mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-01 19:34:35 +08:00
7bcb2c99f8
The flag CRYPTO_ALG_ASYNC is "inherited" in the sense that when a template is instantiated, the template will have CRYPTO_ALG_ASYNC set if any of the algorithms it uses has CRYPTO_ALG_ASYNC set. We'd like to add a second flag (CRYPTO_ALG_ALLOCATES_MEMORY) that gets "inherited" in the same way. This is difficult because the handling of CRYPTO_ALG_ASYNC is hardcoded everywhere. Address this by: - Add CRYPTO_ALG_INHERITED_FLAGS, which contains the set of flags that have these inheritance semantics. - Add crypto_algt_inherited_mask(), for use by template ->create() methods. It returns any of these flags that the user asked to be unset and thus must be passed in the 'mask' to crypto_grab_*(). - Also modify crypto_check_attr_type() to handle computing the 'mask' so that most templates can just use this. - Make crypto_grab_*() propagate these flags to the template instance being created so that templates don't have to do this themselves. Make crypto/simd.c propagate these flags too, since it "wraps" another algorithm, similar to a template. Based on a patch by Mikulas Patocka <mpatocka@redhat.com> (https://lore.kernel.org/r/alpine.LRH.2.02.2006301414580.30526@file01.intranet.prod.int.rdu2.redhat.com). Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
527 lines
14 KiB
C
527 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Shared crypto simd helpers
|
|
*
|
|
* Copyright (c) 2012 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
|
|
* Copyright (c) 2016 Herbert Xu <herbert@gondor.apana.org.au>
|
|
* Copyright (c) 2019 Google LLC
|
|
*
|
|
* Based on aesni-intel_glue.c by:
|
|
* Copyright (C) 2008, Intel Corp.
|
|
* Author: Huang Ying <ying.huang@intel.com>
|
|
*/
|
|
|
|
/*
|
|
* Shared crypto SIMD helpers. These functions dynamically create and register
|
|
* an skcipher or AEAD algorithm that wraps another, internal algorithm. The
|
|
* wrapper ensures that the internal algorithm is only executed in a context
|
|
* where SIMD instructions are usable, i.e. where may_use_simd() returns true.
|
|
* If SIMD is already usable, the wrapper directly calls the internal algorithm.
|
|
* Otherwise it defers execution to a workqueue via cryptd.
|
|
*
|
|
* This is an alternative to the internal algorithm implementing a fallback for
|
|
* the !may_use_simd() case itself.
|
|
*
|
|
* Note that the wrapper algorithm is asynchronous, i.e. it has the
|
|
* CRYPTO_ALG_ASYNC flag set. Therefore it won't be found by users who
|
|
* explicitly allocate a synchronous algorithm.
|
|
*/
|
|
|
|
#include <crypto/cryptd.h>
|
|
#include <crypto/internal/aead.h>
|
|
#include <crypto/internal/simd.h>
|
|
#include <crypto/internal/skcipher.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/preempt.h>
|
|
#include <asm/simd.h>
|
|
|
|
/* skcipher support */
|
|
|
|
struct simd_skcipher_alg {
|
|
const char *ialg_name;
|
|
struct skcipher_alg alg;
|
|
};
|
|
|
|
struct simd_skcipher_ctx {
|
|
struct cryptd_skcipher *cryptd_tfm;
|
|
};
|
|
|
|
static int simd_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
|
|
unsigned int key_len)
|
|
{
|
|
struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct crypto_skcipher *child = &ctx->cryptd_tfm->base;
