mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-10 15:54:39 +08:00
140fd5e74a
When disabling dma channel, a TCF flag is set and as TCIE is enabled, an
interrupt is raised.
On a busy system, the interrupt may have latency and the user can ask for
dmaengine_resume while stm32-dma driver has not yet managed the complete
pause (backup of registers to restore state in resume).
To avoid such a case, instead of waiting the interrupt to backup the
registers, do it just after disabling the channel and discard Transfer
Complete interrupt in case the channel is paused.
Fixes: 099a9a94be
("dmaengine: stm32-dma: add device_pause/device_resume support")
Signed-off-by: Amelie Delaunay <amelie.delaunay@foss.st.com>
Link: https://lore.kernel.org/r/20221024083611.132588-1-amelie.delaunay@foss.st.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
1788 lines
51 KiB
C
1788 lines
51 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Driver for STM32 DMA controller
|
|
*
|
|
* Inspired by dma-jz4740.c and tegra20-apb-dma.c
|
|
*
|
|
* Copyright (C) M'boumba Cedric Madianga 2015
|
|
* Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
|
|
* Pierre-Yves Mordret <pierre-yves.mordret@st.com>
|
|
*/
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/err.h>
|
|
#include <linux/init.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/of_dma.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/reset.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "virt-dma.h"
|
|
|
|
#define STM32_DMA_LISR 0x0000 /* DMA Low Int Status Reg */
|
|
#define STM32_DMA_HISR 0x0004 /* DMA High Int Status Reg */
|
|
#define STM32_DMA_ISR(n) (((n) & 4) ? STM32_DMA_HISR : STM32_DMA_LISR)
|
|
#define STM32_DMA_LIFCR 0x0008 /* DMA Low Int Flag Clear Reg */
|
|
#define STM32_DMA_HIFCR 0x000c /* DMA High Int Flag Clear Reg */
|
|
#define STM32_DMA_IFCR(n) (((n) & 4) ? STM32_DMA_HIFCR : STM32_DMA_LIFCR)
|
|
#define STM32_DMA_TCI BIT(5) /* Transfer Complete Interrupt */
|
|
#define STM32_DMA_HTI BIT(4) /* Half Transfer Interrupt */
|
|
#define STM32_DMA_TEI BIT(3) /* Transfer Error Interrupt */
|
|
#define STM32_DMA_DMEI BIT(2) /* Direct Mode Error Interrupt */
|
|
#define STM32_DMA_FEI BIT(0) /* FIFO Error Interrupt */
|
|
#define STM32_DMA_MASKI (STM32_DMA_TCI \
|
|
| STM32_DMA_TEI \
|
|
| STM32_DMA_DMEI \
|
|
| STM32_DMA_FEI)
|
|
/*
|
|
* If (chan->id % 4) is 2 or 3, left shift the mask by 16 bits;
|
|
* if (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
|
|
*/
|
|
#define STM32_DMA_FLAGS_SHIFT(n) ({ typeof(n) (_n) = (n); \
|
|
(((_n) & 2) << 3) | (((_n) & 1) * 6); })
|
|
|
|
/* DMA Stream x Configuration Register */
|
|
#define STM32_DMA_SCR(x) (0x0010 + 0x18 * (x)) /* x = 0..7 */
|
|
#define STM32_DMA_SCR_REQ_MASK GENMASK(27, 25)
|
|
#define STM32_DMA_SCR_MBURST_MASK GENMASK(24, 23)
|
|
#define STM32_DMA_SCR_PBURST_MASK GENMASK(22, 21)
|
|
#define STM32_DMA_SCR_PL_MASK GENMASK(17, 16)
|
|
#define STM32_DMA_SCR_MSIZE_MASK GENMASK(14, 13)
|
|
#define STM32_DMA_SCR_PSIZE_MASK GENMASK(12, 11)
|
|
#define STM32_DMA_SCR_DIR_MASK GENMASK(7, 6)
|
|
#define STM32_DMA_SCR_TRBUFF BIT(20) /* Bufferable transfer for USART/UART */
|
|
#define STM32_DMA_SCR_CT BIT(19) /* Target in double buffer */
|
|
#define STM32_DMA_SCR_DBM BIT(18) /* Double Buffer Mode */
|
|
#define STM32_DMA_SCR_PINCOS BIT(15) /* Peripheral inc offset size */
|
|
#define STM32_DMA_SCR_MINC BIT(10) /* Memory increment mode */
|
|
#define STM32_DMA_SCR_PINC BIT(9) /* Peripheral increment mode */
|
|
#define STM32_DMA_SCR_CIRC BIT(8) /* Circular mode */
|
|
#define STM32_DMA_SCR_PFCTRL BIT(5) /* Peripheral Flow Controller */
|
|
#define STM32_DMA_SCR_TCIE BIT(4) /* Transfer Complete Int Enable
|
|
*/
|
|
#define STM32_DMA_SCR_TEIE BIT(2) /* Transfer Error Int Enable */
|
|
#define STM32_DMA_SCR_DMEIE BIT(1) /* Direct Mode Err Int Enable */
|
|
#define STM32_DMA_SCR_EN BIT(0) /* Stream Enable */
|
|
#define STM32_DMA_SCR_CFG_MASK (STM32_DMA_SCR_PINC \
|
|
| STM32_DMA_SCR_MINC \
|
|
| STM32_DMA_SCR_PINCOS \
|
|
| STM32_DMA_SCR_PL_MASK)
|
|
#define STM32_DMA_SCR_IRQ_MASK (STM32_DMA_SCR_TCIE \
|
|
| STM32_DMA_SCR_TEIE \
|
|
| STM32_DMA_SCR_DMEIE)
|
|
|
|
/* DMA Stream x number of data register */
|
|
#define STM32_DMA_SNDTR(x) (0x0014 + 0x18 * (x))
|
|
|
|
/* DMA stream peripheral address register */
|
|
#define STM32_DMA_SPAR(x) (0x0018 + 0x18 * (x))
|
|
|
|
/* DMA stream x memory 0 address register */
|
|
#define STM32_DMA_SM0AR(x) (0x001c + 0x18 * (x))
|
|
|
|
/* DMA stream x memory 1 address register */
|
|
#define STM32_DMA_SM1AR(x) (0x0020 + 0x18 * (x))
|
|
|
|
/* DMA stream x FIFO control register */
|
|
#define STM32_DMA_SFCR(x) (0x0024 + 0x18 * (x))
|
|
#define STM32_DMA_SFCR_FTH_MASK GENMASK(1, 0)
|
|
#define STM32_DMA_SFCR_FEIE BIT(7) /* FIFO error interrupt enable */
|
|
#define STM32_DMA_SFCR_DMDIS BIT(2) /* Direct mode disable */
|
|
#define STM32_DMA_SFCR_MASK (STM32_DMA_SFCR_FEIE \
|
|
| STM32_DMA_SFCR_DMDIS)
|
|
|
|
/* DMA direction */
|
|
#define STM32_DMA_DEV_TO_MEM 0x00
|
|
#define STM32_DMA_MEM_TO_DEV 0x01
|
|
#define STM32_DMA_MEM_TO_MEM 0x02
|
|
|
|
/* DMA priority level */
|
|
#define STM32_DMA_PRIORITY_LOW 0x00
|
|
#define STM32_DMA_PRIORITY_MEDIUM 0x01
|
|
#define STM32_DMA_PRIORITY_HIGH 0x02
|
|
#define STM32_DMA_PRIORITY_VERY_HIGH 0x03
|
|
|
|
/* DMA FIFO threshold selection */
|
|
#define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL 0x00
|
|
#define STM32_DMA_FIFO_THRESHOLD_HALFFULL 0x01
|
|
#define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL 0x02
|
|
#define STM32_DMA_FIFO_THRESHOLD_FULL 0x03
|
|
#define STM32_DMA_FIFO_THRESHOLD_NONE 0x04
|
|
|
|
