mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-02 03:44:36 +08:00
f5dbdd429f
The irq argument of most interrupt flow handlers is unused or merily used instead of a local variable. The handlers which need the irq argument can retrieve the irq number from the irq descriptor. Search and update was done with coccinelle and the invaluable help of Julia Lawall. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Julia Lawall <Julia.Lawall@lip6.fr> Cc: Chris Metcalf <cmetcalf@ezchip.com>
1597 lines
42 KiB
C
1597 lines
42 KiB
C
/*
|
|
* Copyright 2012 Tilera Corporation. All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation, version 2.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
|
* NON INFRINGEMENT. See the GNU General Public License for
|
|
* more details.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/string.h>
|
|
#include <linux/init.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/msi.h>
|
|
#include <linux/io.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/ctype.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/byteorder.h>
|
|
|
|
#include <gxio/iorpc_globals.h>
|
|
#include <gxio/kiorpc.h>
|
|
#include <gxio/trio.h>
|
|
#include <gxio/iorpc_trio.h>
|
|
#include <hv/drv_trio_intf.h>
|
|
|
|
#include <arch/sim.h>
|
|
|
|
/*
|
|
* This file containes the routines to search for PCI buses,
|
|
* enumerate the buses, and configure any attached devices.
|
|
*/
|
|
|
|
#define DEBUG_PCI_CFG 0
|
|
|
|
#if DEBUG_PCI_CFG
|
|
#define TRACE_CFG_WR(size, val, bus, dev, func, offset) \
|
|
pr_info("CFG WR %d-byte VAL %#x to bus %d dev %d func %d addr %u\n", \
|
|
size, val, bus, dev, func, offset & 0xFFF);
|
|
#define TRACE_CFG_RD(size, val, bus, dev, func, offset) \
|
|
pr_info("CFG RD %d-byte VAL %#x from bus %d dev %d func %d addr %u\n", \
|
|
size, val, bus, dev, func, offset & 0xFFF);
|
|
#else
|
|
#define TRACE_CFG_WR(...)
|
|
#define TRACE_CFG_RD(...)
|
|
#endif
|
|
|
|
static int pci_probe = 1;
|
|
|
|
/* Information on the PCIe RC ports configuration. */
|
|
static int pcie_rc[TILEGX_NUM_TRIO][TILEGX_TRIO_PCIES];
|
|
|
|
/*
|
|
* On some platforms with one or more Gx endpoint ports, we need to
|
|
* delay the PCIe RC port probe for a few seconds to work around
|
|
* a HW PCIe link-training bug. The exact delay is specified with
|
|
* a kernel boot argument in the form of "pcie_rc_delay=T,P,S",
|
|
* where T is the TRIO instance number, P is the port number and S is
|
|
* the delay in seconds. If the argument is specified, but the delay is
|
|
* not provided, the value will be DEFAULT_RC_DELAY.
|
|
*/
|
|
static int rc_delay[TILEGX_NUM_TRIO][TILEGX_TRIO_PCIES];
|
|
|
|
/* Default number of seconds that the PCIe RC port probe can be delayed. */
|
|
#define DEFAULT_RC_DELAY 10
|
|
|
|
/* The PCI I/O space size in each PCI domain. */
|
|
#define IO_SPACE_SIZE 0x10000
|
|
|
|
/* Provide shorter versions of some very long constant names. */
|
|
#define AUTO_CONFIG_RC \
|
|
TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_RC
|
|
#define AUTO_CONFIG_RC_G1 \
|
|
TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_RC_G1
|
|
#define AUTO_CONFIG_EP \
|
|
TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_ENDPOINT
|
|
#define AUTO_CONFIG_EP_G1 \
|
|
TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_ENDPOINT_G1
|
|
|
|
/* Array of the PCIe ports configuration info obtained from the BIB. */
|
|
struct pcie_trio_ports_property pcie_ports[TILEGX_NUM_TRIO];
|
|
|
|
/* Number of configured TRIO instances. */
|
|
int num_trio_shims;
|
|
|
|
/* All drivers share the TRIO contexts defined here. */
|
|
gxio_trio_context_t trio_contexts[TILEGX_NUM_TRIO];
|
|
|
|
/* Pointer to an array of PCIe RC controllers. */
|
|
struct pci_controller pci_controllers[TILEGX_NUM_TRIO * TILEGX_TRIO_PCIES];
|
|
int num_rc_controllers;
|
|
|
|
static struct pci_ops tile_cfg_ops;
|
|
|
|
/* Mask of CPUs that should receive PCIe interrupts. */
|
|
static struct cpumask intr_cpus_map;
|
|
|
|
/* We don't need to worry about the alignment of resources. */
|
|
resource_size_t pcibios_align_resource(void *data, const struct resource *res,
|
|
resource_size_t size,
|
|
resource_size_t align)
|
|
{
|
|
return res->start;
|
|
}
|
|
EXPORT_SYMBOL(pcibios_align_resource);
|
|
|
|
/*
|
|
* Pick a CPU to receive and handle the PCIe interrupts, based on the IRQ #.
|
|
* For now, we simply send interrupts to non-dataplane CPUs.
|
|
* We may implement methods to allow user to specify the target CPUs,
|
|
* e.g. via boot arguments.
|
|
*/
|
|
static int tile_irq_cpu(int irq)
|
|
{
|
|
unsigned int count;
|
|
int i = 0;
|
|
int cpu;
|
|
|
|
count = cpumask_weight(&intr_cpus_map);
|
|
if (unlikely(count == 0)) {
|
|
pr_warn("intr_cpus_map empty, interrupts will be delievered to dataplane tiles\n");
|
|
return irq % (smp_height * smp_width);
|
|
}
|
|
|
|
count = irq % count;
|
|
for_each_cpu(cpu, &intr_cpus_map) {
|
|
if (i++ == count)
|
|
break;
|
|
}
|
|
return cpu;
|
|
}
|
|
|
|
/* Open a file descriptor to the TRIO shim. */
|
|
static int tile_pcie_open(int trio_index)
|
|
{
|
|
gxio_trio_context_t *context = &trio_contexts[trio_index];
|
|
int ret;
|
|
int mac;
|
|
|
|
/* This opens a file descriptor to the TRIO shim. */
|
|
ret = gxio_trio_init(context, trio_index);
|
|
if (ret < 0)
|
|
goto gxio_trio_init_failure;
|
|
|
|
/* Allocate an ASID for the kernel. */
|
|
ret = gxio_trio_alloc_asids(context, 1, 0, 0);
|
|
if (ret < 0) {
|
|
pr_err("PCI: ASID alloc failure on TRIO %d, give up\n",
|
|
trio_index);
|
|
goto asid_alloc_failure;
|
|
}
|
|
|
|
context->asid = ret;
|
|
|
|
#ifdef USE_SHARED_PCIE_CONFIG_REGION
|
|
/*
|
|
* Alloc a PIO region for config access, shared by all MACs per TRIO.
|
|
* This shouldn't fail since the kernel is supposed to the first
|
|
* client of the TRIO's PIO regions.
|
|
*/
|
|
ret = gxio_trio_alloc_pio_regions(context, 1, 0, 0);
|
|
if (ret < 0) {
|
|
pr_err("PCI: CFG PIO alloc failure on TRIO %d, give up\n",
|
|
trio_index);
|
|
goto pio_alloc_failure;
|
|
}
|
|
|
|
context->pio_cfg_index = ret;
|
|
|
|
/*
|
|
* For PIO CFG, the bus_address_hi parameter is 0. The mac parameter
|
|
* is also 0 because it is specified in PIO_REGION_SETUP_CFG_ADDR.
