mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-15 16:24:13 +08:00
bfa6b7bb35
... there we are building a command in normal memory; it will be copied to iomem (by ->Copy()) later. Use memcpy()... Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
1045 lines
34 KiB
C
1045 lines
34 KiB
C
/*
|
|
** -----------------------------------------------------------------------------
|
|
**
|
|
** Perle Specialix driver for Linux
|
|
** Ported from existing RIO Driver for SCO sources.
|
|
*
|
|
* (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
**
|
|
** Module : rioroute.c
|
|
** SID : 1.3
|
|
** Last Modified : 11/6/98 10:33:46
|
|
** Retrieved : 11/6/98 10:33:50
|
|
**
|
|
** ident @(#)rioroute.c 1.3
|
|
**
|
|
** -----------------------------------------------------------------------------
|
|
*/
|
|
#ifdef SCCS_LABELS
|
|
static char *_rioroute_c_sccs_ = "@(#)rioroute.c 1.3";
|
|
#endif
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/errno.h>
|
|
#include <asm/io.h>
|
|
#include <asm/system.h>
|
|
#include <asm/string.h>
|
|
#include <asm/semaphore.h>
|
|
#include <asm/uaccess.h>
|
|
|
|
#include <linux/termios.h>
|
|
#include <linux/serial.h>
|
|
|
|
#include <linux/generic_serial.h>
|
|
|
|
|
|
#include "linux_compat.h"
|
|
#include "rio_linux.h"
|
|
#include "pkt.h"
|
|
#include "daemon.h"
|
|
#include "rio.h"
|
|
#include "riospace.h"
|
|
#include "cmdpkt.h"
|
|
#include "map.h"
|
|
#include "rup.h"
|
|
#include "port.h"
|
|
#include "riodrvr.h"
|
|
#include "rioinfo.h"
|
|
#include "func.h"
|
|
#include "errors.h"
|
|
#include "pci.h"
|
|
|
|
#include "parmmap.h"
|
|
#include "unixrup.h"
|
|
#include "board.h"
|
|
#include "host.h"
|
|
#include "phb.h"
|
|
#include "link.h"
|
|
#include "cmdblk.h"
|
|
#include "route.h"
|
|
#include "cirrus.h"
|
|
#include "rioioctl.h"
|
|
#include "param.h"
|
|
|
|
static int RIOCheckIsolated(struct rio_info *, struct Host *, unsigned int);
|
|
static int RIOIsolate(struct rio_info *, struct Host *, unsigned int);
|
|
static int RIOCheck(struct Host *, unsigned int);
|
|
static void RIOConCon(struct rio_info *, struct Host *, unsigned int, unsigned int, unsigned int, unsigned int, int);
|
|
|
|
|
|
/*
|
|
** Incoming on the ROUTE_RUP
|
|
** I wrote this while I was tired. Forgive me.
|
|
*/
|
|
int RIORouteRup(struct rio_info *p, unsigned int Rup, struct Host *HostP, struct PKT __iomem * PacketP)
|
|
{
|
|
struct PktCmd __iomem *PktCmdP = (struct PktCmd __iomem *) PacketP->data;
|
|
struct PktCmd_M *PktReplyP;
|
|
struct CmdBlk *CmdBlkP;
|
|
struct Port *PortP;
|
|
struct Map *MapP;
|
|
struct Top *TopP;
|
|
int ThisLink, ThisLinkMin, ThisLinkMax;
|
|
int port;
|
|
int Mod, Mod1, Mod2;
|
|
unsigned short RtaType;
|
|
unsigned int RtaUniq;
|
|
unsigned int ThisUnit, ThisUnit2; /* 2 ids to accommodate 16 port RTA */
|
|
unsigned int OldUnit, NewUnit, OldLink, NewLink;
|
|
char *MyType, *MyName;
|
|
int Lies;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
** Is this unit telling us it's current link topology?
|
|
*/
|
|
if (readb(&PktCmdP->Command) == ROUTE_TOPOLOGY) {
|
|
MapP = HostP->Mapping;
|
|
|
|
/*
|
|
** The packet can be sent either by the host or by an RTA.
|
|
** If it comes from the host, then we need to fill in the
|
|
** Topology array in the host structure. If it came in
|
|
** from an RTA then we need to fill in the Mapping structure's
|
|
** Topology array for the unit.
|
|
*/
|
|
if (Rup >= (unsigned short) MAX_RUP) {
|
|
ThisUnit = HOST_ID;
|
|
TopP = HostP->Topology;
|
|
MyType = "Host";
|
|
MyName = HostP->Name;
|
|
ThisLinkMin = ThisLinkMax = Rup - MAX_RUP;
|
|
} else {
|
|
ThisUnit = Rup + 1;
|
|
TopP = HostP->Mapping[Rup].Topology;
|
|
MyType = "RTA";
|
|
MyName = HostP->Mapping[Rup].Name;
|
|
ThisLinkMin = 0;
|
|
ThisLinkMax = LINKS_PER_UNIT - 1;
