mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-09 23:34:42 +08:00
e1100cee05
Ensure r13 is zero from very early in boot until it gets set to the boot paca pointer. This allows early program and mce handlers to halt if there is no valid paca, rather than potentially run off into the weeds. This preserves register and memory contents for low level debugging tools. Nothing could be printed to console at this point in any case because even udbg is only set up after the boot paca is set, so this shouldn't be missed. Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20220926055620.2676869-6-npiggin@gmail.com
929 lines
25 KiB
C
929 lines
25 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
*
|
|
* Common boot and setup code.
|
|
*
|
|
* Copyright (C) 2001 PPC64 Team, IBM Corp
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/string.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/console.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/root_dev.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/serial.h>
|
|
#include <linux/serial_8250.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/lockdep.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/pgtable.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_fdt.h>
|
|
|
|
#include <asm/asm-prototypes.h>
|
|
#include <asm/kvm_guest.h>
|
|
#include <asm/io.h>
|
|
#include <asm/kdump.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/elf.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/paca.h>
|
|
#include <asm/time.h>
|
|
#include <asm/cputable.h>
|
|
#include <asm/dt_cpu_ftrs.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/btext.h>
|
|
#include <asm/nvram.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/rtas.h>
|
|
#include <asm/iommu.h>
|
|
#include <asm/serial.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/page.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/xmon.h>
|
|
#include <asm/udbg.h>
|
|
#include <asm/kexec.h>
|
|
#include <asm/code-patching.h>
|
|
#include <asm/ftrace.h>
|
|
#include <asm/opal.h>
|
|
#include <asm/cputhreads.h>
|
|
#include <asm/hw_irq.h>
|
|
#include <asm/feature-fixups.h>
|
|
#include <asm/kup.h>
|
|
#include <asm/early_ioremap.h>
|
|
#include <asm/pgalloc.h>
|
|
|
|
#include "setup.h"
|
|
|
|
int spinning_secondaries;
|
|
u64 ppc64_pft_size;
|
|
|
|
struct ppc64_caches ppc64_caches = {
|
|
.l1d = {
|
|
.block_size = 0x40,
|
|
.log_block_size = 6,
|
|
},
|
|
.l1i = {
|
|
.block_size = 0x40,
|
|
.log_block_size = 6
|
|
},
|
|
};
|
|
EXPORT_SYMBOL_GPL(ppc64_caches);
|
|
|
|
#if defined(CONFIG_PPC_BOOK3E_64) && defined(CONFIG_SMP)
|
|
void __init setup_tlb_core_data(void)
|
|
{
|
|
int cpu;
|
|
|
|
BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
int first = cpu_first_thread_sibling(cpu);
|
|
|
|
/*
|
|
* If we boot via kdump on a non-primary thread,
|
|
* make sure we point at the thread that actually
|
|
* set up this TLB.
|
|
*/
|
|
if (cpu_first_thread_sibling(boot_cpuid) == first)
|
|
first = boot_cpuid;
|
|
|
|
paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
|
|
|
|
/*
|
|
* If we have threads, we need either tlbsrx.
|
|
* or e6500 tablewalk mode, or else TLB handlers
|
|
* will be racy and could produce duplicate entries.
|
|
* Should we panic instead?