|
|
*/
|
|
ret = gxio_trio_init_pio_region_aux(context, context->pio_cfg_index,
|
|
0, 0, HV_TRIO_PIO_FLAG_CONFIG_SPACE);
|
|
if (ret < 0) {
|
|
pr_err("PCI: CFG PIO init failure on TRIO %d, give up\n",
|
|
trio_index);
|
|
goto pio_alloc_failure;
|
|
}
|
|
#endif
|
|
|
|
/* Get the properties of the PCIe ports on this TRIO instance. */
|
|
ret = gxio_trio_get_port_property(context, &pcie_ports[trio_index]);
|
|
if (ret < 0) {
|
|
pr_err("PCI: PCIE_GET_PORT_PROPERTY failure, error %d, on TRIO %d\n",
|
|
ret, trio_index);
|
|
goto get_port_property_failure;
|
|
}
|
|
|
|
context->mmio_base_mac =
|
|
iorpc_ioremap(context->fd, 0, HV_TRIO_CONFIG_IOREMAP_SIZE);
|
|
if (context->mmio_base_mac == NULL) {
|
|
pr_err("PCI: TRIO config space mapping failure, error %d, on TRIO %d\n",
|
|
ret, trio_index);
|
|
ret = -ENOMEM;
|
|
|
|
goto trio_mmio_mapping_failure;
|
|
}
|
|
|
|
/* Check the port strap state which will override the BIB setting. */
|
|
for (mac = 0; mac < TILEGX_TRIO_PCIES; mac++) {
|
|
TRIO_PCIE_INTFC_PORT_CONFIG_t port_config;
|
|
unsigned int reg_offset;
|
|
|
|
/* Ignore ports that are not specified in the BIB. */
|
|
if (!pcie_ports[trio_index].ports[mac].allow_rc &&
|
|
!pcie_ports[trio_index].ports[mac].allow_ep)
|
|
continue;
|
|
|
|
reg_offset =
|
|
(TRIO_PCIE_INTFC_PORT_CONFIG <<
|
|
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
|
|
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
|
|
TRIO_CFG_REGION_ADDR__INTFC_SHIFT) |
|
|
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
|
|
|
|
port_config.word =
|
|
__gxio_mmio_read(context->mmio_base_mac + reg_offset);
|
|
|
|
if (port_config.strap_state != AUTO_CONFIG_RC &&
|
|
port_config.strap_state != AUTO_CONFIG_RC_G1) {
|
|
/*
|
|
* If this is really intended to be an EP port, record
|
|
* it so that the endpoint driver will know about it.
|
|
*/
|
|
if (port_config.strap_state == AUTO_CONFIG_EP ||
|
|
port_config.strap_state == AUTO_CONFIG_EP_G1)
|
|
pcie_ports[trio_index].ports[mac].allow_ep = 1;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
|
|
trio_mmio_mapping_failure:
|
|
get_port_property_failure:
|
|
asid_alloc_failure:
|
|
#ifdef USE_SHARED_PCIE_CONFIG_REGION
|
|
pio_alloc_failure:
|
|
#endif
|
|
hv_dev_close(context->fd);
|
|
gxio_trio_init_failure:
|
|
context->fd = -1;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __init tile_trio_init(void)
|
|
{
|
|
int i;
|
|
|
|
/* We loop over all the TRIO shims. */
|
|
for (i = 0; i < TILEGX_NUM_TRIO; i++) {
|
|
if (tile_pcie_open(i) < 0)
|
|
continue;
|
|
num_trio_shims++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
postcore_initcall(tile_trio_init);
|
|
|
|
static void tilegx_legacy_irq_ack(struct irq_data *d)
|
|
{
|
|
__insn_mtspr(SPR_IPI_EVENT_RESET_K, 1UL << d->irq);
|
|
}
|
|
|
|
static void tilegx_legacy_irq_mask(struct irq_data *d)
|
|
{
|
|
__insn_mtspr(SPR_IPI_MASK_SET_K, 1UL << d->irq);
|
|
}
|
|
|
|
static void tilegx_legacy_irq_unmask(struct irq_data *d)
|
|
{
|
|
__insn_mtspr(SPR_IPI_MASK_RESET_K, 1UL << d->irq);
|
|
}
|
|
|
|
static struct irq_chip tilegx_legacy_irq_chip = {
|
|
.name = "tilegx_legacy_irq",
|
|
.irq_ack = tilegx_legacy_irq_ack,
|
|
.irq_mask = tilegx_legacy_irq_mask,
|
|
.irq_unmask = tilegx_legacy_irq_unmask,
|
|
|
|
/* TBD: support set_affinity. */
|
|
};
|
|
|
|
/*
|
|
* This is a wrapper function of the kernel level-trigger interrupt
|
|
* handler handle_level_irq() for PCI legacy interrupts. The TRIO
|
|
* is configured such that only INTx Assert interrupts are proxied
|
|
* to Linux which just calls handle_level_irq() after clearing the
|
|
* MAC INTx Assert status bit associated with this interrupt.
|
|
*/
|
|
static void trio_handle_level_irq(unsigned int __irq, struct irq_desc *desc)
|
|
{
|
|
struct pci_controller *controller = irq_desc_get_handler_data(desc);
|
|
gxio_trio_context_t *trio_context = controller->trio;
|
|
uint64_t intx = (uint64_t)irq_desc_get_chip_data(desc);
|
|
unsigned int irq = irq_desc_get_irq(desc);
|
|
int mac = controller->mac;
|
|
unsigned int reg_offset;
|
|
uint64_t level_mask;
|
|
|
|
handle_level_irq(irq, desc);
|
|
|
|
/*
|
|
* Clear the INTx Level status, otherwise future interrupts are
|
|
* not sent.
|
|
*/
|
|
reg_offset = (TRIO_PCIE_INTFC_MAC_INT_STS <<
|
|
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
|
|
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
|
|
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
|
|
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
|
|
|
|
level_mask = TRIO_PCIE_INTFC_MAC_INT_STS__INT_LEVEL_MASK << intx;
|
|
|
|
__gxio_mmio_write(trio_context->mmio_base_mac + reg_offset, level_mask);
|
|
}
|
|
|
|
/*
|
|
* Create kernel irqs and set up the handlers for the legacy interrupts.
|
|
* Also some minimum initialization for the MSI support.
|
|
*/
|
|
static int tile_init_irqs(struct pci_controller *controller)
|
|
{
|
|
int i;
|
|
int j;
|
|
int irq;
|
|
int result;
|
|
|
|
cpumask_copy(&intr_cpus_map, cpu_online_mask);
|
|
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
gxio_trio_context_t *context = controller->trio;
|
|
int cpu;
|
|
|
|
/* Ask the kernel to allocate an IRQ. */
|
|
irq = irq_alloc_hwirq(-1);
|
|
if (!irq) {
|
|
pr_err("PCI: no free irq vectors, failed for %d\n", i);
|
|
goto free_irqs;
|
|
}
|
|
controller->irq_intx_table[i] = irq;
|
|
|
|
/* Distribute the 4 IRQs to different tiles. */
|
|
cpu = tile_irq_cpu(irq);
|
|
|
|
/* Configure the TRIO intr binding for this IRQ. */
|
|
result = gxio_trio_config_legacy_intr(context, cpu_x(cpu),
|
|
cpu_y(cpu), KERNEL_PL,
|
|
irq, controller->mac, i);
|
|
if (result < 0) {
|
|
pr_err("PCI: MAC intx config failed for %d\n", i);
|
|
|
|
goto free_irqs;
|
|
}
|
|
|
|
/* Register the IRQ handler with the kernel. */
|
|
irq_set_chip_and_handler(irq, &tilegx_legacy_irq_chip,
|
|
trio_handle_level_irq);
|
|
irq_set_chip_data(irq, (void *)(uint64_t)i);
|
|
irq_set_handler_data(irq, controller);
|
|
}
|
|
|
|
return 0;
|
|
|
|
free_irqs:
|
|
for (j = 0; j < i; j++)
|
|
irq_free_hwirq(controller->irq_intx_table[j]);
|
|
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Return 1 if the port is strapped to operate in RC mode.