|
|
}
|
|
|
|
/*
|
|
** Lies will not be tolerated.
|
|
** If any pair of links claim to be connected to the same
|
|
** place, then ignore this packet completely.
|
|
*/
|
|
Lies = 0;
|
|
for (ThisLink = ThisLinkMin + 1; ThisLink <= ThisLinkMax; ThisLink++) {
|
|
/*
|
|
** it won't lie about network interconnect, total disconnects
|
|
** and no-IDs. (or at least, it doesn't *matter* if it does)
|
|
*/
|
|
if (readb(&PktCmdP->RouteTopology[ThisLink].Unit) > (unsigned short) MAX_RUP)
|
|
continue;
|
|
|
|
for (NewLink = ThisLinkMin; NewLink < ThisLink; NewLink++) {
|
|
if ((readb(&PktCmdP->RouteTopology[ThisLink].Unit) == readb(&PktCmdP->RouteTopology[NewLink].Unit)) && (readb(&PktCmdP->RouteTopology[ThisLink].Link) == readb(&PktCmdP->RouteTopology[NewLink].Link))) {
|
|
Lies++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Lies) {
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "LIES! DAMN LIES! %d LIES!\n", Lies);
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "%d:%c %d:%c %d:%c %d:%c\n",
|
|
readb(&PktCmdP->RouteTopology[0].Unit),
|
|
'A' + readb(&PktCmdP->RouteTopology[0].Link),
|
|
readb(&PktCmdP->RouteTopology[1].Unit),
|
|
'A' + readb(&PktCmdP->RouteTopology[1].Link), readb(&PktCmdP->RouteTopology[2].Unit), 'A' + readb(&PktCmdP->RouteTopology[2].Link), readb(&PktCmdP->RouteTopology[3].Unit), 'A' + readb(&PktCmdP->RouteTopology[3].Link));
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** now, process each link.
|
|
*/
|
|
for (ThisLink = ThisLinkMin; ThisLink <= ThisLinkMax; ThisLink++) {
|
|
/*
|
|
** this is what it was connected to
|
|
*/
|
|
OldUnit = TopP[ThisLink].Unit;
|
|
OldLink = TopP[ThisLink].Link;
|
|
|
|
/*
|
|
** this is what it is now connected to
|
|
*/
|
|
NewUnit = readb(&PktCmdP->RouteTopology[ThisLink].Unit);
|
|
NewLink = readb(&PktCmdP->RouteTopology[ThisLink].Link);
|
|
|
|
if (OldUnit != NewUnit || OldLink != NewLink) {
|
|
/*
|
|
** something has changed!
|
|
*/
|
|
|
|
if (NewUnit > MAX_RUP && NewUnit != ROUTE_DISCONNECT && NewUnit != ROUTE_NO_ID && NewUnit != ROUTE_INTERCONNECT) {
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "I have a link from %s %s to unit %d:%d - I don't like it.\n", MyType, MyName, NewUnit, NewLink);
|
|
} else {
|
|
/*
|
|
** put the new values in
|
|
*/
|
|
TopP[ThisLink].Unit = NewUnit;
|
|
TopP[ThisLink].Link = NewLink;
|
|
|
|
RIOSetChange(p);
|
|
|
|
if (OldUnit <= MAX_RUP) {
|
|
/*
|
|
** If something has become bust, then re-enable them messages
|
|
*/
|
|
if (!p->RIONoMessage)
|
|
RIOConCon(p, HostP, ThisUnit, ThisLink, OldUnit, OldLink, DISCONNECT);
|
|
}
|
|
|
|
if ((NewUnit <= MAX_RUP) && !p->RIONoMessage)
|
|
RIOConCon(p, HostP, ThisUnit, ThisLink, NewUnit, NewLink, CONNECT);
|
|
|
|
if (NewUnit == ROUTE_NO_ID)
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "%s %s (%c) is connected to an unconfigured unit.\n", MyType, MyName, 'A' + ThisLink);
|
|
|
|
if (NewUnit == ROUTE_INTERCONNECT) {
|
|
if (!p->RIONoMessage)
|
|
printk(KERN_DEBUG "rio: %s '%s' (%c) is connected to another network.\n", MyType, MyName, 'A' + ThisLink);
|
|
}
|
|
|
|
/*
|
|
** perform an update for 'the other end', so that these messages
|
|
** only appears once. Only disconnect the other end if it is pointing
|
|
** at us!
|
|
*/
|
|
if (OldUnit == HOST_ID) {
|
|
if (HostP->Topology[OldLink].Unit == ThisUnit && HostP->Topology[OldLink].Link == ThisLink) {
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "SETTING HOST (%c) TO DISCONNECTED!\n", OldLink + 'A');
|
|
HostP->Topology[OldLink].Unit = ROUTE_DISCONNECT;
|
|
HostP->Topology[OldLink].Link = NO_LINK;
|
|
} else {
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "HOST(%c) WAS NOT CONNECTED TO %s (%c)!\n", OldLink + 'A', HostP->Mapping[ThisUnit - 1].Name, ThisLink + 'A');
|
|
}
|
|
} else if (OldUnit <= MAX_RUP) {
|
|
if (HostP->Mapping[OldUnit - 1].Topology[OldLink].Unit == ThisUnit && HostP->Mapping[OldUnit - 1].Topology[OldLink].Link == ThisLink) {
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "SETTING RTA %s (%c) TO DISCONNECTED!\n", HostP->Mapping[OldUnit - 1].Name, OldLink + 'A');
|
|
HostP->Mapping[OldUnit - 1].Topology[OldLink].Unit = ROUTE_DISCONNECT;
|
|
HostP->Mapping[OldUnit - 1].Topology[OldLink].Link = NO_LINK;
|
|
} else {
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "RTA %s (%c) WAS NOT CONNECTED TO %s (%c)\n", HostP->Mapping[OldUnit - 1].Name, OldLink + 'A', HostP->Mapping[ThisUnit - 1].Name, ThisLink + 'A');
|
|
}
|
|
}
|
|
if (NewUnit == HOST_ID) {
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "MARKING HOST (%c) CONNECTED TO %s (%c)\n", NewLink + 'A', MyName, ThisLink + 'A');
|
|
HostP->Topology[NewLink].Unit = ThisUnit;
|
|
HostP->Topology[NewLink].Link = ThisLink;
|
|
} else if (NewUnit <= MAX_RUP) {
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "MARKING RTA %s (%c) CONNECTED TO %s (%c)\n", HostP->Mapping[NewUnit - 1].Name, NewLink + 'A', MyName, ThisLink + 'A');
|
|
HostP->Mapping[NewUnit - 1].Topology[NewLink].Unit = ThisUnit;
|
|
HostP->Mapping[NewUnit - 1].Topology[NewLink].Link = ThisLink;
|
|
}
|
|
}
|
|
RIOSetChange(p);
|
|
RIOCheckIsolated(p, HostP, OldUnit);
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** The only other command we recognise is a route_request command
|
|
*/
|
|
if (readb(&PktCmdP->Command) != ROUTE_REQUEST) {
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "Unknown command %d received on rup %d host %p ROUTE_RUP\n", readb(&PktCmdP->Command), Rup, HostP);
|
|
return 1;
|
|
}
|
|
|
|
RtaUniq = (readb(&PktCmdP->UniqNum[0])) + (readb(&PktCmdP->UniqNum[1]) << 8) + (readb(&PktCmdP->UniqNum[2]) << 16) + (readb(&PktCmdP->UniqNum[3]) << 24);
|
|
|
|
/*
|
|
** Determine if 8 or 16 port RTA
|
|
*/
|
|
RtaType = GetUnitType(RtaUniq);
|
|
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "Received a request for an ID for serial number %x\n", RtaUniq);
|
|
|
|
Mod = readb(&PktCmdP->ModuleTypes);
|
|
Mod1 = LONYBLE(Mod);