|
|
|
|
crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
|
|
crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(tfm) &
|
|
CRYPTO_TFM_REQ_MASK);
|
|
return crypto_skcipher_setkey(child, key, key_len);
|
|
}
|
|
|
|
static int simd_skcipher_encrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct skcipher_request *subreq;
|
|
struct crypto_skcipher *child;
|
|
|
|
subreq = skcipher_request_ctx(req);
|
|
*subreq = *req;
|
|
|
|
if (!crypto_simd_usable() ||
|
|
(in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
|
|
child = &ctx->cryptd_tfm->base;
|
|
else
|
|
child = cryptd_skcipher_child(ctx->cryptd_tfm);
|
|
|
|
skcipher_request_set_tfm(subreq, child);
|
|
|
|
return crypto_skcipher_encrypt(subreq);
|
|
}
|
|
|
|
static int simd_skcipher_decrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct skcipher_request *subreq;
|
|
struct crypto_skcipher *child;
|
|
|
|
subreq = skcipher_request_ctx(req);
|
|
*subreq = *req;
|
|
|
|
if (!crypto_simd_usable() ||
|
|
(in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
|
|
child = &ctx->cryptd_tfm->base;
|
|
else
|
|
child = cryptd_skcipher_child(ctx->cryptd_tfm);
|
|
|
|
skcipher_request_set_tfm(subreq, child);
|
|
|
|
return crypto_skcipher_decrypt(subreq);
|
|
}
|
|
|
|
static void simd_skcipher_exit(struct crypto_skcipher *tfm)
|
|
{
|
|
struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
cryptd_free_skcipher(ctx->cryptd_tfm);
|
|
}
|
|
|
|
static int simd_skcipher_init(struct crypto_skcipher *tfm)
|
|
{
|
|
struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct cryptd_skcipher *cryptd_tfm;
|
|
struct simd_skcipher_alg *salg;
|
|
struct skcipher_alg *alg;
|
|
unsigned reqsize;
|
|
|
|
alg = crypto_skcipher_alg(tfm);
|
|
salg = container_of(alg, struct simd_skcipher_alg, alg);
|
|
|
|
cryptd_tfm = cryptd_alloc_skcipher(salg->ialg_name,
|
|
CRYPTO_ALG_INTERNAL,
|
|
CRYPTO_ALG_INTERNAL);
|
|
if (IS_ERR(cryptd_tfm))
|
|
return PTR_ERR(cryptd_tfm);
|
|
|
|
ctx->cryptd_tfm = cryptd_tfm;
|
|
|
|
reqsize = crypto_skcipher_reqsize(cryptd_skcipher_child(cryptd_tfm));
|
|
reqsize = max(reqsize, crypto_skcipher_reqsize(&cryptd_tfm->base));
|
|
reqsize += sizeof(struct skcipher_request);
|
|
|
|
crypto_skcipher_set_reqsize(tfm, reqsize);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct simd_skcipher_alg *simd_skcipher_create_compat(const char *algname,
|
|
const char *drvname,
|
|
const char *basename)
|
|
{
|
|
struct simd_skcipher_alg *salg;
|
|
struct crypto_skcipher *tfm;
|
|
struct skcipher_alg *ialg;
|
|
struct skcipher_alg *alg;
|
|
int err;
|
|
|
|
tfm = crypto_alloc_skcipher(basename, CRYPTO_ALG_INTERNAL,
|
|
CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC);
|
|
if (IS_ERR(tfm))
|
|
return ERR_CAST(tfm);
|
|
|
|
ialg = crypto_skcipher_alg(tfm);
|
|
|
|
salg = kzalloc(sizeof(*salg), GFP_KERNEL);
|
|
if (!salg) {
|
|
salg = ERR_PTR(-ENOMEM);
|
|
goto out_put_tfm;
|
|
}
|
|
|
|
salg->ialg_name = basename;
|
|
alg = &salg->alg;
|
|
|
|
err = -ENAMETOOLONG;
|
|
if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
|
|
CRYPTO_MAX_ALG_NAME)
|
|
goto out_free_salg;
|
|
|
|
if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
|
|
drvname) >= CRYPTO_MAX_ALG_NAME)
|
|
goto out_free_salg;
|
|
|
|
alg->base.cra_flags = CRYPTO_ALG_ASYNC |