|
|
*/
|
|
static int
|
|
strapped_for_rc(gxio_trio_context_t *trio_context, int mac)
|
|
{
|
|
TRIO_PCIE_INTFC_PORT_CONFIG_t port_config;
|
|
unsigned int reg_offset;
|
|
|
|
/* Check the port configuration. */
|
|
reg_offset =
|
|
(TRIO_PCIE_INTFC_PORT_CONFIG <<
|
|
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
|
|
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
|
|
TRIO_CFG_REGION_ADDR__INTFC_SHIFT) |
|
|
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
|
|
port_config.word =
|
|
__gxio_mmio_read(trio_context->mmio_base_mac + reg_offset);
|
|
|
|
if (port_config.strap_state == AUTO_CONFIG_RC ||
|
|
port_config.strap_state == AUTO_CONFIG_RC_G1)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Find valid controllers and fill in pci_controller structs for each
|
|
* of them.
|
|
*
|
|
* Return the number of controllers discovered.
|
|
*/
|
|
int __init tile_pci_init(void)
|
|
{
|
|
int ctl_index = 0;
|
|
int i, j;
|
|
|
|
if (!pci_probe) {
|
|
pr_info("PCI: disabled by boot argument\n");
|
|
return 0;
|
|
}
|
|
|
|
pr_info("PCI: Searching for controllers...\n");
|
|
|
|
if (num_trio_shims == 0 || sim_is_simulator())
|
|
return 0;
|
|
|
|
/*
|
|
* Now determine which PCIe ports are configured to operate in RC
|
|
* mode. There is a differece in the port configuration capability
|
|
* between the Gx36 and Gx72 devices.
|
|
*
|
|
* The Gx36 has configuration capability for each of the 3 PCIe
|
|
* interfaces (disable, auto endpoint, auto RC, etc.).
|
|
* On the Gx72, you can only select one of the 3 PCIe interfaces per
|
|
* TRIO to train automatically. Further, the allowable training modes
|
|
* are reduced to four options (auto endpoint, auto RC, stream x1,
|
|
* stream x4).
|
|
*
|
|
* For Gx36 ports, it must be allowed to be in RC mode by the
|
|
* Board Information Block, and the hardware strapping pins must be
|
|
* set to RC mode.
|
|
*
|
|
* For Gx72 ports, the port will operate in RC mode if either of the
|
|
* following is true:
|
|
* 1. It is allowed to be in RC mode by the Board Information Block,
|
|
* and the BIB doesn't allow the EP mode.
|
|
* 2. It is allowed to be in either the RC or the EP mode by the BIB,
|
|
* and the hardware strapping pin is set to RC mode.
|
|
*/
|
|
for (i = 0; i < TILEGX_NUM_TRIO; i++) {
|
|
gxio_trio_context_t *context = &trio_contexts[i];
|
|
|
|
if (context->fd < 0)
|
|
continue;
|
|
|
|
for (j = 0; j < TILEGX_TRIO_PCIES; j++) {
|
|
int is_rc = 0;
|
|
|
|
if (pcie_ports[i].is_gx72 &&
|
|
pcie_ports[i].ports[j].allow_rc) {
|
|
if (!pcie_ports[i].ports[j].allow_ep ||
|
|
strapped_for_rc(context, j))
|
|
is_rc = 1;
|
|
} else if (pcie_ports[i].ports[j].allow_rc &&
|
|
strapped_for_rc(context, j)) {
|
|
is_rc = 1;
|
|
}
|
|
if (is_rc) {
|
|
pcie_rc[i][j] = 1;
|
|
num_rc_controllers++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return if no PCIe ports are configured to operate in RC mode. */
|
|
if (num_rc_controllers == 0)
|
|
return 0;
|
|
|
|
/* Set the TRIO pointer and MAC index for each PCIe RC port. */
|
|
for (i = 0; i < TILEGX_NUM_TRIO; i++) {
|
|
for (j = 0; j < TILEGX_TRIO_PCIES; j++) {
|
|
if (pcie_rc[i][j]) {
|
|
pci_controllers[ctl_index].trio =
|
|
&trio_contexts[i];
|
|
pci_controllers[ctl_index].mac = j;
|
|
pci_controllers[ctl_index].trio_index = i;
|
|
ctl_index++;
|
|
if (ctl_index == num_rc_controllers)
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
|
|
out:
|
|
/* Configure each PCIe RC port. */
|
|
for (i = 0; i < num_rc_controllers; i++) {
|
|
|
|
/* Configure the PCIe MAC to run in RC mode. */
|
|
struct pci_controller *controller = &pci_controllers[i];
|
|
|
|
controller->index = i;
|
|
controller->ops = &tile_cfg_ops;
|
|
|
|
controller->io_space.start = PCIBIOS_MIN_IO +
|
|
(i * IO_SPACE_SIZE);
|
|
controller->io_space.end = controller->io_space.start +
|
|
IO_SPACE_SIZE - 1;
|
|
BUG_ON(controller->io_space.end > IO_SPACE_LIMIT);
|
|
controller->io_space.flags = IORESOURCE_IO;
|
|
snprintf(controller->io_space_name,
|
|
sizeof(controller->io_space_name),
|
|
"PCI I/O domain %d", i);
|
|
controller->io_space.name = controller->io_space_name;
|
|
|
|
/*
|
|
* The PCI memory resource is located above the PA space.
|
|
* For every host bridge, the BAR window or the MMIO aperture
|
|
* is in range [3GB, 4GB - 1] of a 4GB space beyond the
|
|
* PA space.
|
|
*/
|
|
controller->mem_offset = TILE_PCI_MEM_START +
|
|
(i * TILE_PCI_BAR_WINDOW_TOP);
|
|
controller->mem_space.start = controller->mem_offset +
|
|
TILE_PCI_BAR_WINDOW_TOP - TILE_PCI_BAR_WINDOW_SIZE;
|
|
controller->mem_space.end = controller->mem_offset +
|
|
TILE_PCI_BAR_WINDOW_TOP - 1;
|
|
controller->mem_space.flags = IORESOURCE_MEM;
|
|
snprintf(controller->mem_space_name,
|
|
sizeof(controller->mem_space_name),
|
|
"PCI mem domain %d", i);
|
|
controller->mem_space.name = controller->mem_space_name;
|
|
}
|
|
|
|
return num_rc_controllers;
|
|
}
|
|
|
|
/*
|
|
* (pin - 1) converts from the PCI standard's [1:4] convention to
|
|
* a normal [0:3] range.
|
|
*/
|
|
static int tile_map_irq(const struct pci_dev *dev, u8 device, u8 pin)
|
|
{
|
|
struct pci_controller *controller =
|
|
(struct pci_controller *)dev->sysdata;
|
|
return controller->irq_intx_table[pin - 1];
|
|
}
|
|
|
|
static void fixup_read_and_payload_sizes(struct pci_controller *controller)
|
|
{
|
|
gxio_trio_context_t *trio_context = controller->trio;
|
|
struct pci_bus *root_bus = controller->root_bus;
|
|
TRIO_PCIE_RC_DEVICE_CONTROL_t dev_control;
|
|
TRIO_PCIE_RC_DEVICE_CAP_t rc_dev_cap;
|
|
unsigned int reg_offset;
|
|
struct pci_bus *child;
|
|
int mac;
|
|
int err;
|
|
|
|
mac = controller->mac;
|
|
|
|
/* Set our max read request size to be 4KB. */
|
|
reg_offset =
|
|
(TRIO_PCIE_RC_DEVICE_CONTROL <<
|
|
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
|
|
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
|
|
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
|
|
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
|
|
|
|
dev_control.word = __gxio_mmio_read32(trio_context->mmio_base_mac +
|
|
reg_offset);
|
|
dev_control.max_read_req_sz = 5;
|
|
__gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset,
|
|
dev_control.word);
|
|
|
|
/*
|
|
* Set the max payload size supported by this Gx PCIe MAC.