|
|
if (RtaType == TYPE_RTA16) {
|
|
/*
|
|
** Only one ident is set for a 16 port RTA. To make compatible
|
|
** with 8 port, set 2nd ident in Mod2 to the same as Mod1.
|
|
*/
|
|
Mod2 = Mod1;
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "Backplane type is %s (all ports)\n", p->RIOModuleTypes[Mod1].Name);
|
|
} else {
|
|
Mod2 = HINYBLE(Mod);
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "Module types are %s (ports 0-3) and %s (ports 4-7)\n", p->RIOModuleTypes[Mod1].Name, p->RIOModuleTypes[Mod2].Name);
|
|
}
|
|
|
|
/*
|
|
** try to unhook a command block from the command free list.
|
|
*/
|
|
if (!(CmdBlkP = RIOGetCmdBlk())) {
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "No command blocks to route RTA! come back later.\n");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Fill in the default info on the command block
|
|
*/
|
|
CmdBlkP->Packet.dest_unit = Rup;
|
|
CmdBlkP->Packet.dest_port = ROUTE_RUP;
|
|
CmdBlkP->Packet.src_unit = HOST_ID;
|
|
CmdBlkP->Packet.src_port = ROUTE_RUP;
|
|
CmdBlkP->Packet.len = PKT_CMD_BIT | 1;
|
|
CmdBlkP->PreFuncP = CmdBlkP->PostFuncP = NULL;
|
|
PktReplyP = (struct PktCmd_M *) CmdBlkP->Packet.data;
|
|
|
|
if (!RIOBootOk(p, HostP, RtaUniq)) {
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "RTA %x tried to get an ID, but does not belong - FOAD it!\n", RtaUniq);
|
|
PktReplyP->Command = ROUTE_FOAD;
|
|
memcpy(PktReplyP->CommandText, "RT_FOAD", 7);
|
|
RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** Check to see if the RTA is configured for this host
|
|
*/
|
|
for (ThisUnit = 0; ThisUnit < MAX_RUP; ThisUnit++) {
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "Entry %d Flags=%s %s UniqueNum=0x%x\n",
|
|
ThisUnit, HostP->Mapping[ThisUnit].Flags & SLOT_IN_USE ? "Slot-In-Use" : "Not In Use", HostP->Mapping[ThisUnit].Flags & SLOT_TENTATIVE ? "Slot-Tentative" : "Not Tentative", HostP->Mapping[ThisUnit].RtaUniqueNum);
|
|
|
|
/*
|
|
** We have an entry for it.
|
|
*/
|
|
if ((HostP->Mapping[ThisUnit].Flags & (SLOT_IN_USE | SLOT_TENTATIVE)) && (HostP->Mapping[ThisUnit].RtaUniqueNum == RtaUniq)) {
|
|
if (RtaType == TYPE_RTA16) {
|
|
ThisUnit2 = HostP->Mapping[ThisUnit].ID2 - 1;
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "Found unit 0x%x at slots %d+%d\n", RtaUniq, ThisUnit, ThisUnit2);
|
|
} else
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "Found unit 0x%x at slot %d\n", RtaUniq, ThisUnit);
|
|
/*
|
|
** If we have no knowledge of booting it, then the host has
|
|
** been re-booted, and so we must kill the RTA, so that it
|
|
** will be booted again (potentially with new bins)
|
|
** and it will then re-ask for an ID, which we will service.
|
|
*/
|
|
if ((HostP->Mapping[ThisUnit].Flags & SLOT_IN_USE) && !(HostP->Mapping[ThisUnit].Flags & RTA_BOOTED)) {
|
|
if (!(HostP->Mapping[ThisUnit].Flags & MSG_DONE)) {
|
|
if (!p->RIONoMessage)
|
|
printk(KERN_DEBUG "rio: RTA '%s' is being updated.\n", HostP->Mapping[ThisUnit].Name);
|
|
HostP->Mapping[ThisUnit].Flags |= MSG_DONE;
|
|
}
|
|
PktReplyP->Command = ROUTE_FOAD;
|
|
memcpy(PktReplyP->CommandText, "RT_FOAD", 7);
|
|
RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** Send the ID (entry) to this RTA. The ID number is implicit as
