linux/fs/xfs/xfs_bmap_util.c
Christoph Hellwig 360c09c01c xfs: consolidate preallocation in xfs_file_fallocate
Remove xfs_zero_file_space and reorganize xfs_file_fallocate so that a
single call to xfs_alloc_file_space covers all modes that preallocate
blocks.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2019-10-28 16:08:17 -07:00

1897 lines
49 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
* Copyright (c) 2012 Red Hat, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_inode.h"
#include "xfs_btree.h"
#include "xfs_trans.h"
#include "xfs_alloc.h"
#include "xfs_bmap.h"
#include "xfs_bmap_util.h"
#include "xfs_bmap_btree.h"
#include "xfs_rtalloc.h"
#include "xfs_error.h"
#include "xfs_quota.h"
#include "xfs_trans_space.h"
#include "xfs_trace.h"
#include "xfs_icache.h"
#include "xfs_iomap.h"
#include "xfs_reflink.h"
/* Kernel only BMAP related definitions and functions */
/*
* Convert the given file system block to a disk block. We have to treat it
* differently based on whether the file is a real time file or not, because the
* bmap code does.
*/
xfs_daddr_t
xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb)
{
if (XFS_IS_REALTIME_INODE(ip))
return XFS_FSB_TO_BB(ip->i_mount, fsb);
return XFS_FSB_TO_DADDR(ip->i_mount, fsb);
}
/*
* Routine to zero an extent on disk allocated to the specific inode.
*
* The VFS functions take a linearised filesystem block offset, so we have to
* convert the sparse xfs fsb to the right format first.
* VFS types are real funky, too.
*/
int
xfs_zero_extent(
struct xfs_inode *ip,
xfs_fsblock_t start_fsb,
xfs_off_t count_fsb)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_buftarg *target = xfs_inode_buftarg(ip);
xfs_daddr_t sector = xfs_fsb_to_db(ip, start_fsb);
sector_t block = XFS_BB_TO_FSBT(mp, sector);
return blkdev_issue_zeroout(target->bt_bdev,
block << (mp->m_super->s_blocksize_bits - 9),
count_fsb << (mp->m_super->s_blocksize_bits - 9),
GFP_NOFS, 0);
}
#ifdef CONFIG_XFS_RT
int
xfs_bmap_rtalloc(
struct xfs_bmalloca *ap) /* bmap alloc argument struct */
{
int error; /* error return value */
xfs_mount_t *mp; /* mount point structure */
xfs_extlen_t prod = 0; /* product factor for allocators */
xfs_extlen_t mod = 0; /* product factor for allocators */
xfs_extlen_t ralen = 0; /* realtime allocation length */
xfs_extlen_t align; /* minimum allocation alignment */
xfs_rtblock_t rtb;
mp = ap->ip->i_mount;
align = xfs_get_extsz_hint(ap->ip);
prod = align / mp->m_sb.sb_rextsize;
error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev,
align, 1, ap->eof, 0,
ap->conv, &ap->offset, &ap->length);
if (error)
return error;
ASSERT(ap->length);
ASSERT(ap->length % mp->m_sb.sb_rextsize == 0);
/*
* If the offset & length are not perfectly aligned
* then kill prod, it will just get us in trouble.
*/
div_u64_rem(ap->offset, align, &mod);
if (mod || ap->length % align)
prod = 1;
/*
* Set ralen to be the actual requested length in rtextents.
*/
ralen = ap->length / mp->m_sb.sb_rextsize;
/*
* If the old value was close enough to MAXEXTLEN that
* we rounded up to it, cut it back so it's valid again.
* Note that if it's a really large request (bigger than
* MAXEXTLEN), we don't hear about that number, and can't
* adjust the starting point to match it.
*/
if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN)
ralen = MAXEXTLEN / mp->m_sb.sb_rextsize;
/*
* Lock out modifications to both the RT bitmap and summary inodes
*/
xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL|XFS_ILOCK_RTBITMAP);
xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL);
xfs_ilock(mp->m_rsumip, XFS_ILOCK_EXCL|XFS_ILOCK_RTSUM);
xfs_trans_ijoin(ap->tp, mp->m_rsumip, XFS_ILOCK_EXCL);
/*
* If it's an allocation to an empty file at offset 0,
* pick an extent that will space things out in the rt area.
*/
if (ap->eof && ap->offset == 0) {
xfs_rtblock_t uninitialized_var(rtx); /* realtime extent no */
error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx);
if (error)
return error;
ap->blkno = rtx * mp->m_sb.sb_rextsize;
} else {
ap->blkno = 0;
}
xfs_bmap_adjacent(ap);
/*
* Realtime allocation, done through xfs_rtallocate_extent.
*/
do_div(ap->blkno, mp->m_sb.sb_rextsize);
rtb = ap->blkno;
ap->length = ralen;
error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length,
&ralen, ap->wasdel, prod, &rtb);
if (error)
return error;
ap->blkno = rtb;
if (ap->blkno != NULLFSBLOCK) {
ap->blkno *= mp->m_sb.sb_rextsize;
ralen *= mp->m_sb.sb_rextsize;
ap->length = ralen;
ap->ip->i_d.di_nblocks += ralen;
xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE);
if (ap->wasdel)
ap->ip->i_delayed_blks -= ralen;
/*
* Adjust the disk quota also. This was reserved
* earlier.
*/
xfs_trans_mod_dquot_byino(ap->tp, ap->ip,
ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT :
XFS_TRANS_DQ_RTBCOUNT, (long) ralen);
/* Zero the extent if we were asked to do so */
if (ap->datatype & XFS_ALLOC_USERDATA_ZERO) {
error = xfs_zero_extent(ap->ip, ap->blkno, ap->length);
if (error)
return error;
}
} else {
ap->length = 0;
}
return 0;
}
#endif /* CONFIG_XFS_RT */
/*
* Check if the endoff is outside the last extent. If so the caller will grow
* the allocation to a stripe unit boundary. All offsets are considered outside
* the end of file for an empty fork, so 1 is returned in *eof in that case.
*/
int
xfs_bmap_eof(
struct xfs_inode *ip,
xfs_fileoff_t endoff,
int whichfork,
int *eof)
{
struct xfs_bmbt_irec rec;
int error;
error = xfs_bmap_last_extent(NULL, ip, whichfork, &rec, eof);
if (error || *eof)
return error;
*eof = endoff >= rec.br_startoff + rec.br_blockcount;
return 0;
}
/*
* Extent tree block counting routines.
*/
/*
* Count leaf blocks given a range of extent records. Delayed allocation
* extents are not counted towards the totals.
*/
xfs_extnum_t
xfs_bmap_count_leaves(
struct xfs_ifork *ifp,
xfs_filblks_t *count)
{
struct xfs_iext_cursor icur;
struct xfs_bmbt_irec got;
xfs_extnum_t numrecs = 0;
for_each_xfs_iext(ifp, &icur, &got) {
if (!isnullstartblock(got.br_startblock)) {
*count += got.br_blockcount;
numrecs++;
}
}
return numrecs;
}
/*
* Count leaf blocks given a range of extent records originally
* in btree format.