|
|
* Though Gx PCIe supports Max Payload Size of up to 1024 bytes,
|
|
* experiments have shown that setting MPS to 256 yields the
|
|
* best performance.
|
|
*/
|
|
reg_offset =
|
|
(TRIO_PCIE_RC_DEVICE_CAP <<
|
|
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
|
|
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
|
|
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
|
|
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
|
|
|
|
rc_dev_cap.word = __gxio_mmio_read32(trio_context->mmio_base_mac +
|
|
reg_offset);
|
|
rc_dev_cap.mps_sup = 1;
|
|
__gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset,
|
|
rc_dev_cap.word);
|
|
|
|
/* Configure PCI Express MPS setting. */
|
|
list_for_each_entry(child, &root_bus->children, node)
|
|
pcie_bus_configure_settings(child);
|
|
|
|
/*
|
|
* Set the mac_config register in trio based on the MPS/MRS of the link.
|
|
*/
|
|
reg_offset =
|
|
(TRIO_PCIE_RC_DEVICE_CONTROL <<
|
|
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
|
|
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
|
|
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
|
|
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
|
|
|
|
dev_control.word = __gxio_mmio_read32(trio_context->mmio_base_mac +
|
|
reg_offset);
|
|
|
|
err = gxio_trio_set_mps_mrs(trio_context,
|
|
dev_control.max_payload_size,
|
|
dev_control.max_read_req_sz,
|
|
mac);
|
|
if (err < 0) {
|
|
pr_err("PCI: PCIE_CONFIGURE_MAC_MPS_MRS failure, MAC %d on TRIO %d\n",
|
|
mac, controller->trio_index);
|
|
}
|
|
}
|
|
|
|
static int setup_pcie_rc_delay(char *str)
|
|
{
|
|
unsigned long delay = 0;
|
|
unsigned long trio_index;
|
|
unsigned long mac;
|
|
|
|
if (str == NULL || !isdigit(*str))
|
|
return -EINVAL;
|
|
trio_index = simple_strtoul(str, (char **)&str, 10);
|
|
if (trio_index >= TILEGX_NUM_TRIO)
|
|
return -EINVAL;
|
|
|
|
if (*str != ',')
|
|
return -EINVAL;
|
|
|
|
str++;
|
|
if (!isdigit(*str))
|
|
return -EINVAL;
|
|
mac = simple_strtoul(str, (char **)&str, 10);
|
|
if (mac >= TILEGX_TRIO_PCIES)
|
|
return -EINVAL;
|
|
|
|
if (*str != '\0') {
|
|
if (*str != ',')
|
|
return -EINVAL;
|
|
|
|
str++;
|
|
if (!isdigit(*str))
|
|
return -EINVAL;
|
|
delay = simple_strtoul(str, (char **)&str, 10);
|
|
}
|
|
|
|
rc_delay[trio_index][mac] = delay ? : DEFAULT_RC_DELAY;
|
|
return 0;
|
|
}
|
|
early_param("pcie_rc_delay", setup_pcie_rc_delay);
|
|
|
|
/* PCI initialization entry point, called by subsys_initcall. */
|
|
int __init pcibios_init(void)
|
|
{
|
|
resource_size_t offset;
|
|
LIST_HEAD(resources);
|
|
int next_busno;
|
|
int i;
|
|
|
|
tile_pci_init();
|
|
|
|
if (num_rc_controllers == 0)
|
|
return 0;
|
|
|
|
/*
|
|
* Delay a bit in case devices aren't ready. Some devices are
|
|
* known to require at least 20ms here, but we use a more
|
|
* conservative value.
|
|
*/
|
|
msleep(250);
|
|
|
|
/* Scan all of the recorded PCI controllers. */
|
|
for (next_busno = 0, i = 0; i < num_rc_controllers; i++) {
|
|
struct pci_controller *controller = &pci_controllers[i];
|
|
gxio_trio_context_t *trio_context = controller->trio;
|
|
TRIO_PCIE_INTFC_PORT_STATUS_t port_status;
|
|
TRIO_PCIE_INTFC_TX_FIFO_CTL_t tx_fifo_ctl;
|
|
struct pci_bus *bus;
|
|
unsigned int reg_offset;
|
|
unsigned int class_code_revision;
|
|
int trio_index;
|
|
int mac;
|
|
int ret;
|
|
|
|
if (trio_context->fd < 0)
|
|
continue;
|
|
|
|
trio_index = controller->trio_index;
|
|
mac = controller->mac;
|
|
|
|
/*
|
|
* Check for PCIe link-up status to decide if we need
|
|
* to force the link to come up.
|
|
*/
|
|
reg_offset =
|
|
(TRIO_PCIE_INTFC_PORT_STATUS <<
|
|
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
|
|
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
|
|
TRIO_CFG_REGION_ADDR__INTFC_SHIFT) |
|
|
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
|
|
|
|
port_status.word =
|
|
__gxio_mmio_read(trio_context->mmio_base_mac +
|
|
reg_offset);
|
|
if (!port_status.dl_up) {
|
|
if (rc_delay[trio_index][mac]) {
|
|
pr_info("Delaying PCIe RC TRIO init %d sec on MAC %d on TRIO %d\n",
|
|
rc_delay[trio_index][mac], mac,
|
|
trio_index);
|
|
msleep(rc_delay[trio_index][mac] * 1000);
|
|
}
|
|
ret = gxio_trio_force_rc_link_up(trio_context, mac);
|
|
if (ret < 0)
|
|
pr_err("PCI: PCIE_FORCE_LINK_UP failure, MAC %d on TRIO %d\n",
|
|
mac, trio_index);
|
|
}
|
|
|
|
pr_info("PCI: Found PCI controller #%d on TRIO %d MAC %d\n",
|
|
i, trio_index, controller->mac);
|
|
|
|
/* Delay the bus probe if needed. */
|
|
if (rc_delay[trio_index][mac]) {
|
|
pr_info("Delaying PCIe RC bus enumerating %d sec on MAC %d on TRIO %d\n",
|
|
rc_delay[trio_index][mac], mac, trio_index);
|
|
msleep(rc_delay[trio_index][mac] * 1000);
|
|
} else {
|
|
/*
|
|
* Wait a bit here because some EP devices
|
|
* take longer to come up.
|
|
*/
|
|
msleep(1000);
|
|
}
|
|
|
|
/* Check for PCIe link-up status again. */
|
|
port_status.word =
|
|
__gxio_mmio_read(trio_context->mmio_base_mac +
|
|
reg_offset);
|
|
if (!port_status.dl_up) {
|
|
if (pcie_ports[trio_index].ports[mac].removable) {
|
|
pr_info("PCI: link is down, MAC %d on TRIO %d\n",
|
|
mac, trio_index);
|
|
pr_info("This is expected if no PCIe card is connected to this link\n");
|
|
} else
|
|
pr_err("PCI: link is down, MAC %d on TRIO %d\n",
|
|
mac, trio_index);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Ensure that the link can come out of L1 power down state.
|
|
* Strictly speaking, this is needed only in the case of
|
|
* heavy RC-initiated DMAs.