|
|
*/
|
|
WARN_ONCE(smt_enabled_at_boot >= 2 &&
|
|
book3e_htw_mode != PPC_HTW_E6500,
|
|
"%s: unsupported MMU configuration\n", __func__);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
static char *smt_enabled_cmdline;
|
|
|
|
/* Look for ibm,smt-enabled OF option */
|
|
void __init check_smt_enabled(void)
|
|
{
|
|
struct device_node *dn;
|
|
const char *smt_option;
|
|
|
|
/* Default to enabling all threads */
|
|
smt_enabled_at_boot = threads_per_core;
|
|
|
|
/* Allow the command line to overrule the OF option */
|
|
if (smt_enabled_cmdline) {
|
|
if (!strcmp(smt_enabled_cmdline, "on"))
|
|
smt_enabled_at_boot = threads_per_core;
|
|
else if (!strcmp(smt_enabled_cmdline, "off"))
|
|
smt_enabled_at_boot = 0;
|
|
else {
|
|
int smt;
|
|
int rc;
|
|
|
|
rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
|
|
if (!rc)
|
|
smt_enabled_at_boot =
|
|
min(threads_per_core, smt);
|
|
}
|
|
} else {
|
|
dn = of_find_node_by_path("/options");
|
|
if (dn) {
|
|
smt_option = of_get_property(dn, "ibm,smt-enabled",
|
|
NULL);
|
|
|
|
if (smt_option) {
|
|
if (!strcmp(smt_option, "on"))
|
|
smt_enabled_at_boot = threads_per_core;
|
|
else if (!strcmp(smt_option, "off"))
|
|
smt_enabled_at_boot = 0;
|
|
}
|
|
|
|
of_node_put(dn);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Look for smt-enabled= cmdline option */
|
|
static int __init early_smt_enabled(char *p)
|
|
{
|
|
smt_enabled_cmdline = p;
|
|
return 0;
|
|
}
|
|
early_param("smt-enabled", early_smt_enabled);
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/** Fix up paca fields required for the boot cpu */
|
|
static void __init fixup_boot_paca(struct paca_struct *boot_paca)
|
|
{
|
|
/* The boot cpu is started */
|
|
boot_paca->cpu_start = 1;
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
/*
|
|
* Give the early boot machine check stack somewhere to use, use
|
|
* half of the init stack. This is a bit hacky but there should not be
|
|
* deep stack usage in early init so shouldn't overflow it or overwrite
|
|
* things.
|
|
*/
|
|
boot_paca->mc_emergency_sp = (void *)&init_thread_union +
|
|
(THREAD_SIZE/2);
|
|
#endif
|
|
/* Allow percpu accesses to work until we setup percpu data */
|
|
boot_paca->data_offset = 0;
|
|
/* Mark interrupts soft and hard disabled in PACA */
|
|
boot_paca->irq_soft_mask = IRQS_DISABLED;
|
|
boot_paca->irq_happened = PACA_IRQ_HARD_DIS;
|
|
WARN_ON(mfmsr() & MSR_EE);
|
|
}
|
|
|
|
static void __init configure_exceptions(void)
|
|
{
|
|
/*
|
|
* Setup the trampolines from the lowmem exception vectors
|
|
* to the kdump kernel when not using a relocatable kernel.
|
|
*/
|
|
setup_kdump_trampoline();
|
|
|
|
/* Under a PAPR hypervisor, we need hypercalls */
|
|
if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
|
|
/*
|
|
* - PR KVM does not support AIL mode interrupts in the host
|
|
* while a PR guest is running.
|
|
*
|
|
* - SCV system call interrupt vectors are only implemented for
|
|
* AIL mode interrupts.
|
|
*
|
|
* - On pseries, AIL mode can only be enabled and disabled
|
|
* system-wide so when a PR VM is created on a pseries host,
|
|
* all CPUs of the host are set to AIL=0 mode.
|
|
*
|
|
* - Therefore host CPUs must not execute scv while a PR VM
|
|
* exists.
|
|
*
|
|
* - SCV support can not be disabled dynamically because the
|
|
* feature is advertised to host userspace. Disabling the
|
|
* facility and emulating it would be possible but is not
|
|
* implemented.
|
|
*
|
|
* - So SCV support is blanket disabled if PR KVM could possibly
|
|
* run. That is, PR support compiled in, booting on pseries
|
|
* with hash MMU.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_KVM_BOOK3S_PR_POSSIBLE) && !radix_enabled()) {
|
|
init_task.thread.fscr &= ~FSCR_SCV;
|
|
cur_cpu_spec->cpu_user_features2 &= ~PPC_FEATURE2_SCV;
|
|
}
|
|
|
|
/* Enable AIL if possible */
|
|
if (!pseries_enable_reloc_on_exc()) {
|
|
init_task.thread.fscr &= ~FSCR_SCV;
|
|
cur_cpu_spec->cpu_user_features2 &= ~PPC_FEATURE2_SCV;
|
|
}
|
|
|
|
/*
|
|
* Tell the hypervisor that we want our exceptions to
|
|
* be taken in little endian mode.
