mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-15 15:04:27 +08:00
e9fc3ce99b
Implement changes to error reporting for high-level libbpf APIs to make them less surprising and less error-prone to users: - in all the cases when error happens, errno is set to an appropriate error value; - in libbpf 1.0 mode, all pointer-returning APIs return NULL on error and error code is communicated through errno; this applies both to APIs that already returned NULL before (so now they communicate more detailed error codes), as well as for many APIs that used ERR_PTR() macro and encoded error numbers as fake pointers. - in legacy (default) mode, those APIs that were returning ERR_PTR(err), continue doing so, but still set errno. With these changes, errno can be always used to extract actual error, regardless of legacy or libbpf 1.0 modes. This is utilized internally in libbpf in places where libbpf uses it's own high-level APIs. libbpf_get_error() is adapted to handle both cases completely transparently to end-users (and is used by libbpf consistently as well). More context, justification, and discussion can be found in "Libbpf: the road to v1.0" document ([0]). [0] https://docs.google.com/document/d/1UyjTZuPFWiPFyKk1tV5an11_iaRuec6U-ZESZ54nNTY Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210525035935.1461796-5-andrii@kernel.org
4639 lines
120 KiB
C
4639 lines
120 KiB
C
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
|
|
/* Copyright (c) 2018 Facebook */
|
|
|
|
#include <byteswap.h>
|
|
#include <endian.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <errno.h>
|
|
#include <sys/utsname.h>
|
|
#include <sys/param.h>
|
|
#include <sys/stat.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/err.h>
|
|
#include <linux/btf.h>
|
|
#include <gelf.h>
|
|
#include "btf.h"
|
|
#include "bpf.h"
|
|
#include "libbpf.h"
|
|
#include "libbpf_internal.h"
|
|
#include "hashmap.h"
|
|
#include "strset.h"
|
|
|
|
#define BTF_MAX_NR_TYPES 0x7fffffffU
|
|
#define BTF_MAX_STR_OFFSET 0x7fffffffU
|
|
|
|
static struct btf_type btf_void;
|
|
|
|
struct btf {
|
|
/* raw BTF data in native endianness */
|
|
void *raw_data;
|
|
/* raw BTF data in non-native endianness */
|
|
void *raw_data_swapped;
|
|
__u32 raw_size;
|
|
/* whether target endianness differs from the native one */
|
|
bool swapped_endian;
|
|
|
|
/*
|
|
* When BTF is loaded from an ELF or raw memory it is stored
|
|
* in a contiguous memory block. The hdr, type_data, and, strs_data
|
|
* point inside that memory region to their respective parts of BTF
|
|
* representation:
|
|
*
|
|
* +--------------------------------+
|
|
* | Header | Types | Strings |
|
|
* +--------------------------------+
|
|
* ^ ^ ^
|
|
* | | |
|
|
* hdr | |
|
|
* types_data-+ |
|
|
* strs_data------------+
|
|
*
|
|
* If BTF data is later modified, e.g., due to types added or
|
|
* removed, BTF deduplication performed, etc, this contiguous
|
|
* representation is broken up into three independently allocated
|
|
* memory regions to be able to modify them independently.
|
|
* raw_data is nulled out at that point, but can be later allocated
|
|
* and cached again if user calls btf__get_raw_data(), at which point
|
|
* raw_data will contain a contiguous copy of header, types, and
|
|
* strings:
|
|
*
|
|
* +----------+ +---------+ +-----------+
|
|
* | Header | | Types | | Strings |
|
|
* +----------+ +---------+ +-----------+
|
|
* ^ ^ ^
|
|
* | | |
|
|
* hdr | |
|
|
* types_data----+ |
|
|
* strset__data(strs_set)-----+
|
|
*
|
|
* +----------+---------+-----------+
|
|
* | Header | Types | Strings |
|
|
* raw_data----->+----------+---------+-----------+
|
|
*/
|
|
struct btf_header *hdr;
|
|
|
|
void *types_data;
|
|
size_t types_data_cap; /* used size stored in hdr->type_len */
|
|
|
|
/* type ID to `struct btf_type *` lookup index
|
|
* type_offs[0] corresponds to the first non-VOID type:
|
|
* - for base BTF it's type [1];
|
|
* - for split BTF it's the first non-base BTF type.
|
|
*/
|
|
__u32 *type_offs;
|
|
size_t type_offs_cap;
|
|
/* number of types in this BTF instance:
|
|
* - doesn't include special [0] void type;
|
|
* - for split BTF counts number of types added on top of base BTF.
|
|
*/
|
|
__u32 nr_types;
|
|
/* if not NULL, points to the base BTF on top of which the current
|
|
* split BTF is based
|
|
*/
|
|
struct btf *base_btf;
|
|
/* BTF type ID of the first type in this BTF instance:
|
|
* - for base BTF it's equal to 1;
|
|
* - for split BTF it's equal to biggest type ID of base BTF plus 1.
|
|
*/
|
|
int start_id;
|
|
/* logical string offset of this BTF instance:
|
|
* - for base BTF it's equal to 0;
|
|
* - for split BTF it's equal to total size of base BTF's string section size.
|
|
*/
|
|
int start_str_off;
|
|
|
|
/* only one of strs_data or strs_set can be non-NULL, depending on
|
|
* whether BTF is in a modifiable state (strs_set is used) or not
|
|
* (strs_data points inside raw_data)
|
|
*/
|
|
void *strs_data;
|
|
/* a set of unique strings */
|
|
struct strset *strs_set;
|
|
/* whether strings are already deduplicated */
|
|
bool strs_deduped;
|
|
|
|
/* BTF object FD, if loaded into kernel */
|
|
int fd;
|
|
|
|
/* Pointer size (in bytes) for a target architecture of this BTF */
|
|
int ptr_sz;
|
|
};
|
|
|
|
static inline __u64 ptr_to_u64(const void *ptr)
|
|
{
|
|
return (__u64) (unsigned long) ptr;
|
|
}
|
|
|
|
/* Ensure given dynamically allocated memory region pointed to by *data* with
|
|
* capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
|
|
* memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements
|
|
* are already used. At most *max_cnt* elements can be ever allocated.
|
|
* If necessary, memory is reallocated and all existing data is copied over,
|
|
* new pointer to the memory region is stored at *data, new memory region
|
|
* capacity (in number of elements) is stored in *cap.
|
|
* On success, memory pointer to the beginning of unused memory is returned.
|
|
* On error, NULL is returned.
|
|
*/
|
|
void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
|
|
size_t cur_cnt, size_t max_cnt, size_t add_cnt)
|
|
{
|
|
size_t new_cnt;
|
|
void *new_data;
|
|
|
|
if (cur_cnt + add_cnt <= *cap_cnt)
|
|
return *data + cur_cnt * elem_sz;
|
|
|
|
/* requested more than the set limit */
|
|
if (cur_cnt + add_cnt > max_cnt)
|
|
return NULL;
|
|
|
|
new_cnt = *cap_cnt;
|
|
new_cnt += new_cnt / 4; /* expand by 25% */
|
|
if (new_cnt < 16) /* but at least 16 elements */
|
|
new_cnt = 16;
|
|
if (new_cnt > max_cnt) /* but not exceeding a set limit */
|
|
new_cnt = max_cnt;
|
|
if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */
|
|
new_cnt = cur_cnt + add_cnt;
|
|
|
|
new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
|
|
if (!new_data)
|
|
return NULL;
|
|
|
|
/* zero out newly allocated portion of memory */
|
|
memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
|
|
|
|
*data = new_data;
|
|
*cap_cnt = new_cnt;
|
|
return new_data + cur_cnt * elem_sz;
|
|
}
|
|
|
|
/* Ensure given dynamically allocated memory region has enough allocated space
|
|
* to accommodate *need_cnt* elements of size *elem_sz* bytes each
|
|
*/
|
|
int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
|
|
{
|
|
void *p;
|
|
|
|
if (need_cnt <= *cap_cnt)
|
|
return 0;
|
|
|
|
p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
|
|
if (!p)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
|
|
{
|
|
__u32 *p;
|
|
|
|
p = libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
|
|
btf->nr_types, BTF_MAX_NR_TYPES, 1);
|
|
if (!p)
|
|
return -ENOMEM;
|
|
|
|
*p = type_off;
|
|
return 0;
|
|
}
|
|
|
|
static void btf_bswap_hdr(struct btf_header *h)
|
|
{
|
|
h->magic = bswap_16(h->magic);
|
|
h->hdr_len = bswap_32(h->hdr_len);
|
|
h->type_off = bswap_32(h->type_off);
|
|
h->type_len = bswap_32(h->type_len);
|
|
h->str_off = bswap_32(h->str_off);
|
|
h->str_len = bswap_32(h->str_len);
|
|
}
|
|
|
|
static int btf_parse_hdr(struct btf *btf)
|
|
{
|
|
struct btf_header *hdr = btf->hdr;
|
|
__u32 meta_left;
|
|
|
|
if (btf->raw_size < sizeof(struct btf_header)) {
|
|
pr_debug("BTF header not found\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (hdr->magic == bswap_16(BTF_MAGIC)) {
|
|
btf->swapped_endian = true;
|
|
if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
|
|
pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
|
|
bswap_32(hdr->hdr_len));
|
|
return -ENOTSUP;
|
|
}
|
|
btf_bswap_hdr(hdr);
|
|
} else if (hdr->magic != BTF_MAGIC) {
|
|
pr_debug("Invalid BTF magic:%x\n", hdr->magic);
|
|
return -EINVAL;
|
|
}
|
|
|
|
meta_left = btf->raw_size - sizeof(*hdr);
|
|
if (meta_left < hdr->str_off + hdr->str_len) {
|
|
pr_debug("Invalid BTF total size:%u\n", btf->raw_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (hdr->type_off + hdr->type_len > hdr->str_off) {
|
|
pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
|
|
hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (hdr->type_off % 4) {
|
|
pr_debug("BTF type section is not aligned to 4 bytes\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_parse_str_sec(struct btf *btf)
|
|
{
|
|
const struct btf_header *hdr = btf->hdr;
|
|
const char *start = btf->strs_data;
|
|
const char *end = start + btf->hdr->str_len;
|
|
|
|
if (btf->base_btf && hdr->str_len == 0)
|
|
return 0;
|
|
if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
|
|
pr_debug("Invalid BTF string section\n");
|
|
return -EINVAL;
|
|
}
|
|
if (!btf->base_btf && start[0]) {
|
|
pr_debug("Invalid BTF string section\n");
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int btf_type_size(const struct btf_type *t)
|
|
{
|
|
const int base_size = sizeof(struct btf_type);
|
|
__u16 vlen = btf_vlen(t);
|
|
|
|
switch (btf_kind(t)) {
|
|
case BTF_KIND_FWD:
|
|
case BTF_KIND_CONST:
|
|
case BTF_KIND_VOLATILE:
|
|
case BTF_KIND_RESTRICT:
|
|
case BTF_KIND_PTR:
|
|
case BTF_KIND_TYPEDEF:
|
|
case BTF_KIND_FUNC:
|
|
case BTF_KIND_FLOAT:
|
|
return base_size;
|
|
case BTF_KIND_INT:
|
|
return base_size + sizeof(__u32);
|
|
case BTF_KIND_ENUM:
|
|
return base_size + vlen * sizeof(struct btf_enum);
|
|
case BTF_KIND_ARRAY:
|
|
return base_size + sizeof(struct btf_array);
|
|
case BTF_KIND_STRUCT:
|
|
case BTF_KIND_UNION:
|
|
return base_size + vlen * sizeof(struct btf_member);
|
|
case BTF_KIND_FUNC_PROTO:
|
|
return base_size + vlen * sizeof(struct btf_param);
|
|
case BTF_KIND_VAR:
|
|
return base_size + sizeof(struct btf_var);
|
|
case BTF_KIND_DATASEC:
|
|
return base_size + vlen * sizeof(struct btf_var_secinfo);
|
|
default:
|
|
pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static void btf_bswap_type_base(struct btf_type *t)
|
|
{
|
|
t->name_off = bswap_32(t->name_off);
|
|
t->info = bswap_32(t->info);
|
|
t->type = bswap_32(t->type);
|
|
}
|
|
|
|
static int btf_bswap_type_rest(struct btf_type *t)
|
|
{
|
|
struct btf_var_secinfo *v;
|
|
struct btf_member *m;
|
|
struct btf_array *a;
|
|
struct btf_param *p;
|
|
struct btf_enum *e;
|
|
__u16 vlen = btf_vlen(t);
|
|
int i;
|
|
|
|
switch (btf_kind(t)) {
|
|
case BTF_KIND_FWD:
|
|
case BTF_KIND_CONST:
|
|
case BTF_KIND_VOLATILE:
|
|
case BTF_KIND_RESTRICT:
|
|
case BTF_KIND_PTR:
|
|
case BTF_KIND_TYPEDEF:
|
|
case BTF_KIND_FUNC:
|
|
case BTF_KIND_FLOAT:
|
|
return 0;
|
|
case BTF_KIND_INT:
|
|
*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
|
|
return 0;
|
|
case BTF_KIND_ENUM:
|
|
for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
|
|
e->name_off = bswap_32(e->name_off);
|
|
e->val = bswap_32(e->val);
|
|
}
|
|
return 0;
|
|
case BTF_KIND_ARRAY:
|
|
a = btf_array(t);
|
|
a->type = bswap_32(a->type);
|
|
a->index_type = bswap_32(a->index_type);
|
|
a->nelems = bswap_32(a->nelems);
|
|
return 0;
|
|
case BTF_KIND_STRUCT:
|
|
case BTF_KIND_UNION:
|
|
for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
|
|
m->name_off = bswap_32(m->name_off);
|
|
m->type = bswap_32(m->type);
|
|
m->offset = bswap_32(m->offset);
|
|
}
|
|
return 0;
|
|
case BTF_KIND_FUNC_PROTO:
|
|
for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
|
|
p->name_off = bswap_32(p->name_off);
|
|
p->type = bswap_32(p->type);
|
|
}
|
|
return 0;
|
|
case BTF_KIND_VAR:
|
|
btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
|
|
return 0;
|
|
case BTF_KIND_DATASEC:
|
|
for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
|
|
v->type = bswap_32(v->type);
|
|
v->offset = bswap_32(v->offset);
|
|
v->size = bswap_32(v->size);
|
|
}
|
|
return 0;
|
|
default:
|
|
pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static int btf_parse_type_sec(struct btf *btf)
|
|
{
|
|
struct btf_header *hdr = btf->hdr;
|
|
void *next_type = btf->types_data;
|
|
void *end_type = next_type + hdr->type_len;
|
|
int err, type_size;
|
|
|
|
while (next_type + sizeof(struct btf_type) <= end_type) {
|
|
if (btf->swapped_endian)
|
|
btf_bswap_type_base(next_type);
|
|
|
|
type_size = btf_type_size(next_type);
|
|
if (type_size < 0)
|
|
return type_size;
|
|
if (next_type + type_size > end_type) {
|
|
pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf->swapped_endian && btf_bswap_type_rest(next_type))
|
|
return -EINVAL;
|
|
|
|
err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
|
|
if (err)
|
|
return err;
|
|
|
|
next_type += type_size;
|
|
btf->nr_types++;
|
|
}
|
|
|
|
if (next_type != end_type) {
|
|
pr_warn("BTF types data is malformed\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
__u32 btf__get_nr_types(const struct btf *btf)
|
|
{
|
|
return btf->start_id + btf->nr_types - 1;
|
|
}
|
|
|
|
const struct btf *btf__base_btf(const struct btf *btf)
|
|
{
|
|
return btf->base_btf;
|
|
}
|
|
|
|
/* internal helper returning non-const pointer to a type */
|
|
struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id)
|
|
{
|
|
if (type_id == 0)
|
|
return &btf_void;
|
|
if (type_id < btf->start_id)
|
|
return btf_type_by_id(btf->base_btf, type_id);
|
|
return btf->types_data + btf->type_offs[type_id - btf->start_id];
|
|
}
|
|
|
|
const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
|
|
{
|
|
if (type_id >= btf->start_id + btf->nr_types)
|
|
return errno = EINVAL, NULL;
|
|
return btf_type_by_id((struct btf *)btf, type_id);
|
|
}
|
|
|
|
static int determine_ptr_size(const struct btf *btf)
|
|
{
|
|
const struct btf_type *t;
|
|
const char *name;
|
|
int i, n;
|
|
|
|
if (btf->base_btf && btf->base_btf->ptr_sz > 0)
|
|
return btf->base_btf->ptr_sz;
|
|
|
|
n = btf__get_nr_types(btf);
|
|
for (i = 1; i <= n; i++) {
|
|
t = btf__type_by_id(btf, i);
|
|
if (!btf_is_int(t))
|
|
continue;
|
|
|
|
name = btf__name_by_offset(btf, t->name_off);
|
|
if (!name)
|
|
continue;
|
|
|
|
if (strcmp(name, "long int") == 0 ||
|
|
strcmp(name, "long unsigned int") == 0) {
|
|
if (t->size != 4 && t->size != 8)
|
|
continue;
|
|
return t->size;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static size_t btf_ptr_sz(const struct btf *btf)
|
|
{
|
|
if (!btf->ptr_sz)
|
|
((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
|
|
return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
|
|
}
|
|
|
|
/* Return pointer size this BTF instance assumes. The size is heuristically
|
|
* determined by looking for 'long' or 'unsigned long' integer type and
|
|
* recording its size in bytes. If BTF type information doesn't have any such
|
|
* type, this function returns 0. In the latter case, native architecture's
|
|
* pointer size is assumed, so will be either 4 or 8, depending on
|
|
* architecture that libbpf was compiled for. It's possible to override
|
|
* guessed value by using btf__set_pointer_size() API.
|
|
*/
|
|
size_t btf__pointer_size(const struct btf *btf)
|
|
{
|
|
if (!btf->ptr_sz)
|
|
((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
|
|
|
|
if (btf->ptr_sz < 0)
|
|
/* not enough BTF type info to guess */
|
|
return 0;
|
|
|
|
return btf->ptr_sz;
|
|
}
|
|
|
|
/* Override or set pointer size in bytes. Only values of 4 and 8 are
|
|
* supported.
