linux/tools/testing/selftests/kvm/kvm_page_table_test.c
Sean Christopherson 0ffc70eab7 KVM: selftests: Add VM creation helper that "returns" vCPUs
Add a VM creator that "returns" the created vCPUs by filling the provided
array.  This will allow converting multi-vCPU tests away from hardcoded
vCPU IDs.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-11 11:47:06 -04:00

504 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* KVM page table test
*
* Copyright (C) 2021, Huawei, Inc.
*
* Make sure that THP has been enabled or enough HUGETLB pages with specific
* page size have been pre-allocated on your system, if you are planning to
* use hugepages to back the guest memory for testing.
*/
#define _GNU_SOURCE /* for program_invocation_name */
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <pthread.h>
#include <semaphore.h>
#include "test_util.h"
#include "kvm_util.h"
#include "processor.h"
#include "guest_modes.h"
#define TEST_MEM_SLOT_INDEX 1
/* Default size(1GB) of the memory for testing */
#define DEFAULT_TEST_MEM_SIZE (1 << 30)
/* Default guest test virtual memory offset */
#define DEFAULT_GUEST_TEST_MEM 0xc0000000
/* Different guest memory accessing stages */
enum test_stage {
KVM_BEFORE_MAPPINGS,
KVM_CREATE_MAPPINGS,
KVM_UPDATE_MAPPINGS,
KVM_ADJUST_MAPPINGS,
NUM_TEST_STAGES,
};
static const char * const test_stage_string[] = {
"KVM_BEFORE_MAPPINGS",
"KVM_CREATE_MAPPINGS",
"KVM_UPDATE_MAPPINGS",
"KVM_ADJUST_MAPPINGS",
};
struct vcpu_args {
int vcpu_id;
bool vcpu_write;
};
struct test_args {
struct kvm_vm *vm;
uint64_t guest_test_virt_mem;
uint64_t host_page_size;
uint64_t host_num_pages;
uint64_t large_page_size;
uint64_t large_num_pages;
uint64_t host_pages_per_lpage;
enum vm_mem_backing_src_type src_type;
struct vcpu_args vcpu_args[KVM_MAX_VCPUS];
};
/*
* Guest variables. Use addr_gva2hva() if these variables need
* to be changed in host.
*/
static enum test_stage guest_test_stage;
/* Host variables */
static uint32_t nr_vcpus = 1;
static struct test_args test_args;
static enum test_stage *current_stage;
static bool host_quit;
/* Whether the test stage is updated, or completed */
static sem_t test_stage_updated;
static sem_t test_stage_completed;
/*
* Guest physical memory offset of the testing memory slot.
* This will be set to the topmost valid physical address minus
* the test memory size.
*/
static uint64_t guest_test_phys_mem;
/*
* Guest virtual memory offset of the testing memory slot.
* Must not conflict with identity mapped test code.
*/
static uint64_t guest_test_virt_mem = DEFAULT_GUEST_TEST_MEM;
static void guest_code(int vcpu_id)
{
struct test_args *p = &test_args;
struct vcpu_args *vcpu_args = &p->vcpu_args[vcpu_id];
enum test_stage *current_stage = &guest_test_stage;
uint64_t addr;
int i, j;
/* Make sure vCPU args data structure is not corrupt */
GUEST_ASSERT(vcpu_args->vcpu_id == vcpu_id);
while (true) {
addr = p->guest_test_virt_mem;
switch (READ_ONCE(*current_stage)) {
/*
* All vCPU threads will be started in this stage,
* where guest code of each vCPU will do nothing.
*/
case KVM_BEFORE_MAPPINGS:
break;
/*
* Before dirty logging, vCPUs concurrently access the first
* 8 bytes of each page (host page/large page) within the same
* memory region with different accessing types (read/write).
* Then KVM will create normal page mappings or huge block
* mappings for them.
*/
case KVM_CREATE_MAPPINGS:
for (i = 0; i < p->large_num_pages; i++) {
if (vcpu_args->vcpu_write)
*(uint64_t *)addr = 0x0123456789ABCDEF;
else
READ_ONCE(*(uint64_t *)addr);
addr += p->large_page_size;
}
break;
/*
* During dirty logging, KVM will only update attributes of the
* normal page mappings from RO to RW if memory backing src type
* is anonymous. In other cases, KVM will split the huge block
* mappings into normal page mappings if memory backing src type
* is THP or HUGETLB.
