linux/arch/parisc/kernel/cache.c
Kirill A. Shutemov 09cbfeaf1a mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.

This promise never materialized.  And unlikely will.

We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE.  And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.

Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.

Let's stop pretending that pages in page cache are special.  They are
not.

The changes are pretty straight-forward:

 - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;

 - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;

 - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};

 - page_cache_get() -> get_page();

 - page_cache_release() -> put_page();

This patch contains automated changes generated with coccinelle using
script below.  For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.

The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.

There are few places in the code where coccinelle didn't reach.  I'll
fix them manually in a separate patch.  Comments and documentation also
will be addressed with the separate patch.

virtual patch

@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E

@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E

@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT

@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE

@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK

@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)

@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)

@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-04 10:41:08 -07:00

632 lines
17 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1999-2006 Helge Deller <deller@gmx.de> (07-13-1999)
* Copyright (C) 1999 SuSE GmbH Nuernberg
* Copyright (C) 2000 Philipp Rumpf (prumpf@tux.org)
*
* Cache and TLB management
*
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/seq_file.h>
#include <linux/pagemap.h>
#include <linux/sched.h>
#include <asm/pdc.h>
#include <asm/cache.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/processor.h>
#include <asm/sections.h>
#include <asm/shmparam.h>
int split_tlb __read_mostly;
int dcache_stride __read_mostly;
int icache_stride __read_mostly;
EXPORT_SYMBOL(dcache_stride);
void flush_dcache_page_asm(unsigned long phys_addr, unsigned long vaddr);
EXPORT_SYMBOL(flush_dcache_page_asm);
void flush_icache_page_asm(unsigned long phys_addr, unsigned long vaddr);
/* On some machines (e.g. ones with the Merced bus), there can be
* only a single PxTLB broadcast at a time; this must be guaranteed
* by software. We put a spinlock around all TLB flushes to
* ensure this.
*/
DEFINE_SPINLOCK(pa_tlb_lock);
struct pdc_cache_info cache_info __read_mostly;
#ifndef CONFIG_PA20
static struct pdc_btlb_info btlb_info __read_mostly;
#endif
#ifdef CONFIG_SMP
void
flush_data_cache(void)
{
on_each_cpu(flush_data_cache_local, NULL, 1);
}
void
flush_instruction_cache(void)
{
on_each_cpu(flush_instruction_cache_local, NULL, 1);
}
#endif
void
flush_cache_all_local(void)
{
flush_instruction_cache_local(NULL);
flush_data_cache_local(NULL);
}
EXPORT_SYMBOL(flush_cache_all_local);
/* Virtual address of pfn. */
#define pfn_va(pfn) __va(PFN_PHYS(pfn))
void
update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
{
unsigned long pfn = pte_pfn(*ptep);
struct page *page;
/* We don't have pte special. As a result, we can be called with
an invalid pfn and we don't need to flush the kernel dcache page.
This occurs with FireGL card in C8000. */
