linux/drivers/base/node.c
Kemi Wang 3a321d2a3d mm: change the call sites of numa statistics items
Patch series "Separate NUMA statistics from zone statistics", v2.

Each page allocation updates a set of per-zone statistics with a call to
zone_statistics().  As discussed in 2017 MM summit, these are a
substantial source of overhead in the page allocator and are very rarely
consumed.  This significant overhead in cache bouncing caused by zone
counters (NUMA associated counters) update in parallel in multi-threaded
page allocation (pointed out by Dave Hansen).

A link to the MM summit slides:
  http://people.netfilter.org/hawk/presentations/MM-summit2017/MM-summit2017-JesperBrouer.pdf

To mitigate this overhead, this patchset separates NUMA statistics from
zone statistics framework, and update NUMA counter threshold to a fixed
size of MAX_U16 - 2, as a small threshold greatly increases the update
frequency of the global counter from local per cpu counter (suggested by
Ying Huang).  The rationality is that these statistics counters don't
need to be read often, unlike other VM counters, so it's not a problem
to use a large threshold and make readers more expensive.

With this patchset, we see 31.3% drop of CPU cycles(537-->369, see
below) for per single page allocation and reclaim on Jesper's
page_bench03 benchmark.  Meanwhile, this patchset keeps the same style
of virtual memory statistics with little end-user-visible effects (only
move the numa stats to show behind zone page stats, see the first patch
for details).

I did an experiment of single page allocation and reclaim concurrently
using Jesper's page_bench03 benchmark on a 2-Socket Broadwell-based
server (88 processors with 126G memory) with different size of threshold
of pcp counter.

Benchmark provided by Jesper D Brouer(increase loop times to 10000000):
  https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/mm/bench

   Threshold   CPU cycles    Throughput(88 threads)
      32        799         241760478
      64        640         301628829
      125       537         358906028 <==> system by default
      256       468         412397590
      512       428         450550704
      4096      399         482520943
      20000     394         489009617
      30000     395         488017817
      65533     369(-31.3%) 521661345(+45.3%) <==> with this patchset
      N/A       342(-36.3%) 562900157(+56.8%) <==> disable zone_statistics

This patch (of 3):

In this patch, NUMA statistics is separated from zone statistics
framework, all the call sites of NUMA stats are changed to use
numa-stats-specific functions, it does not have any functionality change
except that the number of NUMA stats is shown behind zone page stats
when users *read* the zone info.

E.g. cat /proc/zoneinfo
    ***Base***                           ***With this patch***
nr_free_pages 3976                         nr_free_pages 3976
nr_zone_inactive_anon 0                    nr_zone_inactive_anon 0
nr_zone_active_anon 0                      nr_zone_active_anon 0
nr_zone_inactive_file 0                    nr_zone_inactive_file 0
nr_zone_active_file 0                      nr_zone_active_file 0
nr_zone_unevictable 0                      nr_zone_unevictable 0
nr_zone_write_pending 0                    nr_zone_write_pending 0
nr_mlock     0                             nr_mlock     0
nr_page_table_pages 0                      nr_page_table_pages 0
nr_kernel_stack 0                          nr_kernel_stack 0
nr_bounce    0                             nr_bounce    0
nr_zspages   0                             nr_zspages   0
numa_hit 0                                *nr_free_cma  0*
numa_miss 0                                numa_hit     0
numa_foreign 0                             numa_miss    0
numa_interleave 0                          numa_foreign 0
numa_local   0                             numa_interleave 0
numa_other   0                             numa_local   0
*nr_free_cma 0*                            numa_other 0
    ...                                        ...
vm stats threshold: 10                     vm stats threshold: 10
    ...                                        ...

The next patch updates the numa stats counter size and threshold.