|
|
*/
|
|
int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
|
|
{
|
|
if (ptr_sz != 4 && ptr_sz != 8)
|
|
return libbpf_err(-EINVAL);
|
|
btf->ptr_sz = ptr_sz;
|
|
return 0;
|
|
}
|
|
|
|
static bool is_host_big_endian(void)
|
|
{
|
|
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
|
return false;
|
|
#elif __BYTE_ORDER == __BIG_ENDIAN
|
|
return true;
|
|
#else
|
|
# error "Unrecognized __BYTE_ORDER__"
|
|
#endif
|
|
}
|
|
|
|
enum btf_endianness btf__endianness(const struct btf *btf)
|
|
{
|
|
if (is_host_big_endian())
|
|
return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
|
|
else
|
|
return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
|
|
}
|
|
|
|
int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
|
|
{
|
|
if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
|
|
return libbpf_err(-EINVAL);
|
|
|
|
btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
|
|
if (!btf->swapped_endian) {
|
|
free(btf->raw_data_swapped);
|
|
btf->raw_data_swapped = NULL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static bool btf_type_is_void(const struct btf_type *t)
|
|
{
|
|
return t == &btf_void || btf_is_fwd(t);
|
|
}
|
|
|
|
static bool btf_type_is_void_or_null(const struct btf_type *t)
|
|
{
|
|
return !t || btf_type_is_void(t);
|
|
}
|
|
|
|
#define MAX_RESOLVE_DEPTH 32
|
|
|
|
__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
|
|
{
|
|
const struct btf_array *array;
|
|
const struct btf_type *t;
|
|
__u32 nelems = 1;
|
|
__s64 size = -1;
|
|
int i;
|
|
|
|
t = btf__type_by_id(btf, type_id);
|
|
for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
|
|
switch (btf_kind(t)) {
|
|
case BTF_KIND_INT:
|
|
case BTF_KIND_STRUCT:
|
|
case BTF_KIND_UNION:
|
|
case BTF_KIND_ENUM:
|
|
case BTF_KIND_DATASEC:
|
|
case BTF_KIND_FLOAT:
|
|
size = t->size;
|
|
goto done;
|
|
case BTF_KIND_PTR:
|
|
size = btf_ptr_sz(btf);
|
|
goto done;
|
|
case BTF_KIND_TYPEDEF:
|
|
case BTF_KIND_VOLATILE:
|
|
case BTF_KIND_CONST:
|
|
case BTF_KIND_RESTRICT:
|
|
case BTF_KIND_VAR:
|
|
type_id = t->type;
|
|
break;
|
|
case BTF_KIND_ARRAY:
|
|
array = btf_array(t);
|
|
if (nelems && array->nelems > UINT32_MAX / nelems)
|
|
return libbpf_err(-E2BIG);
|
|
nelems *= array->nelems;
|
|
type_id = array->type;
|
|
break;
|
|
default:
|
|
return libbpf_err(-EINVAL);
|
|
}
|
|
|
|
t = btf__type_by_id(btf, type_id);
|
|
}
|
|
|
|
done:
|
|
if (size < 0)
|
|
return libbpf_err(-EINVAL);
|
|
if (nelems && size > UINT32_MAX / nelems)
|
|
return libbpf_err(-E2BIG);
|
|
|
|
return nelems * size;
|
|
}
|
|
|
|
int btf__align_of(const struct btf *btf, __u32 id)
|
|
{
|
|
const struct btf_type *t = btf__type_by_id(btf, id);
|
|
__u16 kind = btf_kind(t);
|
|
|
|
switch (kind) {
|
|
case BTF_KIND_INT:
|
|
case BTF_KIND_ENUM:
|
|
case BTF_KIND_FLOAT:
|
|
return min(btf_ptr_sz(btf), (size_t)t->size);
|
|
case BTF_KIND_PTR:
|
|
return btf_ptr_sz(btf);
|
|
case BTF_KIND_TYPEDEF:
|
|
case BTF_KIND_VOLATILE:
|
|
case BTF_KIND_CONST:
|
|
case BTF_KIND_RESTRICT:
|
|
return btf__align_of(btf, t->type);
|
|
case BTF_KIND_ARRAY:
|
|
return btf__align_of(btf, btf_array(t)->type);
|
|
case BTF_KIND_STRUCT:
|
|
case BTF_KIND_UNION: {
|
|
const struct btf_member *m = btf_members(t);
|
|
__u16 vlen = btf_vlen(t);
|
|
int i, max_align = 1, align;
|
|
|
|
for (i = 0; i < vlen; i++, m++) {
|
|
align = btf__align_of(btf, m->type);
|
|
if (align <= 0)
|
|
return libbpf_err(align);
|
|
max_align = max(max_align, align);
|
|
}
|
|
|
|
return max_align;
|
|
}
|
|
default:
|
|
pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
|
|
return errno = EINVAL, 0;
|
|
}
|
|
}
|
|
|
|
int btf__resolve_type(const struct btf *btf, __u32 type_id)
|
|
{
|
|
const struct btf_type *t;
|
|
int depth = 0;
|
|
|
|
t = btf__type_by_id(btf, type_id);
|
|
while (depth < MAX_RESOLVE_DEPTH &&
|
|
!btf_type_is_void_or_null(t) &&
|
|
(btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
|
|
type_id = t->type;
|
|
t = btf__type_by_id(btf, type_id);
|
|
depth++;
|
|
}
|
|
|
|
if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
|
|
return libbpf_err(-EINVAL);
|
|
|
|
return type_id;
|
|
}
|
|
|
|
__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
|
|
{
|
|
__u32 i, nr_types = btf__get_nr_types(btf);
|
|
|
|
if (!strcmp(type_name, "void"))
|
|
return 0;
|
|
|
|
for (i = 1; i <= nr_types; i++) {
|
|
const struct btf_type *t = btf__type_by_id(btf, i);
|
|
const char *name = btf__name_by_offset(btf, t->name_off);
|
|
|
|
if (name && !strcmp(type_name, name))
|
|
return i;
|
|
}
|
|
|
|
return libbpf_err(-ENOENT);
|
|
}
|
|
|
|
__s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
|
|
__u32 kind)
|
|
{
|
|
__u32 i, nr_types = btf__get_nr_types(btf);
|
|
|
|
if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
|
|
return 0;
|
|
|
|
for (i = 1; i <= nr_types; i++) {
|
|
const struct btf_type *t = btf__type_by_id(btf, i);
|
|
const char *name;
|
|
|
|
if (btf_kind(t) != kind)
|
|
continue;
|
|
name = btf__name_by_offset(btf, t->name_off);
|
|
if (name && !strcmp(type_name, name))
|
|
return i;
|
|
}
|
|
|
|
return libbpf_err(-ENOENT);
|
|
}
|
|
|
|
static bool btf_is_modifiable(const struct btf *btf)
|
|
{
|
|
return (void *)btf->hdr != btf->raw_data;
|
|
}
|
|
|
|
void btf__free(struct btf *btf)
|
|
{
|
|
if (IS_ERR_OR_NULL(btf))
|
|
return;
|
|
|
|
if (btf->fd >= 0)
|
|
close(btf->fd);
|
|
|
|
if (btf_is_modifiable(btf)) {
|
|
/* if BTF was modified after loading, it will have a split
|
|
* in-memory representation for header, types, and strings
|
|
* sections, so we need to free all of them individually. It
|
|
* might still have a cached contiguous raw data present,
|
|
* which will be unconditionally freed below.
|
|
*/
|
|
free(btf->hdr);
|
|
free(btf->types_data);
|
|
strset__free(btf->strs_set);
|
|
}
|
|
free(btf->raw_data);
|
|
free(btf->raw_data_swapped);
|
|
free(btf->type_offs);
|
|
free(btf);
|
|
}
|
|
|
|
static struct btf *btf_new_empty(struct btf *base_btf)
|
|
{
|
|
struct btf *btf;
|
|
|
|
btf = calloc(1, sizeof(*btf));
|
|
if (!btf)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
btf->nr_types = 0;
|
|
btf->start_id = 1;
|
|
btf->start_str_off = 0;
|
|
btf->fd = -1;
|
|
btf->ptr_sz = sizeof(void *);
|
|
btf->swapped_endian = false;
|
|
|
|
if (base_btf) {
|
|
btf->base_btf = base_btf;
|
|
btf->start_id = btf__get_nr_types(base_btf) + 1;
|
|
btf->start_str_off = base_btf->hdr->str_len;
|
|
}
|
|
|
|
/* +1 for empty string at offset 0 */
|
|
btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
|
|
btf->raw_data = calloc(1, btf->raw_size);
|
|
if (!btf->raw_data) {
|
|
free(btf);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
btf->hdr = btf->raw_data;
|
|
btf->hdr->hdr_len = sizeof(struct btf_header);
|
|
btf->hdr->magic = BTF_MAGIC;
|
|
btf->hdr->version = BTF_VERSION;
|
|
|
|
btf->types_data = btf->raw_data + btf->hdr->hdr_len;
|
|
btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
|
|
btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
|
|
|
|
return btf;
|
|
}
|
|
|
|
struct btf *btf__new_empty(void)
|
|
{
|
|
return libbpf_ptr(btf_new_empty(NULL));
|
|
}
|
|
|
|
struct btf *btf__new_empty_split(struct btf *base_btf)
|
|
{
|
|
return libbpf_ptr(btf_new_empty(base_btf));
|
|
}
|
|
|
|
static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
|
|
{
|
|
struct btf *btf;
|
|
int err;
|
|
|
|
btf = calloc(1, sizeof(struct btf));
|
|
if (!btf)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
btf->nr_types = 0;
|
|
btf->start_id = 1;
|
|
btf->start_str_off = 0;
|
|
|
|
if (base_btf) {
|
|
btf->base_btf = base_btf;
|
|
btf->start_id = btf__get_nr_types(base_btf) + 1;
|
|
btf->start_str_off = base_btf->hdr->str_len;
|
|
}
|
|
|
|
btf->raw_data = malloc(size);
|
|
if (!btf->raw_data) {
|
|
err = -ENOMEM;
|
|
goto done;
|
|
}
|
|
memcpy(btf->raw_data, data, size);
|
|
btf->raw_size = size;
|
|
|
|
btf->hdr = btf->raw_data;
|
|
err = btf_parse_hdr(btf);
|
|
if (err)
|
|
goto done;
|
|
|
|
btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
|
|
btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
|
|
|
|
err = btf_parse_str_sec(btf);
|
|
err = err ?: btf_parse_type_sec(btf);
|
|
if (err)
|
|
goto done;
|
|
|
|
btf->fd = -1;
|
|
|
|
done:
|
|
if (err) {
|
|
btf__free(btf);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
return btf;
|
|
}
|
|
|
|
struct btf *btf__new(const void *data, __u32 size)
|
|
{
|
|
return libbpf_ptr(btf_new(data, size, NULL));
|
|
}
|
|
|
|
static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
|
|
struct btf_ext **btf_ext)
|
|
{
|
|
Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
|
|
int err = 0, fd = -1, idx = 0;
|
|
struct btf *btf = NULL;
|
|
Elf_Scn *scn = NULL;
|
|
Elf *elf = NULL;
|
|
GElf_Ehdr ehdr;
|
|
size_t shstrndx;
|
|
|
|
if (elf_version(EV_CURRENT) == EV_NONE) {
|
|
pr_warn("failed to init libelf for %s\n", path);
|
|
return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
|
|
}
|
|
|
|
fd = open(path, O_RDONLY);
|
|
if (fd < 0) {
|
|
err = -errno;
|
|
pr_warn("failed to open %s: %s\n", path, strerror(errno));
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
err = -LIBBPF_ERRNO__FORMAT;
|
|
|
|
elf = elf_begin(fd, ELF_C_READ, NULL);
|
|
if (!elf) {
|
|
pr_warn("failed to open %s as ELF file\n", path);
|
|
goto done;
|
|
}
|
|
if (!gelf_getehdr(elf, &ehdr)) {
|
|
pr_warn("failed to get EHDR from %s\n", path);
|
|
goto done;
|
|
}
|
|
|
|
if (elf_getshdrstrndx(elf, &shstrndx)) {
|
|
pr_warn("failed to get section names section index for %s\n",
|
|
path);
|
|
goto done;
|
|
}
|
|
|
|
if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
|
|
pr_warn("failed to get e_shstrndx from %s\n", path);
|
|
goto done;
|
|
}
|
|
|
|
while ((scn = elf_nextscn(elf, scn)) != NULL) {
|
|
GElf_Shdr sh;
|
|
char *name;
|
|
|
|
idx++;
|
|
if (gelf_getshdr(scn, &sh) != &sh) {
|
|
pr_warn("failed to get section(%d) header from %s\n",
|
|
idx, path);
|
|
goto done;
|
|
}
|
|
name = elf_strptr(elf, shstrndx, sh.sh_name);
|
|
if (!name) {
|
|
pr_warn("failed to get section(%d) name from %s\n",
|
|
idx, path);
|
|
goto done;
|
|
}
|
|
if (strcmp(name, BTF_ELF_SEC) == 0) {
|
|
btf_data = elf_getdata(scn, 0);
|
|
if (!btf_data) {
|
|
pr_warn("failed to get section(%d, %s) data from %s\n",
|
|
idx, name, path);
|
|
goto done;
|
|
}
|
|
continue;
|
|
} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
|
|
btf_ext_data = elf_getdata(scn, 0);
|
|
if (!btf_ext_data) {
|
|
pr_warn("failed to get section(%d, %s) data from %s\n",
|
|
idx, name, path);
|
|
goto done;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
err = 0;
|
|
|
|
if (!btf_data) {
|
|
err = -ENOENT;
|
|
goto done;
|
|
}
|
|
btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
|
|
err = libbpf_get_error(btf);
|
|
if (err)
|
|
goto done;
|
|
|
|
switch (gelf_getclass(elf)) {
|
|
case ELFCLASS32:
|
|
btf__set_pointer_size(btf, 4);
|
|
break;
|
|
case ELFCLASS64:
|
|
btf__set_pointer_size(btf, 8);
|
|
break;
|
|
default:
|
|
pr_warn("failed to get ELF class (bitness) for %s\n", path);
|
|
break;
|
|
}
|
|
|
|
if (btf_ext && btf_ext_data) {
|
|
*btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
|
|
err = libbpf_get_error(*btf_ext);
|
|
if (err)
|
|
goto done;
|
|
} else if (btf_ext) {
|
|
*btf_ext = NULL;
|
|
}
|
|
done:
|
|
if (elf)
|
|
elf_end(elf);
|
|
close(fd);
|
|
|
|
if (!err)
|
|
return btf;
|
|
|
|
if (btf_ext)
|
|
btf_ext__free(*btf_ext);
|
|
btf__free(btf);
|
|
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
|
|
{
|
|
return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
|
|
}
|
|
|
|
struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
|
|
{
|
|
return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
|
|
}
|
|
|
|
static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
|
|
{
|
|
struct btf *btf = NULL;
|
|
void *data = NULL;
|
|
FILE *f = NULL;
|
|
__u16 magic;
|
|
int err = 0;
|
|
long sz;
|
|
|
|
f = fopen(path, "rb");
|
|
if (!f) {
|
|
err = -errno;
|
|
goto err_out;
|
|
}
|
|
|
|
/* check BTF magic */
|
|
if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
|
|
err = -EIO;
|
|
goto err_out;
|
|
}
|
|
if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
|
|
/* definitely not a raw BTF */
|
|
err = -EPROTO;
|
|
goto err_out;
|
|
}
|
|
|
|
/* get file size */
|
|
if (fseek(f, 0, SEEK_END)) {
|
|
err = -errno;
|
|
goto err_out;
|
|
}
|
|
sz = ftell(f);
|
|
if (sz < 0) {
|
|
err = -errno;
|
|
goto err_out;
|
|
}
|
|
/* rewind to the start */
|
|
if (fseek(f, 0, SEEK_SET)) {
|
|
err = -errno;
|
|
goto err_out;
|
|
}
|
|
|
|
/* pre-alloc memory and read all of BTF data */
|
|
data = malloc(sz);
|
|
if (!data) {
|
|
err = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
if (fread(data, 1, sz, f) < sz) {
|
|
err = -EIO;
|
|
goto err_out;
|
|
}
|
|
|
|
/* finally parse BTF data */
|
|
btf = btf_new(data, sz, base_btf);
|
|
|
|
err_out:
|
|
free(data);
|
|
if (f)
|
|
fclose(f);
|
|
return err ? ERR_PTR(err) : btf;
|
|
}
|
|
|
|
struct btf *btf__parse_raw(const char *path)
|
|
{
|
|
return libbpf_ptr(btf_parse_raw(path, NULL));
|
|
}
|
|
|
|
struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
|
|
{
|
|
return libbpf_ptr(btf_parse_raw(path, base_btf));
|
|
}
|
|
|
|
static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
|
|
{
|
|
struct btf *btf;
|
|
int err;
|
|
|
|
if (btf_ext)
|
|
*btf_ext = NULL;
|
|
|
|
btf = btf_parse_raw(path, base_btf);
|
|
err = libbpf_get_error(btf);
|
|
if (!err)
|
|
return btf;
|
|
if (err != -EPROTO)
|
|
return ERR_PTR(err);
|
|
return btf_parse_elf(path, base_btf, btf_ext);
|
|
}
|
|
|
|
struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
|
|
{
|
|
return libbpf_ptr(btf_parse(path, NULL, btf_ext));
|
|
}
|
|
|
|
struct btf *btf__parse_split(const char *path, struct btf *base_btf)
|
|
{
|
|
return libbpf_ptr(btf_parse(path, base_btf, NULL));
|
|
}
|
|
|
|
static int compare_vsi_off(const void *_a, const void *_b)
|
|
{
|
|
const struct btf_var_secinfo *a = _a;
|
|
const struct btf_var_secinfo *b = _b;
|
|
|
|
return a->offset - b->offset;
|
|
}
|
|
|
|
static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
|
|
struct btf_type *t)
|
|
{
|
|
__u32 size = 0, off = 0, i, vars = btf_vlen(t);
|
|
const char *name = btf__name_by_offset(btf, t->name_off);
|
|
const struct btf_type *t_var;
|
|
struct btf_var_secinfo *vsi;
|
|
const struct btf_var *var;
|
|
int ret;
|
|
|
|
if (!name) {
|
|
pr_debug("No name found in string section for DATASEC kind.\n");
|
|
return -ENOENT;
|
|
}
|
|
|
|
/* .extern datasec size and var offsets were set correctly during
|
|
* extern collection step, so just skip straight to sorting variables
|
|
*/
|
|
if (t->size)
|
|
goto sort_vars;
|
|
|
|
ret = bpf_object__section_size(obj, name, &size);
|
|
if (ret || !size || (t->size && t->size != size)) {
|
|
pr_debug("Invalid size for section %s: %u bytes\n", name, size);
|
|
return -ENOENT;
|
|
}
|
|
|
|
t->size = size;
|
|
|
|
for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
|
|
t_var = btf__type_by_id(btf, vsi->type);
|
|
var = btf_var(t_var);
|
|
|
|
if (!btf_is_var(t_var)) {
|
|
pr_debug("Non-VAR type seen in section %s\n", name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (var->linkage == BTF_VAR_STATIC)
|
|
continue;
|
|
|
|
name = btf__name_by_offset(btf, t_var->name_off);
|
|
if (!name) {
|
|
pr_debug("No name found in string section for VAR kind\n");
|
|
return -ENOENT;
|
|
}
|
|
|
|
ret = bpf_object__variable_offset(obj, name, &off);
|
|
if (ret) {
|
|
pr_debug("No offset found in symbol table for VAR %s\n",
|
|
name);
|
|
return -ENOENT;
|
|
}
|
|
|
|
vsi->offset = off;
|
|
}
|
|
|
|
sort_vars:
|
|
qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
|
|
return 0;
|
|
}
|
|
|
|
int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
|
|
{
|
|
int err = 0;
|
|
__u32 i;
|
|
|
|
for (i = 1; i <= btf->nr_types; i++) {
|
|
struct btf_type *t = btf_type_by_id(btf, i);
|
|
|
|
/* Loader needs to fix up some of the things compiler
|
|
* couldn't get its hands on while emitting BTF. This
|
|
* is section size and global variable offset. We use
|
|
* the info from the ELF itself for this purpose.