|
|
*/
|
|
reg_offset =
|
|
(TRIO_PCIE_INTFC_TX_FIFO_CTL <<
|
|
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
|
|
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
|
|
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
|
|
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
|
|
tx_fifo_ctl.word =
|
|
__gxio_mmio_read(trio_context->mmio_base_mac +
|
|
reg_offset);
|
|
tx_fifo_ctl.min_p_credits = 0;
|
|
__gxio_mmio_write(trio_context->mmio_base_mac + reg_offset,
|
|
tx_fifo_ctl.word);
|
|
|
|
/*
|
|
* Change the device ID so that Linux bus crawl doesn't confuse
|
|
* the internal bridge with any Tilera endpoints.
|
|
*/
|
|
reg_offset =
|
|
(TRIO_PCIE_RC_DEVICE_ID_VEN_ID <<
|
|
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
|
|
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
|
|
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
|
|
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
|
|
|
|
__gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset,
|
|
(TILERA_GX36_RC_DEV_ID <<
|
|
TRIO_PCIE_RC_DEVICE_ID_VEN_ID__DEV_ID_SHIFT) |
|
|
TILERA_VENDOR_ID);
|
|
|
|
/* Set the internal P2P bridge class code. */
|
|
reg_offset =
|
|
(TRIO_PCIE_RC_REVISION_ID <<
|
|
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
|
|
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
|
|
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
|
|
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
|
|
|
|
class_code_revision =
|
|
__gxio_mmio_read32(trio_context->mmio_base_mac +
|
|
reg_offset);
|
|
class_code_revision = (class_code_revision & 0xff) |
|
|
(PCI_CLASS_BRIDGE_PCI << 16);
|
|
|
|
__gxio_mmio_write32(trio_context->mmio_base_mac +
|
|
reg_offset, class_code_revision);
|
|
|
|
#ifdef USE_SHARED_PCIE_CONFIG_REGION
|
|
|
|
/* Map in the MMIO space for the PIO region. */
|
|
offset = HV_TRIO_PIO_OFFSET(trio_context->pio_cfg_index) |
|
|
(((unsigned long long)mac) <<
|
|
TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT);
|
|
|
|
#else
|
|
|
|
/* Alloc a PIO region for PCI config access per MAC. */
|
|
ret = gxio_trio_alloc_pio_regions(trio_context, 1, 0, 0);
|
|
if (ret < 0) {
|
|
pr_err("PCI: PCI CFG PIO alloc failure for mac %d on TRIO %d, give up\n",
|
|
mac, trio_index);
|
|
|
|
continue;
|
|
}
|
|
|
|
trio_context->pio_cfg_index[mac] = ret;
|
|
|
|
/* For PIO CFG, the bus_address_hi parameter is 0. */
|
|
ret = gxio_trio_init_pio_region_aux(trio_context,
|
|
trio_context->pio_cfg_index[mac],
|
|
mac, 0, HV_TRIO_PIO_FLAG_CONFIG_SPACE);
|
|
if (ret < 0) {
|
|
pr_err("PCI: PCI CFG PIO init failure for mac %d on TRIO %d, give up\n",
|
|
mac, trio_index);
|
|
|
|
continue;
|
|
}
|
|
|
|
offset = HV_TRIO_PIO_OFFSET(trio_context->pio_cfg_index[mac]) |
|
|
(((unsigned long long)mac) <<
|
|
TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT);
|
|
|
|
#endif
|
|
|
|
/*
|
|
* To save VMALLOC space, we take advantage of the fact that
|
|
* bit 29 in the PIO CFG address format is reserved 0. With
|
|
* TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT being 30,
|
|
* this cuts VMALLOC space usage from 1GB to 512MB per mac.
|
|
*/
|
|
trio_context->mmio_base_pio_cfg[mac] =
|
|
iorpc_ioremap(trio_context->fd, offset, (1UL <<
|
|
(TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT - 1)));
|
|
if (trio_context->mmio_base_pio_cfg[mac] == NULL) {
|
|
pr_err("PCI: PIO map failure for mac %d on TRIO %d\n",
|
|
mac, trio_index);
|
|
|
|
continue;
|
|
}
|
|
|
|
/* Initialize the PCIe interrupts. */
|
|
if (tile_init_irqs(controller)) {
|
|
pr_err("PCI: IRQs init failure for mac %d on TRIO %d\n",
|
|
mac, trio_index);
|
|
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* The PCI memory resource is located above the PA space.
|
|
* The memory range for the PCI root bus should not overlap
|
|
* with the physical RAM.
|
|
*/
|
|
pci_add_resource_offset(&resources, &controller->mem_space,
|
|
controller->mem_offset);
|
|
pci_add_resource(&resources, &controller->io_space);
|
|
controller->first_busno = next_busno;
|
|
bus = pci_scan_root_bus(NULL, next_busno, controller->ops,
|
|
controller, &resources);
|
|
controller->root_bus = bus;
|
|
next_busno = bus->busn_res.end + 1;
|
|
}
|
|
|
|
/* Do machine dependent PCI interrupt routing */
|
|
pci_fixup_irqs(pci_common_swizzle, tile_map_irq);
|
|
|
|
/*
|
|
* This comes from the generic Linux PCI driver.
|
|
*
|
|
* It allocates all of the resources (I/O memory, etc)
|
|
* associated with the devices read in above.
|
|
*/
|
|
pci_assign_unassigned_resources();
|
|
|
|
/* Record the I/O resources in the PCI controller structure. */
|
|
for (i = 0; i < num_rc_controllers; i++) {
|
|
struct pci_controller *controller = &pci_controllers[i];
|
|
gxio_trio_context_t *trio_context = controller->trio;
|
|
struct pci_bus *root_bus = pci_controllers[i].root_bus;
|
|
int ret;
|
|
int j;
|
|
|
|
/*
|
|
* Skip controllers that are not properly initialized or
|
|
* have down links.
|
|
*/
|
|
if (root_bus == NULL)
|
|
continue;
|
|
|
|
/* Configure the max_payload_size values for this domain. */
|
|
fixup_read_and_payload_sizes(controller);
|
|
|
|
/* Alloc a PIO region for PCI memory access for each RC port. */
|
|
ret = gxio_trio_alloc_pio_regions(trio_context, 1, 0, 0);
|
|
if (ret < 0) {
|
|
pr_err("PCI: MEM PIO alloc failure on TRIO %d mac %d, give up\n",
|
|
controller->trio_index, controller->mac);
|
|
|
|
continue;
|
|
}
|
|
|
|
controller->pio_mem_index = ret;
|
|
|
|
/*
|
|
* For PIO MEM, the bus_address_hi parameter is hard-coded 0
|
|
* because we always assign 32-bit PCI bus BAR ranges.
|
|
*/
|
|
ret = gxio_trio_init_pio_region_aux(trio_context,
|
|
controller->pio_mem_index,
|
|
controller->mac,
|
|
0,
|
|
0);
|
|
if (ret < 0) {
|
|
pr_err("PCI: MEM PIO init failure on TRIO %d mac %d, give up\n",
|
|
controller->trio_index, controller->mac);
|
|
|
|
continue;
|
|
}
|
|
|
|
#ifdef CONFIG_TILE_PCI_IO
|
|
/*
|
|
* Alloc a PIO region for PCI I/O space access for each RC port.
|
|
*/
|
|
ret = gxio_trio_alloc_pio_regions(trio_context, 1, 0, 0);
|
|
if (ret < 0) {
|
|
pr_err("PCI: I/O PIO alloc failure on TRIO %d mac %d, give up\n",
|
|
controller->trio_index, controller->mac);
|
|
|
|
continue;
|
|
}
|
|
|
|
controller->pio_io_index = ret;
|
|
|
|
/*
|
|
* For PIO IO, the bus_address_hi parameter is hard-coded 0
|
|
* because PCI I/O address space is 32-bit.
