linux/arch/powerpc/include/asm/bitops.h
Benjamin Herrenschmidt b97021f855 powerpc: Fix atomic_xxx_return barrier semantics
The Documentation/memory-barriers.txt document requires that atomic
operations that return a value act as a memory barrier both before
and after the actual atomic operation.

Our current implementation doesn't guarantee this. More specifically,
while a load following the isync can not be issued before stwcx. has
completed, that completion doesn't architecturally means that the
result of stwcx. is visible to other processors (or any previous stores
for that matter) (typically, the other processors L1 caches can still
hold the old value).

This has caused an actual crash in RCU torture testing on Power 7

This fixes it by changing those atomic ops to use new macros instead
of RELEASE/ACQUIRE barriers, called ATOMIC_ENTRY and ATMOIC_EXIT barriers,
which are then defined respectively to lwsync and sync.

I haven't had a chance to measure the performance impact (or rather
what I measured with kernel compiles is in the noise, I yet have to
find a more precise benchmark)

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-11-17 16:26:07 +11:00

337 lines
9.1 KiB
C

/*
* PowerPC atomic bit operations.
*
* Merged version by David Gibson <david@gibson.dropbear.id.au>.
* Based on ppc64 versions by: Dave Engebretsen, Todd Inglett, Don
* Reed, Pat McCarthy, Peter Bergner, Anton Blanchard. They
* originally took it from the ppc32 code.
*
* Within a word, bits are numbered LSB first. Lot's of places make
* this assumption by directly testing bits with (val & (1<<nr)).
* This can cause confusion for large (> 1 word) bitmaps on a
* big-endian system because, unlike little endian, the number of each
* bit depends on the word size.
*
* The bitop functions are defined to work on unsigned longs, so for a
* ppc64 system the bits end up numbered:
* |63..............0|127............64|191...........128|255...........196|
* and on ppc32:
* |31.....0|63....31|95....64|127...96|159..128|191..160|223..192|255..224|
*
* There are a few little-endian macros used mostly for filesystem
* bitmaps, these work on similar bit arrays layouts, but
* byte-oriented:
* |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56|
*
* The main difference is that bit 3-5 (64b) or 3-4 (32b) in the bit
* number field needs to be reversed compared to the big-endian bit
* fields. This can be achieved by XOR with 0x38 (64b) or 0x18 (32b).
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#ifndef _ASM_POWERPC_BITOPS_H
#define _ASM_POWERPC_BITOPS_H
#ifdef __KERNEL__
#ifndef _LINUX_BITOPS_H
#error only <linux/bitops.h> can be included directly
#endif
#include <linux/compiler.h>
#include <asm/asm-compat.h>
#include <asm/synch.h>
/*
* clear_bit doesn't imply a memory barrier
*/
#define smp_mb__before_clear_bit() smp_mb()
#define smp_mb__after_clear_bit() smp_mb()
#define BITOP_MASK(nr) (1UL << ((nr) % BITS_PER_LONG))
#define BITOP_WORD(nr) ((nr) / BITS_PER_LONG)
#define BITOP_LE_SWIZZLE ((BITS_PER_LONG-1) & ~0x7)
/* Macro for generating the ***_bits() functions */
#define DEFINE_BITOP(fn, op, prefix, postfix) \
static __inline__ void fn(unsigned long mask, \
volatile unsigned long *_p) \
{ \
unsigned long old; \
unsigned long *p = (unsigned long *)_p; \
__asm__ __volatile__ ( \
prefix \
"1:" PPC_LLARX(%0,0,%3,0) "\n" \