|
|
*/
|
|
if (btf_is_datasec(t)) {
|
|
err = btf_fixup_datasec(obj, btf, t);
|
|
if (err)
|
|
break;
|
|
}
|
|
}
|
|
|
|
return libbpf_err(err);
|
|
}
|
|
|
|
static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
|
|
|
|
int btf__load(struct btf *btf)
|
|
{
|
|
__u32 log_buf_size = 0, raw_size;
|
|
char *log_buf = NULL;
|
|
void *raw_data;
|
|
int err = 0;
|
|
|
|
if (btf->fd >= 0)
|
|
return libbpf_err(-EEXIST);
|
|
|
|
retry_load:
|
|
if (log_buf_size) {
|
|
log_buf = malloc(log_buf_size);
|
|
if (!log_buf)
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
*log_buf = 0;
|
|
}
|
|
|
|
raw_data = btf_get_raw_data(btf, &raw_size, false);
|
|
if (!raw_data) {
|
|
err = -ENOMEM;
|
|
goto done;
|
|
}
|
|
/* cache native raw data representation */
|
|
btf->raw_size = raw_size;
|
|
btf->raw_data = raw_data;
|
|
|
|
btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false);
|
|
if (btf->fd < 0) {
|
|
if (!log_buf || errno == ENOSPC) {
|
|
log_buf_size = max((__u32)BPF_LOG_BUF_SIZE,
|
|
log_buf_size << 1);
|
|
free(log_buf);
|
|
goto retry_load;
|
|
}
|
|
|
|
err = -errno;
|
|
pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
|
|
if (*log_buf)
|
|
pr_warn("%s\n", log_buf);
|
|
goto done;
|
|
}
|
|
|
|
done:
|
|
free(log_buf);
|
|
return libbpf_err(err);
|
|
}
|
|
|
|
int btf__fd(const struct btf *btf)
|
|
{
|
|
return btf->fd;
|
|
}
|
|
|
|
void btf__set_fd(struct btf *btf, int fd)
|
|
{
|
|
btf->fd = fd;
|
|
}
|
|
|
|
static const void *btf_strs_data(const struct btf *btf)
|
|
{
|
|
return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
|
|
}
|
|
|
|
static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
|
|
{
|
|
struct btf_header *hdr = btf->hdr;
|
|
struct btf_type *t;
|
|
void *data, *p;
|
|
__u32 data_sz;
|
|
int i;
|
|
|
|
data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
|
|
if (data) {
|
|
*size = btf->raw_size;
|
|
return data;
|
|
}
|
|
|
|
data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
|
|
data = calloc(1, data_sz);
|
|
if (!data)
|
|
return NULL;
|
|
p = data;
|
|
|
|
memcpy(p, hdr, hdr->hdr_len);
|
|
if (swap_endian)
|
|
btf_bswap_hdr(p);
|
|
p += hdr->hdr_len;
|
|
|
|
memcpy(p, btf->types_data, hdr->type_len);
|
|
if (swap_endian) {
|
|
for (i = 0; i < btf->nr_types; i++) {
|
|
t = p + btf->type_offs[i];
|
|
/* btf_bswap_type_rest() relies on native t->info, so
|
|
* we swap base type info after we swapped all the
|
|
* additional information
|
|
*/
|
|
if (btf_bswap_type_rest(t))
|
|
goto err_out;
|
|
btf_bswap_type_base(t);
|
|
}
|
|
}
|
|
p += hdr->type_len;
|
|
|
|
memcpy(p, btf_strs_data(btf), hdr->str_len);
|
|
p += hdr->str_len;
|
|
|
|
*size = data_sz;
|
|
return data;
|
|
err_out:
|
|
free(data);
|
|
return NULL;
|
|
}
|
|
|
|
const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size)
|
|
{
|
|
struct btf *btf = (struct btf *)btf_ro;
|
|
__u32 data_sz;
|
|
void *data;
|
|
|
|
data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
|
|
if (!data)
|
|
return errno = -ENOMEM, NULL;
|
|
|
|
btf->raw_size = data_sz;
|
|
if (btf->swapped_endian)
|
|
btf->raw_data_swapped = data;
|
|
else
|
|
btf->raw_data = data;
|
|
*size = data_sz;
|
|
return data;
|
|
}
|
|
|
|
const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
|
|
{
|
|
if (offset < btf->start_str_off)
|
|
return btf__str_by_offset(btf->base_btf, offset);
|
|
else if (offset - btf->start_str_off < btf->hdr->str_len)
|
|
return btf_strs_data(btf) + (offset - btf->start_str_off);
|
|
else
|
|
return errno = EINVAL, NULL;
|
|
}
|
|
|
|
const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
|
|
{
|
|
return btf__str_by_offset(btf, offset);
|
|
}
|
|
|
|
struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
|
|
{
|
|
struct bpf_btf_info btf_info;
|
|
__u32 len = sizeof(btf_info);
|
|
__u32 last_size;
|
|
struct btf *btf;
|
|
void *ptr;
|
|
int err;
|
|
|
|
/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
|
|
* let's start with a sane default - 4KiB here - and resize it only if
|
|
* bpf_obj_get_info_by_fd() needs a bigger buffer.
|
|
*/
|
|
last_size = 4096;
|
|
ptr = malloc(last_size);
|
|
if (!ptr)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
memset(&btf_info, 0, sizeof(btf_info));
|
|
btf_info.btf = ptr_to_u64(ptr);
|
|
btf_info.btf_size = last_size;
|
|
err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
|
|
|
|
if (!err && btf_info.btf_size > last_size) {
|
|
void *temp_ptr;
|
|
|
|
last_size = btf_info.btf_size;
|
|
temp_ptr = realloc(ptr, last_size);
|
|
if (!temp_ptr) {
|
|
btf = ERR_PTR(-ENOMEM);
|
|
goto exit_free;
|
|
}
|
|
ptr = temp_ptr;
|
|
|
|
len = sizeof(btf_info);
|
|
memset(&btf_info, 0, sizeof(btf_info));
|
|
btf_info.btf = ptr_to_u64(ptr);
|
|
btf_info.btf_size = last_size;
|
|
|
|
err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
|
|
}
|
|
|
|
if (err || btf_info.btf_size > last_size) {
|
|
btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
|
|
goto exit_free;
|
|
}
|
|
|
|
btf = btf_new(ptr, btf_info.btf_size, base_btf);
|
|
|
|
exit_free:
|
|
free(ptr);
|
|
return btf;
|
|
}
|
|
|
|
int btf__get_from_id(__u32 id, struct btf **btf)
|
|
{
|
|
struct btf *res;
|
|
int err, btf_fd;
|
|
|
|
*btf = NULL;
|
|
btf_fd = bpf_btf_get_fd_by_id(id);
|
|
if (btf_fd < 0)
|
|
return libbpf_err(-errno);
|
|
|
|
res = btf_get_from_fd(btf_fd, NULL);
|
|
err = libbpf_get_error(res);
|
|
|
|
close(btf_fd);
|
|
|
|
if (err)
|
|
return libbpf_err(err);
|
|
|
|
*btf = res;
|
|
return 0;
|
|
}
|
|
|
|
int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
|
|
__u32 expected_key_size, __u32 expected_value_size,
|
|
__u32 *key_type_id, __u32 *value_type_id)
|
|
{
|
|
const struct btf_type *container_type;
|
|
const struct btf_member *key, *value;
|
|
const size_t max_name = 256;
|
|
char container_name[max_name];
|
|
__s64 key_size, value_size;
|
|
__s32 container_id;
|
|
|
|
if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == max_name) {
|
|
pr_warn("map:%s length of '____btf_map_%s' is too long\n",
|
|
map_name, map_name);
|
|
return libbpf_err(-EINVAL);
|
|
}
|
|
|
|
container_id = btf__find_by_name(btf, container_name);
|
|
if (container_id < 0) {
|
|
pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
|
|
map_name, container_name);
|
|
return libbpf_err(container_id);
|
|
}
|
|
|
|
container_type = btf__type_by_id(btf, container_id);
|
|
if (!container_type) {
|
|
pr_warn("map:%s cannot find BTF type for container_id:%u\n",
|
|
map_name, container_id);
|
|
return libbpf_err(-EINVAL);
|
|
}
|
|
|
|
if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
|
|
pr_warn("map:%s container_name:%s is an invalid container struct\n",
|
|
map_name, container_name);
|
|
return libbpf_err(-EINVAL);
|
|
}
|
|
|
|
key = btf_members(container_type);
|
|
value = key + 1;
|
|
|
|
key_size = btf__resolve_size(btf, key->type);
|
|
if (key_size < 0) {
|
|
pr_warn("map:%s invalid BTF key_type_size\n", map_name);
|
|
return libbpf_err(key_size);
|
|
}
|
|
|
|
if (expected_key_size != key_size) {
|
|
pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
|
|
map_name, (__u32)key_size, expected_key_size);
|
|
return libbpf_err(-EINVAL);
|
|
}
|
|
|
|
value_size = btf__resolve_size(btf, value->type);
|
|
if (value_size < 0) {
|
|
pr_warn("map:%s invalid BTF value_type_size\n", map_name);
|
|
return libbpf_err(value_size);
|
|
}
|
|
|
|
if (expected_value_size != value_size) {
|
|
pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
|
|
map_name, (__u32)value_size, expected_value_size);
|
|
return libbpf_err(-EINVAL);
|
|
}
|
|
|
|
*key_type_id = key->type;
|
|
*value_type_id = value->type;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void btf_invalidate_raw_data(struct btf *btf)
|
|
{
|
|
if (btf->raw_data) {
|
|
free(btf->raw_data);
|
|
btf->raw_data = NULL;
|
|
}
|
|
if (btf->raw_data_swapped) {
|
|
free(btf->raw_data_swapped);
|
|
btf->raw_data_swapped = NULL;
|
|
}
|
|
}
|
|
|
|
/* Ensure BTF is ready to be modified (by splitting into a three memory
|
|
* regions for header, types, and strings). Also invalidate cached
|
|
* raw_data, if any.
|
|
*/
|
|
static int btf_ensure_modifiable(struct btf *btf)
|
|
{
|
|
void *hdr, *types;
|
|
struct strset *set = NULL;
|
|
int err = -ENOMEM;
|
|
|
|
if (btf_is_modifiable(btf)) {
|
|
/* any BTF modification invalidates raw_data */
|
|
btf_invalidate_raw_data(btf);
|
|
return 0;
|
|
}
|
|
|
|
/* split raw data into three memory regions */
|
|
hdr = malloc(btf->hdr->hdr_len);
|
|
types = malloc(btf->hdr->type_len);
|
|
if (!hdr || !types)
|
|
goto err_out;
|
|
|
|
memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
|
|
memcpy(types, btf->types_data, btf->hdr->type_len);
|
|
|
|
/* build lookup index for all strings */
|
|
set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
|
|
if (IS_ERR(set)) {
|
|
err = PTR_ERR(set);
|
|
goto err_out;
|
|
}
|
|
|
|
/* only when everything was successful, update internal state */
|
|
btf->hdr = hdr;
|
|
btf->types_data = types;
|
|
btf->types_data_cap = btf->hdr->type_len;
|
|
btf->strs_data = NULL;
|
|
btf->strs_set = set;
|
|
/* if BTF was created from scratch, all strings are guaranteed to be
|
|
* unique and deduplicated
|
|
*/
|
|
if (btf->hdr->str_len == 0)
|
|
btf->strs_deduped = true;
|
|
if (!btf->base_btf && btf->hdr->str_len == 1)
|
|
btf->strs_deduped = true;
|
|
|
|
/* invalidate raw_data representation */
|
|
btf_invalidate_raw_data(btf);
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
strset__free(set);
|
|
free(hdr);
|
|
free(types);
|
|
return err;
|
|
}
|
|
|
|
/* Find an offset in BTF string section that corresponds to a given string *s*.
|
|
* Returns:
|
|
* - >0 offset into string section, if string is found;
|
|
* - -ENOENT, if string is not in the string section;
|
|
* - <0, on any other error.
|
|
*/
|
|
int btf__find_str(struct btf *btf, const char *s)
|
|
{
|
|
int off;
|
|
|
|
if (btf->base_btf) {
|
|
off = btf__find_str(btf->base_btf, s);
|
|
if (off != -ENOENT)
|
|
return off;
|
|
}
|
|
|
|
/* BTF needs to be in a modifiable state to build string lookup index */
|
|
if (btf_ensure_modifiable(btf))
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
off = strset__find_str(btf->strs_set, s);
|
|
if (off < 0)
|
|
return libbpf_err(off);
|
|
|
|
return btf->start_str_off + off;
|
|
}
|
|
|
|
/* Add a string s to the BTF string section.
|
|
* Returns:
|
|
* - > 0 offset into string section, on success;
|
|
* - < 0, on error.
|
|
*/
|
|
int btf__add_str(struct btf *btf, const char *s)
|
|
{
|
|
int off;
|
|
|
|
if (btf->base_btf) {
|
|
off = btf__find_str(btf->base_btf, s);
|
|
if (off != -ENOENT)
|
|
return off;
|
|
}
|
|
|
|
if (btf_ensure_modifiable(btf))
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
off = strset__add_str(btf->strs_set, s);
|
|
if (off < 0)
|
|
return libbpf_err(off);
|
|
|
|
btf->hdr->str_len = strset__data_size(btf->strs_set);
|
|
|
|
return btf->start_str_off + off;
|
|
}
|
|
|
|
static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
|
|
{
|
|
return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
|
|
btf->hdr->type_len, UINT_MAX, add_sz);
|
|
}
|
|
|
|
static void btf_type_inc_vlen(struct btf_type *t)
|
|
{
|
|
t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
|
|
}
|
|
|
|
static int btf_commit_type(struct btf *btf, int data_sz)
|
|
{
|
|
int err;
|
|
|
|
err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
|
|
if (err)
|
|
return libbpf_err(err);
|
|
|
|
btf->hdr->type_len += data_sz;
|
|
btf->hdr->str_off += data_sz;
|
|
btf->nr_types++;
|
|
return btf->start_id + btf->nr_types - 1;
|
|
}
|
|
|
|
struct btf_pipe {
|
|
const struct btf *src;
|
|
struct btf *dst;
|
|
};
|
|
|
|
static int btf_rewrite_str(__u32 *str_off, void *ctx)
|
|
{
|
|
struct btf_pipe *p = ctx;
|
|
int off;
|
|
|
|
if (!*str_off) /* nothing to do for empty strings */
|
|
return 0;
|
|
|
|
off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
|
|
if (off < 0)
|
|
return off;
|
|
|
|
*str_off = off;
|
|
return 0;
|
|
}
|
|
|
|
int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
|
|
{
|
|
struct btf_pipe p = { .src = src_btf, .dst = btf };
|
|
struct btf_type *t;
|
|
int sz, err;
|
|
|
|
sz = btf_type_size(src_type);
|
|
if (sz < 0)
|
|
return libbpf_err(sz);
|
|
|
|
/* deconstruct BTF, if necessary, and invalidate raw_data */
|
|
if (btf_ensure_modifiable(btf))
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
t = btf_add_type_mem(btf, sz);
|
|
if (!t)
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
memcpy(t, src_type, sz);
|
|
|
|
err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
|
|
if (err)
|
|
return libbpf_err(err);
|
|
|
|
return btf_commit_type(btf, sz);
|
|
}
|
|
|
|
/*
|
|
* Append new BTF_KIND_INT type with:
|
|
* - *name* - non-empty, non-NULL type name;
|
|
* - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
|
|
* - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
|
|
* Returns:
|
|
* - >0, type ID of newly added BTF type;
|
|
* - <0, on error.
|
|
*/
|
|
int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
|
|
{
|
|
struct btf_type *t;
|
|
int sz, name_off;
|
|
|
|
/* non-empty name */
|
|
if (!name || !name[0])
|
|
return libbpf_err(-EINVAL);
|
|
/* byte_sz must be power of 2 */
|
|
if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
|
|
return libbpf_err(-EINVAL);
|
|
if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
|
|
return libbpf_err(-EINVAL);
|
|
|
|
/* deconstruct BTF, if necessary, and invalidate raw_data */
|
|
if (btf_ensure_modifiable(btf))
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
sz = sizeof(struct btf_type) + sizeof(int);
|
|
t = btf_add_type_mem(btf, sz);
|
|
if (!t)
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
/* if something goes wrong later, we might end up with an extra string,
|
|
* but that shouldn't be a problem, because BTF can't be constructed
|
|
* completely anyway and will most probably be just discarded
|
|
*/
|
|
name_off = btf__add_str(btf, name);
|
|
if (name_off < 0)
|
|
return name_off;
|
|
|
|
t->name_off = name_off;
|
|
t->info = btf_type_info(BTF_KIND_INT, 0, 0);
|
|
t->size = byte_sz;
|
|
/* set INT info, we don't allow setting legacy bit offset/size */
|
|
*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
|
|
|
|
return btf_commit_type(btf, sz);
|
|
}
|
|
|
|
/*
|
|
* Append new BTF_KIND_FLOAT type with:
|
|
* - *name* - non-empty, non-NULL type name;
|
|
* - *sz* - size of the type, in bytes;
|
|
* Returns:
|
|
* - >0, type ID of newly added BTF type;
|
|
* - <0, on error.
|
|
*/
|
|
int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
|
|
{
|
|
struct btf_type *t;
|
|
int sz, name_off;
|
|
|
|
/* non-empty name */
|
|
if (!name || !name[0])
|
|
return libbpf_err(-EINVAL);
|
|
|
|
/* byte_sz must be one of the explicitly allowed values */
|
|
if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
|
|
byte_sz != 16)
|
|
return libbpf_err(-EINVAL);
|
|
|
|
if (btf_ensure_modifiable(btf))
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
sz = sizeof(struct btf_type);
|
|
t = btf_add_type_mem(btf, sz);
|
|
if (!t)
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
name_off = btf__add_str(btf, name);
|
|
if (name_off < 0)
|
|
return name_off;
|
|
|
|
t->name_off = name_off;
|
|
t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
|
|
t->size = byte_sz;
|
|
|
|
return btf_commit_type(btf, sz);
|
|
}
|
|
|
|
/* it's completely legal to append BTF types with type IDs pointing forward to
|
|
* types that haven't been appended yet, so we only make sure that id looks
|
|
* sane, we can't guarantee that ID will always be valid
|
|
*/
|
|
static int validate_type_id(int id)
|
|
{
|
|
if (id < 0 || id > BTF_MAX_NR_TYPES)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
/* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
|
|
static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
|
|
{
|
|
struct btf_type *t;
|
|
int sz, name_off = 0;
|
|
|
|
if (validate_type_id(ref_type_id))
|
|
return libbpf_err(-EINVAL);
|
|
|
|
if (btf_ensure_modifiable(btf))
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
sz = sizeof(struct btf_type);
|
|
t = btf_add_type_mem(btf, sz);
|
|
if (!t)
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
if (name && name[0]) {
|
|
name_off = btf__add_str(btf, name);
|
|
if (name_off < 0)
|
|
return name_off;
|
|
}
|
|
|
|
t->name_off = name_off;
|
|
t->info = btf_type_info(kind, 0, 0);
|
|
t->type = ref_type_id;
|
|
|
|
return btf_commit_type(btf, sz);
|
|
}
|
|
|
|
/*
|
|
* Append new BTF_KIND_PTR type with:
|
|
* - *ref_type_id* - referenced type ID, it might not exist yet;
|
|
* Returns:
|
|
* - >0, type ID of newly added BTF type;
|
|
* - <0, on error.