[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/1503568801-21305-2-git-send-email-kemi.wang@intel.com
Signed-off-by: Kemi Wang <kemi.wang@intel.com>
Reported-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christopher Lameter <cl@linux.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Ying Huang <ying.huang@intel.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-08 18:26:47 -07:00

694 lines
19 KiB
C

/*
* Basic Node interface support
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/memory.h>
#include <linux/vmstat.h>
#include <linux/notifier.h>
#include <linux/node.h>
#include <linux/hugetlb.h>
#include <linux/compaction.h>
#include <linux/cpumask.h>
#include <linux/topology.h>
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/device.h>
#include <linux/swap.h>
#include <linux/slab.h>
static struct bus_type node_subsys = {
.name = "node",
.dev_name = "node",
};
static ssize_t node_read_cpumap(struct device *dev, bool list, char *buf)
{
struct node *node_dev = to_node(dev);
const struct cpumask *mask = cpumask_of_node(node_dev->dev.id);
/* 2008/04/07: buf currently PAGE_SIZE, need 9 chars per 32 bits. */
BUILD_BUG_ON((NR_CPUS/32 * 9) > (PAGE_SIZE-1));
return cpumap_print_to_pagebuf(list, buf, mask);
}
static inline ssize_t node_read_cpumask(struct device *dev,
struct device_attribute *attr, char *buf)
{
return node_read_cpumap(dev, false, buf);
}
static inline ssize_t node_read_cpulist(struct device *dev,
struct device_attribute *attr, char *buf)
{
return node_read_cpumap(dev, true, buf);
}
static DEVICE_ATTR(cpumap, S_IRUGO, node_read_cpumask, NULL);
static DEVICE_ATTR(cpulist, S_IRUGO, node_read_cpulist, NULL);
#define K(x) ((x) << (PAGE_SHIFT - 10))
static ssize_t node_read_meminfo(struct device *dev,
struct device_attribute *attr, char *buf)
{
int n;
int nid = dev->id;
struct pglist_data *pgdat = NODE_DATA(nid);
struct sysinfo i;
si_meminfo_node(&i, nid);
n = sprintf(buf,
"Node %d MemTotal: %8lu kB\n"
"Node %d MemFree: %8lu kB\n"
"Node %d MemUsed: %8lu kB\n"
"Node %d Active: %8lu kB\n"
"Node %d Inactive: %8lu kB\n"
"Node %d Active(anon): %8lu kB\n"
"Node %d Inactive(anon): %8lu kB\n"
"Node %d Active(file): %8lu kB\n"
"Node %d Inactive(file): %8lu kB\n"
"Node %d Unevictable: %8lu kB\n"
"Node %d Mlocked: %8lu kB\n",
nid, K(i.totalram),
nid, K(i.freeram),
nid, K(i.totalram - i.freeram),
nid, K(node_page_state(pgdat, NR_ACTIVE_ANON) +
node_page_state(pgdat, NR_ACTIVE_FILE)),
nid, K(node_page_state(pgdat, NR_INACTIVE_ANON) +
node_page_state(pgdat, NR_INACTIVE_FILE)),
nid, K(node_page_state(pgdat, NR_ACTIVE_ANON)),
nid, K(node_page_state(pgdat, NR_INACTIVE_ANON)),
nid, K(node_page_state(pgdat, NR_ACTIVE_FILE)),
nid, K(node_page_state(pgdat, NR_INACTIVE_FILE)),
nid, K(node_page_state(pgdat, NR_UNEVICTABLE)),
nid, K(sum_zone_node_page_state(nid, NR_MLOCK)));
#ifdef CONFIG_HIGHMEM
n += sprintf(buf + n,
"Node %d HighTotal: %8lu kB\n"
"Node %d HighFree: %8lu kB\n"
"Node %d LowTotal: %8lu kB\n"
"Node %d LowFree: %8lu kB\n",
nid, K(i.totalhigh),
nid, K(i.freehigh),
nid, K(i.totalram - i.totalhigh),
nid, K(i.freeram - i.freehigh));
#endif
n += sprintf(buf + n,
"Node %d Dirty: %8lu kB\n"
"Node %d Writeback: %8lu kB\n"
"Node %d FilePages: %8lu kB\n"
"Node %d Mapped: %8lu kB\n"
"Node %d AnonPages: %8lu kB\n"
"Node %d Shmem: %8lu kB\n"
"Node %d KernelStack: %8lu kB\n"
"Node %d PageTables: %8lu kB\n"
"Node %d NFS_Unstable: %8lu kB\n"
"Node %d Bounce: %8lu kB\n"
"Node %d WritebackTmp: %8lu kB\n"
"Node %d Slab: %8lu kB\n"
"Node %d SReclaimable: %8lu kB\n"