*/
case KVM_UPDATE_MAPPINGS:
if (p->src_type == VM_MEM_SRC_ANONYMOUS) {
for (i = 0; i < p->host_num_pages; i++) {
*(uint64_t *)addr = 0x0123456789ABCDEF;
addr += p->host_page_size;
}
break;
}
for (i = 0; i < p->large_num_pages; i++) {
/*
* Write to the first host page in each large
* page region, and triger break of large pages.
*/
*(uint64_t *)addr = 0x0123456789ABCDEF;
/*
* Access the middle host pages in each large
* page region. Since dirty logging is enabled,
* this will create new mappings at the smallest
* granularity.
*/
addr += p->large_page_size / 2;
for (j = 0; j < p->host_pages_per_lpage / 2; j++) {
READ_ONCE(*(uint64_t *)addr);
addr += p->host_page_size;
}
}
break;
/*
* After dirty logging is stopped, vCPUs concurrently read
* from every single host page. Then KVM will coalesce the
* split page mappings back to block mappings. And a TLB
* conflict abort could occur here if TLB entries of the
* page mappings are not fully invalidated.
*/
case KVM_ADJUST_MAPPINGS:
for (i = 0; i < p->host_num_pages; i++) {
READ_ONCE(*(uint64_t *)addr);
addr += p->host_page_size;
}
break;
default:
GUEST_ASSERT(0);
}
GUEST_SYNC(1);
}
}
static void *vcpu_worker(void *data)
{
int ret;
struct vcpu_args *vcpu_args = data;
struct kvm_vm *vm = test_args.vm;
int vcpu_id = vcpu_args->vcpu_id;
struct kvm_run *run;
struct timespec start;
struct timespec ts_diff;
enum test_stage stage;
vcpu_args_set(vm, vcpu_id, 1, vcpu_id);
run = vcpu_state(vm, vcpu_id);
while (!READ_ONCE(host_quit)) {
ret = sem_wait(&test_stage_updated);
TEST_ASSERT(ret == 0, "Error in sem_wait");
if (READ_ONCE(host_quit))
return NULL;
clock_gettime(CLOCK_MONOTONIC_RAW, &start);
ret = _vcpu_run(vm, vcpu_id);
ts_diff = timespec_elapsed(start);
TEST_ASSERT(ret == 0, "vcpu_run failed: %d\n", ret);
TEST_ASSERT(get_ucall(vm, vcpu_id, NULL) == UCALL_SYNC,
"Invalid guest sync status: exit_reason=%s\n",
exit_reason_str(run->exit_reason));
pr_debug("Got sync event from vCPU %d\n", vcpu_id);
stage = READ_ONCE(*current_stage);
/*
* Here we can know the execution time of every
* single vcpu running in different test stages.
*/
pr_debug("vCPU %d has completed stage %s\n"
"execution time is: %ld.%.9lds\n\n",
vcpu_id, test_stage_string[stage],
ts_diff.tv_sec, ts_diff.tv_nsec);
ret = sem_post(&test_stage_completed);
TEST_ASSERT(ret == 0, "Error in sem_post");
}
return NULL;
}
struct test_params {
uint64_t phys_offset;
uint64_t test_mem_size;
enum vm_mem_backing_src_type src_type;
};
static struct kvm_vm *pre_init_before_test(enum vm_guest_mode mode, void *arg)
{
int ret;
struct test_params *p = arg;
struct vcpu_args *vcpu_args;
enum vm_mem_backing_src_type src_type = p->src_type;
uint64_t large_page_size = get_backing_src_pagesz(src_type);
uint64_t guest_page_size = vm_guest_mode_params[mode].page_size;
uint64_t host_page_size = getpagesize();
uint64_t test_mem_size = p->test_mem_size;
uint64_t guest_num_pages;
uint64_t alignment;
void *host_test_mem;
struct kvm_vm *vm;
int vcpu_id;
/* Align up the test memory size */
alignment = max(large_page_size, guest_page_size);
test_mem_size = (test_mem_size + alignment - 1) & ~(alignment - 1);
/* Create a VM with enough guest pages */
guest_num_pages = test_mem_size / guest_page_size;