#define STM32_DMA_MAX_DATA_ITEMS 0xffff
|
|
/*
|
|
* Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
|
|
* gather at boundary. Thus it's safer to round down this value on FIFO
|
|
* size (16 Bytes)
|
|
*/
|
|
#define STM32_DMA_ALIGNED_MAX_DATA_ITEMS \
|
|
ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
|
|
#define STM32_DMA_MAX_CHANNELS 0x08
|
|
#define STM32_DMA_MAX_REQUEST_ID 0x08
|
|
#define STM32_DMA_MAX_DATA_PARAM 0x03
|
|
#define STM32_DMA_FIFO_SIZE 16 /* FIFO is 16 bytes */
|
|
#define STM32_DMA_MIN_BURST 4
|
|
#define STM32_DMA_MAX_BURST 16
|
|
|
|
/* DMA Features */
|
|
#define STM32_DMA_THRESHOLD_FTR_MASK GENMASK(1, 0)
|
|
#define STM32_DMA_DIRECT_MODE_MASK BIT(2)
|
|
#define STM32_DMA_ALT_ACK_MODE_MASK BIT(4)
|
|
#define STM32_DMA_MDMA_STREAM_ID_MASK GENMASK(19, 16)
|
|
|
|
enum stm32_dma_width {
|
|
STM32_DMA_BYTE,
|
|
STM32_DMA_HALF_WORD,
|
|
STM32_DMA_WORD,
|
|
};
|
|
|
|
enum stm32_dma_burst_size {
|
|
STM32_DMA_BURST_SINGLE,
|
|
STM32_DMA_BURST_INCR4,
|
|
STM32_DMA_BURST_INCR8,
|
|
STM32_DMA_BURST_INCR16,
|
|
};
|
|
|
|
/**
|
|
* struct stm32_dma_cfg - STM32 DMA custom configuration
|
|
* @channel_id: channel ID
|
|
* @request_line: DMA request
|
|
* @stream_config: 32bit mask specifying the DMA channel configuration
|
|
* @features: 32bit mask specifying the DMA Feature list
|
|
*/
|
|
struct stm32_dma_cfg {
|
|
u32 channel_id;
|
|
u32 request_line;
|
|
u32 stream_config;
|
|
u32 features;
|
|
};
|
|
|
|
struct stm32_dma_chan_reg {
|
|
u32 dma_lisr;
|
|
u32 dma_hisr;
|
|
u32 dma_lifcr;
|
|
u32 dma_hifcr;
|
|
u32 dma_scr;
|
|
u32 dma_sndtr;
|
|
u32 dma_spar;
|
|
u32 dma_sm0ar;
|
|
u32 dma_sm1ar;
|
|
u32 dma_sfcr;
|
|
};
|
|
|
|
struct stm32_dma_sg_req {
|
|
u32 len;
|
|
struct stm32_dma_chan_reg chan_reg;
|
|
};
|
|
|
|
struct stm32_dma_desc {
|
|
struct virt_dma_desc vdesc;
|
|
bool cyclic;
|
|
u32 num_sgs;
|
|
struct stm32_dma_sg_req sg_req[];
|
|
};
|
|
|
|
/**
|
|
* struct stm32_dma_mdma_config - STM32 DMA MDMA configuration
|
|
* @stream_id: DMA request to trigger STM32 MDMA transfer
|
|
* @ifcr: DMA interrupt flag clear register address,
|
|
* used by STM32 MDMA to clear DMA Transfer Complete flag
|
|
* @tcf: DMA Transfer Complete flag
|
|
*/
|
|
struct stm32_dma_mdma_config {
|
|
u32 stream_id;
|
|
u32 ifcr;
|
|
u32 tcf;
|
|
};
|
|
|
|
struct stm32_dma_chan {
|
|
struct virt_dma_chan vchan;
|
|
bool config_init;
|
|
bool busy;
|
|
u32 id;
|
|
u32 irq;
|
|
struct stm32_dma_desc *desc;
|
|
u32 next_sg;
|
|
struct dma_slave_config dma_sconfig;
|
|
struct stm32_dma_chan_reg chan_reg;
|
|
u32 threshold;
|
|
u32 mem_burst;
|
|
u32 mem_width;
|
|
enum dma_status status;
|
|
bool trig_mdma;
|
|
struct stm32_dma_mdma_config mdma_config;
|
|
};
|
|
|
|
struct stm32_dma_device {
|
|
struct dma_device ddev;
|
|
void __iomem *base;
|
|
struct clk *clk;
|
|
bool mem2mem;
|
|
struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
|
|
};
|
|
|
|
static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
|
|
{
|
|
return container_of(chan->vchan.chan.device, struct stm32_dma_device,
|
|
ddev);
|
|
}
|
|
|
|
static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
|
|
{
|
|
return container_of(c, struct stm32_dma_chan, vchan.chan);
|
|
}
|
|
|
|
static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
|
|
{
|
|
return container_of(vdesc, struct stm32_dma_desc, vdesc);
|
|
}
|
|
|
|
static struct device *chan2dev(struct stm32_dma_chan *chan)
|
|
{
|
|
return &chan->vchan.chan.dev->device;
|
|
}
|
|
|
|
static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
|
|
{
|
|
return readl_relaxed(dmadev->base + reg);
|
|
}
|
|
|
|
static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
|
|
{
|
|
writel_relaxed(val, dmadev->base + reg);
|
|
}
|
|
|
|
static int stm32_dma_get_width(struct stm32_dma_chan *chan,
|
|
enum dma_slave_buswidth width)
|
|
{
|
|
switch (width) {
|
|
case DMA_SLAVE_BUSWIDTH_1_BYTE:
|
|
return STM32_DMA_BYTE;
|
|
case DMA_SLAVE_BUSWIDTH_2_BYTES:
|
|
return STM32_DMA_HALF_WORD;
|
|
case DMA_SLAVE_BUSWIDTH_4_BYTES:
|
|
return STM32_DMA_WORD;
|
|
default:
|
|
dev_err(chan2dev(chan), "Dma bus width not supported\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
|
|
dma_addr_t buf_addr,
|
|
u32 threshold)
|
|
{
|
|
enum dma_slave_buswidth max_width;
|
|
|
|
if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
|
|
max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
else
|
|
max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
|
|
|
|
while ((buf_len < max_width || buf_len % max_width) &&
|
|
max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
|
|
max_width = max_width >> 1;
|
|
|
|
if (buf_addr & (max_width - 1))
|
|
max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
|
|
|
|
return max_width;
|
|
}
|
|
|
|
static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
|
|
enum dma_slave_buswidth width)
|
|
{
|
|
u32 remaining;
|
|
|
|
if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
|
|
return false;
|
|
|
|
if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
|
|
if (burst != 0) {
|
|
/*
|
|
* If number of beats fit in several whole bursts
|
|
* this configuration is allowed.
|
|
*/
|
|
remaining = ((STM32_DMA_FIFO_SIZE / width) *
|
|
(threshold + 1) / 4) % burst;
|
|
|
|
if (remaining == 0)
|
|
return true;
|
|
} else {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
|
|
{
|
|
/* If FIFO direct mode, burst is not possible */
|
|
if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
|
|
return false;
|
|
|
|
/*
|
|
* Buffer or period length has to be aligned on FIFO depth.
|
|
* Otherwise bytes may be stuck within FIFO at buffer or period
|
|
* length.