*/
STATIC void
xfs_bmap_disk_count_leaves(
struct xfs_mount *mp,
struct xfs_btree_block *block,
int numrecs,
xfs_filblks_t *count)
{
int b;
xfs_bmbt_rec_t *frp;
for (b = 1; b <= numrecs; b++) {
frp = XFS_BMBT_REC_ADDR(mp, block, b);
*count += xfs_bmbt_disk_get_blockcount(frp);
}
}
/*
* Recursively walks each level of a btree
* to count total fsblocks in use.
*/
STATIC int
xfs_bmap_count_tree(
struct xfs_mount *mp,
struct xfs_trans *tp,
struct xfs_ifork *ifp,
xfs_fsblock_t blockno,
int levelin,
xfs_extnum_t *nextents,
xfs_filblks_t *count)
{
int error;
struct xfs_buf *bp, *nbp;
int level = levelin;
__be64 *pp;
xfs_fsblock_t bno = blockno;
xfs_fsblock_t nextbno;
struct xfs_btree_block *block, *nextblock;
int numrecs;
error = xfs_btree_read_bufl(mp, tp, bno, &bp, XFS_BMAP_BTREE_REF,
&xfs_bmbt_buf_ops);
if (error)
return error;
*count += 1;
block = XFS_BUF_TO_BLOCK(bp);
if (--level) {
/* Not at node above leaves, count this level of nodes */
nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
while (nextbno != NULLFSBLOCK) {
error = xfs_btree_read_bufl(mp, tp, nextbno, &nbp,
XFS_BMAP_BTREE_REF,
&xfs_bmbt_buf_ops);
if (error)
return error;
*count += 1;
nextblock = XFS_BUF_TO_BLOCK(nbp);
nextbno = be64_to_cpu(nextblock->bb_u.l.bb_rightsib);
xfs_trans_brelse(tp, nbp);
}
/* Dive to the next level */
pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]);
bno = be64_to_cpu(*pp);
error = xfs_bmap_count_tree(mp, tp, ifp, bno, level, nextents,
count);
if (error) {
xfs_trans_brelse(tp, bp);
XFS_ERROR_REPORT("xfs_bmap_count_tree(1)",
XFS_ERRLEVEL_LOW, mp);
return -EFSCORRUPTED;
}
xfs_trans_brelse(tp, bp);
} else {
/* count all level 1 nodes and their leaves */
for (;;) {
nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
numrecs = be16_to_cpu(block->bb_numrecs);
(*nextents) += numrecs;
xfs_bmap_disk_count_leaves(mp, block, numrecs, count);
xfs_trans_brelse(tp, bp);
if (nextbno == NULLFSBLOCK)
break;
bno = nextbno;
error = xfs_btree_read_bufl(mp, tp, bno, &bp,
XFS_BMAP_BTREE_REF,
&xfs_bmbt_buf_ops);
if (error)
return error;
*count += 1;
block = XFS_BUF_TO_BLOCK(bp);
}
}
return 0;
}
/*
* Count fsblocks of the given fork. Delayed allocation extents are
* not counted towards the totals.
*/
int
xfs_bmap_count_blocks(
struct xfs_trans *tp,
struct xfs_inode *ip,
int whichfork,
xfs_extnum_t *nextents,
xfs_filblks_t *count)
{
struct xfs_mount *mp; /* file system mount structure */
__be64 *pp; /* pointer to block address */
struct xfs_btree_block *block; /* current btree block */
struct xfs_ifork *ifp; /* fork structure */
xfs_fsblock_t bno; /* block # of "block" */
int level; /* btree level, for checking */
int error;
bno = NULLFSBLOCK;
mp = ip->i_mount;
*nextents = 0;
*count = 0;
ifp = XFS_IFORK_PTR(ip, whichfork);
if (!ifp)
return 0;
switch (XFS_IFORK_FORMAT(ip, whichfork)) {
case XFS_DINODE_FMT_EXTENTS:
*nextents = xfs_bmap_count_leaves(ifp, count);
return 0;
case XFS_DINODE_FMT_BTREE:
if (!(ifp->if_flags & XFS_IFEXTENTS)) {
error = xfs_iread_extents(tp, ip, whichfork);
if (error)
return error;
}
/*
* Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out.
*/
block = ifp->if_broot;
level = be16_to_cpu(block->bb_level);
ASSERT(level > 0);
pp = XFS_BMAP_BROOT_PTR_ADDR(mp, block, 1, ifp->if_broot_bytes);
bno = be64_to_cpu(*pp);
ASSERT(bno != NULLFSBLOCK);
ASSERT(XFS_FSB_TO_AGNO(mp, bno) < mp->m_sb.sb_agcount);
ASSERT(XFS_FSB_TO_AGBNO(mp, bno) < mp->m_sb.sb_agblocks);
error = xfs_bmap_count_tree(mp, tp, ifp, bno, level,
nextents, count);
if (error) {
XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)",
XFS_ERRLEVEL_LOW, mp);
return -EFSCORRUPTED;
}
return 0;
}
return 0;
}
static int
xfs_getbmap_report_one(
struct xfs_inode *ip,
struct getbmapx *bmv,
struct kgetbmap *out,
int64_t bmv_end,
struct xfs_bmbt_irec *got)
{
struct kgetbmap *p = out + bmv->bmv_entries;
bool shared = false;
int error;
error = xfs_reflink_trim_around_shared(ip, got, &shared);
if (error)
return error;
if (isnullstartblock(got->br_startblock) ||
got->br_startblock == DELAYSTARTBLOCK) {
/*
* Delalloc extents that start beyond EOF can occur due to
* speculative EOF allocation when the delalloc extent is larger
* than the largest freespace extent at conversion time. These
* extents cannot be converted by data writeback, so can exist
* here even if we are not supposed to be finding delalloc
* extents.