|
|
*/
|
|
int btf__add_ptr(struct btf *btf, int ref_type_id)
|
|
{
|
|
return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
|
|
}
|
|
|
|
/*
|
|
* Append new BTF_KIND_ARRAY type with:
|
|
* - *index_type_id* - type ID of the type describing array index;
|
|
* - *elem_type_id* - type ID of the type describing array element;
|
|
* - *nr_elems* - the size of the array;
|
|
* Returns:
|
|
* - >0, type ID of newly added BTF type;
|
|
* - <0, on error.
|
|
*/
|
|
int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
|
|
{
|
|
struct btf_type *t;
|
|
struct btf_array *a;
|
|
int sz;
|
|
|
|
if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
|
|
return libbpf_err(-EINVAL);
|
|
|
|
if (btf_ensure_modifiable(btf))
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
sz = sizeof(struct btf_type) + sizeof(struct btf_array);
|
|
t = btf_add_type_mem(btf, sz);
|
|
if (!t)
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
t->name_off = 0;
|
|
t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
|
|
t->size = 0;
|
|
|
|
a = btf_array(t);
|
|
a->type = elem_type_id;
|
|
a->index_type = index_type_id;
|
|
a->nelems = nr_elems;
|
|
|
|
return btf_commit_type(btf, sz);
|
|
}
|
|
|
|
/* generic STRUCT/UNION append function */
|
|
static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
|
|
{
|
|
struct btf_type *t;
|
|
int sz, name_off = 0;
|
|
|
|
if (btf_ensure_modifiable(btf))
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
sz = sizeof(struct btf_type);
|
|
t = btf_add_type_mem(btf, sz);
|
|
if (!t)
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
if (name && name[0]) {
|
|
name_off = btf__add_str(btf, name);
|
|
if (name_off < 0)
|
|
return name_off;
|
|
}
|
|
|
|
/* start out with vlen=0 and no kflag; this will be adjusted when
|
|
* adding each member
|
|
*/
|
|
t->name_off = name_off;
|
|
t->info = btf_type_info(kind, 0, 0);
|
|
t->size = bytes_sz;
|
|
|
|
return btf_commit_type(btf, sz);
|
|
}
|
|
|
|
/*
|
|
* Append new BTF_KIND_STRUCT type with:
|
|
* - *name* - name of the struct, can be NULL or empty for anonymous structs;
|
|
* - *byte_sz* - size of the struct, in bytes;
|
|
*
|
|
* Struct initially has no fields in it. Fields can be added by
|
|
* btf__add_field() right after btf__add_struct() succeeds.
|
|
*
|
|
* Returns:
|
|
* - >0, type ID of newly added BTF type;
|
|
* - <0, on error.
|
|
*/
|
|
int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
|
|
{
|
|
return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
|
|
}
|
|
|
|
/*
|
|
* Append new BTF_KIND_UNION type with:
|
|
* - *name* - name of the union, can be NULL or empty for anonymous union;
|
|
* - *byte_sz* - size of the union, in bytes;
|
|
*
|
|
* Union initially has no fields in it. Fields can be added by
|
|
* btf__add_field() right after btf__add_union() succeeds. All fields
|
|
* should have *bit_offset* of 0.
|
|
*
|
|
* Returns:
|
|
* - >0, type ID of newly added BTF type;
|
|
* - <0, on error.
|
|
*/
|
|
int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
|
|
{
|
|
return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
|
|
}
|
|
|
|
static struct btf_type *btf_last_type(struct btf *btf)
|
|
{
|
|
return btf_type_by_id(btf, btf__get_nr_types(btf));
|
|
}
|
|
|
|
/*
|
|
* Append new field for the current STRUCT/UNION type with:
|
|
* - *name* - name of the field, can be NULL or empty for anonymous field;
|
|
* - *type_id* - type ID for the type describing field type;
|
|
* - *bit_offset* - bit offset of the start of the field within struct/union;
|
|
* - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
|
|
* Returns:
|
|
* - 0, on success;
|
|
* - <0, on error.
|
|
*/
|
|
int btf__add_field(struct btf *btf, const char *name, int type_id,
|
|
__u32 bit_offset, __u32 bit_size)
|
|
{
|
|
struct btf_type *t;
|
|
struct btf_member *m;
|
|
bool is_bitfield;
|
|
int sz, name_off = 0;
|
|
|
|
/* last type should be union/struct */
|
|
if (btf->nr_types == 0)
|
|
return libbpf_err(-EINVAL);
|
|
t = btf_last_type(btf);
|
|
if (!btf_is_composite(t))
|
|
return libbpf_err(-EINVAL);
|
|
|
|
if (validate_type_id(type_id))
|
|
return libbpf_err(-EINVAL);
|
|
/* best-effort bit field offset/size enforcement */
|
|
is_bitfield = bit_size || (bit_offset % 8 != 0);
|
|
if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
|
|
return libbpf_err(-EINVAL);
|
|
|
|
/* only offset 0 is allowed for unions */
|
|
if (btf_is_union(t) && bit_offset)
|
|
return libbpf_err(-EINVAL);
|
|
|
|
/* decompose and invalidate raw data */
|
|
if (btf_ensure_modifiable(btf))
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
sz = sizeof(struct btf_member);
|
|
m = btf_add_type_mem(btf, sz);
|
|
if (!m)
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
if (name && name[0]) {
|
|
name_off = btf__add_str(btf, name);
|
|
if (name_off < 0)
|
|
return name_off;
|
|
}
|
|
|
|
m->name_off = name_off;
|
|
m->type = type_id;
|
|
m->offset = bit_offset | (bit_size << 24);
|
|
|
|
/* btf_add_type_mem can invalidate t pointer */
|
|
t = btf_last_type(btf);
|
|
/* update parent type's vlen and kflag */
|
|
t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
|
|
|
|
btf->hdr->type_len += sz;
|
|
btf->hdr->str_off += sz;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Append new BTF_KIND_ENUM type with:
|
|
* - *name* - name of the enum, can be NULL or empty for anonymous enums;
|
|
* - *byte_sz* - size of the enum, in bytes.
|
|
*
|
|
* Enum initially has no enum values in it (and corresponds to enum forward
|
|
* declaration). Enumerator values can be added by btf__add_enum_value()
|
|
* immediately after btf__add_enum() succeeds.
|
|
*
|
|
* Returns:
|
|
* - >0, type ID of newly added BTF type;
|
|
* - <0, on error.
|
|
*/
|
|
int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
|
|
{
|
|
struct btf_type *t;
|
|
int sz, name_off = 0;
|
|
|
|
/* byte_sz must be power of 2 */
|
|
if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
|
|
return libbpf_err(-EINVAL);
|
|
|
|
if (btf_ensure_modifiable(btf))
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
sz = sizeof(struct btf_type);
|
|
t = btf_add_type_mem(btf, sz);
|
|
if (!t)
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
if (name && name[0]) {
|
|
name_off = btf__add_str(btf, name);
|
|
if (name_off < 0)
|
|
return name_off;
|
|
}
|
|
|
|
/* start out with vlen=0; it will be adjusted when adding enum values */
|
|
t->name_off = name_off;
|
|
t->info = btf_type_info(BTF_KIND_ENUM, 0, 0);
|
|
t->size = byte_sz;
|
|
|
|
return btf_commit_type(btf, sz);
|
|
}
|
|
|
|
/*
|
|
* Append new enum value for the current ENUM type with:
|
|
* - *name* - name of the enumerator value, can't be NULL or empty;
|
|
* - *value* - integer value corresponding to enum value *name*;
|
|
* Returns:
|
|
* - 0, on success;
|
|
* - <0, on error.
|
|
*/
|
|
int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
|
|
{
|
|
struct btf_type *t;
|
|
struct btf_enum *v;
|
|
int sz, name_off;
|
|
|
|
/* last type should be BTF_KIND_ENUM */
|
|
if (btf->nr_types == 0)
|
|
return libbpf_err(-EINVAL);
|
|
t = btf_last_type(btf);
|
|
if (!btf_is_enum(t))
|
|
return libbpf_err(-EINVAL);
|
|
|
|
/* non-empty name */
|
|
if (!name || !name[0])
|
|
return libbpf_err(-EINVAL);
|
|
if (value < INT_MIN || value > UINT_MAX)
|
|
return libbpf_err(-E2BIG);
|
|
|
|
/* decompose and invalidate raw data */
|
|
if (btf_ensure_modifiable(btf))
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
sz = sizeof(struct btf_enum);
|
|
v = btf_add_type_mem(btf, sz);
|
|
if (!v)
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
name_off = btf__add_str(btf, name);
|
|
if (name_off < 0)
|
|
return name_off;
|
|
|
|
v->name_off = name_off;
|
|
v->val = value;
|
|
|
|
/* update parent type's vlen */
|
|
t = btf_last_type(btf);
|
|
btf_type_inc_vlen(t);
|
|
|
|
btf->hdr->type_len += sz;
|
|
btf->hdr->str_off += sz;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Append new BTF_KIND_FWD type with:
|
|
* - *name*, non-empty/non-NULL name;
|
|
* - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
|
|
* BTF_FWD_UNION, or BTF_FWD_ENUM;
|
|
* Returns:
|
|
* - >0, type ID of newly added BTF type;
|
|
* - <0, on error.
|
|
*/
|
|
int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
|
|
{
|
|
if (!name || !name[0])
|
|
return libbpf_err(-EINVAL);
|
|
|
|
switch (fwd_kind) {
|
|
case BTF_FWD_STRUCT:
|
|
case BTF_FWD_UNION: {
|
|
struct btf_type *t;
|
|
int id;
|
|
|
|
id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
|
|
if (id <= 0)
|
|
return id;
|
|
t = btf_type_by_id(btf, id);
|
|
t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
|
|
return id;
|
|
}
|
|
case BTF_FWD_ENUM:
|
|
/* enum forward in BTF currently is just an enum with no enum
|
|
* values; we also assume a standard 4-byte size for it
|
|
*/
|
|
return btf__add_enum(btf, name, sizeof(int));
|
|
default:
|
|
return libbpf_err(-EINVAL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Append new BTF_KING_TYPEDEF type with:
|
|
* - *name*, non-empty/non-NULL name;
|
|
* - *ref_type_id* - referenced type ID, it might not exist yet;
|
|
* Returns:
|
|
* - >0, type ID of newly added BTF type;
|
|
* - <0, on error.
|
|
*/
|
|
int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
|
|
{
|
|
if (!name || !name[0])
|
|
return libbpf_err(-EINVAL);
|
|
|
|
return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
|
|
}
|
|
|
|
/*
|
|
* Append new BTF_KIND_VOLATILE type with:
|
|
* - *ref_type_id* - referenced type ID, it might not exist yet;
|
|
* Returns:
|
|
* - >0, type ID of newly added BTF type;
|
|
* - <0, on error.
|
|
*/
|
|
int btf__add_volatile(struct btf *btf, int ref_type_id)
|
|
{
|
|
return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
|
|
}
|
|
|
|
/*
|
|
* Append new BTF_KIND_CONST type with:
|
|
* - *ref_type_id* - referenced type ID, it might not exist yet;
|
|
* Returns:
|
|
* - >0, type ID of newly added BTF type;
|
|
* - <0, on error.
|
|
*/
|
|
int btf__add_const(struct btf *btf, int ref_type_id)
|
|
{
|
|
return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
|
|
}
|
|
|
|
/*
|
|
* Append new BTF_KIND_RESTRICT type with:
|
|
* - *ref_type_id* - referenced type ID, it might not exist yet;
|
|
* Returns:
|
|
* - >0, type ID of newly added BTF type;
|
|
* - <0, on error.
|
|
*/
|
|
int btf__add_restrict(struct btf *btf, int ref_type_id)
|
|
{
|
|
return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
|
|
}
|
|
|
|
/*
|
|
* Append new BTF_KIND_FUNC type with:
|
|
* - *name*, non-empty/non-NULL name;
|
|
* - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
|
|
* Returns:
|
|
* - >0, type ID of newly added BTF type;
|
|
* - <0, on error.
|
|
*/
|
|
int btf__add_func(struct btf *btf, const char *name,
|
|
enum btf_func_linkage linkage, int proto_type_id)
|
|
{
|
|
int id;
|
|
|
|
if (!name || !name[0])
|
|
return libbpf_err(-EINVAL);
|
|
if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
|
|
linkage != BTF_FUNC_EXTERN)
|
|
return libbpf_err(-EINVAL);
|
|
|
|
id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
|
|
if (id > 0) {
|
|
struct btf_type *t = btf_type_by_id(btf, id);
|
|
|
|
t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
|
|
}
|
|
return libbpf_err(id);
|
|
}
|
|
|
|
/*
|
|
* Append new BTF_KIND_FUNC_PROTO with:
|
|
* - *ret_type_id* - type ID for return result of a function.
|
|
*
|
|
* Function prototype initially has no arguments, but they can be added by
|
|
* btf__add_func_param() one by one, immediately after
|
|
* btf__add_func_proto() succeeded.
|
|
*
|
|
* Returns:
|
|
* - >0, type ID of newly added BTF type;
|
|
* - <0, on error.
|
|
*/
|
|
int btf__add_func_proto(struct btf *btf, int ret_type_id)
|
|
{
|
|
struct btf_type *t;
|
|
int sz;
|
|
|
|
if (validate_type_id(ret_type_id))
|
|
return libbpf_err(-EINVAL);
|
|
|
|
if (btf_ensure_modifiable(btf))
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
sz = sizeof(struct btf_type);
|
|
t = btf_add_type_mem(btf, sz);
|
|
if (!t)
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
/* start out with vlen=0; this will be adjusted when adding enum
|
|
* values, if necessary
|
|
*/
|
|
t->name_off = 0;
|
|
t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
|
|
t->type = ret_type_id;
|
|
|
|
return btf_commit_type(btf, sz);
|
|
}
|
|
|
|
/*
|
|
* Append new function parameter for current FUNC_PROTO type with:
|
|
* - *name* - parameter name, can be NULL or empty;
|
|
* - *type_id* - type ID describing the type of the parameter.
|
|
* Returns:
|
|
* - 0, on success;
|
|
* - <0, on error.
|
|
*/
|
|
int btf__add_func_param(struct btf *btf, const char *name, int type_id)
|
|
{
|
|
struct btf_type *t;
|
|
struct btf_param *p;
|
|
int sz, name_off = 0;
|
|
|
|
if (validate_type_id(type_id))
|
|
return libbpf_err(-EINVAL);
|
|
|
|
/* last type should be BTF_KIND_FUNC_PROTO */
|
|
if (btf->nr_types == 0)
|
|
return libbpf_err(-EINVAL);
|
|
t = btf_last_type(btf);
|
|
if (!btf_is_func_proto(t))
|
|
return libbpf_err(-EINVAL);
|
|
|
|
/* decompose and invalidate raw data */
|
|
if (btf_ensure_modifiable(btf))
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
sz = sizeof(struct btf_param);
|
|
p = btf_add_type_mem(btf, sz);
|
|
if (!p)
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
if (name && name[0]) {
|
|
name_off = btf__add_str(btf, name);
|
|
if (name_off < 0)
|
|
return name_off;
|
|
}
|
|
|
|
p->name_off = name_off;
|
|
p->type = type_id;
|
|
|
|
/* update parent type's vlen */
|
|
t = btf_last_type(btf);
|
|
btf_type_inc_vlen(t);
|
|
|
|
btf->hdr->type_len += sz;
|
|
btf->hdr->str_off += sz;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Append new BTF_KIND_VAR type with:
|
|
* - *name* - non-empty/non-NULL name;
|
|
* - *linkage* - variable linkage, one of BTF_VAR_STATIC,
|
|
* BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
|
|
* - *type_id* - type ID of the type describing the type of the variable.
|
|
* Returns:
|
|
* - >0, type ID of newly added BTF type;
|
|
* - <0, on error.
|
|
*/
|
|
int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
|
|
{
|
|
struct btf_type *t;
|
|
struct btf_var *v;
|
|
int sz, name_off;
|
|
|
|
/* non-empty name */
|
|
if (!name || !name[0])
|
|
return libbpf_err(-EINVAL);
|
|
if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
|
|
linkage != BTF_VAR_GLOBAL_EXTERN)
|
|
return libbpf_err(-EINVAL);
|
|
if (validate_type_id(type_id))
|
|
return libbpf_err(-EINVAL);
|
|
|
|
/* deconstruct BTF, if necessary, and invalidate raw_data */
|
|
if (btf_ensure_modifiable(btf))
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
sz = sizeof(struct btf_type) + sizeof(struct btf_var);
|
|
t = btf_add_type_mem(btf, sz);
|
|
if (!t)
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
name_off = btf__add_str(btf, name);
|
|
if (name_off < 0)
|
|
return name_off;
|
|
|
|
t->name_off = name_off;
|
|
t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
|
|
t->type = type_id;
|
|
|
|
v = btf_var(t);
|
|
v->linkage = linkage;
|
|
|
|
return btf_commit_type(btf, sz);
|
|
}
|
|
|
|
/*
|
|
* Append new BTF_KIND_DATASEC type with:
|
|
* - *name* - non-empty/non-NULL name;
|
|
* - *byte_sz* - data section size, in bytes.
|
|
*
|
|
* Data section is initially empty. Variables info can be added with
|
|
* btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
|
|
*
|
|
* Returns:
|
|
* - >0, type ID of newly added BTF type;
|
|
* - <0, on error.
|
|
*/
|
|
int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
|
|
{
|
|
struct btf_type *t;
|
|
int sz, name_off;
|
|
|
|
/* non-empty name */
|
|
if (!name || !name[0])
|
|
return libbpf_err(-EINVAL);
|
|
|
|
if (btf_ensure_modifiable(btf))
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
sz = sizeof(struct btf_type);
|
|
t = btf_add_type_mem(btf, sz);
|
|
if (!t)
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
name_off = btf__add_str(btf, name);
|
|
if (name_off < 0)
|
|
return name_off;
|
|
|
|
/* start with vlen=0, which will be update as var_secinfos are added */
|
|
t->name_off = name_off;
|
|
t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
|
|
t->size = byte_sz;
|
|
|
|
return btf_commit_type(btf, sz);
|
|
}
|
|
|
|
/*
|
|
* Append new data section variable information entry for current DATASEC type:
|
|
* - *var_type_id* - type ID, describing type of the variable;
|
|
* - *offset* - variable offset within data section, in bytes;
|
|
* - *byte_sz* - variable size, in bytes.