"Node %d SUnreclaim: %8lu kB\n"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
"Node %d AnonHugePages: %8lu kB\n"
"Node %d ShmemHugePages: %8lu kB\n"
"Node %d ShmemPmdMapped: %8lu kB\n"
#endif
,
nid, K(node_page_state(pgdat, NR_FILE_DIRTY)),
nid, K(node_page_state(pgdat, NR_WRITEBACK)),
nid, K(node_page_state(pgdat, NR_FILE_PAGES)),
nid, K(node_page_state(pgdat, NR_FILE_MAPPED)),
nid, K(node_page_state(pgdat, NR_ANON_MAPPED)),
nid, K(i.sharedram),
nid, sum_zone_node_page_state(nid, NR_KERNEL_STACK_KB),
nid, K(sum_zone_node_page_state(nid, NR_PAGETABLE)),
nid, K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
nid, K(sum_zone_node_page_state(nid, NR_BOUNCE)),
nid, K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
nid, K(node_page_state(pgdat, NR_SLAB_RECLAIMABLE) +
node_page_state(pgdat, NR_SLAB_UNRECLAIMABLE)),
nid, K(node_page_state(pgdat, NR_SLAB_RECLAIMABLE)),
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
nid, K(node_page_state(pgdat, NR_SLAB_UNRECLAIMABLE)),
nid, K(node_page_state(pgdat, NR_ANON_THPS) *
HPAGE_PMD_NR),
nid, K(node_page_state(pgdat, NR_SHMEM_THPS) *
HPAGE_PMD_NR),
nid, K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) *
HPAGE_PMD_NR));
#else
nid, K(node_page_state(pgdat, NR_SLAB_UNRECLAIMABLE)));
#endif
n += hugetlb_report_node_meminfo(nid, buf + n);
return n;
}
#undef K
static DEVICE_ATTR(meminfo, S_IRUGO, node_read_meminfo, NULL);
static ssize_t node_read_numastat(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf,
"numa_hit %lu\n"
"numa_miss %lu\n"
"numa_foreign %lu\n"
"interleave_hit %lu\n"
"local_node %lu\n"
"other_node %lu\n",
sum_zone_numa_state(dev->id, NUMA_HIT),
sum_zone_numa_state(dev->id, NUMA_MISS),
sum_zone_numa_state(dev->id, NUMA_FOREIGN),
sum_zone_numa_state(dev->id, NUMA_INTERLEAVE_HIT),
sum_zone_numa_state(dev->id, NUMA_LOCAL),
sum_zone_numa_state(dev->id, NUMA_OTHER));
}
static DEVICE_ATTR(numastat, S_IRUGO, node_read_numastat, NULL);
static ssize_t node_read_vmstat(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nid = dev->id;
struct pglist_data *pgdat = NODE_DATA(nid);
int i;
int n = 0;
for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
n += sprintf(buf+n, "%s %lu\n", vmstat_text[i],
sum_zone_node_page_state(nid, i));
#ifdef CONFIG_NUMA
for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
n += sprintf(buf+n, "%s %lu\n",
vmstat_text[i + NR_VM_ZONE_STAT_ITEMS],
sum_zone_numa_state(nid, i));
#endif
for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
n += sprintf(buf+n, "%s %lu\n",
vmstat_text[i + NR_VM_ZONE_STAT_ITEMS +
NR_VM_NUMA_STAT_ITEMS],
node_page_state(pgdat, i));
return n;
}
static DEVICE_ATTR(vmstat, S_IRUGO, node_read_vmstat, NULL);
static ssize_t node_read_distance(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nid = dev->id;
int len = 0;
int i;
/*
* buf is currently PAGE_SIZE in length and each node needs 4 chars
* at the most (distance + space or newline).
*/
BUILD_BUG_ON(MAX_NUMNODES * 4 > PAGE_SIZE);
for_each_online_node(i)
len += sprintf(buf + len, "%s%d", i ? " " : "", node_distance(nid, i));
len += sprintf(buf + len, "\n");
return len;
}
static DEVICE_ATTR(distance, S_IRUGO, node_read_distance, NULL);
static struct attribute *node_dev_attrs[] = {
&dev_attr_cpumap.attr,
&dev_attr_cpulist.attr,
&dev_attr_meminfo.attr,
&dev_attr_numastat.attr,
&dev_attr_distance.attr,
&dev_attr_vmstat.attr,
NULL
};
ATTRIBUTE_GROUPS(node_dev);
#ifdef CONFIG_HUGETLBFS
/*
* hugetlbfs per node attributes registration interface:
* When/if hugetlb[fs] subsystem initializes [sometime after this module],
* it will register its per node attributes for all online nodes with