|
|
*/
|
|
return ((buf_len % ((threshold + 1) * 4)) == 0);
|
|
}
|
|
|
|
static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
|
|
enum dma_slave_buswidth width)
|
|
{
|
|
u32 best_burst = max_burst;
|
|
|
|
if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
|
|
return 0;
|
|
|
|
while ((buf_len < best_burst * width && best_burst > 1) ||
|
|
!stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
|
|
width)) {
|
|
if (best_burst > STM32_DMA_MIN_BURST)
|
|
best_burst = best_burst >> 1;
|
|
else
|
|
best_burst = 0;
|
|
}
|
|
|
|
return best_burst;
|
|
}
|
|
|
|
static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
|
|
{
|
|
switch (maxburst) {
|
|
case 0:
|
|
case 1:
|
|
return STM32_DMA_BURST_SINGLE;
|
|
case 4:
|
|
return STM32_DMA_BURST_INCR4;
|
|
case 8:
|
|
return STM32_DMA_BURST_INCR8;
|
|
case 16:
|
|
return STM32_DMA_BURST_INCR16;
|
|
default:
|
|
dev_err(chan2dev(chan), "Dma burst size not supported\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
|
|
u32 src_burst, u32 dst_burst)
|
|
{
|
|
chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
|
|
chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
|
|
|
|
if (!src_burst && !dst_burst) {
|
|
/* Using direct mode */
|
|
chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
|
|
} else {
|
|
/* Using FIFO mode */
|
|
chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
|
|
}
|
|
}
|
|
|
|
static int stm32_dma_slave_config(struct dma_chan *c,
|
|
struct dma_slave_config *config)
|
|
{
|
|
struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
|
|
|
|
memcpy(&chan->dma_sconfig, config, sizeof(*config));
|
|
|
|
/* Check if user is requesting DMA to trigger STM32 MDMA */
|
|
if (config->peripheral_size) {
|
|
config->peripheral_config = &chan->mdma_config;
|
|
config->peripheral_size = sizeof(chan->mdma_config);
|
|
chan->trig_mdma = true;
|
|
}
|
|
|
|
chan->config_init = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
|
|
{
|
|
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
|
|
u32 flags, dma_isr;
|
|
|
|
/*
|
|
* Read "flags" from DMA_xISR register corresponding to the selected
|
|
* DMA channel at the correct bit offset inside that register.
|
|
*/
|
|
|
|
dma_isr = stm32_dma_read(dmadev, STM32_DMA_ISR(chan->id));
|
|
flags = dma_isr >> STM32_DMA_FLAGS_SHIFT(chan->id);
|
|
|
|
return flags & STM32_DMA_MASKI;
|
|
}
|
|
|
|
static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
|
|
{
|
|
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
|
|
u32 dma_ifcr;
|
|
|
|
/*
|
|
* Write "flags" to the DMA_xIFCR register corresponding to the selected
|
|
* DMA channel at the correct bit offset inside that register.
|
|
*/
|
|
flags &= STM32_DMA_MASKI;
|
|
dma_ifcr = flags << STM32_DMA_FLAGS_SHIFT(chan->id);
|
|
|
|
stm32_dma_write(dmadev, STM32_DMA_IFCR(chan->id), dma_ifcr);
|
|
}
|
|
|
|
static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
|
|
{
|
|
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
|
|
u32 dma_scr, id, reg;
|
|
|
|
id = chan->id;
|
|
reg = STM32_DMA_SCR(id);
|
|
dma_scr = stm32_dma_read(dmadev, reg);
|
|
|
|
if (dma_scr & STM32_DMA_SCR_EN) {
|
|
dma_scr &= ~STM32_DMA_SCR_EN;
|
|
stm32_dma_write(dmadev, reg, dma_scr);
|
|
|
|
return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
|
|
dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
|
|
10, 1000000);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void stm32_dma_stop(struct stm32_dma_chan *chan)
|
|
{
|
|
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
|
|
u32 dma_scr, dma_sfcr, status;
|
|
int ret;
|
|
|
|
/* Disable interrupts */
|
|
dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
|
|
dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
|
|
stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
|
|
dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
|
|
dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
|
|
stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
|
|
|
|
/* Disable DMA */
|
|
ret = stm32_dma_disable_chan(chan);
|
|
if (ret < 0)
|
|
return;
|
|
|
|
/* Clear interrupt status if it is there */
|
|
status = stm32_dma_irq_status(chan);
|
|
if (status) {
|
|
dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
|
|
__func__, status);
|
|
stm32_dma_irq_clear(chan, status);
|
|
}
|
|
|
|
chan->busy = false;
|
|
chan->status = DMA_COMPLETE;
|
|
}
|
|
|
|
static int stm32_dma_terminate_all(struct dma_chan *c)
|
|
{
|
|
struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
|
|
unsigned long flags;
|
|
LIST_HEAD(head);
|
|
|
|
spin_lock_irqsave(&chan->vchan.lock, flags);
|
|
|
|
if (chan->desc) {
|
|
dma_cookie_complete(&chan->desc->vdesc.tx);
|
|
vchan_terminate_vdesc(&chan->desc->vdesc);
|
|
if (chan->busy)
|
|
stm32_dma_stop(chan);
|
|
chan->desc = NULL;
|
|
}
|
|
|
|
vchan_get_all_descriptors(&chan->vchan, &head);
|
|
spin_unlock_irqrestore(&chan->vchan.lock, flags);
|
|
vchan_dma_desc_free_list(&chan->vchan, &head);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void stm32_dma_synchronize(struct dma_chan *c)
|
|
{
|
|
struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
|
|
|
|
vchan_synchronize(&chan->vchan);
|
|
}
|
|
|
|
static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
|
|
{
|
|
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
|
|
u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
|
|
u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
|
|
u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
|
|
u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
|
|
u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
|
|
u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
|
|
|
|
dev_dbg(chan2dev(chan), "SCR: 0x%08x\n", scr);
|
|
dev_dbg(chan2dev(chan), "NDTR: 0x%08x\n", ndtr);
|
|
dev_dbg(chan2dev(chan), "SPAR: 0x%08x\n", spar);
|
|
dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
|
|
dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
|
|
dev_dbg(chan2dev(chan), "SFCR: 0x%08x\n", sfcr);
|
|
}
|
|
|
|
static void stm32_dma_sg_inc(struct stm32_dma_chan *chan)
|
|
{
|
|
chan->next_sg++;
|
|
if (chan->desc->cyclic && (chan->next_sg == chan->desc->num_sgs))
|
|
chan->next_sg = 0;
|
|
}
|
|
|
|
static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
|
|
|
|
static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
|
|
{
|
|
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
|
|
struct virt_dma_desc *vdesc;
|
|
struct stm32_dma_sg_req *sg_req;
|
|
struct stm32_dma_chan_reg *reg;
|
|
u32 status;
|
|
int ret;
|
|
|
|
ret = stm32_dma_disable_chan(chan);
|
|
if (ret < 0)
|
|
return;
|
|
|
|
if (!chan->desc) {
|
|
vdesc = vchan_next_desc(&chan->vchan);
|
|
if (!vdesc)
|
|
return;
|
|
|
|
list_del(&vdesc->node);
|
|
|
|
chan->desc = to_stm32_dma_desc(vdesc);
|
|
chan->next_sg = 0;
|
|
}
|
|
|
|
if (chan->next_sg == chan->desc->num_sgs)
|
|
chan->next_sg = 0;
|
|
|
|
sg_req = &chan->desc->sg_req[chan->next_sg];
|
|
reg = &sg_req->chan_reg;
|
|
|
|
/* When DMA triggers STM32 MDMA, DMA Transfer Complete is managed by STM32 MDMA */
|
|
if (chan->trig_mdma && chan->dma_sconfig.direction != DMA_MEM_TO_DEV)
|
|
reg->dma_scr &= ~STM32_DMA_SCR_TCIE;
|
|
|
|
reg->dma_scr &= ~STM32_DMA_SCR_EN;
|
|
stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
|
|
stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
|
|
stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
|
|
stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
|
|
stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
|
|
stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
|
|
|
|
stm32_dma_sg_inc(chan);
|
|
|
|
/* Clear interrupt status if it is there */
|
|
status = stm32_dma_irq_status(chan);
|
|
if (status)
|
|
stm32_dma_irq_clear(chan, status);
|
|
|
|
if (chan->desc->cyclic)
|
|
stm32_dma_configure_next_sg(chan);
|
|
|
|
stm32_dma_dump_reg(chan);
|
|
|
|
/* Start DMA */
|
|
chan->busy = true;
|
|
chan->status = DMA_IN_PROGRESS;
|
|
reg->dma_scr |= STM32_DMA_SCR_EN;
|
|
stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
|
|
|
|
dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
|
|
}
|
|
|
|
static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
|
|
{
|
|
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
|
|
struct stm32_dma_sg_req *sg_req;
|
|
u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
|
|
|
|
id = chan->id;
|
|
dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
|
|
|
|
sg_req = &chan->desc->sg_req[chan->next_sg];
|
|
|
|
if (dma_scr & STM32_DMA_SCR_CT) {
|
|
dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
|
|
stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
|
|
dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
|
|
stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
|
|
} else {
|
|
dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
|
|
stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
|
|
dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
|
|
stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
|
|
}
|
|
}
|
|
|
|
static void stm32_dma_handle_chan_paused(struct stm32_dma_chan *chan)
|
|
{
|
|
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
|
|
u32 dma_scr;
|
|
|
|
/*
|
|
* Read and store current remaining data items and peripheral/memory addresses to be
|
|
* updated on resume
|
|
*/
|
|
dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
|
|
/*
|
|
* Transfer can be paused while between a previous resume and reconfiguration on transfer
|
|
* complete. If transfer is cyclic and CIRC and DBM have been deactivated for resume, need
|
|
* to set it here in SCR backup to ensure a good reconfiguration on transfer complete.