|
|
*
|
|
* Returns:
|
|
* - 0, on success;
|
|
* - <0, on error.
|
|
*/
|
|
int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
|
|
{
|
|
struct btf_type *t;
|
|
struct btf_var_secinfo *v;
|
|
int sz;
|
|
|
|
/* last type should be BTF_KIND_DATASEC */
|
|
if (btf->nr_types == 0)
|
|
return libbpf_err(-EINVAL);
|
|
t = btf_last_type(btf);
|
|
if (!btf_is_datasec(t))
|
|
return libbpf_err(-EINVAL);
|
|
|
|
if (validate_type_id(var_type_id))
|
|
return libbpf_err(-EINVAL);
|
|
|
|
/* decompose and invalidate raw data */
|
|
if (btf_ensure_modifiable(btf))
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
sz = sizeof(struct btf_var_secinfo);
|
|
v = btf_add_type_mem(btf, sz);
|
|
if (!v)
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
v->type = var_type_id;
|
|
v->offset = offset;
|
|
v->size = byte_sz;
|
|
|
|
/* update parent type's vlen */
|
|
t = btf_last_type(btf);
|
|
btf_type_inc_vlen(t);
|
|
|
|
btf->hdr->type_len += sz;
|
|
btf->hdr->str_off += sz;
|
|
return 0;
|
|
}
|
|
|
|
struct btf_ext_sec_setup_param {
|
|
__u32 off;
|
|
__u32 len;
|
|
__u32 min_rec_size;
|
|
struct btf_ext_info *ext_info;
|
|
const char *desc;
|
|
};
|
|
|
|
static int btf_ext_setup_info(struct btf_ext *btf_ext,
|
|
struct btf_ext_sec_setup_param *ext_sec)
|
|
{
|
|
const struct btf_ext_info_sec *sinfo;
|
|
struct btf_ext_info *ext_info;
|
|
__u32 info_left, record_size;
|
|
/* The start of the info sec (including the __u32 record_size). */
|
|
void *info;
|
|
|
|
if (ext_sec->len == 0)
|
|
return 0;
|
|
|
|
if (ext_sec->off & 0x03) {
|
|
pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
|
|
ext_sec->desc);
|
|
return -EINVAL;
|
|
}
|
|
|
|
info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
|
|
info_left = ext_sec->len;
|
|
|
|
if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
|
|
pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
|
|
ext_sec->desc, ext_sec->off, ext_sec->len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* At least a record size */
|
|
if (info_left < sizeof(__u32)) {
|
|
pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* The record size needs to meet the minimum standard */
|
|
record_size = *(__u32 *)info;
|
|
if (record_size < ext_sec->min_rec_size ||
|
|
record_size & 0x03) {
|
|
pr_debug("%s section in .BTF.ext has invalid record size %u\n",
|
|
ext_sec->desc, record_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
sinfo = info + sizeof(__u32);
|
|
info_left -= sizeof(__u32);
|
|
|
|
/* If no records, return failure now so .BTF.ext won't be used. */
|
|
if (!info_left) {
|
|
pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
|
|
return -EINVAL;
|
|
}
|
|
|
|
while (info_left) {
|
|
unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
|
|
__u64 total_record_size;
|
|
__u32 num_records;
|
|
|
|
if (info_left < sec_hdrlen) {
|
|
pr_debug("%s section header is not found in .BTF.ext\n",
|
|
ext_sec->desc);
|
|
return -EINVAL;
|
|
}
|
|
|
|
num_records = sinfo->num_info;
|
|
if (num_records == 0) {
|
|
pr_debug("%s section has incorrect num_records in .BTF.ext\n",
|
|
ext_sec->desc);
|
|
return -EINVAL;
|
|
}
|
|
|
|
total_record_size = sec_hdrlen +
|
|
(__u64)num_records * record_size;
|
|
if (info_left < total_record_size) {
|
|
pr_debug("%s section has incorrect num_records in .BTF.ext\n",
|
|
ext_sec->desc);
|
|
return -EINVAL;
|
|
}
|
|
|
|
info_left -= total_record_size;
|
|
sinfo = (void *)sinfo + total_record_size;
|
|
}
|
|
|
|
ext_info = ext_sec->ext_info;
|
|
ext_info->len = ext_sec->len - sizeof(__u32);
|
|
ext_info->rec_size = record_size;
|
|
ext_info->info = info + sizeof(__u32);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
|
|
{
|
|
struct btf_ext_sec_setup_param param = {
|
|
.off = btf_ext->hdr->func_info_off,
|
|
.len = btf_ext->hdr->func_info_len,
|
|
.min_rec_size = sizeof(struct bpf_func_info_min),
|
|
.ext_info = &btf_ext->func_info,
|
|
.desc = "func_info"
|
|
};
|
|
|
|
return btf_ext_setup_info(btf_ext, ¶m);
|
|
}
|
|
|
|
static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
|
|
{
|
|
struct btf_ext_sec_setup_param param = {
|
|
.off = btf_ext->hdr->line_info_off,
|
|
.len = btf_ext->hdr->line_info_len,
|
|
.min_rec_size = sizeof(struct bpf_line_info_min),
|
|
.ext_info = &btf_ext->line_info,
|
|
.desc = "line_info",
|
|
};
|
|
|
|
return btf_ext_setup_info(btf_ext, ¶m);
|
|
}
|
|
|
|
static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
|
|
{
|
|
struct btf_ext_sec_setup_param param = {
|
|
.off = btf_ext->hdr->core_relo_off,
|
|
.len = btf_ext->hdr->core_relo_len,
|
|
.min_rec_size = sizeof(struct bpf_core_relo),
|
|
.ext_info = &btf_ext->core_relo_info,
|
|
.desc = "core_relo",
|
|
};
|
|
|
|
return btf_ext_setup_info(btf_ext, ¶m);
|
|
}
|
|
|
|
static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
|
|
{
|
|
const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
|
|
|
|
if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
|
|
data_size < hdr->hdr_len) {
|
|
pr_debug("BTF.ext header not found");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (hdr->magic == bswap_16(BTF_MAGIC)) {
|
|
pr_warn("BTF.ext in non-native endianness is not supported\n");
|
|
return -ENOTSUP;
|
|
} else if (hdr->magic != BTF_MAGIC) {
|
|
pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (hdr->version != BTF_VERSION) {
|
|
pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
if (hdr->flags) {
|
|
pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
if (data_size == hdr->hdr_len) {
|
|
pr_debug("BTF.ext has no data\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void btf_ext__free(struct btf_ext *btf_ext)
|
|
{
|
|
if (IS_ERR_OR_NULL(btf_ext))
|
|
return;
|
|
free(btf_ext->data);
|
|
free(btf_ext);
|
|
}
|
|
|
|
struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
|
|
{
|
|
struct btf_ext *btf_ext;
|
|
int err;
|
|
|
|
err = btf_ext_parse_hdr(data, size);
|
|
if (err)
|
|
return libbpf_err_ptr(err);
|
|
|
|
btf_ext = calloc(1, sizeof(struct btf_ext));
|
|
if (!btf_ext)
|
|
return libbpf_err_ptr(-ENOMEM);
|
|
|
|
btf_ext->data_size = size;
|
|
btf_ext->data = malloc(size);
|
|
if (!btf_ext->data) {
|
|
err = -ENOMEM;
|
|
goto done;
|
|
}
|
|
memcpy(btf_ext->data, data, size);
|
|
|
|
if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
|
|
err = -EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
err = btf_ext_setup_func_info(btf_ext);
|
|
if (err)
|
|
goto done;
|
|
|
|
err = btf_ext_setup_line_info(btf_ext);
|
|
if (err)
|
|
goto done;
|
|
|
|
if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) {
|
|
err = -EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
err = btf_ext_setup_core_relos(btf_ext);
|
|
if (err)
|
|
goto done;
|
|
|
|
done:
|
|
if (err) {
|
|
btf_ext__free(btf_ext);
|
|
return libbpf_err_ptr(err);
|
|
}
|
|
|
|
return btf_ext;
|
|
}
|
|
|
|
const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
|
|
{
|
|
*size = btf_ext->data_size;
|
|
return btf_ext->data;
|
|
}
|
|
|
|
static int btf_ext_reloc_info(const struct btf *btf,
|
|
const struct btf_ext_info *ext_info,
|
|
const char *sec_name, __u32 insns_cnt,
|
|
void **info, __u32 *cnt)
|
|
{
|
|
__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
|
|
__u32 i, record_size, existing_len, records_len;
|
|
struct btf_ext_info_sec *sinfo;
|
|
const char *info_sec_name;
|
|
__u64 remain_len;
|
|
void *data;
|
|
|
|
record_size = ext_info->rec_size;
|
|
sinfo = ext_info->info;
|
|
remain_len = ext_info->len;
|
|
while (remain_len > 0) {
|
|
records_len = sinfo->num_info * record_size;
|
|
info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
|
|
if (strcmp(info_sec_name, sec_name)) {
|
|
remain_len -= sec_hdrlen + records_len;
|
|
sinfo = (void *)sinfo + sec_hdrlen + records_len;
|
|
continue;
|
|
}
|
|
|
|
existing_len = (*cnt) * record_size;
|
|
data = realloc(*info, existing_len + records_len);
|
|
if (!data)
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
memcpy(data + existing_len, sinfo->data, records_len);
|
|
/* adjust insn_off only, the rest data will be passed
|
|
* to the kernel.
|
|
*/
|
|
for (i = 0; i < sinfo->num_info; i++) {
|
|
__u32 *insn_off;
|
|
|
|
insn_off = data + existing_len + (i * record_size);
|
|
*insn_off = *insn_off / sizeof(struct bpf_insn) + insns_cnt;
|
|
}
|
|
*info = data;
|
|
*cnt += sinfo->num_info;
|
|
return 0;
|
|
}
|
|
|
|
return libbpf_err(-ENOENT);
|
|
}
|
|
|
|
int btf_ext__reloc_func_info(const struct btf *btf,
|
|
const struct btf_ext *btf_ext,
|
|
const char *sec_name, __u32 insns_cnt,
|
|
void **func_info, __u32 *cnt)
|
|
{
|
|
return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
|
|
insns_cnt, func_info, cnt);
|
|
}
|
|
|
|
int btf_ext__reloc_line_info(const struct btf *btf,
|
|
const struct btf_ext *btf_ext,
|
|
const char *sec_name, __u32 insns_cnt,
|
|
void **line_info, __u32 *cnt)
|
|
{
|
|
return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
|
|
insns_cnt, line_info, cnt);
|
|
}
|
|
|
|
__u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
|
|
{
|
|
return btf_ext->func_info.rec_size;
|
|
}
|
|
|
|
__u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
|
|
{
|
|
return btf_ext->line_info.rec_size;
|
|
}
|
|
|
|
struct btf_dedup;
|
|
|
|
static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
|
|
const struct btf_dedup_opts *opts);
|
|
static void btf_dedup_free(struct btf_dedup *d);
|
|
static int btf_dedup_prep(struct btf_dedup *d);
|
|
static int btf_dedup_strings(struct btf_dedup *d);
|
|
static int btf_dedup_prim_types(struct btf_dedup *d);
|
|
static int btf_dedup_struct_types(struct btf_dedup *d);
|
|
static int btf_dedup_ref_types(struct btf_dedup *d);
|
|
static int btf_dedup_compact_types(struct btf_dedup *d);
|
|
static int btf_dedup_remap_types(struct btf_dedup *d);
|
|
|
|
/*
|
|
* Deduplicate BTF types and strings.
|
|
*
|
|
* BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
|
|
* section with all BTF type descriptors and string data. It overwrites that
|
|
* memory in-place with deduplicated types and strings without any loss of
|
|
* information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
|
|
* is provided, all the strings referenced from .BTF.ext section are honored
|
|
* and updated to point to the right offsets after deduplication.
|
|
*
|
|
* If function returns with error, type/string data might be garbled and should
|
|
* be discarded.
|
|
*
|
|
* More verbose and detailed description of both problem btf_dedup is solving,
|
|
* as well as solution could be found at:
|
|
* https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
|
|
*
|
|
* Problem description and justification
|
|
* =====================================
|
|
*
|
|
* BTF type information is typically emitted either as a result of conversion
|
|
* from DWARF to BTF or directly by compiler. In both cases, each compilation
|
|
* unit contains information about a subset of all the types that are used
|
|
* in an application. These subsets are frequently overlapping and contain a lot
|
|
* of duplicated information when later concatenated together into a single
|
|
* binary. This algorithm ensures that each unique type is represented by single
|
|
* BTF type descriptor, greatly reducing resulting size of BTF data.
|
|
*
|
|
* Compilation unit isolation and subsequent duplication of data is not the only
|
|
* problem. The same type hierarchy (e.g., struct and all the type that struct
|
|
* references) in different compilation units can be represented in BTF to
|
|
* various degrees of completeness (or, rather, incompleteness) due to
|
|
* struct/union forward declarations.
|
|
*
|
|
* Let's take a look at an example, that we'll use to better understand the
|
|
* problem (and solution). Suppose we have two compilation units, each using
|
|
* same `struct S`, but each of them having incomplete type information about
|
|
* struct's fields:
|
|
*
|
|
* // CU #1:
|
|
* struct S;
|
|
* struct A {
|
|
* int a;
|
|
* struct A* self;
|
|
* struct S* parent;
|
|
* };
|
|
* struct B;
|
|
* struct S {
|
|
* struct A* a_ptr;
|
|
* struct B* b_ptr;
|
|
* };
|
|
*
|
|
* // CU #2:
|
|
* struct S;
|
|
* struct A;
|
|
* struct B {
|
|
* int b;
|
|
* struct B* self;
|
|
* struct S* parent;
|
|
* };
|
|
* struct S {
|
|
* struct A* a_ptr;
|
|
* struct B* b_ptr;
|
|
* };
|
|
*
|
|
* In case of CU #1, BTF data will know only that `struct B` exist (but no
|
|
* more), but will know the complete type information about `struct A`. While
|
|
* for CU #2, it will know full type information about `struct B`, but will
|
|
* only know about forward declaration of `struct A` (in BTF terms, it will
|
|
* have `BTF_KIND_FWD` type descriptor with name `B`).
|
|
*
|
|
* This compilation unit isolation means that it's possible that there is no
|
|
* single CU with complete type information describing structs `S`, `A`, and
|
|
* `B`. Also, we might get tons of duplicated and redundant type information.
|
|
*
|
|
* Additional complication we need to keep in mind comes from the fact that
|
|
* types, in general, can form graphs containing cycles, not just DAGs.
|
|
*
|
|
* While algorithm does deduplication, it also merges and resolves type
|
|
* information (unless disabled throught `struct btf_opts`), whenever possible.
|
|
* E.g., in the example above with two compilation units having partial type
|
|
* information for structs `A` and `B`, the output of algorithm will emit
|
|
* a single copy of each BTF type that describes structs `A`, `B`, and `S`
|
|
* (as well as type information for `int` and pointers), as if they were defined
|
|
* in a single compilation unit as:
|
|
*
|
|
* struct A {
|
|
* int a;
|
|
* struct A* self;
|
|
* struct S* parent;
|
|
* };
|
|
* struct B {
|
|
* int b;
|
|
* struct B* self;
|
|
* struct S* parent;
|
|
* };
|
|
* struct S {
|
|
* struct A* a_ptr;
|
|
* struct B* b_ptr;
|
|
* };
|
|
*
|
|
* Algorithm summary
|
|
* =================
|
|
*
|
|
* Algorithm completes its work in 6 separate passes:
|
|
*
|
|
* 1. Strings deduplication.
|
|
* 2. Primitive types deduplication (int, enum, fwd).
|
|
* 3. Struct/union types deduplication.
|
|
* 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
|
|
* protos, and const/volatile/restrict modifiers).
|
|
* 5. Types compaction.
|
|
* 6. Types remapping.
|
|
*
|
|
* Algorithm determines canonical type descriptor, which is a single
|
|
* representative type for each truly unique type. This canonical type is the
|
|
* one that will go into final deduplicated BTF type information. For
|
|
* struct/unions, it is also the type that algorithm will merge additional type
|
|
* information into (while resolving FWDs), as it discovers it from data in
|
|
* other CUs. Each input BTF type eventually gets either mapped to itself, if
|
|
* that type is canonical, or to some other type, if that type is equivalent
|
|
* and was chosen as canonical representative. This mapping is stored in
|
|
* `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
|
|
* FWD type got resolved to.
|
|
*
|
|
* To facilitate fast discovery of canonical types, we also maintain canonical
|
|
* index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
|
|
* (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
|
|
* that match that signature. With sufficiently good choice of type signature
|
|
* hashing function, we can limit number of canonical types for each unique type
|
|
* signature to a very small number, allowing to find canonical type for any
|
|
* duplicated type very quickly.
|
|
*
|
|
* Struct/union deduplication is the most critical part and algorithm for
|
|
* deduplicating structs/unions is described in greater details in comments for
|
|
* `btf_dedup_is_equiv` function.
|
|
*/
|
|
int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
|
|
const struct btf_dedup_opts *opts)
|
|
{
|
|
struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
|
|
int err;
|
|
|
|
if (IS_ERR(d)) {
|
|
pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
|
|
return libbpf_err(-EINVAL);
|
|
}
|
|
|
|
if (btf_ensure_modifiable(btf))
|
|
return libbpf_err(-ENOMEM);
|
|
|
|
err = btf_dedup_prep(d);
|
|
if (err) {
|
|
pr_debug("btf_dedup_prep failed:%d\n", err);
|
|
goto done;
|
|
}
|
|
err = btf_dedup_strings(d);
|
|
if (err < 0) {
|
|
pr_debug("btf_dedup_strings failed:%d\n", err);
|
|
goto done;
|
|
}
|
|
err = btf_dedup_prim_types(d);
|
|
if (err < 0) {
|
|
pr_debug("btf_dedup_prim_types failed:%d\n", err);
|
|
goto done;
|
|
}
|
|
err = btf_dedup_struct_types(d);
|
|
if (err < 0) {
|
|
pr_debug("btf_dedup_struct_types failed:%d\n", err);
|
|
goto done;
|
|
}
|
|
err = btf_dedup_ref_types(d);
|
|
if (err < 0) {
|
|
pr_debug("btf_dedup_ref_types failed:%d\n", err);
|
|
goto done;
|
|
}
|
|
err = btf_dedup_compact_types(d);
|
|
if (err < 0) {
|
|
pr_debug("btf_dedup_compact_types failed:%d\n", err);
|
|
goto done;
|
|
}
|
|
err = btf_dedup_remap_types(d);
|
|
if (err < 0) {
|
|
pr_debug("btf_dedup_remap_types failed:%d\n", err);
|
|
goto done;
|
|
}
|
|
|
|
done:
|
|
btf_dedup_free(d);
|
|
return libbpf_err(err);
|
|
}
|
|
|
|
#define BTF_UNPROCESSED_ID ((__u32)-1)
|
|
#define BTF_IN_PROGRESS_ID ((__u32)-2)
|
|
|
|
struct btf_dedup {
|
|
/* .BTF section to be deduped in-place */
|
|
struct btf *btf;
|
|
/*
|
|
* Optional .BTF.ext section. When provided, any strings referenced
|
|
* from it will be taken into account when deduping strings
|
|
*/
|
|
struct btf_ext *btf_ext;
|
|
/*
|
|
* This is a map from any type's signature hash to a list of possible
|
|
* canonical representative type candidates. Hash collisions are
|
|
* ignored, so even types of various kinds can share same list of
|
|
* candidates, which is fine because we rely on subsequent
|
|
* btf_xxx_equal() checks to authoritatively verify type equality.