|
|
*
|
|
* We don't call this for big endian as our calling convention
|
|
* makes us always enter in BE, and the call may fail under
|
|
* some circumstances with kdump.
|
|
*/
|
|
#ifdef __LITTLE_ENDIAN__
|
|
pseries_little_endian_exceptions();
|
|
#endif
|
|
} else {
|
|
/* Set endian mode using OPAL */
|
|
if (firmware_has_feature(FW_FEATURE_OPAL))
|
|
opal_configure_cores();
|
|
|
|
/* AIL on native is done in cpu_ready_for_interrupts() */
|
|
}
|
|
}
|
|
|
|
static void cpu_ready_for_interrupts(void)
|
|
{
|
|
/*
|
|
* Enable AIL if supported, and we are in hypervisor mode. This
|
|
* is called once for every processor.
|
|
*
|
|
* If we are not in hypervisor mode the job is done once for
|
|
* the whole partition in configure_exceptions().
|
|
*/
|
|
if (cpu_has_feature(CPU_FTR_HVMODE)) {
|
|
unsigned long lpcr = mfspr(SPRN_LPCR);
|
|
unsigned long new_lpcr = lpcr;
|
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_31)) {
|
|
/* P10 DD1 does not have HAIL */
|
|
if (pvr_version_is(PVR_POWER10) &&
|
|
(mfspr(SPRN_PVR) & 0xf00) == 0x100)
|
|
new_lpcr |= LPCR_AIL_3;
|
|
else
|
|
new_lpcr |= LPCR_HAIL;
|
|
} else if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
|
|
new_lpcr |= LPCR_AIL_3;
|
|
}
|
|
|
|
if (new_lpcr != lpcr)
|
|
mtspr(SPRN_LPCR, new_lpcr);
|
|
}
|
|
|
|
/*
|
|
* Set HFSCR:TM based on CPU features:
|
|
* In the special case of TM no suspend (P9N DD2.1), Linux is
|
|
* told TM is off via the dt-ftrs but told to (partially) use
|
|
* it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM]
|
|
* will be off from dt-ftrs but we need to turn it on for the
|
|
* no suspend case.
|
|
*/
|
|
if (cpu_has_feature(CPU_FTR_HVMODE)) {
|
|
if (cpu_has_feature(CPU_FTR_TM_COMP))
|
|
mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM);
|
|
else
|
|
mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
|
|
}
|
|
|
|
/* Set IR and DR in PACA MSR */
|
|
get_paca()->kernel_msr = MSR_KERNEL;
|
|
}
|
|
|
|
unsigned long spr_default_dscr = 0;
|
|
|
|
static void __init record_spr_defaults(void)
|
|
{
|
|
if (early_cpu_has_feature(CPU_FTR_DSCR))
|
|
spr_default_dscr = mfspr(SPRN_DSCR);
|
|
}
|
|
|
|
/*
|
|
* Early initialization entry point. This is called by head.S
|
|
* with MMU translation disabled. We rely on the "feature" of
|
|
* the CPU that ignores the top 2 bits of the address in real
|
|
* mode so we can access kernel globals normally provided we
|
|
* only toy with things in the RMO region. From here, we do
|
|
* some early parsing of the device-tree to setup out MEMBLOCK
|
|
* data structures, and allocate & initialize the hash table
|
|
* and segment tables so we can start running with translation
|
|
* enabled.
|
|
*
|
|
* It is this function which will call the probe() callback of
|
|
* the various platform types and copy the matching one to the
|
|
* global ppc_md structure. Your platform can eventually do
|
|
* some very early initializations from the probe() routine, but
|
|
* this is not recommended, be very careful as, for example, the
|
|
* device-tree is not accessible via normal means at this point.
|
|
*/
|
|
|
|
void __init early_setup(unsigned long dt_ptr)
|
|
{
|
|
static __initdata struct paca_struct boot_paca;
|
|
|
|
/* -------- printk is _NOT_ safe to use here ! ------- */
|
|
|
|
/*
|
|
* Assume we're on cpu 0 for now.
|
|
*
|
|
* We need to load a PACA very early for a few reasons.