*/
if (got->br_startoff < XFS_B_TO_FSB(ip->i_mount, XFS_ISIZE(ip)))
ASSERT((bmv->bmv_iflags & BMV_IF_DELALLOC) != 0);
p->bmv_oflags |= BMV_OF_DELALLOC;
p->bmv_block = -2;
} else {
p->bmv_block = xfs_fsb_to_db(ip, got->br_startblock);
}
if (got->br_state == XFS_EXT_UNWRITTEN &&
(bmv->bmv_iflags & BMV_IF_PREALLOC))
p->bmv_oflags |= BMV_OF_PREALLOC;
if (shared)
p->bmv_oflags |= BMV_OF_SHARED;
p->bmv_offset = XFS_FSB_TO_BB(ip->i_mount, got->br_startoff);
p->bmv_length = XFS_FSB_TO_BB(ip->i_mount, got->br_blockcount);
bmv->bmv_offset = p->bmv_offset + p->bmv_length;
bmv->bmv_length = max(0LL, bmv_end - bmv->bmv_offset);
bmv->bmv_entries++;
return 0;
}
static void
xfs_getbmap_report_hole(
struct xfs_inode *ip,
struct getbmapx *bmv,
struct kgetbmap *out,
int64_t bmv_end,
xfs_fileoff_t bno,
xfs_fileoff_t end)
{
struct kgetbmap *p = out + bmv->bmv_entries;
if (bmv->bmv_iflags & BMV_IF_NO_HOLES)
return;
p->bmv_block = -1;
p->bmv_offset = XFS_FSB_TO_BB(ip->i_mount, bno);
p->bmv_length = XFS_FSB_TO_BB(ip->i_mount, end - bno);
bmv->bmv_offset = p->bmv_offset + p->bmv_length;
bmv->bmv_length = max(0LL, bmv_end - bmv->bmv_offset);
bmv->bmv_entries++;
}
static inline bool
xfs_getbmap_full(
struct getbmapx *bmv)
{
return bmv->bmv_length == 0 || bmv->bmv_entries >= bmv->bmv_count - 1;
}
static bool
xfs_getbmap_next_rec(
struct xfs_bmbt_irec *rec,
xfs_fileoff_t total_end)
{
xfs_fileoff_t end = rec->br_startoff + rec->br_blockcount;
if (end == total_end)
return false;
rec->br_startoff += rec->br_blockcount;
if (!isnullstartblock(rec->br_startblock) &&
rec->br_startblock != DELAYSTARTBLOCK)
rec->br_startblock += rec->br_blockcount;
rec->br_blockcount = total_end - end;
return true;
}
/*
* Get inode's extents as described in bmv, and format for output.
* Calls formatter to fill the user's buffer until all extents
* are mapped, until the passed-in bmv->bmv_count slots have
* been filled, or until the formatter short-circuits the loop,
* if it is tracking filled-in extents on its own.
*/
int /* error code */
xfs_getbmap(
struct xfs_inode *ip,
struct getbmapx *bmv, /* user bmap structure */
struct kgetbmap *out)
{
struct xfs_mount *mp = ip->i_mount;
int iflags = bmv->bmv_iflags;
int whichfork, lock, error = 0;
int64_t bmv_end, max_len;
xfs_fileoff_t bno, first_bno;
struct xfs_ifork *ifp;
struct xfs_bmbt_irec got, rec;
xfs_filblks_t len;
struct xfs_iext_cursor icur;
if (bmv->bmv_iflags & ~BMV_IF_VALID)
return -EINVAL;
#ifndef DEBUG
/* Only allow CoW fork queries if we're debugging. */
if (iflags & BMV_IF_COWFORK)
return -EINVAL;
#endif
if ((iflags & BMV_IF_ATTRFORK) && (iflags & BMV_IF_COWFORK))
return -EINVAL;
if (bmv->bmv_length < -1)
return -EINVAL;
bmv->bmv_entries = 0;
if (bmv->bmv_length == 0)
return 0;
if (iflags & BMV_IF_ATTRFORK)
whichfork = XFS_ATTR_FORK;
else if (iflags & BMV_IF_COWFORK)
whichfork = XFS_COW_FORK;
else
whichfork = XFS_DATA_FORK;
ifp = XFS_IFORK_PTR(ip, whichfork);
xfs_ilock(ip, XFS_IOLOCK_SHARED);
switch (whichfork) {
case XFS_ATTR_FORK:
if (!XFS_IFORK_Q(ip))
goto out_unlock_iolock;
max_len = 1LL << 32;
lock = xfs_ilock_attr_map_shared(ip);
break;
case XFS_COW_FORK:
/* No CoW fork? Just return */
if (!ifp)
goto out_unlock_iolock;
if (xfs_get_cowextsz_hint(ip))
max_len = mp->m_super->s_maxbytes;
else
max_len = XFS_ISIZE(ip);
lock = XFS_ILOCK_SHARED;
xfs_ilock(ip, lock);
break;
case XFS_DATA_FORK:
if (!(iflags & BMV_IF_DELALLOC) &&
(ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) {
error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
if (error)
goto out_unlock_iolock;
/*
* Even after flushing the inode, there can still be
* delalloc blocks on the inode beyond EOF due to
* speculative preallocation. These are not removed
* until the release function is called or the inode
* is inactivated. Hence we cannot assert here that
* ip->i_delayed_blks == 0.
*/
}
if (xfs_get_extsz_hint(ip) ||
(ip->i_d.di_flags &
(XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND)))
max_len = mp->m_super->s_maxbytes;
else
max_len = XFS_ISIZE(ip);
lock = xfs_ilock_data_map_shared(ip);
break;
}
switch (XFS_IFORK_FORMAT(ip, whichfork)) {
case XFS_DINODE_FMT_EXTENTS:
case XFS_DINODE_FMT_BTREE:
break;
case XFS_DINODE_FMT_LOCAL:
/* Local format inode forks report no extents. */
goto out_unlock_ilock;
default:
error = -EINVAL;
goto out_unlock_ilock;
}
if (bmv->bmv_length == -1) {
max_len = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, max_len));
bmv->bmv_length = max(0LL, max_len - bmv->bmv_offset);
}
bmv_end = bmv->bmv_offset + bmv->bmv_length;
first_bno = bno = XFS_BB_TO_FSBT(mp, bmv->bmv_offset);
len = XFS_BB_TO_FSB(mp, bmv->bmv_length);
if (!(ifp->if_flags & XFS_IFEXTENTS)) {
error = xfs_iread_extents(NULL, ip, whichfork);
if (error)
goto out_unlock_ilock;
}
if (!xfs_iext_lookup_extent(ip, ifp, bno, &icur, &got)) {
/*
* Report a whole-file hole if the delalloc flag is set to
* stay compatible with the old implementation.
*/
if (iflags & BMV_IF_DELALLOC)
xfs_getbmap_report_hole(ip, bmv, out, bmv_end, bno,
XFS_B_TO_FSB(mp, XFS_ISIZE(ip)));
goto out_unlock_ilock;
}
while (!xfs_getbmap_full(bmv)) {
xfs_trim_extent(&got, first_bno, len);
/*
* Report an entry for a hole if this extent doesn't directly
* follow the previous one.
*/
if (got.br_startoff > bno) {
xfs_getbmap_report_hole(ip, bmv, out, bmv_end, bno,
got.br_startoff);
if (xfs_getbmap_full(bmv))
break;
}
/*
* In order to report shared extents accurately, we report each
* distinct shared / unshared part of a single bmbt record with
* an individual getbmapx record.