|
|
*/
|
|
if (chan->desc && chan->desc->cyclic) {
|
|
if (chan->desc->num_sgs == 1)
|
|
dma_scr |= STM32_DMA_SCR_CIRC;
|
|
else
|
|
dma_scr |= STM32_DMA_SCR_DBM;
|
|
}
|
|
chan->chan_reg.dma_scr = dma_scr;
|
|
|
|
/*
|
|
* Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt, otherwise
|
|
* on resume NDTR autoreload value will be wrong (lower than the initial period length)
|
|
*/
|
|
if (chan->desc && chan->desc->cyclic) {
|
|
dma_scr &= ~(STM32_DMA_SCR_DBM | STM32_DMA_SCR_CIRC);
|
|
stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
|
|
}
|
|
|
|
chan->chan_reg.dma_sndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
|
|
|
|
chan->status = DMA_PAUSED;
|
|
|
|
dev_dbg(chan2dev(chan), "vchan %pK: paused\n", &chan->vchan);
|
|
}
|
|
|
|
static void stm32_dma_post_resume_reconfigure(struct stm32_dma_chan *chan)
|
|
{
|
|
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
|
|
struct stm32_dma_sg_req *sg_req;
|
|
u32 dma_scr, status, id;
|
|
|
|
id = chan->id;
|
|
dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
|
|
|
|
/* Clear interrupt status if it is there */
|
|
status = stm32_dma_irq_status(chan);
|
|
if (status)
|
|
stm32_dma_irq_clear(chan, status);
|
|
|
|
if (!chan->next_sg)
|
|
sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1];
|
|
else
|
|
sg_req = &chan->desc->sg_req[chan->next_sg - 1];
|
|
|
|
/* Reconfigure NDTR with the initial value */
|
|
stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), sg_req->chan_reg.dma_sndtr);
|
|
|
|
/* Restore SPAR */
|
|
stm32_dma_write(dmadev, STM32_DMA_SPAR(id), sg_req->chan_reg.dma_spar);
|
|
|
|
/* Restore SM0AR/SM1AR whatever DBM/CT as they may have been modified */
|
|
stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sg_req->chan_reg.dma_sm0ar);
|
|
stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sg_req->chan_reg.dma_sm1ar);
|
|
|
|
/* Reactivate CIRC/DBM if needed */
|
|
if (chan->chan_reg.dma_scr & STM32_DMA_SCR_DBM) {
|
|
dma_scr |= STM32_DMA_SCR_DBM;
|
|
/* Restore CT */
|
|
if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CT)
|
|
dma_scr &= ~STM32_DMA_SCR_CT;
|
|
else
|
|
dma_scr |= STM32_DMA_SCR_CT;
|
|
} else if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CIRC) {
|
|
dma_scr |= STM32_DMA_SCR_CIRC;
|
|
}
|
|
stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
|
|
|
|
stm32_dma_configure_next_sg(chan);
|
|
|
|
stm32_dma_dump_reg(chan);
|
|
|
|
dma_scr |= STM32_DMA_SCR_EN;
|
|
stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
|
|
|
|
dev_dbg(chan2dev(chan), "vchan %pK: reconfigured after pause/resume\n", &chan->vchan);
|
|
}
|
|
|
|
static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan, u32 scr)
|
|
{
|
|
if (!chan->desc)
|
|
return;
|
|
|
|
if (chan->desc->cyclic) {
|
|
vchan_cyclic_callback(&chan->desc->vdesc);
|
|
if (chan->trig_mdma)
|
|
return;
|
|
stm32_dma_sg_inc(chan);
|
|
/* cyclic while CIRC/DBM disable => post resume reconfiguration needed */
|
|
if (!(scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM)))
|
|
stm32_dma_post_resume_reconfigure(chan);
|
|
else if (scr & STM32_DMA_SCR_DBM)
|
|
stm32_dma_configure_next_sg(chan);
|
|
} else {
|
|
chan->busy = false;
|
|
chan->status = DMA_COMPLETE;
|
|
if (chan->next_sg == chan->desc->num_sgs) {
|
|
vchan_cookie_complete(&chan->desc->vdesc);
|
|
chan->desc = NULL;
|
|
}
|
|
stm32_dma_start_transfer(chan);
|
|
}
|
|
}
|
|
|
|
static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
|
|
{
|
|
struct stm32_dma_chan *chan = devid;
|
|
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
|
|
u32 status, scr, sfcr;
|
|
|
|
spin_lock(&chan->vchan.lock);
|
|
|
|
status = stm32_dma_irq_status(chan);
|
|
scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
|
|
sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
|
|
|
|
if (status & STM32_DMA_FEI) {
|
|
stm32_dma_irq_clear(chan, STM32_DMA_FEI);
|
|
status &= ~STM32_DMA_FEI;
|
|
if (sfcr & STM32_DMA_SFCR_FEIE) {
|
|
if (!(scr & STM32_DMA_SCR_EN) &&
|
|
!(status & STM32_DMA_TCI))
|
|
dev_err(chan2dev(chan), "FIFO Error\n");
|
|
else
|
|
dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
|
|
}
|
|
}
|
|
if (status & STM32_DMA_DMEI) {
|
|
stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
|
|
status &= ~STM32_DMA_DMEI;
|
|
if (sfcr & STM32_DMA_SCR_DMEIE)
|
|
dev_dbg(chan2dev(chan), "Direct mode overrun\n");
|
|
}
|
|
|
|
if (status & STM32_DMA_TCI) {
|
|
stm32_dma_irq_clear(chan, STM32_DMA_TCI);
|
|
if (scr & STM32_DMA_SCR_TCIE) {
|
|
if (chan->status != DMA_PAUSED)
|
|
stm32_dma_handle_chan_done(chan, scr);
|
|
}
|
|
status &= ~STM32_DMA_TCI;
|
|
}
|
|
|
|
if (status & STM32_DMA_HTI) {
|
|
stm32_dma_irq_clear(chan, STM32_DMA_HTI);
|
|
status &= ~STM32_DMA_HTI;
|
|
}
|
|
|
|
if (status) {
|
|
stm32_dma_irq_clear(chan, status);
|
|
dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
|
|
if (!(scr & STM32_DMA_SCR_EN))
|
|
dev_err(chan2dev(chan), "chan disabled by HW\n");
|
|
}
|
|
|
|
spin_unlock(&chan->vchan.lock);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void stm32_dma_issue_pending(struct dma_chan *c)
|
|
{
|
|
struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&chan->vchan.lock, flags);
|
|
if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
|
|
dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
|
|
stm32_dma_start_transfer(chan);
|
|
|
|
}
|
|
spin_unlock_irqrestore(&chan->vchan.lock, flags);
|
|
}
|
|
|
|
static int stm32_dma_pause(struct dma_chan *c)
|
|
{
|
|
struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
if (chan->status != DMA_IN_PROGRESS)
|
|
return -EPERM;
|
|
|
|
spin_lock_irqsave(&chan->vchan.lock, flags);
|
|
|
|
ret = stm32_dma_disable_chan(chan);
|
|
if (!ret)
|
|
stm32_dma_handle_chan_paused(chan);
|
|
|
|
spin_unlock_irqrestore(&chan->vchan.lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int stm32_dma_resume(struct dma_chan *c)
|
|
{
|
|
struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
|
|
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
|
|
struct stm32_dma_chan_reg chan_reg = chan->chan_reg;
|
|
u32 id = chan->id, scr, ndtr, offset, spar, sm0ar, sm1ar;
|
|
struct stm32_dma_sg_req *sg_req;
|
|
unsigned long flags;
|
|
|
|
if (chan->status != DMA_PAUSED)
|
|
return -EPERM;
|
|
|
|
scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
|
|
if (WARN_ON(scr & STM32_DMA_SCR_EN))
|
|
return -EPERM;
|
|
|
|
spin_lock_irqsave(&chan->vchan.lock, flags);
|
|
|
|
/* sg_reg[prev_sg] contains original ndtr, sm0ar and sm1ar before pausing the transfer */
|
|
if (!chan->next_sg)
|
|
sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1];
|
|
else
|
|
sg_req = &chan->desc->sg_req[chan->next_sg - 1];
|
|
|
|
ndtr = sg_req->chan_reg.dma_sndtr;
|
|
offset = (ndtr - chan_reg.dma_sndtr);
|
|
offset <<= FIELD_GET(STM32_DMA_SCR_PSIZE_MASK, chan_reg.dma_scr);
|
|
spar = sg_req->chan_reg.dma_spar;
|
|
sm0ar = sg_req->chan_reg.dma_sm0ar;
|
|
sm1ar = sg_req->chan_reg.dma_sm1ar;
|
|
|
|
/*
|
|
* The peripheral and/or memory addresses have to be updated in order to adjust the
|
|
* address pointers. Need to check increment.