vm = __vm_create_with_vcpus(mode, nr_vcpus, DEFAULT_GUEST_PHY_PAGES,
guest_num_pages, 0, guest_code, NULL, NULL);
/* Align down GPA of the testing memslot */
if (!p->phys_offset)
guest_test_phys_mem = (vm_get_max_gfn(vm) - guest_num_pages) *
guest_page_size;
else
guest_test_phys_mem = p->phys_offset;
#ifdef __s390x__
alignment = max(0x100000UL, alignment);
#endif
guest_test_phys_mem = align_down(guest_test_phys_mem, alignment);
/* Set up the shared data structure test_args */
test_args.vm = vm;
test_args.guest_test_virt_mem = guest_test_virt_mem;
test_args.host_page_size = host_page_size;
test_args.host_num_pages = test_mem_size / host_page_size;
test_args.large_page_size = large_page_size;
test_args.large_num_pages = test_mem_size / large_page_size;
test_args.host_pages_per_lpage = large_page_size / host_page_size;
test_args.src_type = src_type;
for (vcpu_id = 0; vcpu_id < KVM_MAX_VCPUS; vcpu_id++) {
vcpu_args = &test_args.vcpu_args[vcpu_id];
vcpu_args->vcpu_id = vcpu_id;
vcpu_args->vcpu_write = !(vcpu_id % 2);
}
/* Add an extra memory slot with specified backing src type */
vm_userspace_mem_region_add(vm, src_type, guest_test_phys_mem,
TEST_MEM_SLOT_INDEX, guest_num_pages, 0);
/* Do mapping(GVA->GPA) for the testing memory slot */
virt_map(vm, guest_test_virt_mem, guest_test_phys_mem, guest_num_pages);
/* Cache the HVA pointer of the region */
host_test_mem = addr_gpa2hva(vm, (vm_paddr_t)guest_test_phys_mem);
/* Export shared structure test_args to guest */
ucall_init(vm, NULL);
sync_global_to_guest(vm, test_args);
ret = sem_init(&test_stage_updated, 0, 0);
TEST_ASSERT(ret == 0, "Error in sem_init");
ret = sem_init(&test_stage_completed, 0, 0);
TEST_ASSERT(ret == 0, "Error in sem_init");
current_stage = addr_gva2hva(vm, (vm_vaddr_t)(&guest_test_stage));
*current_stage = NUM_TEST_STAGES;
pr_info("Testing guest mode: %s\n", vm_guest_mode_string(mode));
pr_info("Testing memory backing src type: %s\n",
vm_mem_backing_src_alias(src_type)->name);
pr_info("Testing memory backing src granularity: 0x%lx\n",
large_page_size);
pr_info("Testing memory size(aligned): 0x%lx\n", test_mem_size);
pr_info("Guest physical test memory offset: 0x%lx\n",
guest_test_phys_mem);
pr_info("Host virtual test memory offset: 0x%lx\n",
(uint64_t)host_test_mem);
pr_info("Number of testing vCPUs: %d\n", nr_vcpus);
return vm;
}
static void vcpus_complete_new_stage(enum test_stage stage)
{
int ret;
int vcpus;
/* Wake up all the vcpus to run new test stage */
for (vcpus = 0; vcpus < nr_vcpus; vcpus++) {
ret = sem_post(&test_stage_updated);
TEST_ASSERT(ret == 0, "Error in sem_post");
}
pr_debug("All vcpus have been notified to continue\n");
/* Wait for all the vcpus to complete new test stage */
for (vcpus = 0; vcpus < nr_vcpus; vcpus++) {
ret = sem_wait(&test_stage_completed);
TEST_ASSERT(ret == 0, "Error in sem_wait");
pr_debug("%d vcpus have completed stage %s\n",
vcpus + 1, test_stage_string[stage]);
}
pr_debug("All vcpus have completed stage %s\n",
test_stage_string[stage]);
}
static void run_test(enum vm_guest_mode mode, void *arg)
{
int ret;
pthread_t *vcpu_threads;
struct kvm_vm *vm;
int vcpu_id;
struct timespec start;
struct timespec ts_diff;
/* Create VM with vCPUs and make some pre-initialization */
vm = pre_init_before_test(mode, arg);