|
|
** the offset into the table. It is worth noting at this stage
|
|
** that offset zero in the table contains the entries for the
|
|
** RTA with ID 1!!!!
|
|
*/
|
|
PktReplyP->Command = ROUTE_ALLOCATE;
|
|
PktReplyP->IDNum = ThisUnit + 1;
|
|
if (RtaType == TYPE_RTA16) {
|
|
if (HostP->Mapping[ThisUnit].Flags & SLOT_IN_USE)
|
|
/*
|
|
** Adjust the phb and tx pkt dest_units for 2nd block of 8
|
|
** only if the RTA has ports associated (SLOT_IN_USE)
|
|
*/
|
|
RIOFixPhbs(p, HostP, ThisUnit2);
|
|
PktReplyP->IDNum2 = ThisUnit2 + 1;
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "RTA '%s' has been allocated IDs %d+%d\n", HostP->Mapping[ThisUnit].Name, PktReplyP->IDNum, PktReplyP->IDNum2);
|
|
} else {
|
|
PktReplyP->IDNum2 = ROUTE_NO_ID;
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "RTA '%s' has been allocated ID %d\n", HostP->Mapping[ThisUnit].Name, PktReplyP->IDNum);
|
|
}
|
|
memcpy(PktReplyP->CommandText, "RT_ALLOCAT", 10);
|
|
|
|
RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
|
|
|
|
/*
|
|
** If this is a freshly booted RTA, then we need to re-open
|
|
** the ports, if any where open, so that data may once more
|
|
** flow around the system!
|
|
*/
|
|
if ((HostP->Mapping[ThisUnit].Flags & RTA_NEWBOOT) && (HostP->Mapping[ThisUnit].SysPort != NO_PORT)) {
|
|
/*
|
|
** look at the ports associated with this beast and
|
|
** see if any where open. If they was, then re-open
|
|
** them, using the info from the tty flags.
|
|
*/
|
|
for (port = 0; port < PORTS_PER_RTA; port++) {
|
|
PortP = p->RIOPortp[port + HostP->Mapping[ThisUnit].SysPort];
|
|
if (PortP->State & (RIO_MOPEN | RIO_LOPEN)) {
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "Re-opened this port\n");
|
|
rio_spin_lock_irqsave(&PortP->portSem, flags);
|
|
PortP->MagicFlags |= MAGIC_REBOOT;
|
|
rio_spin_unlock_irqrestore(&PortP->portSem, flags);
|
|
}
|
|
}
|
|
if (RtaType == TYPE_RTA16) {
|
|
for (port = 0; port < PORTS_PER_RTA; port++) {
|
|
PortP = p->RIOPortp[port + HostP->Mapping[ThisUnit2].SysPort];
|
|
if (PortP->State & (RIO_MOPEN | RIO_LOPEN)) {
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "Re-opened this port\n");
|
|
rio_spin_lock_irqsave(&PortP->portSem, flags);
|
|
PortP->MagicFlags |= MAGIC_REBOOT;
|
|
rio_spin_unlock_irqrestore(&PortP->portSem, flags);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** keep a copy of the module types!
|
|
*/
|
|
HostP->UnixRups[ThisUnit].ModTypes = Mod;
|
|
if (RtaType == TYPE_RTA16)
|
|
HostP->UnixRups[ThisUnit2].ModTypes = Mod;
|
|
|
|
/*
|
|
** If either of the modules on this unit is read-only or write-only
|
|
** or none-xprint, then we need to transfer that info over to the
|
|
** relevant ports.
|
|
*/
|
|
if (HostP->Mapping[ThisUnit].SysPort != NO_PORT) {
|
|
for (port = 0; port < PORTS_PER_MODULE; port++) {
|
|
p->RIOPortp[port + HostP->Mapping[ThisUnit].SysPort]->Config &= ~RIO_NOMASK;
|
|
p->RIOPortp[port + HostP->Mapping[ThisUnit].SysPort]->Config |= p->RIOModuleTypes[Mod1].Flags[port];
|
|
p->RIOPortp[port + PORTS_PER_MODULE + HostP->Mapping[ThisUnit].SysPort]->Config &= ~RIO_NOMASK;
|
|
p->RIOPortp[port + PORTS_PER_MODULE + HostP->Mapping[ThisUnit].SysPort]->Config |= p->RIOModuleTypes[Mod2].Flags[port];
|
|
}
|
|
if (RtaType == TYPE_RTA16) {
|
|
for (port = 0; port < PORTS_PER_MODULE; port++) {
|
|
p->RIOPortp[port + HostP->Mapping[ThisUnit2].SysPort]->Config &= ~RIO_NOMASK;
|
|
p->RIOPortp[port + HostP->Mapping[ThisUnit2].SysPort]->Config |= p->RIOModuleTypes[Mod1].Flags[port];
|
|
p->RIOPortp[port + PORTS_PER_MODULE + HostP->Mapping[ThisUnit2].SysPort]->Config &= ~RIO_NOMASK;
|
|
p->RIOPortp[port + PORTS_PER_MODULE + HostP->Mapping[ThisUnit2].SysPort]->Config |= p->RIOModuleTypes[Mod2].Flags[port];
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Job done, get on with the interrupts!
|
|
*/
|
|
return 1;
|
|
}
|
|
}
|
|
/*
|
|
** There is no table entry for this RTA at all.
|
|
**
|
|
** Lets check to see if we actually booted this unit - if not,
|
|
** then we reset it and it will go round the loop of being booted
|
|
** we can then worry about trying to fit it into the table.
|
|
*/
|
|
for (ThisUnit = 0; ThisUnit < HostP->NumExtraBooted; ThisUnit++)
|
|
if (HostP->ExtraUnits[ThisUnit] == RtaUniq)
|
|
break;