if (!pfn_valid(pfn))
return;
page = pfn_to_page(pfn);
if (page_mapping(page) && test_bit(PG_dcache_dirty, &page->flags)) {
flush_kernel_dcache_page_addr(pfn_va(pfn));
clear_bit(PG_dcache_dirty, &page->flags);
} else if (parisc_requires_coherency())
flush_kernel_dcache_page_addr(pfn_va(pfn));
}
void
show_cache_info(struct seq_file *m)
{
char buf[32];
seq_printf(m, "I-cache\t\t: %ld KB\n",
cache_info.ic_size/1024 );
if (cache_info.dc_loop != 1)
snprintf(buf, 32, "%lu-way associative", cache_info.dc_loop);
seq_printf(m, "D-cache\t\t: %ld KB (%s%s, %s)\n",
cache_info.dc_size/1024,
(cache_info.dc_conf.cc_wt ? "WT":"WB"),
(cache_info.dc_conf.cc_sh ? ", shared I/D":""),
((cache_info.dc_loop == 1) ? "direct mapped" : buf));
seq_printf(m, "ITLB entries\t: %ld\n" "DTLB entries\t: %ld%s\n",
cache_info.it_size,
cache_info.dt_size,
cache_info.dt_conf.tc_sh ? " - shared with ITLB":""
);
#ifndef CONFIG_PA20
/* BTLB - Block TLB */
if (btlb_info.max_size==0) {
seq_printf(m, "BTLB\t\t: not supported\n" );
} else {
seq_printf(m,
"BTLB fixed\t: max. %d pages, pagesize=%d (%dMB)\n"
"BTLB fix-entr.\t: %d instruction, %d data (%d combined)\n"
"BTLB var-entr.\t: %d instruction, %d data (%d combined)\n",
btlb_info.max_size, (int)4096,
btlb_info.max_size>>8,
btlb_info.fixed_range_info.num_i,
btlb_info.fixed_range_info.num_d,
btlb_info.fixed_range_info.num_comb,
btlb_info.variable_range_info.num_i,
btlb_info.variable_range_info.num_d,
btlb_info.variable_range_info.num_comb
);
}
#endif
}
void __init
parisc_cache_init(void)
{
if (pdc_cache_info(&cache_info) < 0)
panic("parisc_cache_init: pdc_cache_info failed");
#if 0
printk("ic_size %lx dc_size %lx it_size %lx\n",
cache_info.ic_size,
cache_info.dc_size,
cache_info.it_size);
printk("DC base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx\n",
cache_info.dc_base,
cache_info.dc_stride,
cache_info.dc_count,
cache_info.dc_loop);
printk("dc_conf = 0x%lx alias %d blk %d line %d shift %d\n",
*(unsigned long *) (&cache_info.dc_conf),
cache_info.dc_conf.cc_alias,
cache_info.dc_conf.cc_block,
cache_info.dc_conf.cc_line,
cache_info.dc_conf.cc_shift);
printk(" wt %d sh %d cst %d hv %d\n",
cache_info.dc_conf.cc_wt,
cache_info.dc_conf.cc_sh,
cache_info.dc_conf.cc_cst,
cache_info.dc_conf.cc_hv);
printk("IC base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx\n",
cache_info.ic_base,
cache_info.ic_stride,
cache_info.ic_count,
cache_info.ic_loop);
printk("IT base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx off_base 0x%lx off_stride 0x%lx off_count 0x%lx\n",
cache_info.it_sp_base,
cache_info.it_sp_stride,
cache_info.it_sp_count,
cache_info.it_loop,
cache_info.it_off_base,
cache_info.it_off_stride,
cache_info.it_off_count);
printk("DT base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx off_base 0x%lx off_stride 0x%lx off_count 0x%lx\n",
cache_info.dt_sp_base,
cache_info.dt_sp_stride,
cache_info.dt_sp_count,
cache_info.dt_loop,
cache_info.dt_off_base,
cache_info.dt_off_stride,
cache_info.dt_off_count);
printk("ic_conf = 0x%lx alias %d blk %d line %d shift %d\n",
*(unsigned long *) (&cache_info.ic_conf),
cache_info.ic_conf.cc_alias,
cache_info.ic_conf.cc_block,
cache_info.ic_conf.cc_line,
cache_info.ic_conf.cc_shift);
printk(" wt %d sh %d cst %d hv %d\n",
cache_info.ic_conf.cc_wt,
cache_info.ic_conf.cc_sh,
cache_info.ic_conf.cc_cst,
cache_info.ic_conf.cc_hv);
printk("D-TLB conf: sh %d page %d cst %d aid %d sr %d\n",
cache_info.dt_conf.tc_sh,
cache_info.dt_conf.tc_page,
cache_info.dt_conf.tc_cst,
cache_info.dt_conf.tc_aid,