vcpu_threads = malloc(nr_vcpus * sizeof(*vcpu_threads));
TEST_ASSERT(vcpu_threads, "Memory allocation failed");
host_quit = false;
*current_stage = KVM_BEFORE_MAPPINGS;
for (vcpu_id = 0; vcpu_id < nr_vcpus; vcpu_id++) {
pthread_create(&vcpu_threads[vcpu_id], NULL, vcpu_worker,
&test_args.vcpu_args[vcpu_id]);
}
vcpus_complete_new_stage(*current_stage);
pr_info("Started all vCPUs successfully\n");
/* Test the stage of KVM creating mappings */
*current_stage = KVM_CREATE_MAPPINGS;
clock_gettime(CLOCK_MONOTONIC_RAW, &start);
vcpus_complete_new_stage(*current_stage);
ts_diff = timespec_elapsed(start);
pr_info("KVM_CREATE_MAPPINGS: total execution time: %ld.%.9lds\n\n",
ts_diff.tv_sec, ts_diff.tv_nsec);
/* Test the stage of KVM updating mappings */
vm_mem_region_set_flags(vm, TEST_MEM_SLOT_INDEX,
KVM_MEM_LOG_DIRTY_PAGES);
*current_stage = KVM_UPDATE_MAPPINGS;
clock_gettime(CLOCK_MONOTONIC_RAW, &start);
vcpus_complete_new_stage(*current_stage);
ts_diff = timespec_elapsed(start);
pr_info("KVM_UPDATE_MAPPINGS: total execution time: %ld.%.9lds\n\n",
ts_diff.tv_sec, ts_diff.tv_nsec);
/* Test the stage of KVM adjusting mappings */
vm_mem_region_set_flags(vm, TEST_MEM_SLOT_INDEX, 0);
*current_stage = KVM_ADJUST_MAPPINGS;
clock_gettime(CLOCK_MONOTONIC_RAW, &start);
vcpus_complete_new_stage(*current_stage);
ts_diff = timespec_elapsed(start);
pr_info("KVM_ADJUST_MAPPINGS: total execution time: %ld.%.9lds\n\n",
ts_diff.tv_sec, ts_diff.tv_nsec);
/* Tell the vcpu thread to quit */
host_quit = true;
for (vcpu_id = 0; vcpu_id < nr_vcpus; vcpu_id++) {
ret = sem_post(&test_stage_updated);
TEST_ASSERT(ret == 0, "Error in sem_post");
}
for (vcpu_id = 0; vcpu_id < nr_vcpus; vcpu_id++)
pthread_join(vcpu_threads[vcpu_id], NULL);
ret = sem_destroy(&test_stage_updated);
TEST_ASSERT(ret == 0, "Error in sem_destroy");
ret = sem_destroy(&test_stage_completed);
TEST_ASSERT(ret == 0, "Error in sem_destroy");
free(vcpu_threads);
ucall_uninit(vm);
kvm_vm_free(vm);
}
static void help(char *name)
{
puts("");
printf("usage: %s [-h] [-p offset] [-m mode] "
"[-b mem-size] [-v vcpus] [-s mem-type]\n", name);
puts("");
printf(" -p: specify guest physical test memory offset\n"
" Warning: a low offset can conflict with the loaded test code.\n");
guest_modes_help();
printf(" -b: specify size of the memory region for testing. e.g. 10M or 3G.\n"
" (default: 1G)\n");
printf(" -v: specify the number of vCPUs to run\n"
" (default: 1)\n");
backing_src_help("-s");
puts("");
}
int main(int argc, char *argv[])
{
int max_vcpus = kvm_check_cap(KVM_CAP_MAX_VCPUS);
struct test_params p = {
.test_mem_size = DEFAULT_TEST_MEM_SIZE,
.src_type = DEFAULT_VM_MEM_SRC,
};
int opt;
guest_modes_append_default();
while ((opt = getopt(argc, argv, "hp:m:b:v:s:")) != -1) {
switch (opt) {
case 'p':
p.phys_offset = strtoull(optarg, NULL, 0);
break;
case 'm':
guest_modes_cmdline(optarg);
break;
case 'b':
p.test_mem_size = parse_size(optarg);
break;
case 'v':
nr_vcpus = atoi(optarg);
TEST_ASSERT(nr_vcpus > 0 && nr_vcpus <= max_vcpus,
"Invalid number of vcpus, must be between 1 and %d", max_vcpus);
break;
case 's':
p.src_type = parse_backing_src_type(optarg);
break;
case 'h':
default:
help(argv[0]);
exit(0);
}
}
for_each_guest_mode(run_test, &p);
return 0;
}