*/
bno = got.br_startoff + got.br_blockcount;
rec = got;
do {
error = xfs_getbmap_report_one(ip, bmv, out, bmv_end,
&rec);
if (error || xfs_getbmap_full(bmv))
goto out_unlock_ilock;
} while (xfs_getbmap_next_rec(&rec, bno));
if (!xfs_iext_next_extent(ifp, &icur, &got)) {
xfs_fileoff_t end = XFS_B_TO_FSB(mp, XFS_ISIZE(ip));
out[bmv->bmv_entries - 1].bmv_oflags |= BMV_OF_LAST;
if (whichfork != XFS_ATTR_FORK && bno < end &&
!xfs_getbmap_full(bmv)) {
xfs_getbmap_report_hole(ip, bmv, out, bmv_end,
bno, end);
}
break;
}
if (bno >= first_bno + len)
break;
}
out_unlock_ilock:
xfs_iunlock(ip, lock);
out_unlock_iolock:
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
return error;
}
/*
* Dead simple method of punching delalyed allocation blocks from a range in
* the inode. This will always punch out both the start and end blocks, even
* if the ranges only partially overlap them, so it is up to the caller to
* ensure that partial blocks are not passed in.
*/
int
xfs_bmap_punch_delalloc_range(
struct xfs_inode *ip,
xfs_fileoff_t start_fsb,
xfs_fileoff_t length)
{
struct xfs_ifork *ifp = &ip->i_df;
xfs_fileoff_t end_fsb = start_fsb + length;
struct xfs_bmbt_irec got, del;
struct xfs_iext_cursor icur;
int error = 0;
ASSERT(ifp->if_flags & XFS_IFEXTENTS);
xfs_ilock(ip, XFS_ILOCK_EXCL);
if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
goto out_unlock;
while (got.br_startoff + got.br_blockcount > start_fsb) {
del = got;
xfs_trim_extent(&del, start_fsb, length);
/*
* A delete can push the cursor forward. Step back to the
* previous extent on non-delalloc or extents outside the
* target range.
*/
if (!del.br_blockcount ||
!isnullstartblock(del.br_startblock)) {
if (!xfs_iext_prev_extent(ifp, &icur, &got))
break;
continue;
}
error = xfs_bmap_del_extent_delay(ip, XFS_DATA_FORK, &icur,
&got, &del);
if (error || !xfs_iext_get_extent(ifp, &icur, &got))
break;
}
out_unlock:
xfs_iunlock(ip, XFS_ILOCK_EXCL);
return error;
}
/*
* Test whether it is appropriate to check an inode for and free post EOF
* blocks. The 'force' parameter determines whether we should also consider
* regular files that are marked preallocated or append-only.
*/
bool
xfs_can_free_eofblocks(struct xfs_inode *ip, bool force)
{
/* prealloc/delalloc exists only on regular files */
if (!S_ISREG(VFS_I(ip)->i_mode))
return false;
/*
* Zero sized files with no cached pages and delalloc blocks will not
* have speculative prealloc/delalloc blocks to remove.
*/
if (VFS_I(ip)->i_size == 0 &&
VFS_I(ip)->i_mapping->nrpages == 0 &&
ip->i_delayed_blks == 0)
return false;
/* If we haven't read in the extent list, then don't do it now. */
if (!(ip->i_df.if_flags & XFS_IFEXTENTS))
return false;
/*
* Do not free real preallocated or append-only files unless the file
* has delalloc blocks and we are forced to remove them.
*/
if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))
if (!force || ip->i_delayed_blks == 0)
return false;
return true;
}
/*
* This is called to free any blocks beyond eof. The caller must hold
* IOLOCK_EXCL unless we are in the inode reclaim path and have the only
* reference to the inode.
*/
int
xfs_free_eofblocks(
struct xfs_inode *ip)
{
struct xfs_trans *tp;
int error;
xfs_fileoff_t end_fsb;
xfs_fileoff_t last_fsb;
xfs_filblks_t map_len;
int nimaps;
struct xfs_bmbt_irec imap;
struct xfs_mount *mp = ip->i_mount;
/*
* Figure out if there are any blocks beyond the end
* of the file. If not, then there is nothing to do.
*/
end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip));
last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
if (last_fsb <= end_fsb)
return 0;
map_len = last_fsb - end_fsb;
nimaps = 1;
xfs_ilock(ip, XFS_ILOCK_SHARED);
error = xfs_bmapi_read(ip, end_fsb, map_len, &imap, &nimaps, 0);
xfs_iunlock(ip, XFS_ILOCK_SHARED);
/*
* If there are blocks after the end of file, truncate the file to its
* current size to free them up.
*/
if (!error && (nimaps != 0) &&
(imap.br_startblock != HOLESTARTBLOCK ||
ip->i_delayed_blks)) {
/*
* Attach the dquots to the inode up front.
*/
error = xfs_qm_dqattach(ip);
if (error)
return error;
/* wait on dio to ensure i_size has settled */
inode_dio_wait(VFS_I(ip));
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0,
&tp);
if (error) {
ASSERT(XFS_FORCED_SHUTDOWN(mp));
return error;
}
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, 0);
/*
* Do not update the on-disk file size. If we update the
* on-disk file size and then the system crashes before the
* contents of the file are flushed to disk then the files
* may be full of holes (ie NULL files bug).
*/
error = xfs_itruncate_extents_flags(&tp, ip, XFS_DATA_FORK,
XFS_ISIZE(ip), XFS_BMAPI_NODISCARD);
if (error) {
/*
* If we get an error at this point we simply don't
* bother truncating the file.
*/
xfs_trans_cancel(tp);
} else {
error = xfs_trans_commit(tp);
if (!error)
xfs_inode_clear_eofblocks_tag(ip);
}
xfs_iunlock(ip, XFS_ILOCK_EXCL);
}
return error;
}
int
xfs_alloc_file_space(
struct xfs_inode *ip,
xfs_off_t offset,
xfs_off_t len,
int alloc_type)
{
xfs_mount_t *mp = ip->i_mount;
xfs_off_t count;
xfs_filblks_t allocated_fsb;
xfs_filblks_t allocatesize_fsb;
xfs_extlen_t extsz, temp;
xfs_fileoff_t startoffset_fsb;
xfs_fileoff_t endoffset_fsb;
int nimaps;
int quota_flag;
int rt;
xfs_trans_t *tp;
xfs_bmbt_irec_t imaps[1], *imapp;
uint qblocks, resblks, resrtextents;
int error;
trace_xfs_alloc_file_space(ip);
if (XFS_FORCED_SHUTDOWN(mp))
return -EIO;
error = xfs_qm_dqattach(ip);
if (error)
return error;
if (len <= 0)
return -EINVAL;
rt = XFS_IS_REALTIME_INODE(ip);
extsz = xfs_get_extsz_hint(ip);
count = len;
imapp = &imaps[0];
nimaps = 1;
startoffset_fsb = XFS_B_TO_FSBT(mp, offset);
endoffset_fsb = XFS_B_TO_FSB(mp, offset + count);
allocatesize_fsb = endoffset_fsb - startoffset_fsb;
/*
* Allocate file space until done or until there is an error
*/
while (allocatesize_fsb && !error) {
xfs_fileoff_t s, e;
/*
* Determine space reservations for data/realtime.