|
|
if (ThisUnit == HostP->NumExtraBooted && ThisUnit != MAX_EXTRA_UNITS) {
|
|
/*
|
|
** if the unit wasn't in the table, and the table wasn't full, then
|
|
** we reset the unit, because we didn't boot it.
|
|
** However, if the table is full, it could be that we did boot
|
|
** this unit, and so we won't reboot it, because it isn't really
|
|
** all that disasterous to keep the old bins in most cases. This
|
|
** is a rather tacky feature, but we are on the edge of reallity
|
|
** here, because the implication is that someone has connected
|
|
** 16+MAX_EXTRA_UNITS onto one host.
|
|
*/
|
|
static int UnknownMesgDone = 0;
|
|
|
|
if (!UnknownMesgDone) {
|
|
if (!p->RIONoMessage)
|
|
printk(KERN_DEBUG "rio: One or more unknown RTAs are being updated.\n");
|
|
UnknownMesgDone = 1;
|
|
}
|
|
|
|
PktReplyP->Command = ROUTE_FOAD;
|
|
memcpy(PktReplyP->CommandText, "RT_FOAD", 7);
|
|
} else {
|
|
/*
|
|
** we did boot it (as an extra), and there may now be a table
|
|
** slot free (because of a delete), so we will try to make
|
|
** a tentative entry for it, so that the configurator can see it
|
|
** and fill in the details for us.
|
|
*/
|
|
if (RtaType == TYPE_RTA16) {
|
|
if (RIOFindFreeID(p, HostP, &ThisUnit, &ThisUnit2) == 0) {
|
|
RIODefaultName(p, HostP, ThisUnit);
|
|
rio_fill_host_slot(ThisUnit, ThisUnit2, RtaUniq, HostP);
|
|
}
|
|
} else {
|
|
if (RIOFindFreeID(p, HostP, &ThisUnit, NULL) == 0) {
|
|
RIODefaultName(p, HostP, ThisUnit);
|
|
rio_fill_host_slot(ThisUnit, 0, RtaUniq, HostP);
|
|
}
|
|
}
|
|
PktReplyP->Command = ROUTE_USED;
|
|
memcpy(PktReplyP->CommandText, "RT_USED", 7);
|
|
}
|
|
RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
|
|
return 1;
|
|
}
|
|
|
|
|
|
void RIOFixPhbs(struct rio_info *p, struct Host *HostP, unsigned int unit)
|
|
{
|
|
unsigned short link, port;
|
|
struct Port *PortP;
|
|
unsigned long flags;
|
|
int PortN = HostP->Mapping[unit].SysPort;
|
|
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "RIOFixPhbs unit %d sysport %d\n", unit, PortN);
|
|
|
|
if (PortN != -1) {
|
|
unsigned short dest_unit = HostP->Mapping[unit].ID2;
|
|
|
|
/*
|
|
** Get the link number used for the 1st 8 phbs on this unit.
|
|
*/
|
|
PortP = p->RIOPortp[HostP->Mapping[dest_unit - 1].SysPort];
|
|
|
|
link = readw(&PortP->PhbP->link);
|
|
|
|
for (port = 0; port < PORTS_PER_RTA; port++, PortN++) {
|
|
unsigned short dest_port = port + 8;
|
|
u16 __iomem *TxPktP;
|
|
struct PKT __iomem *Pkt;
|
|
|
|
PortP = p->RIOPortp[PortN];
|
|
|
|
rio_spin_lock_irqsave(&PortP->portSem, flags);
|
|
/*
|
|
** If RTA is not powered on, the tx packets will be
|
|
** unset, so go no further.
|
|
*/
|
|
if (PortP->TxStart == 0) {
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "Tx pkts not set up yet\n");
|
|
rio_spin_unlock_irqrestore(&PortP->portSem, flags);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
** For the second slot of a 16 port RTA, the driver needs to
|
|
** sort out the phb to port mappings. The dest_unit for this
|
|
** group of 8 phbs is set to the dest_unit of the accompanying
|
|
** 8 port block. The dest_port of the second unit is set to
|
|
** be in the range 8-15 (i.e. 8 is added). Thus, for a 16 port
|
|
** RTA with IDs 5 and 6, traffic bound for port 6 of unit 6
|
|
** (being the second map ID) will be sent to dest_unit 5, port
|
|
** 14. When this RTA is deleted, dest_unit for ID 6 will be
|
|
** restored, and the dest_port will be reduced by 8.
|
|
** Transmit packets also have a destination field which needs
|
|
** adjusting in the same manner.
|
|
** Note that the unit/port bytes in 'dest' are swapped.
|
|
** We also need to adjust the phb and rup link numbers for the
|
|
** second block of 8 ttys.
|
|
*/
|
|
for (TxPktP = PortP->TxStart; TxPktP <= PortP->TxEnd; TxPktP++) {
|
|
/*
|
|
** *TxPktP is the pointer to the transmit packet on the host
|
|
** card. This needs to be translated into a 32 bit pointer
|
|
** so it can be accessed from the driver.
|
|
*/
|
|
Pkt = (struct PKT __iomem *) RIO_PTR(HostP->Caddr, readw(TxPktP));
|
|
|
|
/*
|
|
** If the packet is used, reset it.
|
|
*/
|
|
Pkt = (struct PKT __iomem *) ((unsigned long) Pkt & ~PKT_IN_USE);
|
|
writeb(dest_unit, &Pkt->dest_unit);
|
|
writeb(dest_port, &Pkt->dest_port);
|
|
}
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "phb dest: Old %x:%x New %x:%x\n", readw(&PortP->PhbP->destination) & 0xff, (readw(&PortP->PhbP->destination) >> 8) & 0xff, dest_unit, dest_port);
|
|
writew(dest_unit + (dest_port << 8), &PortP->PhbP->destination);
|
|
writew(link, &PortP->PhbP->link);
|
|
|
|
rio_spin_unlock_irqrestore(&PortP->portSem, flags);
|
|
}
|
|
/*
|
|
** Now make sure the range of ports to be serviced includes
|
|
** the 2nd 8 on this 16 port RTA.
|
|
*/
|
|
if (link > 3)
|
|
return;
|
|
if (((unit * 8) + 7) > readw(&HostP->LinkStrP[link].last_port)) {
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "last port on host link %d: %d\n", link, (unit * 8) + 7);
|
|
writew((unit * 8) + 7, &HostP->LinkStrP[link].last_port);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Check to see if the new disconnection has isolated this unit.