cache_info.dt_conf.tc_sr);
printk("I-TLB conf: sh %d page %d cst %d aid %d sr %d\n",
cache_info.it_conf.tc_sh,
cache_info.it_conf.tc_page,
cache_info.it_conf.tc_cst,
cache_info.it_conf.tc_aid,
cache_info.it_conf.tc_sr);
#endif
split_tlb = 0;
if (cache_info.dt_conf.tc_sh == 0 || cache_info.dt_conf.tc_sh == 2) {
if (cache_info.dt_conf.tc_sh == 2)
printk(KERN_WARNING "Unexpected TLB configuration. "
"Will flush I/D separately (could be optimized).\n");
split_tlb = 1;
}
/* "New and Improved" version from Jim Hull
* (1 << (cc_block-1)) * (cc_line << (4 + cnf.cc_shift))
* The following CAFL_STRIDE is an optimized version, see
* http://lists.parisc-linux.org/pipermail/parisc-linux/2004-June/023625.html
* http://lists.parisc-linux.org/pipermail/parisc-linux/2004-June/023671.html
*/
#define CAFL_STRIDE(cnf) (cnf.cc_line << (3 + cnf.cc_block + cnf.cc_shift))
dcache_stride = CAFL_STRIDE(cache_info.dc_conf);
icache_stride = CAFL_STRIDE(cache_info.ic_conf);
#undef CAFL_STRIDE
#ifndef CONFIG_PA20
if (pdc_btlb_info(&btlb_info) < 0) {
memset(&btlb_info, 0, sizeof btlb_info);
}
#endif
if ((boot_cpu_data.pdc.capabilities & PDC_MODEL_NVA_MASK) ==
PDC_MODEL_NVA_UNSUPPORTED) {
printk(KERN_WARNING "parisc_cache_init: Only equivalent aliasing supported!\n");
#if 0
panic("SMP kernel required to avoid non-equivalent aliasing");
#endif
}
}
void disable_sr_hashing(void)
{
int srhash_type, retval;
unsigned long space_bits;
switch (boot_cpu_data.cpu_type) {
case pcx: /* We shouldn't get this far. setup.c should prevent it. */
BUG();
return;
case pcxs:
case pcxt:
case pcxt_:
srhash_type = SRHASH_PCXST;
break;
case pcxl:
srhash_type = SRHASH_PCXL;
break;
case pcxl2: /* pcxl2 doesn't support space register hashing */
return;
default: /* Currently all PA2.0 machines use the same ins. sequence */
srhash_type = SRHASH_PA20;
break;
}
disable_sr_hashing_asm(srhash_type);
retval = pdc_spaceid_bits(&space_bits);
/* If this procedure isn't implemented, don't panic. */
if (retval < 0 && retval != PDC_BAD_OPTION)
panic("pdc_spaceid_bits call failed.\n");
if (space_bits != 0)
panic("SpaceID hashing is still on!\n");
}
static inline void
__flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr,
unsigned long physaddr)
{
preempt_disable();
flush_dcache_page_asm(physaddr, vmaddr);
if (vma->vm_flags & VM_EXEC)
flush_icache_page_asm(physaddr, vmaddr);
preempt_enable();
}
void flush_dcache_page(struct page *page)
{
struct address_space *mapping = page_mapping(page);
struct vm_area_struct *mpnt;
unsigned long offset;
unsigned long addr, old_addr = 0;
pgoff_t pgoff;
if (mapping && !mapping_mapped(mapping)) {
set_bit(PG_dcache_dirty, &page->flags);
return;
}
flush_kernel_dcache_page(page);
if (!mapping)
return;
pgoff = page->index;
/* We have carefully arranged in arch_get_unmapped_area() that
* *any* mappings of a file are always congruently mapped (whether
* declared as MAP_PRIVATE or MAP_SHARED), so we only need
* to flush one address here for them all to become coherent */
flush_dcache_mmap_lock(mapping);
vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
addr = mpnt->vm_start + offset;
/* The TLB is the engine of coherence on parisc: The
* CPU is entitled to speculate any page with a TLB
* mapping, so here we kill the mapping then flush the
* page along a special flush only alias mapping.
* This guarantees that the page is no-longer in the
* cache for any process and nor may it be
* speculatively read in (until the user or kernel
* specifically accesses it, of course) */