|
|
*/
|
|
ret = gxio_trio_init_pio_region_aux(trio_context,
|
|
controller->pio_io_index,
|
|
controller->mac,
|
|
0,
|
|
HV_TRIO_PIO_FLAG_IO_SPACE);
|
|
if (ret < 0) {
|
|
pr_err("PCI: I/O PIO init failure on TRIO %d mac %d, give up\n",
|
|
controller->trio_index, controller->mac);
|
|
|
|
continue;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Configure a Mem-Map region for each memory controller so
|
|
* that Linux can map all of its PA space to the PCI bus.
|
|
* Use the IOMMU to handle hash-for-home memory.
|
|
*/
|
|
for_each_online_node(j) {
|
|
unsigned long start_pfn = node_start_pfn[j];
|
|
unsigned long end_pfn = node_end_pfn[j];
|
|
unsigned long nr_pages = end_pfn - start_pfn;
|
|
|
|
ret = gxio_trio_alloc_memory_maps(trio_context, 1, 0,
|
|
0);
|
|
if (ret < 0) {
|
|
pr_err("PCI: Mem-Map alloc failure on TRIO %d mac %d for MC %d, give up\n",
|
|
controller->trio_index, controller->mac,
|
|
j);
|
|
|
|
goto alloc_mem_map_failed;
|
|
}
|
|
|
|
controller->mem_maps[j] = ret;
|
|
|
|
/*
|
|
* Initialize the Mem-Map and the I/O MMU so that all
|
|
* the physical memory can be accessed by the endpoint
|
|
* devices. The base bus address is set to the base CPA
|
|
* of this memory controller plus an offset (see pci.h).
|
|
* The region's base VA is set to the base CPA. The
|
|
* I/O MMU table essentially translates the CPA to
|
|
* the real PA. Implicitly, for node 0, we create
|
|
* a separate Mem-Map region that serves as the inbound
|
|
* window for legacy 32-bit devices. This is a direct
|
|
* map of the low 4GB CPA space.
|
|
*/
|
|
ret = gxio_trio_init_memory_map_mmu_aux(trio_context,
|
|
controller->mem_maps[j],
|
|
start_pfn << PAGE_SHIFT,
|
|
nr_pages << PAGE_SHIFT,
|
|
trio_context->asid,
|
|
controller->mac,
|
|
(start_pfn << PAGE_SHIFT) +
|
|
TILE_PCI_MEM_MAP_BASE_OFFSET,
|
|
j,
|
|
GXIO_TRIO_ORDER_MODE_UNORDERED);
|
|
if (ret < 0) {
|
|
pr_err("PCI: Mem-Map init failure on TRIO %d mac %d for MC %d, give up\n",
|
|
controller->trio_index, controller->mac,
|
|
j);
|
|
|
|
goto alloc_mem_map_failed;
|
|
}
|
|
continue;
|
|
|
|
alloc_mem_map_failed:
|
|
break;
|
|
}
|
|
|
|
pci_bus_add_devices(root_bus);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
subsys_initcall(pcibios_init);
|
|
|
|
/* No bus fixups needed. */
|
|
void pcibios_fixup_bus(struct pci_bus *bus)
|
|
{
|
|
}
|
|
|
|
/* Process any "pci=" kernel boot arguments. */
|
|
char *__init pcibios_setup(char *str)
|
|
{
|
|
if (!strcmp(str, "off")) {
|
|
pci_probe = 0;
|
|
return NULL;
|
|
}
|
|
return str;
|
|
}
|
|
|
|
/*
|
|
* Called for each device after PCI setup is done.
|
|
* We initialize the PCI device capabilities conservatively, assuming that
|
|
* all devices can only address the 32-bit DMA space. The exception here is
|
|
* that the device dma_offset is set to the value that matches the 64-bit
|
|
* capable devices. This is OK because dma_offset is not used by legacy
|
|
* dma_ops, nor by the hybrid dma_ops's streaming DMAs, which are 64-bit ops.
|
|
* This implementation matches the kernel design of setting PCI devices'
|
|
* coherent_dma_mask to 0xffffffffull by default, allowing the device drivers
|
|
* to skip calling pci_set_consistent_dma_mask(DMA_BIT_MASK(32)).
|
|
*/
|
|
static void pcibios_fixup_final(struct pci_dev *pdev)
|
|
{
|
|
set_dma_ops(&pdev->dev, gx_legacy_pci_dma_map_ops);
|
|
set_dma_offset(&pdev->dev, TILE_PCI_MEM_MAP_BASE_OFFSET);
|
|
pdev->dev.archdata.max_direct_dma_addr =
|
|
TILE_PCI_MAX_DIRECT_DMA_ADDRESS;
|
|
pdev->dev.coherent_dma_mask = TILE_PCI_MAX_DIRECT_DMA_ADDRESS;
|
|
}
|
|
DECLARE_PCI_FIXUP_FINAL(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_final);
|
|
|
|
/* Map a PCI MMIO bus address into VA space. */
|
|
void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
|
|
{
|
|
struct pci_controller *controller = NULL;
|
|
resource_size_t bar_start;
|
|
resource_size_t bar_end;
|
|
resource_size_t offset;
|
|
resource_size_t start;
|
|
resource_size_t end;
|
|
int trio_fd;
|
|
int i;
|
|
|
|
start = phys_addr;
|
|
end = phys_addr + size - 1;
|
|
|
|
/*
|
|
* By searching phys_addr in each controller's mem_space, we can
|
|
* determine the controller that should accept the PCI memory access.
|
|
*/
|
|
for (i = 0; i < num_rc_controllers; i++) {
|
|
/*
|
|
* Skip controllers that are not properly initialized or
|
|
* have down links.
|
|
*/
|
|
if (pci_controllers[i].root_bus == NULL)
|
|
continue;
|
|
|
|
bar_start = pci_controllers[i].mem_space.start;
|
|
bar_end = pci_controllers[i].mem_space.end;
|
|
|
|
if ((start >= bar_start) && (end <= bar_end)) {
|
|
controller = &pci_controllers[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (controller == NULL)
|
|
return NULL;
|
|
|
|
trio_fd = controller->trio->fd;
|
|
|
|
/* Convert the resource start to the bus address offset. */
|
|
start = phys_addr - controller->mem_offset;
|
|
|
|
offset = HV_TRIO_PIO_OFFSET(controller->pio_mem_index) + start;
|
|
|
|
/* We need to keep the PCI bus address's in-page offset in the VA. */
|
|
return iorpc_ioremap(trio_fd, offset, size) +
|
|
(start & (PAGE_SIZE - 1));
|
|
}
|
|
EXPORT_SYMBOL(ioremap);
|
|
|
|
#ifdef CONFIG_TILE_PCI_IO
|
|
/* Map a PCI I/O address into VA space. */
|
|
void __iomem *ioport_map(unsigned long port, unsigned int size)
|
|
{
|
|
struct pci_controller *controller = NULL;
|
|
resource_size_t bar_start;
|
|
resource_size_t bar_end;
|
|
resource_size_t offset;
|
|
resource_size_t start;
|
|
resource_size_t end;
|
|
int trio_fd;
|
|
int i;
|
|
|
|
start = port;
|
|
end = port + size - 1;
|
|
|
|
/*
|
|
* By searching the port in each controller's io_space, we can
|
|
* determine the controller that should accept the PCI I/O access.
|
|
*/
|
|
for (i = 0; i < num_rc_controllers; i++) {
|
|
/*
|
|
* Skip controllers that are not properly initialized or
|
|
* have down links.