|
|
*/
|
|
if (chan_reg.dma_scr & STM32_DMA_SCR_PINC)
|
|
stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar + offset);
|
|
else
|
|
stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar);
|
|
|
|
if (!(chan_reg.dma_scr & STM32_DMA_SCR_MINC))
|
|
offset = 0;
|
|
|
|
/*
|
|
* In case of DBM, the current target could be SM1AR.
|
|
* Need to temporarily deactivate CIRC/DBM to finish the current transfer, so
|
|
* SM0AR becomes the current target and must be updated with SM1AR + offset if CT=1.
|
|
*/
|
|
if ((chan_reg.dma_scr & STM32_DMA_SCR_DBM) && (chan_reg.dma_scr & STM32_DMA_SCR_CT))
|
|
stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sm1ar + offset);
|
|
else
|
|
stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sm0ar + offset);
|
|
|
|
/* NDTR must be restored otherwise internal HW counter won't be correctly reset */
|
|
stm32_dma_write(dmadev, STM32_DMA_SNDTR(id), chan_reg.dma_sndtr);
|
|
|
|
/*
|
|
* Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt,
|
|
* otherwise NDTR autoreload value will be wrong (lower than the initial period length)
|
|
*/
|
|
if (chan_reg.dma_scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM))
|
|
chan_reg.dma_scr &= ~(STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM);
|
|
|
|
if (chan_reg.dma_scr & STM32_DMA_SCR_DBM)
|
|
stm32_dma_configure_next_sg(chan);
|
|
|
|
stm32_dma_dump_reg(chan);
|
|
|
|
/* The stream may then be re-enabled to restart transfer from the point it was stopped */
|
|
chan->status = DMA_IN_PROGRESS;
|
|
chan_reg.dma_scr |= STM32_DMA_SCR_EN;
|
|
stm32_dma_write(dmadev, STM32_DMA_SCR(id), chan_reg.dma_scr);
|
|
|
|
spin_unlock_irqrestore(&chan->vchan.lock, flags);
|
|
|
|
dev_dbg(chan2dev(chan), "vchan %pK: resumed\n", &chan->vchan);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
|
|
enum dma_transfer_direction direction,
|
|
enum dma_slave_buswidth *buswidth,
|
|
u32 buf_len, dma_addr_t buf_addr)
|
|
{
|
|
enum dma_slave_buswidth src_addr_width, dst_addr_width;
|
|
int src_bus_width, dst_bus_width;
|
|
int src_burst_size, dst_burst_size;
|
|
u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
|
|
u32 dma_scr, fifoth;
|
|
|
|
src_addr_width = chan->dma_sconfig.src_addr_width;
|
|
dst_addr_width = chan->dma_sconfig.dst_addr_width;
|
|
src_maxburst = chan->dma_sconfig.src_maxburst;
|
|
dst_maxburst = chan->dma_sconfig.dst_maxburst;
|
|
fifoth = chan->threshold;
|
|
|
|
switch (direction) {
|
|
case DMA_MEM_TO_DEV:
|
|
/* Set device data size */
|
|
dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
|
|
if (dst_bus_width < 0)
|
|
return dst_bus_width;
|
|
|
|
/* Set device burst size */
|
|
dst_best_burst = stm32_dma_get_best_burst(buf_len,
|
|
dst_maxburst,
|
|
fifoth,
|
|
dst_addr_width);
|
|
|
|
dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
|
|
if (dst_burst_size < 0)
|
|
return dst_burst_size;
|
|
|
|
/* Set memory data size */
|
|
src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
|
|
fifoth);
|
|
chan->mem_width = src_addr_width;
|
|
src_bus_width = stm32_dma_get_width(chan, src_addr_width);
|
|
if (src_bus_width < 0)
|
|
return src_bus_width;
|
|
|
|
/*
|
|
* Set memory burst size - burst not possible if address is not aligned on
|
|
* the address boundary equal to the size of the transfer
|
|
*/
|
|
if (buf_addr & (buf_len - 1))
|
|
src_maxburst = 1;
|
|
else
|
|
src_maxburst = STM32_DMA_MAX_BURST;
|
|
src_best_burst = stm32_dma_get_best_burst(buf_len,
|
|
src_maxburst,
|
|
fifoth,
|
|
src_addr_width);
|
|
src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
|
|
if (src_burst_size < 0)
|
|
return src_burst_size;
|
|
|
|
dma_scr = FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_MEM_TO_DEV) |
|
|
FIELD_PREP(STM32_DMA_SCR_PSIZE_MASK, dst_bus_width) |
|
|
FIELD_PREP(STM32_DMA_SCR_MSIZE_MASK, src_bus_width) |
|
|
FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, dst_burst_size) |
|
|
FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, src_burst_size);
|
|
|
|
/* Set FIFO threshold */
|
|
chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
|
|
if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
|
|
chan->chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, fifoth);
|
|
|
|
/* Set peripheral address */
|
|
chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
|
|
*buswidth = dst_addr_width;
|
|
break;
|
|
|
|
case DMA_DEV_TO_MEM:
|
|
/* Set device data size */
|
|
src_bus_width = stm32_dma_get_width(chan, src_addr_width);
|
|
if (src_bus_width < 0)
|
|
return src_bus_width;
|
|
|
|
/* Set device burst size */
|
|
src_best_burst = stm32_dma_get_best_burst(buf_len,
|
|
src_maxburst,
|
|
fifoth,
|
|
src_addr_width);
|
|
chan->mem_burst = src_best_burst;
|
|
src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
|
|
if (src_burst_size < 0)
|
|
return src_burst_size;
|
|
|
|
/* Set memory data size */
|
|
dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
|
|
fifoth);
|
|
chan->mem_width = dst_addr_width;
|
|
dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
|
|
if (dst_bus_width < 0)
|
|
return dst_bus_width;
|
|
|
|
/*
|
|
* Set memory burst size - burst not possible if address is not aligned on
|
|
* the address boundary equal to the size of the transfer
|
|
*/
|
|
if (buf_addr & (buf_len - 1))
|
|
dst_maxburst = 1;
|
|
else
|
|
dst_maxburst = STM32_DMA_MAX_BURST;
|
|
dst_best_burst = stm32_dma_get_best_burst(buf_len,
|
|
dst_maxburst,
|
|
fifoth,
|
|
dst_addr_width);
|
|
chan->mem_burst = dst_best_burst;
|
|
dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
|
|
if (dst_burst_size < 0)
|
|
return dst_burst_size;
|
|
|
|
dma_scr = FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_DEV_TO_MEM) |
|
|
FIELD_PREP(STM32_DMA_SCR_PSIZE_MASK, src_bus_width) |
|
|
FIELD_PREP(STM32_DMA_SCR_MSIZE_MASK, dst_bus_width) |
|
|
FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, src_burst_size) |
|
|
FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, dst_burst_size);
|
|
|
|
/* Set FIFO threshold */
|
|
chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
|
|
if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
|
|
chan->chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, fifoth);
|
|
|
|
/* Set peripheral address */
|
|
chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
|
|
*buswidth = chan->dma_sconfig.src_addr_width;
|
|
break;
|
|
|
|
default:
|
|
dev_err(chan2dev(chan), "Dma direction is not supported\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
|
|
|
|
/* Set DMA control register */
|
|
chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
|
|
STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
|
|
STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
|
|
chan->chan_reg.dma_scr |= dma_scr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
|
|
{
|
|
memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
|
|
struct dma_chan *c, struct scatterlist *sgl,
|
|
u32 sg_len, enum dma_transfer_direction direction,
|
|
unsigned long flags, void *context)
|
|
{
|
|
struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
|
|
struct stm32_dma_desc *desc;
|
|
struct scatterlist *sg;
|
|
enum dma_slave_buswidth buswidth;
|
|
u32 nb_data_items;
|
|
int i, ret;