|
|
(ialg->base.cra_flags & CRYPTO_ALG_INHERITED_FLAGS);
|
|
alg->base.cra_priority = ialg->base.cra_priority;
|
|
alg->base.cra_blocksize = ialg->base.cra_blocksize;
|
|
alg->base.cra_alignmask = ialg->base.cra_alignmask;
|
|
alg->base.cra_module = ialg->base.cra_module;
|
|
alg->base.cra_ctxsize = sizeof(struct simd_skcipher_ctx);
|
|
|
|
alg->ivsize = ialg->ivsize;
|
|
alg->chunksize = ialg->chunksize;
|
|
alg->min_keysize = ialg->min_keysize;
|
|
alg->max_keysize = ialg->max_keysize;
|
|
|
|
alg->init = simd_skcipher_init;
|
|
alg->exit = simd_skcipher_exit;
|
|
|
|
alg->setkey = simd_skcipher_setkey;
|
|
alg->encrypt = simd_skcipher_encrypt;
|
|
alg->decrypt = simd_skcipher_decrypt;
|
|
|
|
err = crypto_register_skcipher(alg);
|
|
if (err)
|
|
goto out_free_salg;
|
|
|
|
out_put_tfm:
|
|
crypto_free_skcipher(tfm);
|
|
return salg;
|
|
|
|
out_free_salg:
|
|
kfree(salg);
|
|
salg = ERR_PTR(err);
|
|
goto out_put_tfm;
|
|
}
|
|
EXPORT_SYMBOL_GPL(simd_skcipher_create_compat);
|
|
|
|
struct simd_skcipher_alg *simd_skcipher_create(const char *algname,
|
|
const char *basename)
|
|
{
|
|
char drvname[CRYPTO_MAX_ALG_NAME];
|
|
|
|
if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >=
|
|
CRYPTO_MAX_ALG_NAME)
|
|
return ERR_PTR(-ENAMETOOLONG);
|
|
|
|
return simd_skcipher_create_compat(algname, drvname, basename);
|
|
}
|
|
EXPORT_SYMBOL_GPL(simd_skcipher_create);
|
|
|
|
void simd_skcipher_free(struct simd_skcipher_alg *salg)
|
|
{
|
|
crypto_unregister_skcipher(&salg->alg);
|
|
kfree(salg);
|
|
}
|
|
EXPORT_SYMBOL_GPL(simd_skcipher_free);
|
|
|
|
int simd_register_skciphers_compat(struct skcipher_alg *algs, int count,
|
|
struct simd_skcipher_alg **simd_algs)
|
|
{
|
|
int err;
|
|
int i;
|
|
const char *algname;
|
|
const char *drvname;
|
|
const char *basename;
|
|
struct simd_skcipher_alg *simd;
|
|
|
|
err = crypto_register_skciphers(algs, count);
|
|
if (err)
|
|
return err;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
|
|
WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
|
|
algname = algs[i].base.cra_name + 2;
|
|
drvname = algs[i].base.cra_driver_name + 2;
|
|
basename = algs[i].base.cra_driver_name;
|
|
simd = simd_skcipher_create_compat(algname, drvname, basename);
|
|
err = PTR_ERR(simd);
|
|
if (IS_ERR(simd))
|
|
goto err_unregister;
|
|
simd_algs[i] = simd;
|
|
}
|
|
return 0;
|
|
|
|
err_unregister:
|
|
simd_unregister_skciphers(algs, count, simd_algs);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(simd_register_skciphers_compat);
|
|
|
|
void simd_unregister_skciphers(struct skcipher_alg *algs, int count,
|
|
struct simd_skcipher_alg **simd_algs)
|
|
{
|
|
int i;
|
|
|
|
crypto_unregister_skciphers(algs, count);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
if (simd_algs[i]) {
|
|
simd_skcipher_free(simd_algs[i]);
|
|
simd_algs[i] = NULL;
|
|
}
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(simd_unregister_skciphers);
|
|
|
|
/* AEAD support */
|
|
|
|
struct simd_aead_alg {
|
|
const char *ialg_name;
|
|
struct aead_alg alg;
|
|
};
|
|
|
|
struct simd_aead_ctx {
|
|
struct cryptd_aead *cryptd_tfm;
|
|
};
|
|
|
|
static int simd_aead_setkey(struct crypto_aead *tfm, const u8 *key,
|
|
unsigned int key_len)
|
|
{
|
|
struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
|
|
struct crypto_aead *child = &ctx->cryptd_tfm->base;
|
|
|
|
crypto_aead_clear_flags(child, CRYPTO_TFM_REQ_MASK);
|
|
crypto_aead_set_flags(child, crypto_aead_get_flags(tfm) &
|
|
CRYPTO_TFM_REQ_MASK);
|
|
return crypto_aead_setkey(child, key, key_len);
|
|
}
|
|
|
|
static int simd_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
|
|
{
|
|
struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
|
|
struct crypto_aead *child = &ctx->cryptd_tfm->base;
|
|
|
|
return crypto_aead_setauthsize(child, authsize);
|
|
}
|
|
|
|
static int simd_aead_encrypt(struct aead_request *req)
|
|
{
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
|
|
struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
|
|
struct aead_request *subreq;
|
|
struct crypto_aead *child;
|
|
|
|
subreq = aead_request_ctx(req);
|
|
*subreq = *req;
|
|
|
|
if (!crypto_simd_usable() ||
|
|
(in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
|
|
child = &ctx->cryptd_tfm->base;
|
|
else
|
|
child = cryptd_aead_child(ctx->cryptd_tfm);
|
|
|
|
aead_request_set_tfm(subreq, child);
|
|
|
|
return crypto_aead_encrypt(subreq);
|
|
}
|
|
|
|
static int simd_aead_decrypt(struct aead_request *req)
|
|
{
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
|
|
struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
|
|
struct aead_request *subreq;
|
|
struct crypto_aead *child;
|
|
|
|
subreq = aead_request_ctx(req);
|
|
*subreq = *req;
|
|
|
|
if (!crypto_simd_usable() ||
|
|
(in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
|
|
child = &ctx->cryptd_tfm->base;
|
|
else
|
|
child = cryptd_aead_child(ctx->cryptd_tfm);
|
|
|
|
aead_request_set_tfm(subreq, child);
|
|
|
|
return crypto_aead_decrypt(subreq);
|
|
}
|
|
|
|
static void simd_aead_exit(struct crypto_aead *tfm)
|
|
{
|
|
struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
|
|
|
|
cryptd_free_aead(ctx->cryptd_tfm);
|
|
}
|
|
|
|
static int simd_aead_init(struct crypto_aead *tfm)
|
|
{
|
|
struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
|
|
struct cryptd_aead *cryptd_tfm;
|
|
struct simd_aead_alg *salg;
|
|
struct aead_alg *alg;
|
|
unsigned reqsize;
|
|
|
|
alg = crypto_aead_alg(tfm);
|
|
salg = container_of(alg, struct simd_aead_alg, alg);
|
|
|
|
cryptd_tfm = cryptd_alloc_aead(salg->ialg_name, CRYPTO_ALG_INTERNAL,
|
|
CRYPTO_ALG_INTERNAL);
|
|
if (IS_ERR(cryptd_tfm))
|
|
return PTR_ERR(cryptd_tfm);
|
|
|
|
ctx->cryptd_tfm = cryptd_tfm;
|
|
|
|
reqsize = crypto_aead_reqsize(cryptd_aead_child(cryptd_tfm));
|
|
reqsize = max(reqsize, crypto_aead_reqsize(&cryptd_tfm->base));
|
|
reqsize += sizeof(struct aead_request);
|
|
|
|
crypto_aead_set_reqsize(tfm, reqsize);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct simd_aead_alg *simd_aead_create_compat(const char *algname,
|
|
const char *drvname,
|
|
const char *basename)
|
|
{
|
|
struct simd_aead_alg *salg;
|
|
struct crypto_aead *tfm;
|
|
struct aead_alg *ialg;
|
|
struct aead_alg *alg;
|
|
int err;
|
|
|
|
tfm = crypto_alloc_aead(basename, CRYPTO_ALG_INTERNAL,
|
|
CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC);
|
|
if (IS_ERR(tfm))
|
|
return ERR_CAST(tfm);
|
|
|
|
ialg = crypto_aead_alg(tfm);
|
|
|
|
salg = kzalloc(sizeof(*salg), GFP_KERNEL);
|
|
if (!salg) {