|
|
*/
|
|
struct hashmap *dedup_table;
|
|
/* Canonical types map */
|
|
__u32 *map;
|
|
/* Hypothetical mapping, used during type graph equivalence checks */
|
|
__u32 *hypot_map;
|
|
__u32 *hypot_list;
|
|
size_t hypot_cnt;
|
|
size_t hypot_cap;
|
|
/* Whether hypothetical mapping, if successful, would need to adjust
|
|
* already canonicalized types (due to a new forward declaration to
|
|
* concrete type resolution). In such case, during split BTF dedup
|
|
* candidate type would still be considered as different, because base
|
|
* BTF is considered to be immutable.
|
|
*/
|
|
bool hypot_adjust_canon;
|
|
/* Various option modifying behavior of algorithm */
|
|
struct btf_dedup_opts opts;
|
|
/* temporary strings deduplication state */
|
|
struct strset *strs_set;
|
|
};
|
|
|
|
static long hash_combine(long h, long value)
|
|
{
|
|
return h * 31 + value;
|
|
}
|
|
|
|
#define for_each_dedup_cand(d, node, hash) \
|
|
hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
|
|
|
|
static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
|
|
{
|
|
return hashmap__append(d->dedup_table,
|
|
(void *)hash, (void *)(long)type_id);
|
|
}
|
|
|
|
static int btf_dedup_hypot_map_add(struct btf_dedup *d,
|
|
__u32 from_id, __u32 to_id)
|
|
{
|
|
if (d->hypot_cnt == d->hypot_cap) {
|
|
__u32 *new_list;
|
|
|
|
d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
|
|
new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
|
|
if (!new_list)
|
|
return -ENOMEM;
|
|
d->hypot_list = new_list;
|
|
}
|
|
d->hypot_list[d->hypot_cnt++] = from_id;
|
|
d->hypot_map[from_id] = to_id;
|
|
return 0;
|
|
}
|
|
|
|
static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < d->hypot_cnt; i++)
|
|
d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
|
|
d->hypot_cnt = 0;
|
|
d->hypot_adjust_canon = false;
|
|
}
|
|
|
|
static void btf_dedup_free(struct btf_dedup *d)
|
|
{
|
|
hashmap__free(d->dedup_table);
|
|
d->dedup_table = NULL;
|
|
|
|
free(d->map);
|
|
d->map = NULL;
|
|
|
|
free(d->hypot_map);
|
|
d->hypot_map = NULL;
|
|
|
|
free(d->hypot_list);
|
|
d->hypot_list = NULL;
|
|
|
|
free(d);
|
|
}
|
|
|
|
static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
|
|
{
|
|
return (size_t)key;
|
|
}
|
|
|
|
static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
|
|
{
|
|
return k1 == k2;
|
|
}
|
|
|
|
static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
|
|
const struct btf_dedup_opts *opts)
|
|
{
|
|
struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
|
|
hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
|
|
int i, err = 0, type_cnt;
|
|
|
|
if (!d)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
|
|
/* dedup_table_size is now used only to force collisions in tests */
|
|
if (opts && opts->dedup_table_size == 1)
|
|
hash_fn = btf_dedup_collision_hash_fn;
|
|
|
|
d->btf = btf;
|
|
d->btf_ext = btf_ext;
|
|
|
|
d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
|
|
if (IS_ERR(d->dedup_table)) {
|
|
err = PTR_ERR(d->dedup_table);
|
|
d->dedup_table = NULL;
|
|
goto done;
|
|
}
|
|
|
|
type_cnt = btf__get_nr_types(btf) + 1;
|
|
d->map = malloc(sizeof(__u32) * type_cnt);
|
|
if (!d->map) {
|
|
err = -ENOMEM;
|
|
goto done;
|
|
}
|
|
/* special BTF "void" type is made canonical immediately */
|
|
d->map[0] = 0;
|
|
for (i = 1; i < type_cnt; i++) {
|
|
struct btf_type *t = btf_type_by_id(d->btf, i);
|
|
|
|
/* VAR and DATASEC are never deduped and are self-canonical */
|
|
if (btf_is_var(t) || btf_is_datasec(t))
|
|
d->map[i] = i;
|
|
else
|
|
d->map[i] = BTF_UNPROCESSED_ID;
|
|
}
|
|
|
|
d->hypot_map = malloc(sizeof(__u32) * type_cnt);
|
|
if (!d->hypot_map) {
|
|
err = -ENOMEM;
|
|
goto done;
|
|
}
|
|
for (i = 0; i < type_cnt; i++)
|
|
d->hypot_map[i] = BTF_UNPROCESSED_ID;
|
|
|
|
done:
|
|
if (err) {
|
|
btf_dedup_free(d);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
return d;
|
|
}
|
|
|
|
/*
|
|
* Iterate over all possible places in .BTF and .BTF.ext that can reference
|
|
* string and pass pointer to it to a provided callback `fn`.
|
|
*/
|
|
static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
|
|
{
|
|
int i, r;
|
|
|
|
for (i = 0; i < d->btf->nr_types; i++) {
|
|
struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
|
|
|
|
r = btf_type_visit_str_offs(t, fn, ctx);
|
|
if (r)
|
|
return r;
|
|
}
|
|
|
|
if (!d->btf_ext)
|
|
return 0;
|
|
|
|
r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
|
|
if (r)
|
|
return r;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
|
|
{
|
|
struct btf_dedup *d = ctx;
|
|
__u32 str_off = *str_off_ptr;
|
|
const char *s;
|
|
int off, err;
|
|
|
|
/* don't touch empty string or string in main BTF */
|
|
if (str_off == 0 || str_off < d->btf->start_str_off)
|
|
return 0;
|
|
|
|
s = btf__str_by_offset(d->btf, str_off);
|
|
if (d->btf->base_btf) {
|
|
err = btf__find_str(d->btf->base_btf, s);
|
|
if (err >= 0) {
|
|
*str_off_ptr = err;
|
|
return 0;
|
|
}
|
|
if (err != -ENOENT)
|
|
return err;
|
|
}
|
|
|
|
off = strset__add_str(d->strs_set, s);
|
|
if (off < 0)
|
|
return off;
|
|
|
|
*str_off_ptr = d->btf->start_str_off + off;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Dedup string and filter out those that are not referenced from either .BTF
|
|
* or .BTF.ext (if provided) sections.
|
|
*
|
|
* This is done by building index of all strings in BTF's string section,
|
|
* then iterating over all entities that can reference strings (e.g., type
|
|
* names, struct field names, .BTF.ext line info, etc) and marking corresponding
|
|
* strings as used. After that all used strings are deduped and compacted into
|
|
* sequential blob of memory and new offsets are calculated. Then all the string
|
|
* references are iterated again and rewritten using new offsets.
|
|
*/
|
|
static int btf_dedup_strings(struct btf_dedup *d)
|
|
{
|
|
int err;
|
|
|
|
if (d->btf->strs_deduped)
|
|
return 0;
|
|
|
|
d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
|
|
if (IS_ERR(d->strs_set)) {
|
|
err = PTR_ERR(d->strs_set);
|
|
goto err_out;
|
|
}
|
|
|
|
if (!d->btf->base_btf) {
|
|
/* insert empty string; we won't be looking it up during strings
|
|
* dedup, but it's good to have it for generic BTF string lookups
|
|
*/
|
|
err = strset__add_str(d->strs_set, "");
|
|
if (err < 0)
|
|
goto err_out;
|
|
}
|
|
|
|
/* remap string offsets */
|
|
err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
|
|
if (err)
|
|
goto err_out;
|
|
|
|
/* replace BTF string data and hash with deduped ones */
|
|
strset__free(d->btf->strs_set);
|
|
d->btf->hdr->str_len = strset__data_size(d->strs_set);
|
|
d->btf->strs_set = d->strs_set;
|
|
d->strs_set = NULL;
|
|
d->btf->strs_deduped = true;
|
|
return 0;
|
|
|
|
err_out:
|
|
strset__free(d->strs_set);
|
|
d->strs_set = NULL;
|
|
|
|
return err;
|
|
}
|
|
|
|
static long btf_hash_common(struct btf_type *t)
|
|
{
|
|
long h;
|
|
|
|
h = hash_combine(0, t->name_off);
|
|
h = hash_combine(h, t->info);
|
|
h = hash_combine(h, t->size);
|
|
return h;
|
|
}
|
|
|
|
static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
|
|
{
|
|
return t1->name_off == t2->name_off &&
|
|
t1->info == t2->info &&
|
|
t1->size == t2->size;
|
|
}
|
|
|
|
/* Calculate type signature hash of INT. */
|
|
static long btf_hash_int(struct btf_type *t)
|
|
{
|
|
__u32 info = *(__u32 *)(t + 1);
|
|
long h;
|
|
|
|
h = btf_hash_common(t);
|
|
h = hash_combine(h, info);
|
|
return h;
|
|
}
|
|
|
|
/* Check structural equality of two INTs. */
|
|
static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
|
|
{
|
|
__u32 info1, info2;
|
|
|
|
if (!btf_equal_common(t1, t2))
|
|
return false;
|
|
info1 = *(__u32 *)(t1 + 1);
|
|
info2 = *(__u32 *)(t2 + 1);
|
|
return info1 == info2;
|
|
}
|
|
|
|
/* Calculate type signature hash of ENUM. */
|
|
static long btf_hash_enum(struct btf_type *t)
|
|
{
|
|
long h;
|
|
|
|
/* don't hash vlen and enum members to support enum fwd resolving */
|
|
h = hash_combine(0, t->name_off);
|
|
h = hash_combine(h, t->info & ~0xffff);
|
|
h = hash_combine(h, t->size);
|
|
return h;
|
|
}
|
|
|
|
/* Check structural equality of two ENUMs. */
|
|
static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
|
|
{
|
|
const struct btf_enum *m1, *m2;
|
|
__u16 vlen;
|
|
int i;
|
|
|
|
if (!btf_equal_common(t1, t2))
|
|
return false;
|
|
|
|
vlen = btf_vlen(t1);
|
|
m1 = btf_enum(t1);
|
|
m2 = btf_enum(t2);
|
|
for (i = 0; i < vlen; i++) {
|
|
if (m1->name_off != m2->name_off || m1->val != m2->val)
|
|
return false;
|
|
m1++;
|
|
m2++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static inline bool btf_is_enum_fwd(struct btf_type *t)
|
|
{
|
|
return btf_is_enum(t) && btf_vlen(t) == 0;
|
|
}
|
|
|
|
static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
|
|
{
|
|
if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
|
|
return btf_equal_enum(t1, t2);
|
|
/* ignore vlen when comparing */
|
|
return t1->name_off == t2->name_off &&
|
|
(t1->info & ~0xffff) == (t2->info & ~0xffff) &&
|
|
t1->size == t2->size;
|
|
}
|
|
|
|
/*
|
|
* Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
|
|
* as referenced type IDs equivalence is established separately during type
|
|
* graph equivalence check algorithm.
|
|
*/
|
|
static long btf_hash_struct(struct btf_type *t)
|
|
{
|
|
const struct btf_member *member = btf_members(t);
|
|
__u32 vlen = btf_vlen(t);
|
|
long h = btf_hash_common(t);
|
|
int i;
|
|
|
|
for (i = 0; i < vlen; i++) {
|
|
h = hash_combine(h, member->name_off);
|
|
h = hash_combine(h, member->offset);
|
|
/* no hashing of referenced type ID, it can be unresolved yet */
|
|
member++;
|
|
}
|
|
return h;
|
|
}
|
|
|
|
/*
|
|
* Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
|
|
* IDs. This check is performed during type graph equivalence check and
|
|
* referenced types equivalence is checked separately.
|
|
*/
|
|
static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
|
|
{
|
|
const struct btf_member *m1, *m2;
|
|
__u16 vlen;
|
|
int i;
|
|
|
|
if (!btf_equal_common(t1, t2))
|
|
return false;
|
|
|
|
vlen = btf_vlen(t1);
|
|
m1 = btf_members(t1);
|
|
m2 = btf_members(t2);
|
|
for (i = 0; i < vlen; i++) {
|
|
if (m1->name_off != m2->name_off || m1->offset != m2->offset)
|
|
return false;
|
|
m1++;
|
|
m2++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Calculate type signature hash of ARRAY, including referenced type IDs,
|
|
* under assumption that they were already resolved to canonical type IDs and
|
|
* are not going to change.
|
|
*/
|
|
static long btf_hash_array(struct btf_type *t)
|
|
{
|
|
const struct btf_array *info = btf_array(t);
|
|
long h = btf_hash_common(t);
|
|
|
|
h = hash_combine(h, info->type);
|
|
h = hash_combine(h, info->index_type);
|
|
h = hash_combine(h, info->nelems);
|
|
return h;
|
|
}
|
|
|
|
/*
|
|
* Check exact equality of two ARRAYs, taking into account referenced
|
|
* type IDs, under assumption that they were already resolved to canonical
|
|
* type IDs and are not going to change.
|
|
* This function is called during reference types deduplication to compare
|
|
* ARRAY to potential canonical representative.
|
|
*/
|
|
static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
|
|
{
|
|
const struct btf_array *info1, *info2;
|
|
|
|
if (!btf_equal_common(t1, t2))
|
|
return false;
|
|
|
|
info1 = btf_array(t1);
|
|
info2 = btf_array(t2);
|
|
return info1->type == info2->type &&
|
|
info1->index_type == info2->index_type &&
|
|
info1->nelems == info2->nelems;
|
|
}
|
|
|
|
/*
|
|
* Check structural compatibility of two ARRAYs, ignoring referenced type
|
|
* IDs. This check is performed during type graph equivalence check and
|
|
* referenced types equivalence is checked separately.
|
|
*/
|
|
static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
|
|
{
|
|
if (!btf_equal_common(t1, t2))
|
|
return false;
|
|
|
|
return btf_array(t1)->nelems == btf_array(t2)->nelems;
|
|
}
|
|
|
|
/*
|
|
* Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
|
|
* under assumption that they were already resolved to canonical type IDs and
|
|
* are not going to change.
|
|
*/
|
|
static long btf_hash_fnproto(struct btf_type *t)
|
|
{
|
|
const struct btf_param *member = btf_params(t);
|
|
__u16 vlen = btf_vlen(t);
|
|
long h = btf_hash_common(t);
|
|
int i;
|
|
|
|
for (i = 0; i < vlen; i++) {
|
|
h = hash_combine(h, member->name_off);
|
|
h = hash_combine(h, member->type);
|
|
member++;
|
|
}
|
|
return h;
|
|
}
|
|
|
|
/*
|
|
* Check exact equality of two FUNC_PROTOs, taking into account referenced
|
|
* type IDs, under assumption that they were already resolved to canonical
|
|
* type IDs and are not going to change.
|
|
* This function is called during reference types deduplication to compare
|
|
* FUNC_PROTO to potential canonical representative.
|
|
*/
|
|
static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
|
|
{
|
|
const struct btf_param *m1, *m2;
|
|
__u16 vlen;
|
|
int i;
|
|
|
|
if (!btf_equal_common(t1, t2))
|
|
return false;
|
|
|
|
vlen = btf_vlen(t1);
|
|
m1 = btf_params(t1);
|
|
m2 = btf_params(t2);
|
|
for (i = 0; i < vlen; i++) {
|
|
if (m1->name_off != m2->name_off || m1->type != m2->type)
|
|
return false;
|
|
m1++;
|
|
m2++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
|
|
* IDs. This check is performed during type graph equivalence check and
|
|
* referenced types equivalence is checked separately.
|
|
*/
|
|
static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
|
|
{
|
|
const struct btf_param *m1, *m2;
|
|
__u16 vlen;
|
|
int i;
|
|
|
|
/* skip return type ID */
|
|
if (t1->name_off != t2->name_off || t1->info != t2->info)
|
|
return false;
|
|
|
|
vlen = btf_vlen(t1);
|
|
m1 = btf_params(t1);
|
|
m2 = btf_params(t2);
|
|
for (i = 0; i < vlen; i++) {
|
|
if (m1->name_off != m2->name_off)
|
|
return false;
|
|
m1++;
|
|
m2++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Prepare split BTF for deduplication by calculating hashes of base BTF's
|
|
* types and initializing the rest of the state (canonical type mapping) for
|
|
* the fixed base BTF part.
|
|
*/
|
|
static int btf_dedup_prep(struct btf_dedup *d)
|
|
{
|
|
struct btf_type *t;
|
|
int type_id;
|
|
long h;
|
|
|
|
if (!d->btf->base_btf)
|
|
return 0;
|
|
|
|
for (type_id = 1; type_id < d->btf->start_id; type_id++) {
|
|
t = btf_type_by_id(d->btf, type_id);
|
|
|
|
/* all base BTF types are self-canonical by definition */
|
|
d->map[type_id] = type_id;
|
|
|
|
switch (btf_kind(t)) {
|
|
case BTF_KIND_VAR:
|
|
case BTF_KIND_DATASEC:
|
|
/* VAR and DATASEC are never hash/deduplicated */
|
|
continue;
|
|
case BTF_KIND_CONST:
|
|
case BTF_KIND_VOLATILE:
|
|
case BTF_KIND_RESTRICT:
|
|
case BTF_KIND_PTR:
|
|
case BTF_KIND_FWD:
|
|
case BTF_KIND_TYPEDEF:
|
|
case BTF_KIND_FUNC:
|
|
case BTF_KIND_FLOAT:
|
|
h = btf_hash_common(t);
|
|
break;
|
|
case BTF_KIND_INT:
|
|
h = btf_hash_int(t);
|
|
break;
|
|
case BTF_KIND_ENUM:
|
|
h = btf_hash_enum(t);
|
|
break;
|
|
case BTF_KIND_STRUCT:
|
|
case BTF_KIND_UNION:
|
|
h = btf_hash_struct(t);
|
|
break;
|
|
case BTF_KIND_ARRAY:
|
|
h = btf_hash_array(t);
|
|
break;
|
|
case BTF_KIND_FUNC_PROTO:
|
|
h = btf_hash_fnproto(t);
|
|
break;
|
|
default:
|
|
pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
|
|
return -EINVAL;
|
|
}
|
|
if (btf_dedup_table_add(d, h, type_id))
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Deduplicate primitive types, that can't reference other types, by calculating
|
|
* their type signature hash and comparing them with any possible canonical
|
|
* candidate. If no canonical candidate matches, type itself is marked as
|
|
* canonical and is added into `btf_dedup->dedup_table` as another candidate.