|
|
|
|
if (!chan->config_init) {
|
|
dev_err(chan2dev(chan), "dma channel is not configured\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (sg_len < 1) {
|
|
dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
|
|
return NULL;
|
|
}
|
|
|
|
desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
/* Set peripheral flow controller */
|
|
if (chan->dma_sconfig.device_fc)
|
|
chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
|
|
else
|
|
chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
|
|
|
|
/* Activate Double Buffer Mode if DMA triggers STM32 MDMA and more than 1 sg */
|
|
if (chan->trig_mdma && sg_len > 1)
|
|
chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
|
|
|
|
for_each_sg(sgl, sg, sg_len, i) {
|
|
ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
|
|
sg_dma_len(sg),
|
|
sg_dma_address(sg));
|
|
if (ret < 0)
|
|
goto err;
|
|
|
|
desc->sg_req[i].len = sg_dma_len(sg);
|
|
|
|
nb_data_items = desc->sg_req[i].len / buswidth;
|
|
if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
|
|
dev_err(chan2dev(chan), "nb items not supported\n");
|
|
goto err;
|
|
}
|
|
|
|
stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
|
|
desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
|
|
desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
|
|
desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
|
|
desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
|
|
desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
|
|
if (chan->trig_mdma)
|
|
desc->sg_req[i].chan_reg.dma_sm1ar += sg_dma_len(sg);
|
|
desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
|
|
}
|
|
|
|
desc->num_sgs = sg_len;
|
|
desc->cyclic = false;
|
|
|
|
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
|
|
|
|
err:
|
|
kfree(desc);
|
|
return NULL;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
|
|
struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
|
|
size_t period_len, enum dma_transfer_direction direction,
|
|
unsigned long flags)
|
|
{
|
|
struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
|
|
struct stm32_dma_desc *desc;
|
|
enum dma_slave_buswidth buswidth;
|
|
u32 num_periods, nb_data_items;
|
|
int i, ret;
|
|
|
|
if (!buf_len || !period_len) {
|
|
dev_err(chan2dev(chan), "Invalid buffer/period len\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (!chan->config_init) {
|
|
dev_err(chan2dev(chan), "dma channel is not configured\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (buf_len % period_len) {
|
|
dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* We allow to take more number of requests till DMA is
|
|
* not started. The driver will loop over all requests.
|
|
* Once DMA is started then new requests can be queued only after
|
|
* terminating the DMA.
|
|
*/
|
|
if (chan->busy) {
|
|
dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
|
|
return NULL;
|
|
}
|
|
|
|
ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len,
|
|
buf_addr);
|
|
if (ret < 0)
|
|
return NULL;
|
|
|
|
nb_data_items = period_len / buswidth;
|
|
if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
|
|
dev_err(chan2dev(chan), "number of items not supported\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* Enable Circular mode or double buffer mode */
|
|
if (buf_len == period_len) {
|
|
chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
|
|
} else {
|
|
chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
|
|
chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_CT;
|
|
}
|
|
|
|
/* Clear periph ctrl if client set it */
|
|
chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
|
|
|
|
num_periods = buf_len / period_len;
|
|
|
|
desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
for (i = 0; i < num_periods; i++) {
|
|
desc->sg_req[i].len = period_len;
|
|
|
|
stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
|
|
desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
|
|
desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
|
|
desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
|
|
desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
|
|
desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
|
|
if (chan->trig_mdma)
|
|
desc->sg_req[i].chan_reg.dma_sm1ar += period_len;
|
|
desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
|
|
if (!chan->trig_mdma)
|
|
buf_addr += period_len;
|
|
}
|
|
|
|
desc->num_sgs = num_periods;
|
|
desc->cyclic = true;
|
|
|
|
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
|
|
struct dma_chan *c, dma_addr_t dest,
|
|
dma_addr_t src, size_t len, unsigned long flags)
|
|
{
|
|
struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
|
|
enum dma_slave_buswidth max_width;
|
|
struct stm32_dma_desc *desc;
|
|
size_t xfer_count, offset;
|
|
u32 num_sgs, best_burst, dma_burst, threshold;
|
|
int i;
|
|
|
|
num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
|
|
desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
threshold = chan->threshold;
|
|
|
|
for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
|
|
xfer_count = min_t(size_t, len - offset,
|
|
STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
|
|
|
|
/* Compute best burst size */
|
|
max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
|
|
best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
|
|
threshold, max_width);
|
|
dma_burst = stm32_dma_get_burst(chan, best_burst);
|
|
|
|
stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
|
|
desc->sg_req[i].chan_reg.dma_scr =
|
|
FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_MEM_TO_MEM) |
|
|
FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, dma_burst) |
|
|
FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, dma_burst) |
|
|
STM32_DMA_SCR_MINC |
|
|
STM32_DMA_SCR_PINC |
|
|
STM32_DMA_SCR_TCIE |
|
|
STM32_DMA_SCR_TEIE;
|
|
desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
|
|
desc->sg_req[i].chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, threshold);
|
|
desc->sg_req[i].chan_reg.dma_spar = src + offset;
|
|
desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
|
|
desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
|
|
desc->sg_req[i].len = xfer_count;
|
|
}
|
|
|
|
desc->num_sgs = num_sgs;
|
|
desc->cyclic = false;
|
|
|
|
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
|
|
}
|
|
|
|
static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
|
|
{
|
|
u32 dma_scr, width, ndtr;
|
|
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
|
|
|
|
dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
|
|
width = FIELD_GET(STM32_DMA_SCR_PSIZE_MASK, dma_scr);
|
|
ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
|
|
|
|
return ndtr << width;
|
|
}
|
|
|
|
/**
|
|
* stm32_dma_is_current_sg - check that expected sg_req is currently transferred
|
|
* @chan: dma channel
|
|
*
|
|
* This function called when IRQ are disable, checks that the hardware has not
|
|
* switched on the next transfer in double buffer mode. The test is done by
|
|
* comparing the next_sg memory address with the hardware related register
|
|
* (based on CT bit value).
|
|
*
|
|
* Returns true if expected current transfer is still running or double
|
|
* buffer mode is not activated.