|
|
** If it has, then invalidate all its link information, and tell
|
|
** the world about it. This is done to ensure that the configurator
|
|
** only gets up-to-date information about what is going on.
|
|
*/
|
|
static int RIOCheckIsolated(struct rio_info *p, struct Host *HostP, unsigned int UnitId)
|
|
{
|
|
unsigned long flags;
|
|
rio_spin_lock_irqsave(&HostP->HostLock, flags);
|
|
|
|
if (RIOCheck(HostP, UnitId)) {
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "Unit %d is NOT isolated\n", UnitId);
|
|
rio_spin_unlock_irqrestore(&HostP->HostLock, flags);
|
|
return (0);
|
|
}
|
|
|
|
RIOIsolate(p, HostP, UnitId);
|
|
RIOSetChange(p);
|
|
rio_spin_unlock_irqrestore(&HostP->HostLock, flags);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** Invalidate all the link interconnectivity of this unit, and of
|
|
** all the units attached to it. This will mean that the entire
|
|
** subnet will re-introduce itself.
|
|
*/
|
|
static int RIOIsolate(struct rio_info *p, struct Host *HostP, unsigned int UnitId)
|
|
{
|
|
unsigned int link, unit;
|
|
|
|
UnitId--; /* this trick relies on the Unit Id being UNSIGNED! */
|
|
|
|
if (UnitId >= MAX_RUP) /* dontcha just lurv unsigned maths! */
|
|
return (0);
|
|
|
|
if (HostP->Mapping[UnitId].Flags & BEEN_HERE)
|
|
return (0);
|
|
|
|
HostP->Mapping[UnitId].Flags |= BEEN_HERE;
|
|
|
|
if (p->RIOPrintDisabled == DO_PRINT)
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "RIOMesgIsolated %s", HostP->Mapping[UnitId].Name);
|
|
|
|
for (link = 0; link < LINKS_PER_UNIT; link++) {
|
|
unit = HostP->Mapping[UnitId].Topology[link].Unit;
|
|
HostP->Mapping[UnitId].Topology[link].Unit = ROUTE_DISCONNECT;
|
|
HostP->Mapping[UnitId].Topology[link].Link = NO_LINK;
|
|
RIOIsolate(p, HostP, unit);
|
|
}
|
|
HostP->Mapping[UnitId].Flags &= ~BEEN_HERE;
|
|
return 1;
|
|
}
|
|
|
|
static int RIOCheck(struct Host *HostP, unsigned int UnitId)
|
|
{
|
|
unsigned char link;
|
|
|
|
/* rio_dprint(RIO_DEBUG_ROUTE, ("Check to see if unit %d has a route to the host\n",UnitId)); */
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "RIOCheck : UnitID = %d\n", UnitId);
|
|
|
|
if (UnitId == HOST_ID) {
|
|
/* rio_dprint(RIO_DEBUG_ROUTE, ("Unit %d is NOT isolated - it IS the host!\n", UnitId)); */
|
|
return 1;
|
|
}
|
|
|
|
UnitId--;
|
|
|
|
if (UnitId >= MAX_RUP) {
|
|
/* rio_dprint(RIO_DEBUG_ROUTE, ("Unit %d - ignored.\n", UnitId)); */
|
|
return 0;
|
|
}
|
|
|
|
for (link = 0; link < LINKS_PER_UNIT; link++) {
|
|
if (HostP->Mapping[UnitId].Topology[link].Unit == HOST_ID) {
|
|
/* rio_dprint(RIO_DEBUG_ROUTE, ("Unit %d is connected directly to host via link (%c).\n",
|
|
UnitId, 'A'+link)); */
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if (HostP->Mapping[UnitId].Flags & BEEN_HERE) {
|
|
/* rio_dprint(RIO_DEBUG_ROUTE, ("Been to Unit %d before - ignoring\n", UnitId)); */
|
|
return 0;
|
|
}
|
|
|
|
HostP->Mapping[UnitId].Flags |= BEEN_HERE;
|
|
|
|
for (link = 0; link < LINKS_PER_UNIT; link++) {
|
|
/* rio_dprint(RIO_DEBUG_ROUTE, ("Unit %d check link (%c)\n", UnitId,'A'+link)); */
|
|
if (RIOCheck(HostP, HostP->Mapping[UnitId].Topology[link].Unit)) {
|
|
/* rio_dprint(RIO_DEBUG_ROUTE, ("Unit %d is connected to something that knows the host via link (%c)\n", UnitId,link+'A')); */
|
|
HostP->Mapping[UnitId].Flags &= ~BEEN_HERE;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
HostP->Mapping[UnitId].Flags &= ~BEEN_HERE;
|
|
|
|
/* rio_dprint(RIO_DEBUG_ROUTE, ("Unit %d DOESNT KNOW THE HOST!\n", UnitId)); */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Returns the type of unit (host, 16/8 port RTA)
|
|
*/
|
|
|
|
unsigned int GetUnitType(unsigned int Uniq)
|
|
{
|
|
switch ((Uniq >> 28) & 0xf) {
|
|
case RIO_AT:
|
|
case RIO_MCA:
|
|
case RIO_EISA:
|
|
case RIO_PCI:
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "Unit type: Host\n");
|
|
return (TYPE_HOST);
|
|
case RIO_RTA_16:
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "Unit type: 16 port RTA\n");
|
|
return (TYPE_RTA16);
|
|
case RIO_RTA:
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "Unit type: 8 port RTA\n");
|
|
return (TYPE_RTA8);
|
|
default:
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "Unit type: Unrecognised\n");
|
|
return (99);
|
|
}
|
|
}
|
|
|
|
int RIOSetChange(struct rio_info *p)
|
|
{
|
|
if (p->RIOQuickCheck != NOT_CHANGED)
|
|
return (0);
|
|
p->RIOQuickCheck = CHANGED;
|
|
if (p->RIOSignalProcess) {
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "Send SIG-HUP");
|
|
/*
|
|
psignal( RIOSignalProcess, SIGHUP );
|
|
*/
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static void RIOConCon(struct rio_info *p,
|
|
struct Host *HostP,
|
|
unsigned int FromId,
|
|
unsigned int FromLink,
|
|
unsigned int ToId,
|
|
unsigned int ToLink,
|
|
int Change)
|
|
{
|
|
char *FromName;
|
|
char *FromType;
|
|
char *ToName;
|
|
char *ToType;
|
|
unsigned int tp;