stringify_in_c(op) "%0,%0,%2\n" \
PPC405_ERR77(0,%3) \
PPC_STLCX "%0,0,%3\n" \
"bne- 1b\n" \
postfix \
: "=&r" (old), "+m" (*p) \
: "r" (mask), "r" (p) \
: "cc", "memory"); \
}
DEFINE_BITOP(set_bits, or, "", "")
DEFINE_BITOP(clear_bits, andc, "", "")
DEFINE_BITOP(clear_bits_unlock, andc, PPC_RELEASE_BARRIER, "")
DEFINE_BITOP(change_bits, xor, "", "")
static __inline__ void set_bit(int nr, volatile unsigned long *addr)
{
set_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr));
}
static __inline__ void clear_bit(int nr, volatile unsigned long *addr)
{
clear_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr));
}
static __inline__ void clear_bit_unlock(int nr, volatile unsigned long *addr)
{
clear_bits_unlock(BITOP_MASK(nr), addr + BITOP_WORD(nr));
}
static __inline__ void change_bit(int nr, volatile unsigned long *addr)
{
change_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr));
}
/* Like DEFINE_BITOP(), with changes to the arguments to 'op' and the output
* operands. */
#define DEFINE_TESTOP(fn, op, prefix, postfix, eh) \
static __inline__ unsigned long fn( \
unsigned long mask, \
volatile unsigned long *_p) \
{ \
unsigned long old, t; \
unsigned long *p = (unsigned long *)_p; \
__asm__ __volatile__ ( \
prefix \
"1:" PPC_LLARX(%0,0,%3,eh) "\n" \
stringify_in_c(op) "%1,%0,%2\n" \
PPC405_ERR77(0,%3) \
PPC_STLCX "%1,0,%3\n" \
"bne- 1b\n" \
postfix \
: "=&r" (old), "=&r" (t) \
: "r" (mask), "r" (p) \
: "cc", "memory"); \
return (old & mask); \
}
DEFINE_TESTOP(test_and_set_bits, or, PPC_ATOMIC_ENTRY_BARRIER,
PPC_ATOMIC_EXIT_BARRIER, 0)
DEFINE_TESTOP(test_and_set_bits_lock, or, "",
PPC_ACQUIRE_BARRIER, 1)
DEFINE_TESTOP(test_and_clear_bits, andc, PPC_ATOMIC_ENTRY_BARRIER,
PPC_ATOMIC_EXIT_BARRIER, 0)
DEFINE_TESTOP(test_and_change_bits, xor, PPC_ATOMIC_ENTRY_BARRIER,
PPC_ATOMIC_EXIT_BARRIER, 0)
static __inline__ int test_and_set_bit(unsigned long nr,
volatile unsigned long *addr)
{
return test_and_set_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr)) != 0;
}
static __inline__ int test_and_set_bit_lock(unsigned long nr,
volatile unsigned long *addr)
{
return test_and_set_bits_lock(BITOP_MASK(nr),
addr + BITOP_WORD(nr)) != 0;
}
static __inline__ int test_and_clear_bit(unsigned long nr,
volatile unsigned long *addr)
{
return test_and_clear_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr)) != 0;
}
static __inline__ int test_and_change_bit(unsigned long nr,
volatile unsigned long *addr)
{
return test_and_change_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr)) != 0;
}
#include <asm-generic/bitops/non-atomic.h>
static __inline__ void __clear_bit_unlock(int nr, volatile unsigned long *addr)
{
__asm__ __volatile__(PPC_RELEASE_BARRIER "" ::: "memory");
__clear_bit(nr, addr);
}
/*
* Return the zero-based bit position (LE, not IBM bit numbering) of
* the most significant 1-bit in a double word.
*/
static __inline__ __attribute__((const))
int __ilog2(unsigned long x)
{
int lz;
asm (PPC_CNTLZL "%0,%1" : "=r" (lz) : "r" (x));
return BITS_PER_LONG - 1 - lz;
}
static inline __attribute__((const))
int __ilog2_u32(u32 n)
{
int bit;
asm ("cntlzw %0,%1" : "=r" (bit) : "r" (n));
return 31 - bit;
}
#ifdef __powerpc64__
static inline __attribute__((const))
int __ilog2_u64(u64 n)
{
int bit;
asm ("cntlzd %0,%1" : "=r" (bit) : "r" (n));
return 63 - bit;
}
#endif
/*