* memory. It will also call register_hugetlbfs_with_node(), below, to
* register its attribute registration functions with this node driver.
* Once these hooks have been initialized, the node driver will call into
* the hugetlb module to [un]register attributes for hot-plugged nodes.
*/
static node_registration_func_t __hugetlb_register_node;
static node_registration_func_t __hugetlb_unregister_node;
static inline bool hugetlb_register_node(struct node *node)
{
if (__hugetlb_register_node &&
node_state(node->dev.id, N_MEMORY)) {
__hugetlb_register_node(node);
return true;
}
return false;
}
static inline void hugetlb_unregister_node(struct node *node)
{
if (__hugetlb_unregister_node)
__hugetlb_unregister_node(node);
}
void register_hugetlbfs_with_node(node_registration_func_t doregister,
node_registration_func_t unregister)
{
__hugetlb_register_node = doregister;
__hugetlb_unregister_node = unregister;
}
#else
static inline void hugetlb_register_node(struct node *node) {}
static inline void hugetlb_unregister_node(struct node *node) {}
#endif
static void node_device_release(struct device *dev)
{
struct node *node = to_node(dev);
#if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HUGETLBFS)
/*
* We schedule the work only when a memory section is
* onlined/offlined on this node. When we come here,
* all the memory on this node has been offlined,
* so we won't enqueue new work to this work.
*
* The work is using node->node_work, so we should
* flush work before freeing the memory.
*/
flush_work(&node->node_work);
#endif
kfree(node);
}
/*
* register_node - Setup a sysfs device for a node.
* @num - Node number to use when creating the device.
*
* Initialize and register the node device.
*/
static int register_node(struct node *node, int num)
{
int error;
node->dev.id = num;
node->dev.bus = &node_subsys;
node->dev.release = node_device_release;
node->dev.groups = node_dev_groups;
error = device_register(&node->dev);
if (!error){
hugetlb_register_node(node);
compaction_register_node(node);
}
return error;
}
/**
* unregister_node - unregister a node device
* @node: node going away
*
* Unregisters a node device @node. All the devices on the node must be
* unregistered before calling this function.
*/
void unregister_node(struct node *node)
{
hugetlb_unregister_node(node); /* no-op, if memoryless node */
device_unregister(&node->dev);
}
struct node *node_devices[MAX_NUMNODES];
/*
* register cpu under node
*/
int register_cpu_under_node(unsigned int cpu, unsigned int nid)
{
int ret;
struct device *obj;
if (!node_online(nid))
return 0;
obj = get_cpu_device(cpu);
if (!obj)
return 0;
ret = sysfs_create_link(&node_devices[nid]->dev.kobj,
&obj->kobj,
kobject_name(&obj->kobj));
if (ret)
return ret;
return sysfs_create_link(&obj->kobj,
&node_devices[nid]->dev.kobj,
kobject_name(&node_devices[nid]->dev.kobj));
}
int unregister_cpu_under_node(unsigned int cpu, unsigned int nid)
{
struct device *obj;
if (!node_online(nid))
return 0;
obj = get_cpu_device(cpu);
if (!obj)
return 0;
sysfs_remove_link(&node_devices[nid]->dev.kobj,
kobject_name(&obj->kobj));
sysfs_remove_link(&obj->kobj,
kobject_name(&node_devices[nid]->dev.kobj));
return 0;
}
#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
static int __ref get_nid_for_pfn(unsigned long pfn)
{
if (!pfn_valid_within(pfn))
return -1;
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
if (system_state < SYSTEM_RUNNING)
return early_pfn_to_nid(pfn);
#endif
return pfn_to_nid(pfn);
}
/* register memory section under specified node if it spans that node */