|
|
|
|
/*
|
|
** 15.10.1998 ARG - ESIL 0759
|
|
** (Part) fix for port being trashed when opened whilst RTA "disconnected"
|
|
**
|
|
** What's this doing in here anyway ?
|
|
** It was causing the port to be 'unmapped' if opened whilst RTA "disconnected"
|
|
**
|
|
** 09.12.1998 ARG - ESIL 0776 - part fix
|
|
** Okay, We've found out what this was all about now !
|
|
** Someone had botched this to use RIOHalted to indicated the number of RTAs
|
|
** 'disconnected'. The value in RIOHalted was then being used in the
|
|
** 'RIO_QUICK_CHECK' ioctl. A none zero value indicating that a least one RTA
|
|
** is 'disconnected'. The change was put in to satisfy a customer's needs.
|
|
** Having taken this bit of code out 'RIO_QUICK_CHECK' now no longer works for
|
|
** the customer.
|
|
**
|
|
if (Change == CONNECT) {
|
|
if (p->RIOHalted) p->RIOHalted --;
|
|
}
|
|
else {
|
|
p->RIOHalted ++;
|
|
}
|
|
**
|
|
** So - we need to implement it slightly differently - a new member of the
|
|
** rio_info struct - RIORtaDisCons (RIO RTA connections) keeps track of RTA
|
|
** connections and disconnections.
|
|
*/
|
|
if (Change == CONNECT) {
|
|
if (p->RIORtaDisCons)
|
|
p->RIORtaDisCons--;
|
|
} else {
|
|
p->RIORtaDisCons++;
|
|
}
|
|
|
|
if (p->RIOPrintDisabled == DONT_PRINT)
|
|
return;
|
|
|
|
if (FromId > ToId) {
|
|
tp = FromId;
|
|
FromId = ToId;
|
|
ToId = tp;
|
|
tp = FromLink;
|
|
FromLink = ToLink;
|
|
ToLink = tp;
|
|
}
|
|
|
|
FromName = FromId ? HostP->Mapping[FromId - 1].Name : HostP->Name;
|
|
FromType = FromId ? "RTA" : "HOST";
|
|
ToName = ToId ? HostP->Mapping[ToId - 1].Name : HostP->Name;
|
|
ToType = ToId ? "RTA" : "HOST";
|
|
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "Link between %s '%s' (%c) and %s '%s' (%c) %s.\n", FromType, FromName, 'A' + FromLink, ToType, ToName, 'A' + ToLink, (Change == CONNECT) ? "established" : "disconnected");
|
|
printk(KERN_DEBUG "rio: Link between %s '%s' (%c) and %s '%s' (%c) %s.\n", FromType, FromName, 'A' + FromLink, ToType, ToName, 'A' + ToLink, (Change == CONNECT) ? "established" : "disconnected");
|
|
}
|
|
|
|
/*
|
|
** RIORemoveFromSavedTable :
|
|
**
|
|
** Delete and RTA entry from the saved table given to us
|
|
** by the configuration program.
|
|
*/
|
|
static int RIORemoveFromSavedTable(struct rio_info *p, struct Map *pMap)
|
|
{
|
|
int entry;
|
|
|
|
/*
|
|
** We loop for all entries even after finding an entry and
|
|
** zeroing it because we may have two entries to delete if
|
|
** it's a 16 port RTA.
|
|
*/
|
|
for (entry = 0; entry < TOTAL_MAP_ENTRIES; entry++) {
|
|
if (p->RIOSavedTable[entry].RtaUniqueNum == pMap->RtaUniqueNum) {
|
|
memset(&p->RIOSavedTable[entry], 0, sizeof(struct Map));
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
** RIOCheckDisconnected :
|
|
**
|
|
** Scan the unit links to and return zero if the unit is completely
|
|
** disconnected.
|
|
*/
|
|
static int RIOFreeDisconnected(struct rio_info *p, struct Host *HostP, int unit)
|
|
{
|
|
int link;
|
|
|
|
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "RIOFreeDisconnect unit %d\n", unit);
|
|
/*
|
|
** If the slot is tentative and does not belong to the
|
|
** second half of a 16 port RTA then scan to see if
|
|
** is disconnected.
|
|
*/
|
|
for (link = 0; link < LINKS_PER_UNIT; link++) {
|
|
if (HostP->Mapping[unit].Topology[link].Unit != ROUTE_DISCONNECT)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
** If not all links are disconnected then we can forget about it.
|
|
*/
|
|
if (link < LINKS_PER_UNIT)
|
|
return 1;
|
|
|
|
#ifdef NEED_TO_FIX_THIS
|
|
/* Ok so all the links are disconnected. But we may have only just
|
|
** made this slot tentative and not yet received a topology update.
|
|
** Lets check how long ago we made it tentative.
|
|
*/
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "Just about to check LBOLT on entry %d\n", unit);
|
|
if (drv_getparm(LBOLT, (ulong_t *) & current_time))
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "drv_getparm(LBOLT,....) Failed.\n");
|
|
|
|
elapse_time = current_time - TentTime[unit];
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "elapse %d = current %d - tent %d (%d usec)\n", elapse_time, current_time, TentTime[unit], drv_hztousec(elapse_time));
|
|
if (drv_hztousec(elapse_time) < WAIT_TO_FINISH) {
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "Skipping slot %d, not timed out yet %d\n", unit, drv_hztousec(elapse_time));
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** We have found an usable slot.