*/
if (unlikely(extsz)) {
s = startoffset_fsb;
do_div(s, extsz);
s *= extsz;
e = startoffset_fsb + allocatesize_fsb;
div_u64_rem(startoffset_fsb, extsz, &temp);
if (temp)
e += temp;
div_u64_rem(e, extsz, &temp);
if (temp)
e += extsz - temp;
} else {
s = 0;
e = allocatesize_fsb;
}
/*
* The transaction reservation is limited to a 32-bit block
* count, hence we need to limit the number of blocks we are
* trying to reserve to avoid an overflow. We can't allocate
* more than @nimaps extents, and an extent is limited on disk
* to MAXEXTLEN (21 bits), so use that to enforce the limit.
*/
resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps));
if (unlikely(rt)) {
resrtextents = qblocks = resblks;
resrtextents /= mp->m_sb.sb_rextsize;
resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
quota_flag = XFS_QMOPT_RES_RTBLKS;
} else {
resrtextents = 0;
resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks);
quota_flag = XFS_QMOPT_RES_REGBLKS;
}
/*
* Allocate and setup the transaction.
*/
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks,
resrtextents, 0, &tp);
/*
* Check for running out of space
*/
if (error) {
/*
* Free the transaction structure.
*/
ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
break;
}
xfs_ilock(ip, XFS_ILOCK_EXCL);
error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks,
0, quota_flag);
if (error)
goto error1;
xfs_trans_ijoin(tp, ip, 0);
error = xfs_bmapi_write(tp, ip, startoffset_fsb,
allocatesize_fsb, alloc_type, 0, imapp,
&nimaps);
if (error)
goto error0;
/*
* Complete the transaction
*/
error = xfs_trans_commit(tp);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
if (error)
break;
allocated_fsb = imapp->br_blockcount;
if (nimaps == 0) {
error = -ENOSPC;
break;
}
startoffset_fsb += allocated_fsb;
allocatesize_fsb -= allocated_fsb;
}
return error;
error0: /* unlock inode, unreserve quota blocks, cancel trans */
xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag);
error1: /* Just cancel transaction */
xfs_trans_cancel(tp);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
return error;
}
static int
xfs_unmap_extent(
struct xfs_inode *ip,
xfs_fileoff_t startoffset_fsb,
xfs_filblks_t len_fsb,
int *done)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_trans *tp;
uint resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
int error;
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
if (error) {
ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
return error;
}
xfs_ilock(ip, XFS_ILOCK_EXCL);
error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, ip->i_gdquot,
ip->i_pdquot, resblks, 0, XFS_QMOPT_RES_REGBLKS);
if (error)
goto out_trans_cancel;
xfs_trans_ijoin(tp, ip, 0);
error = xfs_bunmapi(tp, ip, startoffset_fsb, len_fsb, 0, 2, done);
if (error)
goto out_trans_cancel;
error = xfs_trans_commit(tp);
out_unlock:
xfs_iunlock(ip, XFS_ILOCK_EXCL);
return error;
out_trans_cancel:
xfs_trans_cancel(tp);
goto out_unlock;
}
int
xfs_flush_unmap_range(
struct xfs_inode *ip,
xfs_off_t offset,
xfs_off_t len)
{
struct xfs_mount *mp = ip->i_mount;
struct inode *inode = VFS_I(ip);
xfs_off_t rounding, start, end;
int error;
/* wait for the completion of any pending DIOs */
inode_dio_wait(inode);
rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_SIZE);
start = round_down(offset, rounding);
end = round_up(offset + len, rounding) - 1;
error = filemap_write_and_wait_range(inode->i_mapping, start, end);
if (error)
return error;
truncate_pagecache_range(inode, start, end);
return 0;
}
int
xfs_free_file_space(
struct xfs_inode *ip,
xfs_off_t offset,
xfs_off_t len)
{
struct xfs_mount *mp = ip->i_mount;
xfs_fileoff_t startoffset_fsb;
xfs_fileoff_t endoffset_fsb;
int done = 0, error;
trace_xfs_free_file_space(ip);
error = xfs_qm_dqattach(ip);
if (error)
return error;
if (len <= 0) /* if nothing being freed */
return 0;
error = xfs_flush_unmap_range(ip, offset, len);
if (error)
return error;
startoffset_fsb = XFS_B_TO_FSB(mp, offset);
endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len);
/*
* Need to zero the stuff we're not freeing, on disk.
*/
if (endoffset_fsb > startoffset_fsb) {
while (!done) {
error = xfs_unmap_extent(ip, startoffset_fsb,
endoffset_fsb - startoffset_fsb, &done);
if (error)
return error;
}
}
/*
* Now that we've unmap all full blocks we'll have to zero out any
* partial block at the beginning and/or end. iomap_zero_range is smart
* enough to skip any holes, including those we just created, but we
* must take care not to zero beyond EOF and enlarge i_size.
*/
if (offset >= XFS_ISIZE(ip))
return 0;
if (offset + len > XFS_ISIZE(ip))
len = XFS_ISIZE(ip) - offset;
error = iomap_zero_range(VFS_I(ip), offset, len, NULL,
&xfs_buffered_write_iomap_ops);
if (error)
return error;
/*
* If we zeroed right up to EOF and EOF straddles a page boundary we
* must make sure that the post-EOF area is also zeroed because the
* page could be mmap'd and iomap_zero_range doesn't do that for us.
* Writeback of the eof page will do this, albeit clumsily.
*/
if (offset + len >= XFS_ISIZE(ip) && offset_in_page(offset + len) > 0) {
error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
round_down(offset + len, PAGE_SIZE), LLONG_MAX);
}
return error;
}
static int
xfs_prepare_shift(
struct xfs_inode *ip,
loff_t offset)
{
int error;
/*
* Trim eofblocks to avoid shifting uninitialized post-eof preallocation
* into the accessible region of the file.
*/
if (xfs_can_free_eofblocks(ip, true)) {
error = xfs_free_eofblocks(ip);
if (error)
return error;
}
/*
* Writeback and invalidate cache for the remainder of the file as we're
* about to shift down every extent from offset to EOF.
*/
error = xfs_flush_unmap_range(ip, offset, XFS_ISIZE(ip));
if (error)
return error;
/*
* Clean out anything hanging around in the cow fork now that
* we've flushed all the dirty data out to disk to avoid having
* CoW extents at the wrong offsets.
*/
if (xfs_inode_has_cow_data(ip)) {
error = xfs_reflink_cancel_cow_range(ip, offset, NULLFILEOFF,
true);
if (error)
return error;
}
return 0;
}
/*
* xfs_collapse_file_space()
* This routine frees disk space and shift extent for the given file.
* The first thing we do is to free data blocks in the specified range
* by calling xfs_free_file_space(). It would also sync dirty data
* and invalidate page cache over the region on which collapse range
* is working. And Shift extent records to the left to cover a hole.