int register_mem_sect_under_node(struct memory_block *mem_blk, int nid)
{
int ret;
unsigned long pfn, sect_start_pfn, sect_end_pfn;
if (!mem_blk)
return -EFAULT;
if (!node_online(nid))
return 0;
sect_start_pfn = section_nr_to_pfn(mem_blk->start_section_nr);
sect_end_pfn = section_nr_to_pfn(mem_blk->end_section_nr);
sect_end_pfn += PAGES_PER_SECTION - 1;
for (pfn = sect_start_pfn; pfn <= sect_end_pfn; pfn++) {
int page_nid;
/*
* memory block could have several absent sections from start.
* skip pfn range from absent section
*/
if (!pfn_present(pfn)) {
pfn = round_down(pfn + PAGES_PER_SECTION,
PAGES_PER_SECTION) - 1;
continue;
}
page_nid = get_nid_for_pfn(pfn);
if (page_nid < 0)
continue;
if (page_nid != nid)
continue;
ret = sysfs_create_link_nowarn(&node_devices[nid]->dev.kobj,
&mem_blk->dev.kobj,
kobject_name(&mem_blk->dev.kobj));
if (ret)
return ret;
return sysfs_create_link_nowarn(&mem_blk->dev.kobj,
&node_devices[nid]->dev.kobj,
kobject_name(&node_devices[nid]->dev.kobj));
}
/* mem section does not span the specified node */
return 0;
}
/* unregister memory section under all nodes that it spans */
int unregister_mem_sect_under_nodes(struct memory_block *mem_blk,
unsigned long phys_index)
{
NODEMASK_ALLOC(nodemask_t, unlinked_nodes, GFP_KERNEL);
unsigned long pfn, sect_start_pfn, sect_end_pfn;
if (!mem_blk) {
NODEMASK_FREE(unlinked_nodes);
return -EFAULT;
}
if (!unlinked_nodes)
return -ENOMEM;
nodes_clear(*unlinked_nodes);
sect_start_pfn = section_nr_to_pfn(phys_index);
sect_end_pfn = sect_start_pfn + PAGES_PER_SECTION - 1;
for (pfn = sect_start_pfn; pfn <= sect_end_pfn; pfn++) {
int nid;
nid = get_nid_for_pfn(pfn);
if (nid < 0)
continue;
if (!node_online(nid))
continue;
if (node_test_and_set(nid, *unlinked_nodes))
continue;
sysfs_remove_link(&node_devices[nid]->dev.kobj,
kobject_name(&mem_blk->dev.kobj));
sysfs_remove_link(&mem_blk->dev.kobj,
kobject_name(&node_devices[nid]->dev.kobj));
}
NODEMASK_FREE(unlinked_nodes);
return 0;
}
int link_mem_sections(int nid, unsigned long start_pfn, unsigned long nr_pages)
{
unsigned long end_pfn = start_pfn + nr_pages;
unsigned long pfn;
struct memory_block *mem_blk = NULL;
int err = 0;
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
unsigned long section_nr = pfn_to_section_nr(pfn);
struct mem_section *mem_sect;
int ret;
if (!present_section_nr(section_nr))
continue;
mem_sect = __nr_to_section(section_nr);
/* same memblock ? */
if (mem_blk)
if ((section_nr >= mem_blk->start_section_nr) &&
(section_nr <= mem_blk->end_section_nr))
continue;
mem_blk = find_memory_block_hinted(mem_sect, mem_blk);
ret = register_mem_sect_under_node(mem_blk, nid);
if (!err)
err = ret;
/* discard ref obtained in find_memory_block() */
}
if (mem_blk)
kobject_put(&mem_blk->dev.kobj);
return err;
}
#ifdef CONFIG_HUGETLBFS
/*
* Handle per node hstate attribute [un]registration on transistions
* to/from memoryless state.
*/
static void node_hugetlb_work(struct work_struct *work)
{
struct node *node = container_of(work, struct node, node_work);
/*
* We only get here when a node transitions to/from memoryless state.
* We can detect which transition occurred by examining whether the
* node has memory now. hugetlb_register_node() already check this
* so we try to register the attributes. If that fails, then the
* node has transitioned to memoryless, try to unregister the
* attributes.
*/
if (!hugetlb_register_node(node))
hugetlb_unregister_node(node);
}
static void init_node_hugetlb_work(int nid)
{
INIT_WORK(&node_devices[nid]->node_work, node_hugetlb_work);
}