|
|
*
|
|
* The stack protector canary is stored in the paca, so as soon as we
|
|
* call any stack protected code we need r13 pointing somewhere valid.
|
|
*
|
|
* If we are using kcov it will call in_task() in its instrumentation,
|
|
* which relies on the current task from the PACA.
|
|
*
|
|
* dt_cpu_ftrs_init() calls into generic OF/fdt code, as well as
|
|
* printk(), which can trigger both stack protector and kcov.
|
|
*
|
|
* percpu variables and spin locks also use the paca.
|
|
*
|
|
* So set up a temporary paca. It will be replaced below once we know
|
|
* what CPU we are on.
|
|
*/
|
|
initialise_paca(&boot_paca, 0);
|
|
fixup_boot_paca(&boot_paca);
|
|
WARN_ON(local_paca != 0);
|
|
setup_paca(&boot_paca); /* install the paca into registers */
|
|
|
|
/* -------- printk is now safe to use ------- */
|
|
|
|
if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && (mfmsr() & MSR_HV))
|
|
enable_machine_check();
|
|
|
|
/* Try new device tree based feature discovery ... */
|
|
if (!dt_cpu_ftrs_init(__va(dt_ptr)))
|
|
/* Otherwise use the old style CPU table */
|
|
identify_cpu(0, mfspr(SPRN_PVR));
|
|
|
|
/* Enable early debugging if any specified (see udbg.h) */
|
|
udbg_early_init();
|
|
|
|
udbg_printf(" -> %s(), dt_ptr: 0x%lx\n", __func__, dt_ptr);
|
|
|
|
/*
|
|
* Do early initialization using the flattened device
|
|
* tree, such as retrieving the physical memory map or
|
|
* calculating/retrieving the hash table size.
|
|
*/
|
|
early_init_devtree(__va(dt_ptr));
|
|
|
|
/* Now we know the logical id of our boot cpu, setup the paca. */
|
|
if (boot_cpuid != 0) {
|
|
/* Poison paca_ptrs[0] again if it's not the boot cpu */
|
|
memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
|
|
}
|
|
fixup_boot_paca(paca_ptrs[boot_cpuid]);
|
|
setup_paca(paca_ptrs[boot_cpuid]); /* install the paca into registers */
|
|
|
|
/*
|
|
* Configure exception handlers. This include setting up trampolines
|
|
* if needed, setting exception endian mode, etc...
|
|
*/
|
|
configure_exceptions();
|
|
|
|
/*
|
|
* Configure Kernel Userspace Protection. This needs to happen before
|
|
* feature fixups for platforms that implement this using features.
|
|
*/
|
|
setup_kup();
|
|
|
|
/* Apply all the dynamic patching */
|
|
apply_feature_fixups();
|
|
setup_feature_keys();
|
|
|
|
/* Initialize the hash table or TLB handling */
|
|
early_init_mmu();
|
|
|
|
early_ioremap_setup();
|
|
|
|
/*
|
|
* After firmware and early platform setup code has set things up,
|
|
* we note the SPR values for configurable control/performance
|
|
* registers, and use those as initial defaults.
|
|
*/
|
|
record_spr_defaults();
|
|
|
|
/*
|
|
* At this point, we can let interrupts switch to virtual mode
|
|
* (the MMU has been setup), so adjust the MSR in the PACA to
|
|
* have IR and DR set and enable AIL if it exists
|
|
*/
|
|
cpu_ready_for_interrupts();
|
|
|
|
/*
|
|
* We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
|
|
* will only actually get enabled on the boot cpu much later once
|
|
* ftrace itself has been initialized.