|
|
salg = ERR_PTR(-ENOMEM);
|
|
goto out_put_tfm;
|
|
}
|
|
|
|
salg->ialg_name = basename;
|
|
alg = &salg->alg;
|
|
|
|
err = -ENAMETOOLONG;
|
|
if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
|
|
CRYPTO_MAX_ALG_NAME)
|
|
goto out_free_salg;
|
|
|
|
if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
|
|
drvname) >= CRYPTO_MAX_ALG_NAME)
|
|
goto out_free_salg;
|
|
|
|
alg->base.cra_flags = CRYPTO_ALG_ASYNC |
|
|
(ialg->base.cra_flags & CRYPTO_ALG_INHERITED_FLAGS);
|
|
alg->base.cra_priority = ialg->base.cra_priority;
|
|
alg->base.cra_blocksize = ialg->base.cra_blocksize;
|
|
alg->base.cra_alignmask = ialg->base.cra_alignmask;
|
|
alg->base.cra_module = ialg->base.cra_module;
|
|
alg->base.cra_ctxsize = sizeof(struct simd_aead_ctx);
|
|
|
|
alg->ivsize = ialg->ivsize;
|
|
alg->maxauthsize = ialg->maxauthsize;
|
|
alg->chunksize = ialg->chunksize;
|
|
|
|
alg->init = simd_aead_init;
|
|
alg->exit = simd_aead_exit;
|
|
|
|
alg->setkey = simd_aead_setkey;
|
|
alg->setauthsize = simd_aead_setauthsize;
|
|
alg->encrypt = simd_aead_encrypt;
|
|
alg->decrypt = simd_aead_decrypt;
|
|
|
|
err = crypto_register_aead(alg);
|
|
if (err)
|
|
goto out_free_salg;
|
|
|
|
out_put_tfm:
|
|
crypto_free_aead(tfm);
|
|
return salg;
|
|
|
|
out_free_salg:
|
|
kfree(salg);
|
|
salg = ERR_PTR(err);
|
|
goto out_put_tfm;
|
|
}
|
|
EXPORT_SYMBOL_GPL(simd_aead_create_compat);
|
|
|
|
struct simd_aead_alg *simd_aead_create(const char *algname,
|
|
const char *basename)
|
|
{
|
|
char drvname[CRYPTO_MAX_ALG_NAME];
|
|
|
|
if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >=
|
|
CRYPTO_MAX_ALG_NAME)
|
|
return ERR_PTR(-ENAMETOOLONG);
|
|
|
|
return simd_aead_create_compat(algname, drvname, basename);
|
|
}
|
|
EXPORT_SYMBOL_GPL(simd_aead_create);
|
|
|
|
void simd_aead_free(struct simd_aead_alg *salg)
|
|
{
|
|
crypto_unregister_aead(&salg->alg);
|
|
kfree(salg);
|
|
}
|
|
EXPORT_SYMBOL_GPL(simd_aead_free);
|
|
|
|
int simd_register_aeads_compat(struct aead_alg *algs, int count,
|
|
struct simd_aead_alg **simd_algs)
|
|
{
|
|
int err;
|
|
int i;
|
|
const char *algname;
|
|
const char *drvname;
|
|
const char *basename;
|
|
struct simd_aead_alg *simd;
|
|
|
|
err = crypto_register_aeads(algs, count);
|
|
if (err)
|
|
return err;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
|
|
WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
|
|
algname = algs[i].base.cra_name + 2;
|
|
drvname = algs[i].base.cra_driver_name + 2;
|
|
basename = algs[i].base.cra_driver_name;
|
|
simd = simd_aead_create_compat(algname, drvname, basename);
|
|
err = PTR_ERR(simd);
|
|
if (IS_ERR(simd))
|
|
goto err_unregister;
|
|
simd_algs[i] = simd;
|
|
}
|
|
return 0;
|
|
|
|
err_unregister:
|
|
simd_unregister_aeads(algs, count, simd_algs);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(simd_register_aeads_compat);
|
|
|
|
void simd_unregister_aeads(struct aead_alg *algs, int count,
|
|
struct simd_aead_alg **simd_algs)
|
|
{
|
|
int i;
|
|
|
|
crypto_unregister_aeads(algs, count);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
if (simd_algs[i]) {
|
|
simd_aead_free(simd_algs[i]);
|
|
simd_algs[i] = NULL;
|
|
}
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(simd_unregister_aeads);
|
|
|
|
MODULE_LICENSE("GPL");
|