|
|
** If it is half of a 16 port RTA then delete the other half.
|
|
*/
|
|
if (HostP->Mapping[unit].ID2 != 0) {
|
|
int nOther = (HostP->Mapping[unit].ID2) - 1;
|
|
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "RioFreedis second slot %d.\n", nOther);
|
|
memset(&HostP->Mapping[nOther], 0, sizeof(struct Map));
|
|
}
|
|
RIORemoveFromSavedTable(p, &HostP->Mapping[unit]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
** RIOFindFreeID :
|
|
**
|
|
** This function scans the given host table for either one
|
|
** or two free unit ID's.
|
|
*/
|
|
|
|
int RIOFindFreeID(struct rio_info *p, struct Host *HostP, unsigned int * pID1, unsigned int * pID2)
|
|
{
|
|
int unit, tempID;
|
|
|
|
/*
|
|
** Initialise the ID's to MAX_RUP.
|
|
** We do this to make the loop for setting the ID's as simple as
|
|
** possible.
|
|
*/
|
|
*pID1 = MAX_RUP;
|
|
if (pID2 != NULL)
|
|
*pID2 = MAX_RUP;
|
|
|
|
/*
|
|
** Scan all entries of the host mapping table for free slots.
|
|
** We scan for free slots first and then if that is not successful
|
|
** we start all over again looking for tentative slots we can re-use.
|
|
*/
|
|
for (unit = 0; unit < MAX_RUP; unit++) {
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "Scanning unit %d\n", unit);
|
|
/*
|
|
** If the flags are zero then the slot is empty.
|
|
*/
|
|
if (HostP->Mapping[unit].Flags == 0) {
|
|
rio_dprintk(RIO_DEBUG_ROUTE, " This slot is empty.\n");
|
|
/*
|
|
** If we haven't allocated the first ID then do it now.
|
|
*/
|
|
if (*pID1 == MAX_RUP) {
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "Make tentative entry for first unit %d\n", unit);
|
|
*pID1 = unit;
|
|
|
|
/*
|
|
** If the second ID is not needed then we can return
|
|
** now.
|
|
*/
|
|
if (pID2 == NULL)
|
|
return 0;
|
|
} else {
|
|
/*
|
|
** Allocate the second slot and return.
|
|
*/
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "Make tentative entry for second unit %d\n", unit);
|
|
*pID2 = unit;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** If we manage to come out of the free slot loop then we
|
|
** need to start all over again looking for tentative slots
|
|
** that we can re-use.
|
|
*/
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "Starting to scan for tentative slots\n");
|
|
for (unit = 0; unit < MAX_RUP; unit++) {
|
|
if (((HostP->Mapping[unit].Flags & SLOT_TENTATIVE) || (HostP->Mapping[unit].Flags == 0)) && !(HostP->Mapping[unit].Flags & RTA16_SECOND_SLOT)) {
|
|
rio_dprintk(RIO_DEBUG_ROUTE, " Slot %d looks promising.\n", unit);
|
|
|
|
if (unit == *pID1) {
|
|
rio_dprintk(RIO_DEBUG_ROUTE, " No it isn't, its the 1st half\n");
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
** Slot is Tentative or Empty, but not a tentative second
|
|
** slot of a 16 porter.
|
|
** Attempt to free up this slot (and its parnter if
|
|
** it is a 16 port slot. The second slot will become
|
|
** empty after a call to RIOFreeDisconnected so thats why
|
|
** we look for empty slots above as well).
|
|
*/
|
|
if (HostP->Mapping[unit].Flags != 0)
|
|
if (RIOFreeDisconnected(p, HostP, unit) != 0)
|
|
continue;
|
|
/*
|
|
** If we haven't allocated the first ID then do it now.
|
|
*/
|
|
if (*pID1 == MAX_RUP) {
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "Grab tentative entry for first unit %d\n", unit);
|
|
*pID1 = unit;
|
|
|
|
/*
|
|
** Clear out this slot now that we intend to use it.
|
|
*/
|
|
memset(&HostP->Mapping[unit], 0, sizeof(struct Map));
|
|
|
|
/*
|
|
** If the second ID is not needed then we can return
|
|
** now.
|
|
*/
|
|
if (pID2 == NULL)
|
|
return 0;
|
|
} else {
|
|
/*
|
|
** Allocate the second slot and return.
|
|
*/
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "Grab tentative/empty entry for second unit %d\n", unit);
|
|
*pID2 = unit;
|
|
|
|
/*
|
|
** Clear out this slot now that we intend to use it.
|
|
*/
|
|
memset(&HostP->Mapping[unit], 0, sizeof(struct Map));
|
|
|
|
/* At this point under the right(wrong?) conditions
|
|
** we may have a first unit ID being higher than the
|
|
** second unit ID. This is a bad idea if we are about
|
|
** to fill the slots with a 16 port RTA.
|
|
** Better check and swap them over.
|
|
*/
|
|
|
|
if (*pID1 > *pID2) {
|
|
rio_dprintk(RIO_DEBUG_ROUTE, "Swapping IDS %d %d\n", *pID1, *pID2);
|
|
tempID = *pID1;
|
|
*pID1 = *pID2;
|
|
*pID2 = tempID;
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** If we manage to get to the end of the second loop then we
|
|
** can give up and return a failure.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*
|
|
** The link switch scenario.
|
|
**
|
|
** Rta Wun (A) is connected to Tuw (A).
|
|
** The tables are all up to date, and the system is OK.
|
|
**
|
|
** If Wun (A) is now moved to Wun (B) before Wun (A) can
|
|
** become disconnected, then the follow happens:
|
|
**
|
|
** Tuw (A) spots the change of unit:link at the other end
|
|
** of its link and Tuw sends a topology packet reflecting
|
|
** the change: Tuw (A) now disconnected from Wun (A), and
|
|
** this is closely followed by a packet indicating that
|
|
** Tuw (A) is now connected to Wun (B).
|
|
**
|
|
** Wun (B) will spot that it has now become connected, and
|
|
** Wun will send a topology packet, which indicates that
|
|
** both Wun (A) and Wun (B) is connected to Tuw (A).
|
|
**
|
|
** Eventually Wun (A) realises that it is now disconnected
|
|
** and Wun will send out a topology packet indicating that
|
|
** Wun (A) is now disconnected.
|
|
*/
|