|
|
*/
|
|
static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
|
|
{
|
|
struct btf_type *t = btf_type_by_id(d->btf, type_id);
|
|
struct hashmap_entry *hash_entry;
|
|
struct btf_type *cand;
|
|
/* if we don't find equivalent type, then we are canonical */
|
|
__u32 new_id = type_id;
|
|
__u32 cand_id;
|
|
long h;
|
|
|
|
switch (btf_kind(t)) {
|
|
case BTF_KIND_CONST:
|
|
case BTF_KIND_VOLATILE:
|
|
case BTF_KIND_RESTRICT:
|
|
case BTF_KIND_PTR:
|
|
case BTF_KIND_TYPEDEF:
|
|
case BTF_KIND_ARRAY:
|
|
case BTF_KIND_STRUCT:
|
|
case BTF_KIND_UNION:
|
|
case BTF_KIND_FUNC:
|
|
case BTF_KIND_FUNC_PROTO:
|
|
case BTF_KIND_VAR:
|
|
case BTF_KIND_DATASEC:
|
|
return 0;
|
|
|
|
case BTF_KIND_INT:
|
|
h = btf_hash_int(t);
|
|
for_each_dedup_cand(d, hash_entry, h) {
|
|
cand_id = (__u32)(long)hash_entry->value;
|
|
cand = btf_type_by_id(d->btf, cand_id);
|
|
if (btf_equal_int(t, cand)) {
|
|
new_id = cand_id;
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case BTF_KIND_ENUM:
|
|
h = btf_hash_enum(t);
|
|
for_each_dedup_cand(d, hash_entry, h) {
|
|
cand_id = (__u32)(long)hash_entry->value;
|
|
cand = btf_type_by_id(d->btf, cand_id);
|
|
if (btf_equal_enum(t, cand)) {
|
|
new_id = cand_id;
|
|
break;
|
|
}
|
|
if (d->opts.dont_resolve_fwds)
|
|
continue;
|
|
if (btf_compat_enum(t, cand)) {
|
|
if (btf_is_enum_fwd(t)) {
|
|
/* resolve fwd to full enum */
|
|
new_id = cand_id;
|
|
break;
|
|
}
|
|
/* resolve canonical enum fwd to full enum */
|
|
d->map[cand_id] = type_id;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case BTF_KIND_FWD:
|
|
case BTF_KIND_FLOAT:
|
|
h = btf_hash_common(t);
|
|
for_each_dedup_cand(d, hash_entry, h) {
|
|
cand_id = (__u32)(long)hash_entry->value;
|
|
cand = btf_type_by_id(d->btf, cand_id);
|
|
if (btf_equal_common(t, cand)) {
|
|
new_id = cand_id;
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
d->map[type_id] = new_id;
|
|
if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_dedup_prim_types(struct btf_dedup *d)
|
|
{
|
|
int i, err;
|
|
|
|
for (i = 0; i < d->btf->nr_types; i++) {
|
|
err = btf_dedup_prim_type(d, d->btf->start_id + i);
|
|
if (err)
|
|
return err;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check whether type is already mapped into canonical one (could be to itself).
|
|
*/
|
|
static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
|
|
{
|
|
return d->map[type_id] <= BTF_MAX_NR_TYPES;
|
|
}
|
|
|
|
/*
|
|
* Resolve type ID into its canonical type ID, if any; otherwise return original
|
|
* type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
|
|
* STRUCT/UNION link and resolve it into canonical type ID as well.
|
|
*/
|
|
static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
|
|
{
|
|
while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
|
|
type_id = d->map[type_id];
|
|
return type_id;
|
|
}
|
|
|
|
/*
|
|
* Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
|
|
* type ID.
|
|
*/
|
|
static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
|
|
{
|
|
__u32 orig_type_id = type_id;
|
|
|
|
if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
|
|
return type_id;
|
|
|
|
while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
|
|
type_id = d->map[type_id];
|
|
|
|
if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
|
|
return type_id;
|
|
|
|
return orig_type_id;
|
|
}
|
|
|
|
|
|
static inline __u16 btf_fwd_kind(struct btf_type *t)
|
|
{
|
|
return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
|
|
}
|
|
|
|
/* Check if given two types are identical ARRAY definitions */
|
|
static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
|
|
{
|
|
struct btf_type *t1, *t2;
|
|
|
|
t1 = btf_type_by_id(d->btf, id1);
|
|
t2 = btf_type_by_id(d->btf, id2);
|
|
if (!btf_is_array(t1) || !btf_is_array(t2))
|
|
return 0;
|
|
|
|
return btf_equal_array(t1, t2);
|
|
}
|
|
|
|
/*
|
|
* Check equivalence of BTF type graph formed by candidate struct/union (we'll
|
|
* call it "candidate graph" in this description for brevity) to a type graph
|
|
* formed by (potential) canonical struct/union ("canonical graph" for brevity
|
|
* here, though keep in mind that not all types in canonical graph are
|
|
* necessarily canonical representatives themselves, some of them might be
|
|
* duplicates or its uniqueness might not have been established yet).
|
|
* Returns:
|
|
* - >0, if type graphs are equivalent;
|
|
* - 0, if not equivalent;
|
|
* - <0, on error.
|
|
*
|
|
* Algorithm performs side-by-side DFS traversal of both type graphs and checks
|
|
* equivalence of BTF types at each step. If at any point BTF types in candidate
|
|
* and canonical graphs are not compatible structurally, whole graphs are
|
|
* incompatible. If types are structurally equivalent (i.e., all information
|
|
* except referenced type IDs is exactly the same), a mapping from `canon_id` to
|
|
* a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
|
|
* If a type references other types, then those referenced types are checked
|
|
* for equivalence recursively.
|
|
*
|
|
* During DFS traversal, if we find that for current `canon_id` type we
|
|
* already have some mapping in hypothetical map, we check for two possible
|
|
* situations:
|
|
* - `canon_id` is mapped to exactly the same type as `cand_id`. This will
|
|
* happen when type graphs have cycles. In this case we assume those two
|
|
* types are equivalent.
|
|
* - `canon_id` is mapped to different type. This is contradiction in our
|
|
* hypothetical mapping, because same graph in canonical graph corresponds
|
|
* to two different types in candidate graph, which for equivalent type
|
|
* graphs shouldn't happen. This condition terminates equivalence check
|
|
* with negative result.
|
|
*
|
|
* If type graphs traversal exhausts types to check and find no contradiction,
|
|
* then type graphs are equivalent.
|
|
*
|
|
* When checking types for equivalence, there is one special case: FWD types.
|
|
* If FWD type resolution is allowed and one of the types (either from canonical
|
|
* or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
|
|
* flag) and their names match, hypothetical mapping is updated to point from
|
|
* FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
|
|
* this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
|
|
*
|
|
* Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
|
|
* if there are two exactly named (or anonymous) structs/unions that are
|
|
* compatible structurally, one of which has FWD field, while other is concrete
|
|
* STRUCT/UNION, but according to C sources they are different structs/unions
|
|
* that are referencing different types with the same name. This is extremely
|
|
* unlikely to happen, but btf_dedup API allows to disable FWD resolution if
|
|
* this logic is causing problems.
|
|
*
|
|
* Doing FWD resolution means that both candidate and/or canonical graphs can
|
|
* consists of portions of the graph that come from multiple compilation units.
|
|
* This is due to the fact that types within single compilation unit are always
|
|
* deduplicated and FWDs are already resolved, if referenced struct/union
|
|
* definiton is available. So, if we had unresolved FWD and found corresponding
|
|
* STRUCT/UNION, they will be from different compilation units. This
|
|
* consequently means that when we "link" FWD to corresponding STRUCT/UNION,
|
|
* type graph will likely have at least two different BTF types that describe
|
|
* same type (e.g., most probably there will be two different BTF types for the
|
|
* same 'int' primitive type) and could even have "overlapping" parts of type
|
|
* graph that describe same subset of types.
|
|
*
|
|
* This in turn means that our assumption that each type in canonical graph
|
|
* must correspond to exactly one type in candidate graph might not hold
|
|
* anymore and will make it harder to detect contradictions using hypothetical
|
|
* map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
|
|
* resolution only in canonical graph. FWDs in candidate graphs are never
|
|
* resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
|
|
* that can occur:
|
|
* - Both types in canonical and candidate graphs are FWDs. If they are
|
|
* structurally equivalent, then they can either be both resolved to the
|
|
* same STRUCT/UNION or not resolved at all. In both cases they are
|
|
* equivalent and there is no need to resolve FWD on candidate side.
|
|
* - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
|
|
* so nothing to resolve as well, algorithm will check equivalence anyway.
|
|
* - Type in canonical graph is FWD, while type in candidate is concrete
|
|
* STRUCT/UNION. In this case candidate graph comes from single compilation
|
|
* unit, so there is exactly one BTF type for each unique C type. After
|
|
* resolving FWD into STRUCT/UNION, there might be more than one BTF type
|
|
* in canonical graph mapping to single BTF type in candidate graph, but
|
|
* because hypothetical mapping maps from canonical to candidate types, it's
|
|
* alright, and we still maintain the property of having single `canon_id`
|
|
* mapping to single `cand_id` (there could be two different `canon_id`
|
|
* mapped to the same `cand_id`, but it's not contradictory).
|
|
* - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
|
|
* graph is FWD. In this case we are just going to check compatibility of
|
|
* STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
|
|
* assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
|
|
* a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
|
|
* turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
|
|
* canonical graph.
|
|
*/
|
|
static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
|
|
__u32 canon_id)
|
|
{
|
|
struct btf_type *cand_type;
|
|
struct btf_type *canon_type;
|
|
__u32 hypot_type_id;
|
|
__u16 cand_kind;
|
|
__u16 canon_kind;
|
|
int i, eq;
|
|
|
|
/* if both resolve to the same canonical, they must be equivalent */
|
|
if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
|
|
return 1;
|
|
|
|
canon_id = resolve_fwd_id(d, canon_id);
|
|
|
|
hypot_type_id = d->hypot_map[canon_id];
|
|
if (hypot_type_id <= BTF_MAX_NR_TYPES) {
|
|
/* In some cases compiler will generate different DWARF types
|
|
* for *identical* array type definitions and use them for
|
|
* different fields within the *same* struct. This breaks type
|
|
* equivalence check, which makes an assumption that candidate
|
|
* types sub-graph has a consistent and deduped-by-compiler
|
|
* types within a single CU. So work around that by explicitly
|
|
* allowing identical array types here.
|
|
*/
|
|
return hypot_type_id == cand_id ||
|
|
btf_dedup_identical_arrays(d, hypot_type_id, cand_id);
|
|
}
|
|
|
|
if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
|
|
return -ENOMEM;
|
|
|
|
cand_type = btf_type_by_id(d->btf, cand_id);
|
|
canon_type = btf_type_by_id(d->btf, canon_id);
|
|
cand_kind = btf_kind(cand_type);
|
|
canon_kind = btf_kind(canon_type);
|
|
|
|
if (cand_type->name_off != canon_type->name_off)
|
|
return 0;
|
|
|
|
/* FWD <--> STRUCT/UNION equivalence check, if enabled */
|
|
if (!d->opts.dont_resolve_fwds
|
|
&& (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
|
|
&& cand_kind != canon_kind) {
|
|
__u16 real_kind;
|
|
__u16 fwd_kind;
|
|
|
|
if (cand_kind == BTF_KIND_FWD) {
|
|
real_kind = canon_kind;
|
|
fwd_kind = btf_fwd_kind(cand_type);
|
|
} else {
|
|
real_kind = cand_kind;
|
|
fwd_kind = btf_fwd_kind(canon_type);
|
|
/* we'd need to resolve base FWD to STRUCT/UNION */
|
|
if (fwd_kind == real_kind && canon_id < d->btf->start_id)
|
|
d->hypot_adjust_canon = true;
|
|
}
|
|
return fwd_kind == real_kind;
|
|
}
|
|
|
|
if (cand_kind != canon_kind)
|
|
return 0;
|
|
|
|
switch (cand_kind) {
|
|
case BTF_KIND_INT:
|
|
return btf_equal_int(cand_type, canon_type);
|
|
|
|
case BTF_KIND_ENUM:
|
|
if (d->opts.dont_resolve_fwds)
|
|
return btf_equal_enum(cand_type, canon_type);
|
|
else
|
|
return btf_compat_enum(cand_type, canon_type);
|
|
|
|
case BTF_KIND_FWD:
|
|
case BTF_KIND_FLOAT:
|
|
return btf_equal_common(cand_type, canon_type);
|
|
|
|
case BTF_KIND_CONST:
|
|
case BTF_KIND_VOLATILE:
|
|
case BTF_KIND_RESTRICT:
|
|
case BTF_KIND_PTR:
|
|
case BTF_KIND_TYPEDEF:
|
|
case BTF_KIND_FUNC:
|
|
if (cand_type->info != canon_type->info)
|
|
return 0;
|
|
return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
|
|
|
|
case BTF_KIND_ARRAY: {
|
|
const struct btf_array *cand_arr, *canon_arr;
|
|
|
|
if (!btf_compat_array(cand_type, canon_type))
|
|
return 0;
|
|
cand_arr = btf_array(cand_type);
|
|
canon_arr = btf_array(canon_type);
|
|
eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
|
|
if (eq <= 0)
|
|
return eq;
|
|
return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
|
|
}
|
|
|
|
case BTF_KIND_STRUCT:
|
|
case BTF_KIND_UNION: {
|
|
const struct btf_member *cand_m, *canon_m;
|
|
__u16 vlen;
|
|
|
|
if (!btf_shallow_equal_struct(cand_type, canon_type))
|
|
return 0;
|
|
vlen = btf_vlen(cand_type);
|
|
cand_m = btf_members(cand_type);
|
|
canon_m = btf_members(canon_type);
|
|
for (i = 0; i < vlen; i++) {
|
|
eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
|
|
if (eq <= 0)
|
|
return eq;
|
|
cand_m++;
|
|
canon_m++;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
case BTF_KIND_FUNC_PROTO: {
|
|
const struct btf_param *cand_p, *canon_p;
|
|
__u16 vlen;
|
|
|
|
if (!btf_compat_fnproto(cand_type, canon_type))
|
|
return 0;
|
|
eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
|
|
if (eq <= 0)
|
|
return eq;
|
|
vlen = btf_vlen(cand_type);
|
|
cand_p = btf_params(cand_type);
|
|
canon_p = btf_params(canon_type);
|
|
for (i = 0; i < vlen; i++) {
|
|
eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
|
|
if (eq <= 0)
|
|
return eq;
|
|
cand_p++;
|
|
canon_p++;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Use hypothetical mapping, produced by successful type graph equivalence
|
|
* check, to augment existing struct/union canonical mapping, where possible.
|
|
*
|
|
* If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
|
|
* FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
|
|
* it doesn't matter if FWD type was part of canonical graph or candidate one,
|
|
* we are recording the mapping anyway. As opposed to carefulness required
|
|
* for struct/union correspondence mapping (described below), for FWD resolution
|
|
* it's not important, as by the time that FWD type (reference type) will be
|
|
* deduplicated all structs/unions will be deduped already anyway.
|
|
*
|
|
* Recording STRUCT/UNION mapping is purely a performance optimization and is
|
|
* not required for correctness. It needs to be done carefully to ensure that
|
|
* struct/union from candidate's type graph is not mapped into corresponding
|
|
* struct/union from canonical type graph that itself hasn't been resolved into
|
|
* canonical representative. The only guarantee we have is that canonical
|
|
* struct/union was determined as canonical and that won't change. But any
|
|
* types referenced through that struct/union fields could have been not yet
|
|
* resolved, so in case like that it's too early to establish any kind of
|
|
* correspondence between structs/unions.
|
|
*
|
|
* No canonical correspondence is derived for primitive types (they are already
|
|
* deduplicated completely already anyway) or reference types (they rely on
|
|
* stability of struct/union canonical relationship for equivalence checks).
|
|
*/
|
|
static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
|
|
{
|
|
__u32 canon_type_id, targ_type_id;
|
|
__u16 t_kind, c_kind;
|
|
__u32 t_id, c_id;
|
|
int i;
|
|
|
|
for (i = 0; i < d->hypot_cnt; i++) {
|
|
canon_type_id = d->hypot_list[i];
|
|
targ_type_id = d->hypot_map[canon_type_id];
|
|
t_id = resolve_type_id(d, targ_type_id);
|
|
c_id = resolve_type_id(d, canon_type_id);
|
|
t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
|
|
c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
|
|
/*
|
|
* Resolve FWD into STRUCT/UNION.
|
|
* It's ok to resolve FWD into STRUCT/UNION that's not yet
|
|
* mapped to canonical representative (as opposed to
|
|
* STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
|
|
* eventually that struct is going to be mapped and all resolved
|
|
* FWDs will automatically resolve to correct canonical
|
|
* representative. This will happen before ref type deduping,
|
|
* which critically depends on stability of these mapping. This
|
|
* stability is not a requirement for STRUCT/UNION equivalence
|
|
* checks, though.
|
|
*/
|
|
|
|
/* if it's the split BTF case, we still need to point base FWD
|
|
* to STRUCT/UNION in a split BTF, because FWDs from split BTF
|
|
* will be resolved against base FWD. If we don't point base
|
|
* canonical FWD to the resolved STRUCT/UNION, then all the
|
|
* FWDs in split BTF won't be correctly resolved to a proper
|
|
* STRUCT/UNION.
|
|
*/
|
|
if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
|
|
d->map[c_id] = t_id;
|
|
|
|
/* if graph equivalence determined that we'd need to adjust
|
|
* base canonical types, then we need to only point base FWDs
|
|
* to STRUCTs/UNIONs and do no more modifications. For all
|
|
* other purposes the type graphs were not equivalent.
|
|
*/
|
|
if (d->hypot_adjust_canon)
|
|
continue;
|
|
|
|
if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
|
|
d->map[t_id] = c_id;
|
|
|
|
if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
|
|
c_kind != BTF_KIND_FWD &&
|
|
is_type_mapped(d, c_id) &&
|
|
!is_type_mapped(d, t_id)) {
|
|
/*
|
|
* as a perf optimization, we can map struct/union
|
|
* that's part of type graph we just verified for
|
|
* equivalence. We can do that for struct/union that has
|
|
* canonical representative only, though.
|
|
*/
|
|
d->map[t_id] = c_id;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Deduplicate struct/union types.