flush_tlb_page(mpnt, addr);
if (old_addr == 0 || (old_addr & (SHM_COLOUR - 1))
!= (addr & (SHM_COLOUR - 1))) {
__flush_cache_page(mpnt, addr, page_to_phys(page));
if (old_addr)
printk(KERN_ERR "INEQUIVALENT ALIASES 0x%lx and 0x%lx in file %s\n", old_addr, addr, mpnt->vm_file ? (char *)mpnt->vm_file->f_path.dentry->d_name.name : "(null)");
old_addr = addr;
}
}
flush_dcache_mmap_unlock(mapping);
}
EXPORT_SYMBOL(flush_dcache_page);
/* Defined in arch/parisc/kernel/pacache.S */
EXPORT_SYMBOL(flush_kernel_dcache_range_asm);
EXPORT_SYMBOL(flush_kernel_dcache_page_asm);
EXPORT_SYMBOL(flush_data_cache_local);
EXPORT_SYMBOL(flush_kernel_icache_range_asm);
#define FLUSH_THRESHOLD 0x80000 /* 0.5MB */
static unsigned long parisc_cache_flush_threshold __read_mostly = FLUSH_THRESHOLD;
#define FLUSH_TLB_THRESHOLD (2*1024*1024) /* 2MB initial TLB threshold */
static unsigned long parisc_tlb_flush_threshold __read_mostly = FLUSH_TLB_THRESHOLD;
void __init parisc_setup_cache_timing(void)
{
unsigned long rangetime, alltime;
unsigned long size, start;
alltime = mfctl(16);
flush_data_cache();
alltime = mfctl(16) - alltime;
size = (unsigned long)(_end - _text);
rangetime = mfctl(16);
flush_kernel_dcache_range((unsigned long)_text, size);
rangetime = mfctl(16) - rangetime;
printk(KERN_DEBUG "Whole cache flush %lu cycles, flushing %lu bytes %lu cycles\n",
alltime, size, rangetime);
/* Racy, but if we see an intermediate value, it's ok too... */
parisc_cache_flush_threshold = size * alltime / rangetime;
parisc_cache_flush_threshold = L1_CACHE_ALIGN(parisc_cache_flush_threshold);
if (!parisc_cache_flush_threshold)
parisc_cache_flush_threshold = FLUSH_THRESHOLD;
if (parisc_cache_flush_threshold > cache_info.dc_size)
parisc_cache_flush_threshold = cache_info.dc_size;
printk(KERN_INFO "Setting cache flush threshold to %lu kB\n",
parisc_cache_flush_threshold/1024);
/* calculate TLB flush threshold */
alltime = mfctl(16);
flush_tlb_all();
alltime = mfctl(16) - alltime;
size = PAGE_SIZE;
start = (unsigned long) _text;
rangetime = mfctl(16);
while (start < (unsigned long) _end) {
flush_tlb_kernel_range(start, start + PAGE_SIZE);
start += PAGE_SIZE;
size += PAGE_SIZE;
}
rangetime = mfctl(16) - rangetime;
printk(KERN_DEBUG "Whole TLB flush %lu cycles, flushing %lu bytes %lu cycles\n",
alltime, size, rangetime);
parisc_tlb_flush_threshold = size * alltime / rangetime;
parisc_tlb_flush_threshold *= num_online_cpus();
parisc_tlb_flush_threshold = PAGE_ALIGN(parisc_tlb_flush_threshold);
if (!parisc_tlb_flush_threshold)
parisc_tlb_flush_threshold = FLUSH_TLB_THRESHOLD;
printk(KERN_INFO "Setting TLB flush threshold to %lu kB\n",
parisc_tlb_flush_threshold/1024);
}
extern void purge_kernel_dcache_page_asm(unsigned long);
extern void clear_user_page_asm(void *, unsigned long);
extern void copy_user_page_asm(void *, void *, unsigned long);
void flush_kernel_dcache_page_addr(void *addr)
{
unsigned long flags;
flush_kernel_dcache_page_asm(addr);
purge_tlb_start(flags);
pdtlb_kernel(addr);
purge_tlb_end(flags);
}
EXPORT_SYMBOL(flush_kernel_dcache_page_addr);
void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
struct page *pg)
{
/* Copy using kernel mapping. No coherency is needed (all in
kunmap) for the `to' page. However, the `from' page needs to
be flushed through a mapping equivalent to the user mapping
before it can be accessed through the kernel mapping. */
preempt_disable();
flush_dcache_page_asm(__pa(vfrom), vaddr);
preempt_enable();
copy_page_asm(vto, vfrom);
}
EXPORT_SYMBOL(copy_user_page);