|
|
*/
|
|
if (pci_controllers[i].root_bus == NULL)
|
|
continue;
|
|
|
|
bar_start = pci_controllers[i].io_space.start;
|
|
bar_end = pci_controllers[i].io_space.end;
|
|
|
|
if ((start >= bar_start) && (end <= bar_end)) {
|
|
controller = &pci_controllers[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (controller == NULL)
|
|
return NULL;
|
|
|
|
trio_fd = controller->trio->fd;
|
|
|
|
/* Convert the resource start to the bus address offset. */
|
|
port -= controller->io_space.start;
|
|
|
|
offset = HV_TRIO_PIO_OFFSET(controller->pio_io_index) + port;
|
|
|
|
/* We need to keep the PCI bus address's in-page offset in the VA. */
|
|
return iorpc_ioremap(trio_fd, offset, size) + (port & (PAGE_SIZE - 1));
|
|
}
|
|
EXPORT_SYMBOL(ioport_map);
|
|
|
|
void ioport_unmap(void __iomem *addr)
|
|
{
|
|
iounmap(addr);
|
|
}
|
|
EXPORT_SYMBOL(ioport_unmap);
|
|
#endif
|
|
|
|
void pci_iounmap(struct pci_dev *dev, void __iomem *addr)
|
|
{
|
|
iounmap(addr);
|
|
}
|
|
EXPORT_SYMBOL(pci_iounmap);
|
|
|
|
/****************************************************************
|
|
*
|
|
* Tile PCI config space read/write routines
|
|
*
|
|
****************************************************************/
|
|
|
|
/*
|
|
* These are the normal read and write ops
|
|
* These are expanded with macros from pci_bus_read_config_byte() etc.
|
|
*
|
|
* devfn is the combined PCI device & function.
|
|
*
|
|
* offset is in bytes, from the start of config space for the
|
|
* specified bus & device.
|
|
*/
|
|
static int tile_cfg_read(struct pci_bus *bus, unsigned int devfn, int offset,
|
|
int size, u32 *val)
|
|
{
|
|
struct pci_controller *controller = bus->sysdata;
|
|
gxio_trio_context_t *trio_context = controller->trio;
|
|
int busnum = bus->number & 0xff;
|
|
int device = PCI_SLOT(devfn);
|
|
int function = PCI_FUNC(devfn);
|
|
int config_type = 1;
|
|
TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR_t cfg_addr;
|
|
void *mmio_addr;
|
|
|
|
/*
|
|
* Map all accesses to the local device on root bus into the
|
|
* MMIO space of the MAC. Accesses to the downstream devices
|
|
* go to the PIO space.
|
|
*/
|
|
if (pci_is_root_bus(bus)) {
|
|
if (device == 0) {
|
|
/*
|
|
* This is the internal downstream P2P bridge,
|
|
* access directly.
|
|
*/
|
|
unsigned int reg_offset;
|
|
|
|
reg_offset = ((offset & 0xFFF) <<
|
|
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
|
|
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_PROTECTED
|
|
<< TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
|
|
(controller->mac <<
|
|
TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
|
|
|
|
mmio_addr = trio_context->mmio_base_mac + reg_offset;
|
|
|
|
goto valid_device;
|
|
|
|
} else {
|
|
/*
|
|
* We fake an empty device for (device > 0),
|
|
* since there is only one device on bus 0.
|
|
*/
|
|
goto invalid_device;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Accesses to the directly attached device have to be
|
|
* sent as type-0 configs.
|
|
*/
|
|
if (busnum == (controller->first_busno + 1)) {
|
|
/*
|
|
* There is only one device off of our built-in P2P bridge.
|
|
*/
|
|
if (device != 0)
|
|
goto invalid_device;
|
|
|
|
config_type = 0;
|
|
}
|
|
|
|
cfg_addr.word = 0;
|
|
cfg_addr.reg_addr = (offset & 0xFFF);
|
|
cfg_addr.fn = function;
|
|
cfg_addr.dev = device;
|
|
cfg_addr.bus = busnum;
|
|
cfg_addr.type = config_type;
|
|
|
|
/*
|
|
* Note that we don't set the mac field in cfg_addr because the
|
|
* mapping is per port.
|
|
*/
|
|
mmio_addr = trio_context->mmio_base_pio_cfg[controller->mac] +
|
|
cfg_addr.word;
|
|
|
|
valid_device:
|
|
|
|
switch (size) {
|
|
case 4:
|
|
*val = __gxio_mmio_read32(mmio_addr);
|
|
break;
|
|
|
|
case 2:
|
|
*val = __gxio_mmio_read16(mmio_addr);
|
|
break;
|
|
|
|
case 1:
|
|
*val = __gxio_mmio_read8(mmio_addr);
|
|
break;
|
|
|
|
default:
|
|
return PCIBIOS_FUNC_NOT_SUPPORTED;
|
|
}
|
|
|
|
TRACE_CFG_RD(size, *val, busnum, device, function, offset);
|
|
|
|
return 0;
|
|
|
|
invalid_device:
|
|
|
|
switch (size) {
|
|
case 4:
|
|
*val = 0xFFFFFFFF;
|
|
break;
|
|
|
|
case 2:
|
|
*val = 0xFFFF;
|
|
break;
|
|
|
|
case 1:
|
|
*val = 0xFF;
|
|
break;
|
|
|
|
default:
|
|
return PCIBIOS_FUNC_NOT_SUPPORTED;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* See tile_cfg_read() for relevent comments.
|
|
* Note that "val" is the value to write, not a pointer to that value.
|
|
*/
|
|
static int tile_cfg_write(struct pci_bus *bus, unsigned int devfn, int offset,
|
|
int size, u32 val)
|
|
{
|
|
struct pci_controller *controller = bus->sysdata;
|
|
gxio_trio_context_t *trio_context = controller->trio;
|
|
int busnum = bus->number & 0xff;
|
|
int device = PCI_SLOT(devfn);
|
|
int function = PCI_FUNC(devfn);
|
|
int config_type = 1;
|
|
TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR_t cfg_addr;
|
|
void *mmio_addr;
|
|
u32 val_32 = (u32)val;
|
|
u16 val_16 = (u16)val;
|
|
u8 val_8 = (u8)val;
|
|
|
|
/*
|
|
* Map all accesses to the local device on root bus into the
|
|
* MMIO space of the MAC. Accesses to the downstream devices
|
|
* go to the PIO space.
|
|
*/
|
|
if (pci_is_root_bus(bus)) {
|
|
if (device == 0) {
|
|
/*
|
|
* This is the internal downstream P2P bridge,
|
|
* access directly.
|
|
*/
|
|
unsigned int reg_offset;
|
|
|
|
reg_offset = ((offset & 0xFFF) <<
|
|
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
|
|
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_PROTECTED
|
|
<< TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
|
|
(controller->mac <<
|
|
TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
|
|
|
|
mmio_addr = trio_context->mmio_base_mac + reg_offset;
|
|
|
|
goto valid_device;
|
|
|
|
} else {
|
|
/*
|
|
* We fake an empty device for (device > 0),
|
|
* since there is only one device on bus 0.
|
|
*/
|
|
goto invalid_device;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Accesses to the directly attached device have to be
|
|
* sent as type-0 configs.
|
|
*/
|
|
if (busnum == (controller->first_busno + 1)) {
|
|
/*
|
|
* There is only one device off of our built-in P2P bridge.
|
|
*/
|
|
if (device != 0)
|
|
goto invalid_device;
|
|
|
|
config_type = 0;
|
|
}
|
|
|
|
cfg_addr.word = 0;
|
|
cfg_addr.reg_addr = (offset & 0xFFF);
|
|
cfg_addr.fn = function;
|
|
cfg_addr.dev = device;
|
|
cfg_addr.bus = busnum;
|
|
cfg_addr.type = config_type;
|
|
|
|
/*
|
|
* Note that we don't set the mac field in cfg_addr because the
|
|
* mapping is per port.