|
|
*
|
|
* For each struct/union type its type signature hash is calculated, taking
|
|
* into account type's name, size, number, order and names of fields, but
|
|
* ignoring type ID's referenced from fields, because they might not be deduped
|
|
* completely until after reference types deduplication phase. This type hash
|
|
* is used to iterate over all potential canonical types, sharing same hash.
|
|
* For each canonical candidate we check whether type graphs that they form
|
|
* (through referenced types in fields and so on) are equivalent using algorithm
|
|
* implemented in `btf_dedup_is_equiv`. If such equivalence is found and
|
|
* BTF_KIND_FWD resolution is allowed, then hypothetical mapping
|
|
* (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
|
|
* algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
|
|
* potentially map other structs/unions to their canonical representatives,
|
|
* if such relationship hasn't yet been established. This speeds up algorithm
|
|
* by eliminating some of the duplicate work.
|
|
*
|
|
* If no matching canonical representative was found, struct/union is marked
|
|
* as canonical for itself and is added into btf_dedup->dedup_table hash map
|
|
* for further look ups.
|
|
*/
|
|
static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
|
|
{
|
|
struct btf_type *cand_type, *t;
|
|
struct hashmap_entry *hash_entry;
|
|
/* if we don't find equivalent type, then we are canonical */
|
|
__u32 new_id = type_id;
|
|
__u16 kind;
|
|
long h;
|
|
|
|
/* already deduped or is in process of deduping (loop detected) */
|
|
if (d->map[type_id] <= BTF_MAX_NR_TYPES)
|
|
return 0;
|
|
|
|
t = btf_type_by_id(d->btf, type_id);
|
|
kind = btf_kind(t);
|
|
|
|
if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
|
|
return 0;
|
|
|
|
h = btf_hash_struct(t);
|
|
for_each_dedup_cand(d, hash_entry, h) {
|
|
__u32 cand_id = (__u32)(long)hash_entry->value;
|
|
int eq;
|
|
|
|
/*
|
|
* Even though btf_dedup_is_equiv() checks for
|
|
* btf_shallow_equal_struct() internally when checking two
|
|
* structs (unions) for equivalence, we need to guard here
|
|
* from picking matching FWD type as a dedup candidate.
|
|
* This can happen due to hash collision. In such case just
|
|
* relying on btf_dedup_is_equiv() would lead to potentially
|
|
* creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
|
|
* FWD and compatible STRUCT/UNION are considered equivalent.
|
|
*/
|
|
cand_type = btf_type_by_id(d->btf, cand_id);
|
|
if (!btf_shallow_equal_struct(t, cand_type))
|
|
continue;
|
|
|
|
btf_dedup_clear_hypot_map(d);
|
|
eq = btf_dedup_is_equiv(d, type_id, cand_id);
|
|
if (eq < 0)
|
|
return eq;
|
|
if (!eq)
|
|
continue;
|
|
btf_dedup_merge_hypot_map(d);
|
|
if (d->hypot_adjust_canon) /* not really equivalent */
|
|
continue;
|
|
new_id = cand_id;
|
|
break;
|
|
}
|
|
|
|
d->map[type_id] = new_id;
|
|
if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_dedup_struct_types(struct btf_dedup *d)
|
|
{
|
|
int i, err;
|
|
|
|
for (i = 0; i < d->btf->nr_types; i++) {
|
|
err = btf_dedup_struct_type(d, d->btf->start_id + i);
|
|
if (err)
|
|
return err;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Deduplicate reference type.
|
|
*
|
|
* Once all primitive and struct/union types got deduplicated, we can easily
|
|
* deduplicate all other (reference) BTF types. This is done in two steps:
|
|
*
|
|
* 1. Resolve all referenced type IDs into their canonical type IDs. This
|
|
* resolution can be done either immediately for primitive or struct/union types
|
|
* (because they were deduped in previous two phases) or recursively for
|
|
* reference types. Recursion will always terminate at either primitive or
|
|
* struct/union type, at which point we can "unwind" chain of reference types
|
|
* one by one. There is no danger of encountering cycles because in C type
|
|
* system the only way to form type cycle is through struct/union, so any chain
|
|
* of reference types, even those taking part in a type cycle, will inevitably
|
|
* reach struct/union at some point.
|
|
*
|
|
* 2. Once all referenced type IDs are resolved into canonical ones, BTF type
|
|
* becomes "stable", in the sense that no further deduplication will cause
|
|
* any changes to it. With that, it's now possible to calculate type's signature
|
|
* hash (this time taking into account referenced type IDs) and loop over all
|
|
* potential canonical representatives. If no match was found, current type
|
|
* will become canonical representative of itself and will be added into
|
|
* btf_dedup->dedup_table as another possible canonical representative.
|
|
*/
|
|
static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
|
|
{
|
|
struct hashmap_entry *hash_entry;
|
|
__u32 new_id = type_id, cand_id;
|
|
struct btf_type *t, *cand;
|
|
/* if we don't find equivalent type, then we are representative type */
|
|
int ref_type_id;
|
|
long h;
|
|
|
|
if (d->map[type_id] == BTF_IN_PROGRESS_ID)
|
|
return -ELOOP;
|
|
if (d->map[type_id] <= BTF_MAX_NR_TYPES)
|
|
return resolve_type_id(d, type_id);
|
|
|
|
t = btf_type_by_id(d->btf, type_id);
|
|
d->map[type_id] = BTF_IN_PROGRESS_ID;
|
|
|
|
switch (btf_kind(t)) {
|
|
case BTF_KIND_CONST:
|
|
case BTF_KIND_VOLATILE:
|
|
case BTF_KIND_RESTRICT:
|
|
case BTF_KIND_PTR:
|
|
case BTF_KIND_TYPEDEF:
|
|
case BTF_KIND_FUNC:
|
|
ref_type_id = btf_dedup_ref_type(d, t->type);
|
|
if (ref_type_id < 0)
|
|
return ref_type_id;
|
|
t->type = ref_type_id;
|
|
|
|
h = btf_hash_common(t);
|
|
for_each_dedup_cand(d, hash_entry, h) {
|
|
cand_id = (__u32)(long)hash_entry->value;
|
|
cand = btf_type_by_id(d->btf, cand_id);
|
|
if (btf_equal_common(t, cand)) {
|
|
new_id = cand_id;
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case BTF_KIND_ARRAY: {
|
|
struct btf_array *info = btf_array(t);
|
|
|
|
ref_type_id = btf_dedup_ref_type(d, info->type);
|
|
if (ref_type_id < 0)
|
|
return ref_type_id;
|
|
info->type = ref_type_id;
|
|
|
|
ref_type_id = btf_dedup_ref_type(d, info->index_type);
|
|
if (ref_type_id < 0)
|
|
return ref_type_id;
|
|
info->index_type = ref_type_id;
|
|
|
|
h = btf_hash_array(t);
|
|
for_each_dedup_cand(d, hash_entry, h) {
|
|
cand_id = (__u32)(long)hash_entry->value;
|
|
cand = btf_type_by_id(d->btf, cand_id);
|
|
if (btf_equal_array(t, cand)) {
|
|
new_id = cand_id;
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case BTF_KIND_FUNC_PROTO: {
|
|
struct btf_param *param;
|
|
__u16 vlen;
|
|
int i;
|
|
|
|
ref_type_id = btf_dedup_ref_type(d, t->type);
|
|
if (ref_type_id < 0)
|
|
return ref_type_id;
|
|
t->type = ref_type_id;
|
|
|
|
vlen = btf_vlen(t);
|
|
param = btf_params(t);
|
|
for (i = 0; i < vlen; i++) {
|
|
ref_type_id = btf_dedup_ref_type(d, param->type);
|
|
if (ref_type_id < 0)
|
|
return ref_type_id;
|
|
param->type = ref_type_id;
|
|
param++;
|
|
}
|
|
|
|
h = btf_hash_fnproto(t);
|
|
for_each_dedup_cand(d, hash_entry, h) {
|
|
cand_id = (__u32)(long)hash_entry->value;
|
|
cand = btf_type_by_id(d->btf, cand_id);
|
|
if (btf_equal_fnproto(t, cand)) {
|
|
new_id = cand_id;
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
d->map[type_id] = new_id;
|
|
if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
|
|
return -ENOMEM;
|
|
|
|
return new_id;
|
|
}
|
|
|
|
static int btf_dedup_ref_types(struct btf_dedup *d)
|
|
{
|
|
int i, err;
|
|
|
|
for (i = 0; i < d->btf->nr_types; i++) {
|
|
err = btf_dedup_ref_type(d, d->btf->start_id + i);
|
|
if (err < 0)
|
|
return err;
|
|
}
|
|
/* we won't need d->dedup_table anymore */
|
|
hashmap__free(d->dedup_table);
|
|
d->dedup_table = NULL;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Compact types.
|
|
*
|
|
* After we established for each type its corresponding canonical representative
|
|
* type, we now can eliminate types that are not canonical and leave only
|
|
* canonical ones layed out sequentially in memory by copying them over
|
|
* duplicates. During compaction btf_dedup->hypot_map array is reused to store
|
|
* a map from original type ID to a new compacted type ID, which will be used
|
|
* during next phase to "fix up" type IDs, referenced from struct/union and
|
|
* reference types.
|
|
*/
|
|
static int btf_dedup_compact_types(struct btf_dedup *d)
|
|
{
|
|
__u32 *new_offs;
|
|
__u32 next_type_id = d->btf->start_id;
|
|
const struct btf_type *t;
|
|
void *p;
|
|
int i, id, len;
|
|
|
|
/* we are going to reuse hypot_map to store compaction remapping */
|
|
d->hypot_map[0] = 0;
|
|
/* base BTF types are not renumbered */
|
|
for (id = 1; id < d->btf->start_id; id++)
|
|
d->hypot_map[id] = id;
|
|
for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
|
|
d->hypot_map[id] = BTF_UNPROCESSED_ID;
|
|
|
|
p = d->btf->types_data;
|
|
|
|
for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
|
|
if (d->map[id] != id)
|
|
continue;
|
|
|
|
t = btf__type_by_id(d->btf, id);
|
|
len = btf_type_size(t);
|
|
if (len < 0)
|
|
return len;
|
|
|
|
memmove(p, t, len);
|
|
d->hypot_map[id] = next_type_id;
|
|
d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
|
|
p += len;
|
|
next_type_id++;
|
|
}
|
|
|
|
/* shrink struct btf's internal types index and update btf_header */
|
|
d->btf->nr_types = next_type_id - d->btf->start_id;
|
|
d->btf->type_offs_cap = d->btf->nr_types;
|
|
d->btf->hdr->type_len = p - d->btf->types_data;
|
|
new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
|
|
sizeof(*new_offs));
|
|
if (d->btf->type_offs_cap && !new_offs)
|
|
return -ENOMEM;
|
|
d->btf->type_offs = new_offs;
|
|
d->btf->hdr->str_off = d->btf->hdr->type_len;
|
|
d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Figure out final (deduplicated and compacted) type ID for provided original
|
|
* `type_id` by first resolving it into corresponding canonical type ID and
|
|
* then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
|
|
* which is populated during compaction phase.
|
|
*/
|
|
static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
|
|
{
|
|
struct btf_dedup *d = ctx;
|
|
__u32 resolved_type_id, new_type_id;
|
|
|
|
resolved_type_id = resolve_type_id(d, *type_id);
|
|
new_type_id = d->hypot_map[resolved_type_id];
|
|
if (new_type_id > BTF_MAX_NR_TYPES)
|
|
return -EINVAL;
|
|
|
|
*type_id = new_type_id;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Remap referenced type IDs into deduped type IDs.
|
|
*
|
|
* After BTF types are deduplicated and compacted, their final type IDs may
|
|
* differ from original ones. The map from original to a corresponding
|
|
* deduped type ID is stored in btf_dedup->hypot_map and is populated during
|
|
* compaction phase. During remapping phase we are rewriting all type IDs
|
|
* referenced from any BTF type (e.g., struct fields, func proto args, etc) to
|
|
* their final deduped type IDs.
|
|
*/
|
|
static int btf_dedup_remap_types(struct btf_dedup *d)
|
|
{
|
|
int i, r;
|
|
|
|
for (i = 0; i < d->btf->nr_types; i++) {
|
|
struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
|
|
|
|
r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
|
|
if (r)
|
|
return r;
|
|
}
|
|
|
|
if (!d->btf_ext)
|
|
return 0;
|
|
|
|
r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
|
|
if (r)
|
|
return r;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Probe few well-known locations for vmlinux kernel image and try to load BTF
|
|
* data out of it to use for target BTF.
|
|
*/
|
|
struct btf *libbpf_find_kernel_btf(void)
|
|
{
|
|
struct {
|
|
const char *path_fmt;
|
|
bool raw_btf;
|
|
} locations[] = {
|
|
/* try canonical vmlinux BTF through sysfs first */
|
|
{ "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
|
|
/* fall back to trying to find vmlinux ELF on disk otherwise */
|
|
{ "/boot/vmlinux-%1$s" },
|
|
{ "/lib/modules/%1$s/vmlinux-%1$s" },
|
|
{ "/lib/modules/%1$s/build/vmlinux" },
|
|
{ "/usr/lib/modules/%1$s/kernel/vmlinux" },
|
|
{ "/usr/lib/debug/boot/vmlinux-%1$s" },
|
|
{ "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
|
|
{ "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
|
|
};
|
|
char path[PATH_MAX + 1];
|
|
struct utsname buf;
|
|
struct btf *btf;
|
|
int i, err;
|
|
|
|
uname(&buf);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(locations); i++) {
|
|
snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
|
|
|
|
if (access(path, R_OK))
|
|
continue;
|
|
|
|
if (locations[i].raw_btf)
|
|
btf = btf__parse_raw(path);
|
|
else
|
|
btf = btf__parse_elf(path, NULL);
|
|
err = libbpf_get_error(btf);
|
|
pr_debug("loading kernel BTF '%s': %d\n", path, err);
|
|
if (err)
|
|
continue;
|
|
|
|
return btf;
|
|
}
|
|
|
|
pr_warn("failed to find valid kernel BTF\n");
|
|
return libbpf_err_ptr(-ESRCH);
|
|
}
|
|
|
|
int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
|
|
{
|
|
int i, n, err;
|
|
|
|
switch (btf_kind(t)) {
|
|
case BTF_KIND_INT:
|
|
case BTF_KIND_FLOAT:
|
|
case BTF_KIND_ENUM:
|
|
return 0;
|
|
|
|
case BTF_KIND_FWD:
|
|
case BTF_KIND_CONST:
|
|
case BTF_KIND_VOLATILE:
|
|
case BTF_KIND_RESTRICT:
|
|
case BTF_KIND_PTR:
|
|
case BTF_KIND_TYPEDEF:
|
|
case BTF_KIND_FUNC:
|
|
case BTF_KIND_VAR:
|
|
return visit(&t->type, ctx);
|
|
|
|
case BTF_KIND_ARRAY: {
|
|
struct btf_array *a = btf_array(t);
|
|
|
|
err = visit(&a->type, ctx);
|
|
err = err ?: visit(&a->index_type, ctx);
|
|
return err;
|
|
}
|
|
|
|
case BTF_KIND_STRUCT:
|
|
case BTF_KIND_UNION: {
|
|
struct btf_member *m = btf_members(t);
|
|
|
|
for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
|
|
err = visit(&m->type, ctx);
|
|
if (err)
|
|
return err;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
case BTF_KIND_FUNC_PROTO: {
|
|
struct btf_param *m = btf_params(t);
|
|
|
|
err = visit(&t->type, ctx);
|
|
if (err)
|
|
return err;
|
|
for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
|
|
err = visit(&m->type, ctx);
|
|
if (err)
|
|
return err;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
case BTF_KIND_DATASEC: {
|
|
struct btf_var_secinfo *m = btf_var_secinfos(t);
|
|
|
|
for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
|
|
err = visit(&m->type, ctx);
|
|
if (err)
|
|
return err;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
|
|
{
|
|
int i, n, err;
|
|
|
|
err = visit(&t->name_off, ctx);
|
|
if (err)
|
|
return err;
|
|
|
|
switch (btf_kind(t)) {
|
|
case BTF_KIND_STRUCT:
|
|
case BTF_KIND_UNION: {
|
|
struct btf_member *m = btf_members(t);
|
|
|
|
for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
|
|
err = visit(&m->name_off, ctx);
|
|
if (err)
|
|
return err;
|
|
}
|
|
break;
|
|
}
|
|
case BTF_KIND_ENUM: {
|
|
struct btf_enum *m = btf_enum(t);
|
|
|
|
for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
|
|
err = visit(&m->name_off, ctx);
|
|
if (err)
|
|
return err;
|
|
}
|
|
break;
|
|
}
|
|
case BTF_KIND_FUNC_PROTO: {
|
|
struct btf_param *m = btf_params(t);
|
|
|
|
for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
|
|
err = visit(&m->name_off, ctx);
|
|
if (err)
|
|
return err;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
|
|
{
|
|
const struct btf_ext_info *seg;
|
|
struct btf_ext_info_sec *sec;
|
|
int i, err;
|
|
|
|
seg = &btf_ext->func_info;
|
|
for_each_btf_ext_sec(seg, sec) {
|
|
struct bpf_func_info_min *rec;
|
|
|
|
for_each_btf_ext_rec(seg, sec, i, rec) {
|
|
err = visit(&rec->type_id, ctx);
|
|
if (err < 0)
|
|
return err;
|
|
}
|
|
}
|
|
|
|
seg = &btf_ext->core_relo_info;
|
|
for_each_btf_ext_sec(seg, sec) {
|
|
struct bpf_core_relo *rec;
|
|
|
|
for_each_btf_ext_rec(seg, sec, i, rec) {
|
|
err = visit(&rec->type_id, ctx);
|
|
if (err < 0)
|
|
return err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
|
|
{
|
|
const struct btf_ext_info *seg;
|
|
struct btf_ext_info_sec *sec;
|
|
int i, err;
|
|
|
|
seg = &btf_ext->func_info;
|
|
for_each_btf_ext_sec(seg, sec) {
|
|
err = visit(&sec->sec_name_off, ctx);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
seg = &btf_ext->line_info;
|
|
for_each_btf_ext_sec(seg, sec) {
|
|
struct bpf_line_info_min *rec;
|
|
|
|
err = visit(&sec->sec_name_off, ctx);
|
|
if (err)
|
|
return err;
|
|
|
|
for_each_btf_ext_rec(seg, sec, i, rec) {
|
|
err = visit(&rec->file_name_off, ctx);
|
|
if (err)
|
|
return err;
|
|
err = visit(&rec->line_off, ctx);
|
|
if (err)
|
|
return err;
|
|
}
|
|
}
|
|
|
|
seg = &btf_ext->core_relo_info;
|
|
for_each_btf_ext_sec(seg, sec) {
|
|
struct bpf_core_relo *rec;
|
|
|
|
err = visit(&sec->sec_name_off, ctx);
|
|
if (err)
|
|
return err;
|
|
|
|
for_each_btf_ext_rec(seg, sec, i, rec) {
|
|
err = visit(&rec->access_str_off, ctx);
|
|
if (err)
|
|
return err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|