|
|
*/
|
|
this_cpu_enable_ftrace();
|
|
|
|
udbg_printf(" <- %s()\n", __func__);
|
|
|
|
#ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
|
|
/*
|
|
* This needs to be done *last* (after the above udbg_printf() even)
|
|
*
|
|
* Right after we return from this function, we turn on the MMU
|
|
* which means the real-mode access trick that btext does will
|
|
* no longer work, it needs to switch to using a real MMU
|
|
* mapping. This call will ensure that it does
|
|
*/
|
|
btext_map();
|
|
#endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
void early_setup_secondary(void)
|
|
{
|
|
/* Mark interrupts disabled in PACA */
|
|
irq_soft_mask_set(IRQS_DISABLED);
|
|
|
|
/* Initialize the hash table or TLB handling */
|
|
early_init_mmu_secondary();
|
|
|
|
/* Perform any KUP setup that is per-cpu */
|
|
setup_kup();
|
|
|
|
/*
|
|
* At this point, we can let interrupts switch to virtual mode
|
|
* (the MMU has been setup), so adjust the MSR in the PACA to
|
|
* have IR and DR set.
|
|
*/
|
|
cpu_ready_for_interrupts();
|
|
}
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
void panic_smp_self_stop(void)
|
|
{
|
|
hard_irq_disable();
|
|
spin_begin();
|
|
while (1)
|
|
spin_cpu_relax();
|
|
}
|
|
|
|
#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
|
|
static bool use_spinloop(void)
|
|
{
|
|
if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
|
|
/*
|
|
* See comments in head_64.S -- not all platforms insert
|
|
* secondaries at __secondary_hold and wait at the spin
|
|
* loop.
|
|
*/
|
|
if (firmware_has_feature(FW_FEATURE_OPAL))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* When book3e boots from kexec, the ePAPR spin table does
|
|
* not get used.
|
|
*/
|
|
return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
|
|
}
|
|
|
|
void smp_release_cpus(void)
|
|
{
|
|
unsigned long *ptr;
|
|
int i;
|
|
|
|
if (!use_spinloop())
|
|
return;
|
|
|
|
/* All secondary cpus are spinning on a common spinloop, release them
|
|
* all now so they can start to spin on their individual paca
|
|
* spinloops. For non SMP kernels, the secondary cpus never get out
|
|
* of the common spinloop.
|
|
*/
|
|
|
|
ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
|
|
- PHYSICAL_START);
|
|
*ptr = ppc_function_entry(generic_secondary_smp_init);
|
|
|
|
/* And wait a bit for them to catch up */
|
|
for (i = 0; i < 100000; i++) {
|
|
mb();
|
|
HMT_low();
|
|
if (spinning_secondaries == 0)
|
|
break;
|
|
udelay(1);
|
|
}
|
|
pr_debug("spinning_secondaries = %d\n", spinning_secondaries);
|
|
}
|
|
#endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
|
|
|
|
/*
|
|
* Initialize some remaining members of the ppc64_caches and systemcfg
|
|
* structures
|
|
* (at least until we get rid of them completely). This is mostly some
|
|
* cache informations about the CPU that will be used by cache flush
|
|
* routines and/or provided to userland
|
|
*/
|
|
|
|
static void __init init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
|
|
u32 bsize, u32 sets)
|
|
{
|
|
info->size = size;
|
|
info->sets = sets;
|
|
info->line_size = lsize;
|
|
info->block_size = bsize;
|
|
info->log_block_size = __ilog2(bsize);
|
|
if (bsize)
|
|
info->blocks_per_page = PAGE_SIZE / bsize;
|
|
else
|
|
info->blocks_per_page = 0;
|
|
|
|
if (sets == 0)
|
|
info->assoc = 0xffff;
|
|
else
|
|
info->assoc = size / (sets * lsize);
|
|
}
|
|
|
|
static bool __init parse_cache_info(struct device_node *np,
|
|
bool icache,
|
|
struct ppc_cache_info *info)
|
|
{
|
|
static const char *ipropnames[] __initdata = {
|
|
"i-cache-size",
|
|
"i-cache-sets",
|
|
"i-cache-block-size",
|
|
"i-cache-line-size",