* RETURNS:
* 0 on success
* errno on error
*
*/
int
xfs_collapse_file_space(
struct xfs_inode *ip,
xfs_off_t offset,
xfs_off_t len)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_trans *tp;
int error;
xfs_fileoff_t next_fsb = XFS_B_TO_FSB(mp, offset + len);
xfs_fileoff_t shift_fsb = XFS_B_TO_FSB(mp, len);
uint resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
bool done = false;
ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL));
trace_xfs_collapse_file_space(ip);
error = xfs_free_file_space(ip, offset, len);
if (error)
return error;
error = xfs_prepare_shift(ip, offset);
if (error)
return error;
while (!error && !done) {
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0,
&tp);
if (error)
break;
xfs_ilock(ip, XFS_ILOCK_EXCL);
error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot,
ip->i_gdquot, ip->i_pdquot, resblks, 0,
XFS_QMOPT_RES_REGBLKS);
if (error)
goto out_trans_cancel;
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
error = xfs_bmap_collapse_extents(tp, ip, &next_fsb, shift_fsb,
&done);
if (error)
goto out_trans_cancel;
error = xfs_trans_commit(tp);
}
return error;
out_trans_cancel:
xfs_trans_cancel(tp);
return error;
}
/*
* xfs_insert_file_space()
* This routine create hole space by shifting extents for the given file.
* The first thing we do is to sync dirty data and invalidate page cache
* over the region on which insert range is working. And split an extent
* to two extents at given offset by calling xfs_bmap_split_extent.
* And shift all extent records which are laying between [offset,
* last allocated extent] to the right to reserve hole range.
* RETURNS:
* 0 on success
* errno on error
*/
int
xfs_insert_file_space(
struct xfs_inode *ip,
loff_t offset,
loff_t len)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_trans *tp;
int error;
xfs_fileoff_t stop_fsb = XFS_B_TO_FSB(mp, offset);
xfs_fileoff_t next_fsb = NULLFSBLOCK;
xfs_fileoff_t shift_fsb = XFS_B_TO_FSB(mp, len);
bool done = false;
ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL));
trace_xfs_insert_file_space(ip);
error = xfs_bmap_can_insert_extents(ip, stop_fsb, shift_fsb);
if (error)
return error;
error = xfs_prepare_shift(ip, offset);
if (error)
return error;
/*
* The extent shifting code works on extent granularity. So, if stop_fsb
* is not the starting block of extent, we need to split the extent at
* stop_fsb.
*/
error = xfs_bmap_split_extent(ip, stop_fsb);
if (error)
return error;
while (!error && !done) {
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0,
&tp);
if (error)
break;
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
error = xfs_bmap_insert_extents(tp, ip, &next_fsb, shift_fsb,
&done, stop_fsb);
if (error)
goto out_trans_cancel;
error = xfs_trans_commit(tp);
}
return error;
out_trans_cancel:
xfs_trans_cancel(tp);
return error;
}
/*
* We need to check that the format of the data fork in the temporary inode is
* valid for the target inode before doing the swap. This is not a problem with
* attr1 because of the fixed fork offset, but attr2 has a dynamically sized
* data fork depending on the space the attribute fork is taking so we can get
* invalid formats on the target inode.
*
* E.g. target has space for 7 extents in extent format, temp inode only has
* space for 6. If we defragment down to 7 extents, then the tmp format is a
* btree, but when swapped it needs to be in extent format. Hence we can't just
* blindly swap data forks on attr2 filesystems.
*
* Note that we check the swap in both directions so that we don't end up with
* a corrupt temporary inode, either.
*
* Note that fixing the way xfs_fsr sets up the attribute fork in the source
* inode will prevent this situation from occurring, so all we do here is
* reject and log the attempt. basically we are putting the responsibility on
* userspace to get this right.
*/
static int
xfs_swap_extents_check_format(
struct xfs_inode *ip, /* target inode */
struct xfs_inode *tip) /* tmp inode */
{
/* Should never get a local format */
if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL ||
tip->i_d.di_format == XFS_DINODE_FMT_LOCAL)
return -EINVAL;
/*
* if the target inode has less extents that then temporary inode then
* why did userspace call us?
*/
if (ip->i_d.di_nextents < tip->i_d.di_nextents)
return -EINVAL;
/*
* If we have to use the (expensive) rmap swap method, we can
* handle any number of extents and any format.
*/
if (xfs_sb_version_hasrmapbt(&ip->i_mount->m_sb))
return 0;
/*
* if the target inode is in extent form and the temp inode is in btree
* form then we will end up with the target inode in the wrong format
* as we already know there are less extents in the temp inode.
*/
if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
tip->i_d.di_format == XFS_DINODE_FMT_BTREE)
return -EINVAL;
/* Check temp in extent form to max in target */
if (tip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) >
XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
return -EINVAL;
/* Check target in extent form to max in temp */
if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) >
XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
return -EINVAL;
/*
* If we are in a btree format, check that the temp root block will fit
* in the target and that it has enough extents to be in btree format
* in the target.
*
* Note that we have to be careful to allow btree->extent conversions
* (a common defrag case) which will occur when the temp inode is in
* extent format...
*/
if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
if (XFS_IFORK_Q(ip) &&
XFS_BMAP_BMDR_SPACE(tip->i_df.if_broot) > XFS_IFORK_BOFF(ip))
return -EINVAL;
if (XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) <=
XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
return -EINVAL;
}
/* Reciprocal target->temp btree format checks */
if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
if (XFS_IFORK_Q(tip) &&
XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip))
return -EINVAL;
if (XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) <=
XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
return -EINVAL;
}
return 0;
}
static int
xfs_swap_extent_flush(
struct xfs_inode *ip)
{
int error;
error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
if (error)
return error;
truncate_pagecache_range(VFS_I(ip), 0, -1);
/* Verify O_DIRECT for ftmp */
if (VFS_I(ip)->i_mapping->nrpages)
return -EINVAL;
return 0;
}
/*
* Move extents from one file to another, when rmap is enabled.
*/
STATIC int
xfs_swap_extent_rmap(
struct xfs_trans **tpp,
struct xfs_inode *ip,
struct xfs_inode *tip)
{
struct xfs_trans *tp = *tpp;
struct xfs_bmbt_irec irec;
struct xfs_bmbt_irec uirec;
struct xfs_bmbt_irec tirec;
xfs_fileoff_t offset_fsb;
xfs_fileoff_t end_fsb;
xfs_filblks_t count_fsb;
int error;
xfs_filblks_t ilen;
xfs_filblks_t rlen;
int nimaps;
uint64_t tip_flags2;
/*
* If the source file has shared blocks, we must flag the donor
* file as having shared blocks so that we get the shared-block
* rmap functions when we go to fix up the rmaps. The flags
* will be switch for reals later.