static int node_memory_callback(struct notifier_block *self,
unsigned long action, void *arg)
{
struct memory_notify *mnb = arg;
int nid = mnb->status_change_nid;
switch (action) {
case MEM_ONLINE:
case MEM_OFFLINE:
/*
* offload per node hstate [un]registration to a work thread
* when transitioning to/from memoryless state.
*/
if (nid != NUMA_NO_NODE)
schedule_work(&node_devices[nid]->node_work);
break;
case MEM_GOING_ONLINE:
case MEM_GOING_OFFLINE:
case MEM_CANCEL_ONLINE:
case MEM_CANCEL_OFFLINE:
default:
break;
}
return NOTIFY_OK;
}
#endif /* CONFIG_HUGETLBFS */
#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
#if !defined(CONFIG_MEMORY_HOTPLUG_SPARSE) || \
!defined(CONFIG_HUGETLBFS)
static inline int node_memory_callback(struct notifier_block *self,
unsigned long action, void *arg)
{
return NOTIFY_OK;
}
static void init_node_hugetlb_work(int nid) { }
#endif
int __register_one_node(int nid)
{
int error;
int cpu;
node_devices[nid] = kzalloc(sizeof(struct node), GFP_KERNEL);
if (!node_devices[nid])
return -ENOMEM;
error = register_node(node_devices[nid], nid);
/* link cpu under this node */
for_each_present_cpu(cpu) {
if (cpu_to_node(cpu) == nid)
register_cpu_under_node(cpu, nid);
}
/* initialize work queue for memory hot plug */
init_node_hugetlb_work(nid);
return error;
}
void unregister_one_node(int nid)
{
if (!node_devices[nid])
return;
unregister_node(node_devices[nid]);
node_devices[nid] = NULL;
}
/*
* node states attributes
*/
static ssize_t print_nodes_state(enum node_states state, char *buf)
{
int n;
n = scnprintf(buf, PAGE_SIZE - 1, "%*pbl",
nodemask_pr_args(&node_states[state]));
buf[n++] = '\n';
buf[n] = '\0';
return n;
}
struct node_attr {
struct device_attribute attr;
enum node_states state;
};
static ssize_t show_node_state(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct node_attr *na = container_of(attr, struct node_attr, attr);
return print_nodes_state(na->state, buf);
}
#define _NODE_ATTR(name, state) \
{ __ATTR(name, 0444, show_node_state, NULL), state }
static struct node_attr node_state_attr[] = {
[N_POSSIBLE] = _NODE_ATTR(possible, N_POSSIBLE),
[N_ONLINE] = _NODE_ATTR(online, N_ONLINE),
[N_NORMAL_MEMORY] = _NODE_ATTR(has_normal_memory, N_NORMAL_MEMORY),
#ifdef CONFIG_HIGHMEM
[N_HIGH_MEMORY] = _NODE_ATTR(has_high_memory, N_HIGH_MEMORY),
#endif
[N_MEMORY] = _NODE_ATTR(has_memory, N_MEMORY),
[N_CPU] = _NODE_ATTR(has_cpu, N_CPU),
};
static struct attribute *node_state_attrs[] = {
&node_state_attr[N_POSSIBLE].attr.attr,
&node_state_attr[N_ONLINE].attr.attr,
&node_state_attr[N_NORMAL_MEMORY].attr.attr,
#ifdef CONFIG_HIGHMEM
&node_state_attr[N_HIGH_MEMORY].attr.attr,
#endif
&node_state_attr[N_MEMORY].attr.attr,
&node_state_attr[N_CPU].attr.attr,
NULL
};
static struct attribute_group memory_root_attr_group = {
.attrs = node_state_attrs,
};
static const struct attribute_group *cpu_root_attr_groups[] = {
&memory_root_attr_group,
NULL,
};
#define NODE_CALLBACK_PRI 2 /* lower than SLAB */
static int __init register_node_type(void)
{
int ret;
BUILD_BUG_ON(ARRAY_SIZE(node_state_attr) != NR_NODE_STATES);
BUILD_BUG_ON(ARRAY_SIZE(node_state_attrs)-1 != NR_NODE_STATES);
ret = subsys_system_register(&node_subsys, cpu_root_attr_groups);
if (!ret) {
static struct notifier_block node_memory_callback_nb = {
.notifier_call = node_memory_callback,
.priority = NODE_CALLBACK_PRI,
};
register_hotmemory_notifier(&node_memory_callback_nb);
}
/*
* Note: we're not going to unregister the node class if we fail
* to register the node state class attribute files.
*/
return ret;
}
postcore_initcall(register_node_type);