|
|
*/
|
|
mmio_addr = trio_context->mmio_base_pio_cfg[controller->mac] +
|
|
cfg_addr.word;
|
|
|
|
valid_device:
|
|
|
|
switch (size) {
|
|
case 4:
|
|
__gxio_mmio_write32(mmio_addr, val_32);
|
|
TRACE_CFG_WR(size, val_32, busnum, device, function, offset);
|
|
break;
|
|
|
|
case 2:
|
|
__gxio_mmio_write16(mmio_addr, val_16);
|
|
TRACE_CFG_WR(size, val_16, busnum, device, function, offset);
|
|
break;
|
|
|
|
case 1:
|
|
__gxio_mmio_write8(mmio_addr, val_8);
|
|
TRACE_CFG_WR(size, val_8, busnum, device, function, offset);
|
|
break;
|
|
|
|
default:
|
|
return PCIBIOS_FUNC_NOT_SUPPORTED;
|
|
}
|
|
|
|
invalid_device:
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static struct pci_ops tile_cfg_ops = {
|
|
.read = tile_cfg_read,
|
|
.write = tile_cfg_write,
|
|
};
|
|
|
|
|
|
/* MSI support starts here. */
|
|
static unsigned int tilegx_msi_startup(struct irq_data *d)
|
|
{
|
|
if (irq_data_get_msi_desc(d))
|
|
pci_msi_unmask_irq(d);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void tilegx_msi_ack(struct irq_data *d)
|
|
{
|
|
__insn_mtspr(SPR_IPI_EVENT_RESET_K, 1UL << d->irq);
|
|
}
|
|
|
|
static void tilegx_msi_mask(struct irq_data *d)
|
|
{
|
|
pci_msi_mask_irq(d);
|
|
__insn_mtspr(SPR_IPI_MASK_SET_K, 1UL << d->irq);
|
|
}
|
|
|
|
static void tilegx_msi_unmask(struct irq_data *d)
|
|
{
|
|
__insn_mtspr(SPR_IPI_MASK_RESET_K, 1UL << d->irq);
|
|
pci_msi_unmask_irq(d);
|
|
}
|
|
|
|
static struct irq_chip tilegx_msi_chip = {
|
|
.name = "tilegx_msi",
|
|
.irq_startup = tilegx_msi_startup,
|
|
.irq_ack = tilegx_msi_ack,
|
|
.irq_mask = tilegx_msi_mask,
|
|
.irq_unmask = tilegx_msi_unmask,
|
|
|
|
/* TBD: support set_affinity. */
|
|
};
|
|
|
|
int arch_setup_msi_irq(struct pci_dev *pdev, struct msi_desc *desc)
|
|
{
|
|
struct pci_controller *controller;
|
|
gxio_trio_context_t *trio_context;
|
|
struct msi_msg msg;
|
|
int default_irq;
|
|
uint64_t mem_map_base;
|
|
uint64_t mem_map_limit;
|
|
u64 msi_addr;
|
|
int mem_map;
|
|
int cpu;
|
|
int irq;
|
|
int ret;
|
|
|
|
irq = irq_alloc_hwirq(-1);
|
|
if (!irq)
|
|
return -ENOSPC;
|
|
|
|
/*
|
|
* Since we use a 64-bit Mem-Map to accept the MSI write, we fail
|
|
* devices that are not capable of generating a 64-bit message address.
|
|
* These devices will fall back to using the legacy interrupts.
|
|
* Most PCIe endpoint devices do support 64-bit message addressing.
|
|
*/
|
|
if (desc->msi_attrib.is_64 == 0) {
|
|
dev_info(&pdev->dev, "64-bit MSI message address not supported, falling back to legacy interrupts\n");
|
|
|
|
ret = -ENOMEM;
|
|
goto is_64_failure;
|
|
}
|
|
|
|
default_irq = desc->msi_attrib.default_irq;
|
|
controller = irq_get_handler_data(default_irq);
|
|
|
|
BUG_ON(!controller);
|
|
|
|
trio_context = controller->trio;
|
|
|
|
/*
|
|
* Allocate a scatter-queue that will accept the MSI write and
|
|
* trigger the TILE-side interrupts. We use the scatter-queue regions
|
|
* before the mem map regions, because the latter are needed by more
|
|
* applications.
|
|
*/
|
|
mem_map = gxio_trio_alloc_scatter_queues(trio_context, 1, 0, 0);
|
|
if (mem_map >= 0) {
|
|
TRIO_MAP_SQ_DOORBELL_FMT_t doorbell_template = {{
|
|
.pop = 0,
|
|
.doorbell = 1,
|
|
}};
|
|
|
|
mem_map += TRIO_NUM_MAP_MEM_REGIONS;
|
|
mem_map_base = MEM_MAP_INTR_REGIONS_BASE +
|
|
mem_map * MEM_MAP_INTR_REGION_SIZE;
|
|
mem_map_limit = mem_map_base + MEM_MAP_INTR_REGION_SIZE - 1;
|
|
|
|
msi_addr = mem_map_base + MEM_MAP_INTR_REGION_SIZE - 8;
|
|
msg.data = (unsigned int)doorbell_template.word;
|
|
} else {
|
|
/* SQ regions are out, allocate from map mem regions. */
|
|
mem_map = gxio_trio_alloc_memory_maps(trio_context, 1, 0, 0);
|
|
if (mem_map < 0) {
|
|
dev_info(&pdev->dev, "%s Mem-Map alloc failure - failed to initialize MSI interrupts - falling back to legacy interrupts\n",
|
|
desc->msi_attrib.is_msix ? "MSI-X" : "MSI");
|
|
ret = -ENOMEM;
|
|
goto msi_mem_map_alloc_failure;
|
|
}
|
|
|
|
mem_map_base = MEM_MAP_INTR_REGIONS_BASE +
|
|
mem_map * MEM_MAP_INTR_REGION_SIZE;
|
|
mem_map_limit = mem_map_base + MEM_MAP_INTR_REGION_SIZE - 1;
|
|
|
|
msi_addr = mem_map_base + TRIO_MAP_MEM_REG_INT3 -
|
|
TRIO_MAP_MEM_REG_INT0;
|
|
|
|
msg.data = mem_map;
|
|
}
|
|
|
|
/* We try to distribute different IRQs to different tiles. */
|
|
cpu = tile_irq_cpu(irq);
|
|
|
|
/*
|
|
* Now call up to the HV to configure the MSI interrupt and
|
|
* set up the IPI binding.
|
|
*/
|
|
ret = gxio_trio_config_msi_intr(trio_context, cpu_x(cpu), cpu_y(cpu),
|
|
KERNEL_PL, irq, controller->mac,
|
|
mem_map, mem_map_base, mem_map_limit,
|
|
trio_context->asid);
|
|
if (ret < 0) {
|
|
dev_info(&pdev->dev, "HV MSI config failed\n");
|
|
|
|
goto hv_msi_config_failure;
|
|
}
|
|
|
|
irq_set_msi_desc(irq, desc);
|
|
|
|
msg.address_hi = msi_addr >> 32;
|
|
msg.address_lo = msi_addr & 0xffffffff;
|
|
|
|
pci_write_msi_msg(irq, &msg);
|
|
irq_set_chip_and_handler(irq, &tilegx_msi_chip, handle_level_irq);
|
|
irq_set_handler_data(irq, controller);
|
|
|
|
return 0;
|
|
|
|
hv_msi_config_failure:
|
|
/* Free mem-map */
|
|
msi_mem_map_alloc_failure:
|
|
is_64_failure:
|
|
irq_free_hwirq(irq);
|
|
return ret;
|
|
}
|
|
|
|
void arch_teardown_msi_irq(unsigned int irq)
|
|
{
|
|
irq_free_hwirq(irq);
|
|
}
|