*/
tip_flags2 = tip->i_d.di_flags2;
if (ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK)
tip->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
offset_fsb = 0;
end_fsb = XFS_B_TO_FSB(ip->i_mount, i_size_read(VFS_I(ip)));
count_fsb = (xfs_filblks_t)(end_fsb - offset_fsb);
while (count_fsb) {
/* Read extent from the donor file */
nimaps = 1;
error = xfs_bmapi_read(tip, offset_fsb, count_fsb, &tirec,
&nimaps, 0);
if (error)
goto out;
ASSERT(nimaps == 1);
ASSERT(tirec.br_startblock != DELAYSTARTBLOCK);
trace_xfs_swap_extent_rmap_remap(tip, &tirec);
ilen = tirec.br_blockcount;
/* Unmap the old blocks in the source file. */
while (tirec.br_blockcount) {
ASSERT(tp->t_firstblock == NULLFSBLOCK);
trace_xfs_swap_extent_rmap_remap_piece(tip, &tirec);
/* Read extent from the source file */
nimaps = 1;
error = xfs_bmapi_read(ip, tirec.br_startoff,
tirec.br_blockcount, &irec,
&nimaps, 0);
if (error)
goto out;
ASSERT(nimaps == 1);
ASSERT(tirec.br_startoff == irec.br_startoff);
trace_xfs_swap_extent_rmap_remap_piece(ip, &irec);
/* Trim the extent. */
uirec = tirec;
uirec.br_blockcount = rlen = min_t(xfs_filblks_t,
tirec.br_blockcount,
irec.br_blockcount);
trace_xfs_swap_extent_rmap_remap_piece(tip, &uirec);
/* Remove the mapping from the donor file. */
xfs_bmap_unmap_extent(tp, tip, &uirec);
/* Remove the mapping from the source file. */
xfs_bmap_unmap_extent(tp, ip, &irec);
/* Map the donor file's blocks into the source file. */
xfs_bmap_map_extent(tp, ip, &uirec);
/* Map the source file's blocks into the donor file. */
xfs_bmap_map_extent(tp, tip, &irec);
error = xfs_defer_finish(tpp);
tp = *tpp;
if (error)
goto out;
tirec.br_startoff += rlen;
if (tirec.br_startblock != HOLESTARTBLOCK &&
tirec.br_startblock != DELAYSTARTBLOCK)
tirec.br_startblock += rlen;
tirec.br_blockcount -= rlen;
}
/* Roll on... */
count_fsb -= ilen;
offset_fsb += ilen;
}
tip->i_d.di_flags2 = tip_flags2;
return 0;
out:
trace_xfs_swap_extent_rmap_error(ip, error, _RET_IP_);
tip->i_d.di_flags2 = tip_flags2;
return error;
}
/* Swap the extents of two files by swapping data forks. */
STATIC int
xfs_swap_extent_forks(
struct xfs_trans *tp,
struct xfs_inode *ip,
struct xfs_inode *tip,
int *src_log_flags,
int *target_log_flags)
{
xfs_filblks_t aforkblks = 0;
xfs_filblks_t taforkblks = 0;
xfs_extnum_t junk;
uint64_t tmp;
int error;
/*
* Count the number of extended attribute blocks
*/
if ( ((XFS_IFORK_Q(ip) != 0) && (ip->i_d.di_anextents > 0)) &&
(ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, &junk,
&aforkblks);
if (error)
return error;
}
if ( ((XFS_IFORK_Q(tip) != 0) && (tip->i_d.di_anextents > 0)) &&
(tip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK, &junk,
&taforkblks);
if (error)
return error;
}
/*
* Btree format (v3) inodes have the inode number stamped in the bmbt
* block headers. We can't start changing the bmbt blocks until the
* inode owner change is logged so recovery does the right thing in the
* event of a crash. Set the owner change log flags now and leave the
* bmbt scan as the last step.
*/
if (ip->i_d.di_version == 3 &&
ip->i_d.di_format == XFS_DINODE_FMT_BTREE)
(*target_log_flags) |= XFS_ILOG_DOWNER;
if (tip->i_d.di_version == 3 &&
tip->i_d.di_format == XFS_DINODE_FMT_BTREE)
(*src_log_flags) |= XFS_ILOG_DOWNER;
/*
* Swap the data forks of the inodes
*/
swap(ip->i_df, tip->i_df);
/*
* Fix the on-disk inode values
*/
tmp = (uint64_t)ip->i_d.di_nblocks;
ip->i_d.di_nblocks = tip->i_d.di_nblocks - taforkblks + aforkblks;
tip->i_d.di_nblocks = tmp + taforkblks - aforkblks;
swap(ip->i_d.di_nextents, tip->i_d.di_nextents);
swap(ip->i_d.di_format, tip->i_d.di_format);
/*
* The extents in the source inode could still contain speculative
* preallocation beyond EOF (e.g. the file is open but not modified
* while defrag is in progress). In that case, we need to copy over the
* number of delalloc blocks the data fork in the source inode is
* tracking beyond EOF so that when the fork is truncated away when the
* temporary inode is unlinked we don't underrun the i_delayed_blks
* counter on that inode.
*/
ASSERT(tip->i_delayed_blks == 0);
tip->i_delayed_blks = ip->i_delayed_blks;
ip->i_delayed_blks = 0;
switch (ip->i_d.di_format) {
case XFS_DINODE_FMT_EXTENTS:
(*src_log_flags) |= XFS_ILOG_DEXT;
break;
case XFS_DINODE_FMT_BTREE:
ASSERT(ip->i_d.di_version < 3 ||
(*src_log_flags & XFS_ILOG_DOWNER));
(*src_log_flags) |= XFS_ILOG_DBROOT;
break;
}
switch (tip->i_d.di_format) {
case XFS_DINODE_FMT_EXTENTS:
(*target_log_flags) |= XFS_ILOG_DEXT;
break;
case XFS_DINODE_FMT_BTREE:
(*target_log_flags) |= XFS_ILOG_DBROOT;
ASSERT(tip->i_d.di_version < 3 ||
(*target_log_flags & XFS_ILOG_DOWNER));
break;
}
return 0;
}
/*
* Fix up the owners of the bmbt blocks to refer to the current inode. The
* change owner scan attempts to order all modified buffers in the current
* transaction. In the event of ordered buffer failure, the offending buffer is
* physically logged as a fallback and the scan returns -EAGAIN. We must roll
* the transaction in this case to replenish the fallback log reservation and
* restart the scan. This process repeats until the scan completes.
*/
static int
xfs_swap_change_owner(
struct xfs_trans **tpp,
struct xfs_inode *ip,
struct xfs_inode *tmpip)
{
int error;
struct xfs_trans *tp = *tpp;
do {
error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK, ip->i_ino,
NULL);
/* success or fatal error */
if (error != -EAGAIN)
break;
error = xfs_trans_roll(tpp);
if (error)
break;
tp = *tpp;
/*
* Redirty both inodes so they can relog and keep the log tail
* moving forward.
*/
xfs_trans_ijoin(tp, ip, 0);
xfs_trans_ijoin(tp, tmpip, 0);
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
xfs_trans_log_inode(tp, tmpip, XFS_ILOG_CORE);
} while (true);
return error;
}
int
xfs_swap_extents(
struct xfs_inode *ip, /* target inode */
struct xfs_inode *tip, /* tmp inode */
struct xfs_swapext *sxp)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_trans *tp;
struct xfs_bstat *sbp = &sxp->sx_stat;
int src_log_flags, target_log_flags;
int error = 0;
int lock_flags;
uint64_t f;
int resblks = 0;
/*
* Lock the inodes against other IO, page faults and truncate to
* begin with. Then we can ensure the inodes are flushed and have no
* page cache safely. Once we have done this we can take the ilocks and
* do the rest of the checks.
