpu_has_feature(CPU_FTR_TM))
|
|
goto badframe;
|
|
if (restore_tm_user_regs(regs, mcp, tm_mcp))
|
|
goto badframe;
|
|
} else {
|
|
sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
|
|
if (restore_user_regs(regs, sr, 1)) {
|
|
signal_fault(current, regs, "sys_sigreturn", sr);
|
|
|
|
force_sig(SIGSEGV);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
set_thread_flag(TIF_RESTOREALL);
|
|
return 0;
|
|
|
|
badframe:
|
|
signal_fault(current, regs, "sys_sigreturn", sc);
|
|
|
|
force_sig(SIGSEGV);
|
|
return 0;
|
|
}
|