|
|
};
|
|
static const char *dpropnames[] __initdata = {
|
|
"d-cache-size",
|
|
"d-cache-sets",
|
|
"d-cache-block-size",
|
|
"d-cache-line-size",
|
|
};
|
|
const char **propnames = icache ? ipropnames : dpropnames;
|
|
const __be32 *sizep, *lsizep, *bsizep, *setsp;
|
|
u32 size, lsize, bsize, sets;
|
|
bool success = true;
|
|
|
|
size = 0;
|
|
sets = -1u;
|
|
lsize = bsize = cur_cpu_spec->dcache_bsize;
|
|
sizep = of_get_property(np, propnames[0], NULL);
|
|
if (sizep != NULL)
|
|
size = be32_to_cpu(*sizep);
|
|
setsp = of_get_property(np, propnames[1], NULL);
|
|
if (setsp != NULL)
|
|
sets = be32_to_cpu(*setsp);
|
|
bsizep = of_get_property(np, propnames[2], NULL);
|
|
lsizep = of_get_property(np, propnames[3], NULL);
|
|
if (bsizep == NULL)
|
|
bsizep = lsizep;
|
|
if (lsizep == NULL)
|
|
lsizep = bsizep;
|
|
if (lsizep != NULL)
|
|
lsize = be32_to_cpu(*lsizep);
|
|
if (bsizep != NULL)
|
|
bsize = be32_to_cpu(*bsizep);
|
|
if (sizep == NULL || bsizep == NULL || lsizep == NULL)
|
|
success = false;
|
|
|
|
/*
|
|
* OF is weird .. it represents fully associative caches
|
|
* as "1 way" which doesn't make much sense and doesn't
|
|
* leave room for direct mapped. We'll assume that 0
|
|
* in OF means direct mapped for that reason.
|
|
*/
|
|
if (sets == 1)
|
|
sets = 0;
|
|
else if (sets == 0)
|
|
sets = 1;
|
|
|
|
init_cache_info(info, size, lsize, bsize, sets);
|
|
|
|
return success;
|
|
}
|
|
|
|
void __init initialize_cache_info(void)
|
|
{
|
|
struct device_node *cpu = NULL, *l2, *l3 = NULL;
|
|
u32 pvr;
|
|
|
|
/*
|
|
* All shipping POWER8 machines have a firmware bug that
|
|
* puts incorrect information in the device-tree. This will
|
|
* be (hopefully) fixed for future chips but for now hard
|
|
* code the values if we are running on one of these
|
|
*/
|
|
pvr = PVR_VER(mfspr(SPRN_PVR));
|
|
if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
|
|
pvr == PVR_POWER8NVL) {
|
|
/* size lsize blk sets */
|
|
init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32);
|
|
init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64);
|
|
init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512);
|
|
init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192);
|
|
} else
|
|
cpu = of_find_node_by_type(NULL, "cpu");
|
|
|
|
/*
|
|
* We're assuming *all* of the CPUs have the same
|
|
* d-cache and i-cache sizes... -Peter
|
|
*/
|
|
if (cpu) {
|
|
if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
|
|
pr_warn("Argh, can't find dcache properties !\n");
|
|
|
|
if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
|
|
pr_warn("Argh, can't find icache properties !\n");
|
|
|
|
/*
|
|
* Try to find the L2 and L3 if any. Assume they are
|
|
* unified and use the D-side properties.
|
|
*/
|
|
l2 = of_find_next_cache_node(cpu);
|
|
of_node_put(cpu);
|
|
if (l2) {
|
|
parse_cache_info(l2, false, &ppc64_caches.l2);
|
|
l3 = of_find_next_cache_node(l2);
|
|
of_node_put(l2);
|
|
}
|
|
if (l3) {
|
|
parse_cache_info(l3, false, &ppc64_caches.l3);
|
|
of_node_put(l3);
|
|
}
|
|
}
|
|
|
|
/* For use by binfmt_elf */
|
|
dcache_bsize = ppc64_caches.l1d.block_size;
|
|
icache_bsize = ppc64_caches.l1i.block_size;
|
|
|
|
cur_cpu_spec->dcache_bsize = dcache_bsize;
|
|
cur_cpu_spec->icache_bsize = icache_bsize;
|
|
}
|
|
|
|
/*
|
|
* This returns the limit below which memory accesses to the linear
|
|
* mapping are guarnateed not to cause an architectural exception (e.g.,
|
|
* TLB or SLB miss fault).
|
|
*
|
|
* This is used to allocate PACAs and various interrupt stacks that
|
|
* that are accessed early in interrupt handlers that must not cause
|
|
* re-entrant interrupts.
