linux/Documentation/crypto/api-samples.rst
Eric Biggers 877b5691f2 crypto: shash - remove shash_desc::flags
The flags field in 'struct shash_desc' never actually does anything.
The only ostensibly supported flag is CRYPTO_TFM_REQ_MAY_SLEEP.
However, no shash algorithm ever sleeps, making this flag a no-op.

With this being the case, inevitably some users who can't sleep wrongly
pass MAY_SLEEP.  These would all need to be fixed if any shash algorithm
actually started sleeping.  For example, the shash_ahash_*() functions,
which wrap a shash algorithm with the ahash API, pass through MAY_SLEEP
from the ahash API to the shash API.  However, the shash functions are
called under kmap_atomic(), so actually they're assumed to never sleep.

Even if it turns out that some users do need preemption points while
hashing large buffers, we could easily provide a helper function
crypto_shash_update_large() which divides the data into smaller chunks
and calls crypto_shash_update() and cond_resched() for each chunk.  It's
not necessary to have a flag in 'struct shash_desc', nor is it necessary
to make individual shash algorithms aware of this at all.

Therefore, remove shash_desc::flags, and document that the
crypto_shash_*() functions can be called from any context.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-04-25 15:38:12 +08:00

210 lines
5.5 KiB
ReStructuredText

Code Examples
=============
Code Example For Symmetric Key Cipher Operation
-----------------------------------------------
::
/* tie all data structures together */
struct skcipher_def {
struct scatterlist sg;
struct crypto_skcipher *tfm;
struct skcipher_request *req;
struct crypto_wait wait;
};
/* Perform cipher operation */
static unsigned int test_skcipher_encdec(struct skcipher_def *sk,
int enc)
{
int rc;
if (enc)
rc = crypto_wait_req(crypto_skcipher_encrypt(sk->req), &sk->wait);
else
rc = crypto_wait_req(crypto_skcipher_decrypt(sk->req), &sk->wait);
if (rc)
pr_info("skcipher encrypt returned with result %d\n", rc);
return rc;
}
/* Initialize and trigger cipher operation */
static int test_skcipher(void)
{
struct skcipher_def sk;
struct crypto_skcipher *skcipher = NULL;
struct skcipher_request *req = NULL;
char *scratchpad = NULL;
char *ivdata = NULL;
unsigned char key[32];
int ret = -EFAULT;
skcipher = crypto_alloc_skcipher("cbc-aes-aesni", 0, 0);
if (IS_ERR(skcipher)) {
pr_info("could not allocate skcipher handle\n");
return PTR_ERR(skcipher);
}
req = skcipher_request_alloc(skcipher, GFP_KERNEL);
if (!req) {
pr_info("could not allocate skcipher request\n");
ret = -ENOMEM;
goto out;
}
skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done,
&sk.wait);
/* AES 256 with random key */
get_random_bytes(&key, 32);
if (crypto_skcipher_setkey(skcipher, key, 32)) {
pr_info("key could not be set\n");
ret = -EAGAIN;
goto out;
}
/* IV will be random */
ivdata = kmalloc(16, GFP_KERNEL);
if (!ivdata) {
pr_info("could not allocate ivdata\n");
goto out;
}
get_random_bytes(ivdata, 16);
/* Input data will be random */
scratchpad = kmalloc(16, GFP_KERNEL);
if (!scratchpad) {
pr_info("could not allocate scratchpad\n");
goto out;
}
get_random_bytes(scratchpad, 16);
sk.tfm = skcipher;
sk.req = req;
/* We encrypt one block */
sg_init_one(&sk.sg, scratchpad, 16);
skcipher_request_set_crypt(req, &sk.sg, &sk.sg, 16, ivdata);
crypto_init_wait(&sk.wait);
/* encrypt data */
ret = test_skcipher_encdec(&sk, 1);
if (ret)
goto out;
pr_info("Encryption triggered successfully\n");
out:
if (skcipher)
crypto_free_skcipher(skcipher);
if (req)
skcipher_request_free(req);
if (ivdata)
kfree(ivdata);
if (scratchpad)
kfree(scratchpad);
return ret;
}
Code Example For Use of Operational State Memory With SHASH
-----------------------------------------------------------
::
struct sdesc {
struct shash_desc shash;
char ctx[];
};
static struct sdesc *init_sdesc(struct crypto_shash *alg)
{
struct sdesc *sdesc;
int size;
size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
sdesc = kmalloc(size, GFP_KERNEL);
if (!sdesc)
return ERR_PTR(-ENOMEM);
sdesc->shash.tfm = alg;
return sdesc;
}
static int calc_hash(struct crypto_shash *alg,
const unsigned char *data, unsigned int datalen,
unsigned char *digest)
{
struct sdesc *sdesc;
int ret;
sdesc = init_sdesc(alg);
if (IS_ERR(sdesc)) {
pr_info("can't alloc sdesc\n");
return PTR_ERR(sdesc);
}
ret = crypto_shash_digest(&sdesc->shash, data, datalen, digest);
kfree(sdesc);
return ret;
}
static int test_hash(const unsigned char *data, unsigned int datalen,
unsigned char *digest)
{
struct crypto_shash *alg;
char *hash_alg_name = "sha1-padlock-nano";
int ret;
alg = crypto_alloc_shash(hash_alg_name, 0, 0);
if (IS_ERR(alg)) {
pr_info("can't alloc alg %s\n", hash_alg_name);
return PTR_ERR(alg);
}
ret = calc_hash(alg, data, datalen, digest);
crypto_free_shash(alg);
return ret;
}
Code Example For Random Number Generator Usage
----------------------------------------------
::
static int get_random_numbers(u8 *buf, unsigned int len)
{
struct crypto_rng *rng = NULL;
char *drbg = "drbg_nopr_sha256"; /* Hash DRBG with SHA-256, no PR */
int ret;
if (!buf || !len) {
pr_debug("No output buffer provided\n");
return -EINVAL;
}
rng = crypto_alloc_rng(drbg, 0, 0);
if (IS_ERR(rng)) {
pr_debug("could not allocate RNG handle for %s\n", drbg);
return PTR_ERR(rng);
}
ret = crypto_rng_get_bytes(rng, buf, len);
if (ret < 0)
pr_debug("generation of random numbers failed\n");
else if (ret == 0)
pr_debug("RNG returned no data");
else
pr_debug("RNG returned %d bytes of data\n", ret);
out:
crypto_free_rng(rng);
return ret;
}