*/
lock_two_nondirectories(VFS_I(ip), VFS_I(tip));
lock_flags = XFS_MMAPLOCK_EXCL;
xfs_lock_two_inodes(ip, XFS_MMAPLOCK_EXCL, tip, XFS_MMAPLOCK_EXCL);
/* Verify that both files have the same format */
if ((VFS_I(ip)->i_mode & S_IFMT) != (VFS_I(tip)->i_mode & S_IFMT)) {
error = -EINVAL;
goto out_unlock;
}
/* Verify both files are either real-time or non-realtime */
if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) {
error = -EINVAL;
goto out_unlock;
}
error = xfs_swap_extent_flush(ip);
if (error)
goto out_unlock;
error = xfs_swap_extent_flush(tip);
if (error)
goto out_unlock;
if (xfs_inode_has_cow_data(tip)) {
error = xfs_reflink_cancel_cow_range(tip, 0, NULLFILEOFF, true);
if (error)
return error;
}
/*
* Extent "swapping" with rmap requires a permanent reservation and
* a block reservation because it's really just a remap operation
* performed with log redo items!
*/
if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
int w = XFS_DATA_FORK;
uint32_t ipnext = XFS_IFORK_NEXTENTS(ip, w);
uint32_t tipnext = XFS_IFORK_NEXTENTS(tip, w);
/*
* Conceptually this shouldn't affect the shape of either bmbt,
* but since we atomically move extents one by one, we reserve
* enough space to rebuild both trees.
*/
resblks = XFS_SWAP_RMAP_SPACE_RES(mp, ipnext, w);
resblks += XFS_SWAP_RMAP_SPACE_RES(mp, tipnext, w);
/*
* Handle the corner case where either inode might straddle the
* btree format boundary. If so, the inode could bounce between
* btree <-> extent format on unmap -> remap cycles, freeing and
* allocating a bmapbt block each time.
*/
if (ipnext == (XFS_IFORK_MAXEXT(ip, w) + 1))
resblks += XFS_IFORK_MAXEXT(ip, w);
if (tipnext == (XFS_IFORK_MAXEXT(tip, w) + 1))
resblks += XFS_IFORK_MAXEXT(tip, w);
}
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
if (error)
goto out_unlock;
/*
* Lock and join the inodes to the tansaction so that transaction commit
* or cancel will unlock the inodes from this point onwards.
*/
xfs_lock_two_inodes(ip, XFS_ILOCK_EXCL, tip, XFS_ILOCK_EXCL);
lock_flags |= XFS_ILOCK_EXCL;
xfs_trans_ijoin(tp, ip, 0);
xfs_trans_ijoin(tp, tip, 0);
/* Verify all data are being swapped */
if (sxp->sx_offset != 0 ||
sxp->sx_length != ip->i_d.di_size ||
sxp->sx_length != tip->i_d.di_size) {
error = -EFAULT;
goto out_trans_cancel;
}
trace_xfs_swap_extent_before(ip, 0);
trace_xfs_swap_extent_before(tip, 1);
/* check inode formats now that data is flushed */
error = xfs_swap_extents_check_format(ip, tip);
if (error) {
xfs_notice(mp,
"%s: inode 0x%llx format is incompatible for exchanging.",
__func__, ip->i_ino);
goto out_trans_cancel;
}
/*
* Compare the current change & modify times with that
* passed in. If they differ, we abort this swap.
* This is the mechanism used to ensure the calling
* process that the file was not changed out from
* under it.
*/
if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) ||
(sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) ||
(sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) ||
(sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) {
error = -EBUSY;
goto out_trans_cancel;
}
/*
* Note the trickiness in setting the log flags - we set the owner log
* flag on the opposite inode (i.e. the inode we are setting the new
* owner to be) because once we swap the forks and log that, log
* recovery is going to see the fork as owned by the swapped inode,
* not the pre-swapped inodes.
*/
src_log_flags = XFS_ILOG_CORE;
target_log_flags = XFS_ILOG_CORE;
if (xfs_sb_version_hasrmapbt(&mp->m_sb))
error = xfs_swap_extent_rmap(&tp, ip, tip);
else
error = xfs_swap_extent_forks(tp, ip, tip, &src_log_flags,
&target_log_flags);
if (error)
goto out_trans_cancel;
/* Do we have to swap reflink flags? */
if ((ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK) ^
(tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK)) {
f = ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK;
ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
ip->i_d.di_flags2 |= tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK;
tip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
tip->i_d.di_flags2 |= f & XFS_DIFLAG2_REFLINK;
}
/* Swap the cow forks. */
if (xfs_sb_version_hasreflink(&mp->m_sb)) {
ASSERT(ip->i_cformat == XFS_DINODE_FMT_EXTENTS);
ASSERT(tip->i_cformat == XFS_DINODE_FMT_EXTENTS);
swap(ip->i_cnextents, tip->i_cnextents);
swap(ip->i_cowfp, tip->i_cowfp);
if (ip->i_cowfp && ip->i_cowfp->if_bytes)
xfs_inode_set_cowblocks_tag(ip);
else
xfs_inode_clear_cowblocks_tag(ip);
if (tip->i_cowfp && tip->i_cowfp->if_bytes)
xfs_inode_set_cowblocks_tag(tip);
else
xfs_inode_clear_cowblocks_tag(tip);
}
xfs_trans_log_inode(tp, ip, src_log_flags);
xfs_trans_log_inode(tp, tip, target_log_flags);
/*
* The extent forks have been swapped, but crc=1,rmapbt=0 filesystems
* have inode number owner values in the bmbt blocks that still refer to
* the old inode. Scan each bmbt to fix up the owner values with the
* inode number of the current inode.
*/
if (src_log_flags & XFS_ILOG_DOWNER) {
error = xfs_swap_change_owner(&tp, ip, tip);
if (error)
goto out_trans_cancel;
}
if (target_log_flags & XFS_ILOG_DOWNER) {
error = xfs_swap_change_owner(&tp, tip, ip);
if (error)
goto out_trans_cancel;
}
/*
* If this is a synchronous mount, make sure that the
* transaction goes to disk before returning to the user.
*/
if (mp->m_flags & XFS_MOUNT_WSYNC)
xfs_trans_set_sync(tp);
error = xfs_trans_commit(tp);
trace_xfs_swap_extent_after(ip, 0);
trace_xfs_swap_extent_after(tip, 1);
out_unlock:
xfs_iunlock(ip, lock_flags);
xfs_iunlock(tip, lock_flags);
unlock_two_nondirectories(VFS_I(ip), VFS_I(tip));
return error;
out_trans_cancel:
xfs_trans_cancel(tp);
goto out_unlock;
}