|
|
*/
|
|
__init u64 ppc64_bolted_size(void)
|
|
{
|
|
#ifdef CONFIG_PPC_BOOK3E_64
|
|
/* Freescale BookE bolts the entire linear mapping */
|
|
/* XXX: BookE ppc64_rma_limit setup seems to disagree? */
|
|
if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
|
|
return linear_map_top;
|
|
/* Other BookE, we assume the first GB is bolted */
|
|
return 1ul << 30;
|
|
#else
|
|
/* BookS radix, does not take faults on linear mapping */
|
|
if (early_radix_enabled())
|
|
return ULONG_MAX;
|
|
|
|
/* BookS hash, the first segment is bolted */
|
|
if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
|
|
return 1UL << SID_SHIFT_1T;
|
|
return 1UL << SID_SHIFT;
|
|
#endif
|
|
}
|
|
|
|
static void *__init alloc_stack(unsigned long limit, int cpu)
|
|
{
|
|
void *ptr;
|
|
|
|
BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16);
|
|
|
|
ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_ALIGN,
|
|
MEMBLOCK_LOW_LIMIT, limit,
|
|
early_cpu_to_node(cpu));
|
|
if (!ptr)
|
|
panic("cannot allocate stacks");
|
|
|
|
return ptr;
|
|
}
|
|
|
|
void __init irqstack_early_init(void)
|
|
{
|
|
u64 limit = ppc64_bolted_size();
|
|
unsigned int i;
|
|
|
|
/*
|
|
* Interrupt stacks must be in the first segment since we
|
|
* cannot afford to take SLB misses on them. They are not
|
|
* accessed in realmode.
|
|
*/
|
|
for_each_possible_cpu(i) {
|
|
softirq_ctx[i] = alloc_stack(limit, i);
|
|
hardirq_ctx[i] = alloc_stack(limit, i);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_BOOK3E_64
|
|
void __init exc_lvl_early_init(void)
|
|
{
|
|
unsigned int i;
|
|
|
|
for_each_possible_cpu(i) {
|
|
void *sp;
|
|
|
|
sp = alloc_stack(ULONG_MAX, i);
|
|
critirq_ctx[i] = sp;
|
|
paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
|
|
|
|
sp = alloc_stack(ULONG_MAX, i);
|
|
dbgirq_ctx[i] = sp;
|
|
paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
|
|
|
|
sp = alloc_stack(ULONG_MAX, i);
|
|
mcheckirq_ctx[i] = sp;
|
|
paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
|
|
}
|
|
|
|
if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
|
|
patch_exception(0x040, exc_debug_debug_book3e);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Stack space used when we detect a bad kernel stack pointer, and
|
|
* early in SMP boots before relocation is enabled. Exclusive emergency
|
|
* stack for machine checks.
|
|
*/
|
|
void __init emergency_stack_init(void)
|
|
{
|
|
u64 limit, mce_limit;
|
|
unsigned int i;
|
|
|
|
/*
|
|
* Emergency stacks must be under 256MB, we cannot afford to take
|
|
* SLB misses on them. The ABI also requires them to be 128-byte
|
|
* aligned.
|
|
*
|
|
* Since we use these as temporary stacks during secondary CPU
|
|
* bringup, machine check, system reset, and HMI, we need to get
|
|
* at them in real mode. This means they must also be within the RMO
|
|
* region.
|
|
*
|
|
* The IRQ stacks allocated elsewhere in this file are zeroed and
|
|
* initialized in kernel/irq.c. These are initialized here in order
|
|
* to have emergency stacks available as early as possible.
|
|
*/
|
|
limit = mce_limit = min(ppc64_bolted_size(), ppc64_rma_size);
|
|
|
|
/*
|
|
* Machine check on pseries calls rtas, but can't use the static
|
|
* rtas_args due to a machine check hitting while the lock is held.
|
|
* rtas args have to be under 4GB, so the machine check stack is
|
|
* limited to 4GB so args can be put on stack.