* Determines the bit position of the least significant 0 bit in the
* specified double word. The returned bit position will be
* zero-based, starting from the right side (63/31 - 0).
*/
static __inline__ unsigned long ffz(unsigned long x)
{
/* no zero exists anywhere in the 8 byte area. */
if ((x = ~x) == 0)
return BITS_PER_LONG;
/*
* Calculate the bit position of the least significant '1' bit in x
* (since x has been changed this will actually be the least significant
* '0' bit in * the original x). Note: (x & -x) gives us a mask that
* is the least significant * (RIGHT-most) 1-bit of the value in x.
*/
return __ilog2(x & -x);
}
static __inline__ int __ffs(unsigned long x)
{
return __ilog2(x & -x);
}
/*
* ffs: find first bit set. This is defined the same way as
* the libc and compiler builtin ffs routines, therefore
* differs in spirit from the above ffz (man ffs).
*/
static __inline__ int ffs(int x)
{
unsigned long i = (unsigned long)x;
return __ilog2(i & -i) + 1;
}
/*
* fls: find last (most-significant) bit set.
* Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
*/
static __inline__ int fls(unsigned int x)
{
int lz;
asm ("cntlzw %0,%1" : "=r" (lz) : "r" (x));
return 32 - lz;
}
static __inline__ unsigned long __fls(unsigned long x)
{
return __ilog2(x);
}
/*
* 64-bit can do this using one cntlzd (count leading zeroes doubleword)
* instruction; for 32-bit we use the generic version, which does two
* 32-bit fls calls.
*/
#ifdef __powerpc64__
static __inline__ int fls64(__u64 x)
{
int lz;
asm ("cntlzd %0,%1" : "=r" (lz) : "r" (x));
return 64 - lz;
}
#else
#include <asm-generic/bitops/fls64.h>
#endif /* __powerpc64__ */
#ifdef CONFIG_PPC64
unsigned int __arch_hweight8(unsigned int w);
unsigned int __arch_hweight16(unsigned int w);
unsigned int __arch_hweight32(unsigned int w);
unsigned long __arch_hweight64(__u64 w);
#include <asm-generic/bitops/const_hweight.h>
#else
#include <asm-generic/bitops/hweight.h>
#endif
#include <asm-generic/bitops/find.h>
/* Little-endian versions */
static __inline__ int test_bit_le(unsigned long nr,
__const__ void *addr)
{
__const__ unsigned char *tmp = (__const__ unsigned char *) addr;
return (tmp[nr >> 3] >> (nr & 7)) & 1;
}
static inline void __set_bit_le(int nr, void *addr)
{
__set_bit(nr ^ BITOP_LE_SWIZZLE, addr);
}
static inline void __clear_bit_le(int nr, void *addr)
{
__clear_bit(nr ^ BITOP_LE_SWIZZLE, addr);
}
static inline int test_and_set_bit_le(int nr, void *addr)
{
return test_and_set_bit(nr ^ BITOP_LE_SWIZZLE, addr);
}
static inline int test_and_clear_bit_le(int nr, void *addr)
{
return test_and_clear_bit(nr ^ BITOP_LE_SWIZZLE, addr);
}
static inline int __test_and_set_bit_le(int nr, void *addr)
{
return __test_and_set_bit(nr ^ BITOP_LE_SWIZZLE, addr);
}
static inline int __test_and_clear_bit_le(int nr, void *addr)
{
return __test_and_clear_bit(nr ^ BITOP_LE_SWIZZLE, addr);
}
#define find_first_zero_bit_le(addr, size) \
find_next_zero_bit_le((addr), (size), 0)
unsigned long find_next_zero_bit_le(const void *addr,
unsigned long size, unsigned long offset);
unsigned long find_next_bit_le(const void *addr,
unsigned long size, unsigned long offset);
/* Bitmap functions for the ext2 filesystem */
#include <asm-generic/bitops/ext2-atomic-setbit.h>
#include <asm-generic/bitops/sched.h>
#endif /* __KERNEL__ */
#endif /* _ASM_POWERPC_BITOPS_H */