/* __flush_tlb_range()
*
* returns 1 if all TLBs were flushed.
*/
int __flush_tlb_range(unsigned long sid, unsigned long start,
unsigned long end)
{
unsigned long flags, size;
size = (end - start);
if (size >= parisc_tlb_flush_threshold) {
flush_tlb_all();
return 1;
}
/* Purge TLB entries for small ranges using the pdtlb and
pitlb instructions. These instructions execute locally
but cause a purge request to be broadcast to other TLBs. */
if (likely(!split_tlb)) {
while (start < end) {
purge_tlb_start(flags);
mtsp(sid, 1);
pdtlb(start);
purge_tlb_end(flags);
start += PAGE_SIZE;
}
return 0;
}
/* split TLB case */
while (start < end) {
purge_tlb_start(flags);
mtsp(sid, 1);
pdtlb(start);
pitlb(start);
purge_tlb_end(flags);
start += PAGE_SIZE;
}
return 0;
}
static void cacheflush_h_tmp_function(void *dummy)
{
flush_cache_all_local();
}
void flush_cache_all(void)
{
on_each_cpu(cacheflush_h_tmp_function, NULL, 1);
}
static inline unsigned long mm_total_size(struct mm_struct *mm)
{
struct vm_area_struct *vma;
unsigned long usize = 0;
for (vma = mm->mmap; vma; vma = vma->vm_next)
usize += vma->vm_end - vma->vm_start;
return usize;
}
static inline pte_t *get_ptep(pgd_t *pgd, unsigned long addr)
{
pte_t *ptep = NULL;
if (!pgd_none(*pgd)) {
pud_t *pud = pud_offset(pgd, addr);
if (!pud_none(*pud)) {
pmd_t *pmd = pmd_offset(pud, addr);
if (!pmd_none(*pmd))
ptep = pte_offset_map(pmd, addr);
}
}
return ptep;
}
void flush_cache_mm(struct mm_struct *mm)
{
struct vm_area_struct *vma;
pgd_t *pgd;
/* Flushing the whole cache on each cpu takes forever on
rp3440, etc. So, avoid it if the mm isn't too big. */
if (mm_total_size(mm) >= parisc_cache_flush_threshold) {
flush_cache_all();
return;
}
if (mm->context == mfsp(3)) {
for (vma = mm->mmap; vma; vma = vma->vm_next) {
flush_user_dcache_range_asm(vma->vm_start, vma->vm_end);
if ((vma->vm_flags & VM_EXEC) == 0)
continue;
flush_user_icache_range_asm(vma->vm_start, vma->vm_end);
}
return;
}
pgd = mm->pgd;
for (vma = mm->mmap; vma; vma = vma->vm_next) {
unsigned long addr;
for (addr = vma->vm_start; addr < vma->vm_end;
addr += PAGE_SIZE) {
unsigned long pfn;
pte_t *ptep = get_ptep(pgd, addr);
if (!ptep)
continue;
pfn = pte_pfn(*ptep);
if (!pfn_valid(pfn))
continue;
__flush_cache_page(vma, addr, PFN_PHYS(pfn));
}
}
}
void
flush_user_dcache_range(unsigned long start, unsigned long end)
{
if ((end - start) < parisc_cache_flush_threshold)
flush_user_dcache_range_asm(start,end);
else
flush_data_cache();
}
void
flush_user_icache_range(unsigned long start, unsigned long end)
{
if ((end - start) < parisc_cache_flush_threshold)
flush_user_icache_range_asm(start,end);
else
flush_instruction_cache();
}
void flush_cache_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
unsigned long addr;
pgd_t *pgd;
BUG_ON(!vma->vm_mm->context);
if ((end - start) >= parisc_cache_flush_threshold) {
flush_cache_all();
return;
}
if (vma->vm_mm->context == mfsp(3)) {
flush_user_dcache_range_asm(start, end);
if (vma->vm_flags & VM_EXEC)
flush_user_icache_range_asm(start, end);
return;
}
pgd = vma->vm_mm->pgd;
for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
unsigned long pfn;
pte_t *ptep = get_ptep(pgd, addr);
if (!ptep)
continue;
pfn = pte_pfn(*ptep);
if (pfn_valid(pfn))
__flush_cache_page(vma, addr, PFN_PHYS(pfn));
}
}
void
flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr, unsigned long pfn)
{
BUG_ON(!vma->vm_mm->context);
if (pfn_valid(pfn)) {
flush_tlb_page(vma, vmaddr);
__flush_cache_page(vma, vmaddr, PFN_PHYS(pfn));
}
}