|
|
*/
|
|
if (firmware_has_feature(FW_FEATURE_LPAR) && mce_limit > SZ_4G)
|
|
mce_limit = SZ_4G;
|
|
|
|
for_each_possible_cpu(i) {
|
|
paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
/* emergency stack for NMI exception handling. */
|
|
paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
|
|
|
|
/* emergency stack for machine check exception handling. */
|
|
paca_ptrs[i]->mc_emergency_sp = alloc_stack(mce_limit, i) + THREAD_SIZE;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
static int pcpu_cpu_distance(unsigned int from, unsigned int to)
|
|
{
|
|
if (early_cpu_to_node(from) == early_cpu_to_node(to))
|
|
return LOCAL_DISTANCE;
|
|
else
|
|
return REMOTE_DISTANCE;
|
|
}
|
|
|
|
static __init int pcpu_cpu_to_node(int cpu)
|
|
{
|
|
return early_cpu_to_node(cpu);
|
|
}
|
|
|
|
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
|
|
EXPORT_SYMBOL(__per_cpu_offset);
|
|
|
|
void __init setup_per_cpu_areas(void)
|
|
{
|
|
const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
|
|
size_t atom_size;
|
|
unsigned long delta;
|
|
unsigned int cpu;
|
|
int rc = -EINVAL;
|
|
|
|
/*
|
|
* BookE and BookS radix are historical values and should be revisited.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_PPC_BOOK3E_64)) {
|
|
atom_size = SZ_1M;
|
|
} else if (radix_enabled()) {
|
|
atom_size = PAGE_SIZE;
|
|
} else if (IS_ENABLED(CONFIG_PPC_64S_HASH_MMU)) {
|
|
/*
|
|
* Linear mapping is one of 4K, 1M and 16M. For 4K, no need
|
|
* to group units. For larger mappings, use 1M atom which
|
|
* should be large enough to contain a number of units.
|
|
*/
|
|
if (mmu_linear_psize == MMU_PAGE_4K)
|
|
atom_size = PAGE_SIZE;
|
|
else
|
|
atom_size = SZ_1M;
|
|
}
|
|
|
|
if (pcpu_chosen_fc != PCPU_FC_PAGE) {
|
|
rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
|
|
pcpu_cpu_to_node);
|
|
if (rc)
|
|
pr_warn("PERCPU: %s allocator failed (%d), "
|
|
"falling back to page size\n",
|
|
pcpu_fc_names[pcpu_chosen_fc], rc);
|
|
}
|
|
|
|
if (rc < 0)
|
|
rc = pcpu_page_first_chunk(0, pcpu_cpu_to_node);
|
|
if (rc < 0)
|
|
panic("cannot initialize percpu area (err=%d)", rc);
|
|
|
|
delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
|
|
for_each_possible_cpu(cpu) {
|
|
__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
|
|
paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
unsigned long memory_block_size_bytes(void)
|
|
{
|
|
if (ppc_md.memory_block_size)
|
|
return ppc_md.memory_block_size();
|
|
|
|
return MIN_MEMORY_BLOCK_SIZE;
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
|
|
struct ppc_pci_io ppc_pci_io;
|
|
EXPORT_SYMBOL(ppc_pci_io);
|
|
#endif
|
|
|
|
#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
|
|
u64 hw_nmi_get_sample_period(int watchdog_thresh)
|
|
{
|
|
return ppc_proc_freq * watchdog_thresh;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* The perf based hardlockup detector breaks PMU event based branches, so
|
|
* disable it by default. Book3S has a soft-nmi hardlockup detector based
|
|
* on the decrementer interrupt, so it does not suffer from this problem.
|
|
*
|
|
* It is likely to get false positives in KVM guests, so disable it there
|
|
* by default too. PowerVM will not stop or arbitrarily oversubscribe
|
|
* CPUs, but give a minimum regular allotment even with SPLPAR, so enable
|
|
* the detector for non-KVM guests, assume PowerVM.
|
|
*/
|
|
static int __init disable_hardlockup_detector(void)
|
|
{
|
|
#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
|
|
hardlockup_detector_disable();
|
|
#else
|
|
if (firmware_has_feature(FW_FEATURE_LPAR)) {
|
|
if (is_kvm_guest())
|
|
hardlockup_detector_disable();
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
early_initcall(disable_hardlockup_detector);
|