|
|
*/
|
|
static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
|
|
{
|
|
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
|
|
struct stm32_dma_sg_req *sg_req;
|
|
u32 dma_scr, dma_smar, id, period_len;
|
|
|
|
id = chan->id;
|
|
dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
|
|
|
|
/* In cyclic CIRC but not DBM, CT is not used */
|
|
if (!(dma_scr & STM32_DMA_SCR_DBM))
|
|
return true;
|
|
|
|
sg_req = &chan->desc->sg_req[chan->next_sg];
|
|
period_len = sg_req->len;
|
|
|
|
/* DBM - take care of a previous pause/resume not yet post reconfigured */
|
|
if (dma_scr & STM32_DMA_SCR_CT) {
|
|
dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
|
|
/*
|
|
* If transfer has been pause/resumed,
|
|
* SM0AR is in the range of [SM0AR:SM0AR+period_len]
|
|
*/
|
|
return (dma_smar >= sg_req->chan_reg.dma_sm0ar &&
|
|
dma_smar < sg_req->chan_reg.dma_sm0ar + period_len);
|
|
}
|
|
|
|
dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
|
|
/*
|
|
* If transfer has been pause/resumed,
|
|
* SM1AR is in the range of [SM1AR:SM1AR+period_len]
|
|
*/
|
|
return (dma_smar >= sg_req->chan_reg.dma_sm1ar &&
|
|
dma_smar < sg_req->chan_reg.dma_sm1ar + period_len);
|
|
}
|
|
|
|
static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
|
|
struct stm32_dma_desc *desc,
|
|
u32 next_sg)
|
|
{
|
|
u32 modulo, burst_size;
|
|
u32 residue;
|
|
u32 n_sg = next_sg;
|
|
struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
|
|
int i;
|
|
|
|
/*
|
|
* Calculate the residue means compute the descriptors
|
|
* information:
|
|
* - the sg_req currently transferred
|
|
* - the Hardware remaining position in this sg (NDTR bits field).
|
|
*
|
|
* A race condition may occur if DMA is running in cyclic or double
|
|
* buffer mode, since the DMA register are automatically reloaded at end
|
|
* of period transfer. The hardware may have switched to the next
|
|
* transfer (CT bit updated) just before the position (SxNDTR reg) is
|
|
* read.
|
|
* In this case the SxNDTR reg could (or not) correspond to the new
|
|
* transfer position, and not the expected one.
|
|
* The strategy implemented in the stm32 driver is to:
|
|
* - read the SxNDTR register
|
|
* - crosscheck that hardware is still in current transfer.
|
|
* In case of switch, we can assume that the DMA is at the beginning of
|
|
* the next transfer. So we approximate the residue in consequence, by
|
|
* pointing on the beginning of next transfer.
|
|
*
|
|
* This race condition doesn't apply for none cyclic mode, as double
|
|
* buffer is not used. In such situation registers are updated by the
|
|
* software.
|
|
*/
|
|
|
|
residue = stm32_dma_get_remaining_bytes(chan);
|
|
|
|
if (chan->desc->cyclic && !stm32_dma_is_current_sg(chan)) {
|
|
n_sg++;
|
|
if (n_sg == chan->desc->num_sgs)
|
|
n_sg = 0;
|
|
residue = sg_req->len;
|
|
}
|
|
|
|
/*
|
|
* In cyclic mode, for the last period, residue = remaining bytes
|
|
* from NDTR,
|
|
* else for all other periods in cyclic mode, and in sg mode,
|
|
* residue = remaining bytes from NDTR + remaining
|
|
* periods/sg to be transferred
|
|
*/
|
|
if (!chan->desc->cyclic || n_sg != 0)
|
|
for (i = n_sg; i < desc->num_sgs; i++)
|
|
residue += desc->sg_req[i].len;
|
|
|
|
if (!chan->mem_burst)
|
|
return residue;
|
|
|
|
burst_size = chan->mem_burst * chan->mem_width;
|
|
modulo = residue % burst_size;
|
|
if (modulo)
|
|
residue = residue - modulo + burst_size;
|
|
|
|
return residue;
|
|
}
|
|
|
|
static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
|
|
dma_cookie_t cookie,
|
|
struct dma_tx_state *state)
|
|
{
|
|
struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
|
|
struct virt_dma_desc *vdesc;
|
|
enum dma_status status;
|
|
unsigned long flags;
|
|
u32 residue = 0;
|
|
|
|
status = dma_cookie_status(c, cookie, state);
|
|
if (status == DMA_COMPLETE)
|
|
return status;
|
|
|
|
status = chan->status;
|
|
|
|
if (!state)
|
|
return status;
|
|
|
|
spin_lock_irqsave(&chan->vchan.lock, flags);
|
|
vdesc = vchan_find_desc(&chan->vchan, cookie);
|
|
if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
|
|
residue = stm32_dma_desc_residue(chan, chan->desc,
|
|
chan->next_sg);
|
|
else if (vdesc)
|
|
residue = stm32_dma_desc_residue(chan,
|
|
to_stm32_dma_desc(vdesc), 0);
|
|
dma_set_residue(state, residue);
|
|
|
|
spin_unlock_irqrestore(&chan->vchan.lock, flags);
|
|
|
|
return status;
|
|
}
|
|
|
|
static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
|
|
{
|
|
struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
|
|
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
|
|
int ret;
|
|
|
|
chan->config_init = false;
|
|
|
|
ret = pm_runtime_resume_and_get(dmadev->ddev.dev);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = stm32_dma_disable_chan(chan);
|
|
if (ret < 0)
|
|
pm_runtime_put(dmadev->ddev.dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void stm32_dma_free_chan_resources(struct dma_chan *c)
|
|
{
|
|
struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
|
|
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
|
|
unsigned long flags;
|
|
|
|
dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
|
|
|
|
if (chan->busy) {
|
|
spin_lock_irqsave(&chan->vchan.lock, flags);
|
|
stm32_dma_stop(chan);
|
|
chan->desc = NULL;
|
|
spin_unlock_irqrestore(&chan->vchan.lock, flags);
|
|
}
|
|
|
|
pm_runtime_put(dmadev->ddev.dev);
|
|
|
|
vchan_free_chan_resources(to_virt_chan(c));
|
|
stm32_dma_clear_reg(&chan->chan_reg);
|
|
chan->threshold = 0;
|
|
}
|
|
|
|
static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
|
|
{
|
|
kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
|
|
}
|
|
|
|
static void stm32_dma_set_config(struct stm32_dma_chan *chan,
|
|
struct stm32_dma_cfg *cfg)
|
|
{
|
|
stm32_dma_clear_reg(&chan->chan_reg);
|
|
|
|
chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
|
|
chan->chan_reg.dma_scr |= FIELD_PREP(STM32_DMA_SCR_REQ_MASK, cfg->request_line);
|
|
|
|
/* Enable Interrupts */
|
|
chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
|
|
|
|
chan->threshold = FIELD_GET(STM32_DMA_THRESHOLD_FTR_MASK, cfg->features);
|
|
if (FIELD_GET(STM32_DMA_DIRECT_MODE_MASK, cfg->features))
|
|
chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
|
|
if (FIELD_GET(STM32_DMA_ALT_ACK_MODE_MASK, cfg->features))
|
|
chan->chan_reg.dma_scr |= STM32_DMA_SCR_TRBUFF;
|
|
chan->mdma_config.stream_id = FIELD_GET(STM32_DMA_MDMA_STREAM_ID_MASK, cfg->features);
|
|
}
|
|
|
|
static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
|
|
struct of_dma *ofdma)
|
|
{
|
|
struct stm32_dma_device *dmadev = ofdma->of_dma_data;
|
|
struct device *dev = dmadev->ddev.dev;
|
|
struct stm32_dma_cfg cfg;
|
|
struct stm32_dma_chan *chan;
|
|
struct dma_chan *c;
|
|
|
|
if (dma_spec->args_count < 4) {
|
|
dev_err(dev, "Bad number of cells\n");
|
|
return NULL;
|
|
}
|
|
|
|
cfg.channel_id = dma_spec->args[0];
|
|
cfg.request_line = dma_spec->args[1];
|
|
cfg.stream_config = dma_spec->args[2];
|
|
cfg.features = dma_spec->args[3];
|
|
|
|
if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
|
|
cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
|
|
dev_err(dev, "Bad channel and/or request id\n");
|
|
return NULL;
|
|
}
|
|
|
|
chan = &dmadev->chan[cfg.channel_id];
|
|
|
|
c = dma_get_slave_channel(&chan->vchan.chan);
|
|
if (!c) {
|
|
dev_err(dev, "No more channels available\n");
|
|
return NULL;
|
|
}
|
|
|
|
stm32_dma_set_config(chan, &cfg);
|
|
|
|
return c;
|
|
}
|
|
|
|
static const struct of_device_id stm32_dma_of_match[] = {
|
|
{ .compatible = "st,stm32-dma", },
|
|
{ /* sentinel */ },
|
|
};
|
|
MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
|
|
|
|
static int stm32_dma_probe(struct platform_device *pdev)
|
|
{
|
|
struct stm32_dma_chan *chan;
|
|
struct stm32_dma_device *dmadev;
|
|
struct dma_device *dd;
|
|
const struct of_device_id *match;
|
|
struct resource *res;
|
|
struct reset_control *rst;
|
|
int i, ret;
|
|
|
|
match = of_match_device(stm32_dma_of_match, &pdev->dev);
|
|
if (!match) {
|
|
dev_err(&pdev->dev, "Error: No device match found\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
|
|
if (!dmadev)
|
|
return -ENOMEM;
|
|
|
|
dd = &dmadev->ddev;
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
dmadev->base = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(dmadev->base))
|
|
return PTR_ERR(dmadev->base);
|
|
|
|
dmadev->clk = devm_clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(dmadev->clk))
|
|
return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n");
|
|
|
|
ret = clk_prepare_enable(dmadev->clk);
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
|
|
"st,mem2mem");
|
|
|
|
rst = devm_reset_control_get(&pdev->dev, NULL);
|
|
if (IS_ERR(rst)) {
|
|
ret = PTR_ERR(rst);
|
|
if (ret == -EPROBE_DEFER)
|
|
goto clk_free;
|
|
} else {
|
|
reset_control_assert(rst);
|
|
udelay(2);
|
|
reset_control_deassert(rst);
|
|
}
|
|
|
|
dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
|
|
|
|
dma_cap_set(DMA_SLAVE, dd->cap_mask);
|
|
dma_cap_set(DMA_PRIVATE, dd->cap_mask);
|
|
dma_cap_set(DMA_CYCLIC, dd->cap_mask);
|
|
dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
|
|
dd->device_free_chan_resources = stm32_dma_free_chan_resources;
|
|
dd->device_tx_status = stm32_dma_tx_status;
|
|
dd->device_issue_pending = stm32_dma_issue_pending;
|
|
dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
|
|
dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
|
|
dd->device_config = stm32_dma_slave_config;
|
|
dd->device_pause = stm32_dma_pause;
|
|
dd->device_resume = stm32_dma_resume;
|
|
dd->device_terminate_all = stm32_dma_terminate_all;
|
|
dd->device_synchronize = stm32_dma_synchronize;
|
|
dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
|
|
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
|
|
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
|
|
dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
|
|
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
|
|
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
|
|
dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
|
|
dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
|
|
dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
|
|
dd->max_burst = STM32_DMA_MAX_BURST;
|
|
dd->max_sg_burst = STM32_DMA_ALIGNED_MAX_DATA_ITEMS;
|
|
dd->descriptor_reuse = true;
|
|
dd->dev = &pdev->dev;
|
|
INIT_LIST_HEAD(&dd->channels);
|
|
|
|
if (dmadev->mem2mem) {
|
|
dma_cap_set(DMA_MEMCPY, dd->cap_mask);
|
|
dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
|
|
dd->directions |= BIT(DMA_MEM_TO_MEM);
|
|
}
|
|
|
|
for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
|
|
chan = &dmadev->chan[i];
|
|
chan->id = i;
|
|
chan->vchan.desc_free = stm32_dma_desc_free;
|
|
vchan_init(&chan->vchan, dd);
|
|
|
|
chan->mdma_config.ifcr = res->start;
|
|
chan->mdma_config.ifcr += STM32_DMA_IFCR(chan->id);
|
|
|
|
chan->mdma_config.tcf = STM32_DMA_TCI;
|
|
chan->mdma_config.tcf <<= STM32_DMA_FLAGS_SHIFT(chan->id);
|
|
}
|
|
|
|
ret = dma_async_device_register(dd);
|
|
if (ret)
|
|
goto clk_free;
|
|
|
|
for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
|
|
chan = &dmadev->chan[i];
|
|
ret = platform_get_irq(pdev, i);
|
|
if (ret < 0)
|
|
goto err_unregister;
|
|
chan->irq = ret;
|
|
|
|
ret = devm_request_irq(&pdev->dev, chan->irq,
|
|
stm32_dma_chan_irq, 0,
|
|
dev_name(chan2dev(chan)), chan);
|
|
if (ret) {
|
|
dev_err(&pdev->dev,
|
|
"request_irq failed with err %d channel %d\n",
|
|
ret, i);
|
|
goto err_unregister;
|
|
}
|
|
}
|
|
|
|
ret = of_dma_controller_register(pdev->dev.of_node,
|
|
stm32_dma_of_xlate, dmadev);
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev,
|
|
"STM32 DMA DMA OF registration failed %d\n", ret);
|
|
goto err_unregister;
|
|
}
|
|
|
|
platform_set_drvdata(pdev, dmadev);
|
|
|
|
pm_runtime_set_active(&pdev->dev);
|
|
pm_runtime_enable(&pdev->dev);
|
|
pm_runtime_get_noresume(&pdev->dev);
|
|
pm_runtime_put(&pdev->dev);
|
|
|
|
dev_info(&pdev->dev, "STM32 DMA driver registered\n");
|
|
|
|
return 0;
|
|
|
|
err_unregister:
|
|
dma_async_device_unregister(dd);
|
|
clk_free:
|
|
clk_disable_unprepare(dmadev->clk);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int stm32_dma_runtime_suspend(struct device *dev)
|
|
{
|
|
struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
|
|
|
|
clk_disable_unprepare(dmadev->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_dma_runtime_resume(struct device *dev)
|
|
{
|
|
struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
ret = clk_prepare_enable(dmadev->clk);
|
|
if (ret) {
|
|
dev_err(dev, "failed to prepare_enable clock\n");
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int stm32_dma_pm_suspend(struct device *dev)
|
|
{
|
|
struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
|
|
int id, ret, scr;
|
|
|
|
ret = pm_runtime_resume_and_get(dev);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
|
|
scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
|
|
if (scr & STM32_DMA_SCR_EN) {
|
|
dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
|
|
pm_runtime_put_sync(dev);
|
|
|
|
pm_runtime_force_suspend(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_dma_pm_resume(struct device *dev)
|
|
{
|
|
return pm_runtime_force_resume(dev);
|
|
}
|
|
#endif
|
|
|
|
static const struct dev_pm_ops stm32_dma_pm_ops = {
|
|
SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_pm_suspend, stm32_dma_pm_resume)
|
|
SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
|
|
stm32_dma_runtime_resume, NULL)
|
|
};
|
|
|
|
static struct platform_driver stm32_dma_driver = {
|
|
.driver = {
|
|
.name = "stm32-dma",
|
|
.of_match_table = stm32_dma_of_match,
|
|
.pm = &stm32_dma_pm_ops,
|
|
},
|
|
.probe = stm32_dma_probe,
|
|
};
|
|
|
|
static int __init stm32_dma_init(void)
|
|
{
|
|
return platform_driver_register(&stm32_dma_driver);
|
|
}
|
|
subsys_initcall(stm32_dma_init);
|