mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-04 17:44:14 +08:00
91c960b005
A subsequent patch will add additional atomic operations. These new operations will use the same opcode field as the existing XADD, with the immediate discriminating different operations. In preparation, rename the instruction mode BPF_ATOMIC and start calling the zero immediate BPF_ADD. This is possible (doesn't break existing valid BPF progs) because the immediate field is currently reserved MBZ and BPF_ADD is zero. All uses are removed from the tree but the BPF_XADD definition is kept around to avoid breaking builds for people including kernel headers. Signed-off-by: Brendan Jackman <jackmanb@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Björn Töpel <bjorn.topel@gmail.com> Link: https://lore.kernel.org/bpf/20210114181751.768687-5-jackmanb@google.com
1626 lines
38 KiB
C
1626 lines
38 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <linux/moduleloader.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/filter.h>
|
|
#include <linux/bpf.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/if_vlan.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/ptrace.h>
|
|
|
|
#include "bpf_jit_64.h"
|
|
|
|
static inline bool is_simm13(unsigned int value)
|
|
{
|
|
return value + 0x1000 < 0x2000;
|
|
}
|
|
|
|
static inline bool is_simm10(unsigned int value)
|
|
{
|
|
return value + 0x200 < 0x400;
|
|
}
|
|
|
|
static inline bool is_simm5(unsigned int value)
|
|
{
|
|
return value + 0x10 < 0x20;
|
|
}
|
|
|
|
static inline bool is_sethi(unsigned int value)
|
|
{
|
|
return (value & ~0x3fffff) == 0;
|
|
}
|
|
|
|
static void bpf_flush_icache(void *start_, void *end_)
|
|
{
|
|
/* Cheetah's I-cache is fully coherent. */
|
|
if (tlb_type == spitfire) {
|
|
unsigned long start = (unsigned long) start_;
|
|
unsigned long end = (unsigned long) end_;
|
|
|
|
start &= ~7UL;
|
|
end = (end + 7UL) & ~7UL;
|
|
while (start < end) {
|
|
flushi(start);
|
|
start += 32;
|
|
}
|
|
}
|
|
}
|
|
|
|
#define S13(X) ((X) & 0x1fff)
|
|
#define S5(X) ((X) & 0x1f)
|
|
#define IMMED 0x00002000
|
|
#define RD(X) ((X) << 25)
|
|
#define RS1(X) ((X) << 14)
|
|
#define RS2(X) ((X))
|
|
#define OP(X) ((X) << 30)
|
|
#define OP2(X) ((X) << 22)
|
|
#define OP3(X) ((X) << 19)
|
|
#define COND(X) (((X) & 0xf) << 25)
|
|
#define CBCOND(X) (((X) & 0x1f) << 25)
|
|
#define F1(X) OP(X)
|
|
#define F2(X, Y) (OP(X) | OP2(Y))
|
|
#define F3(X, Y) (OP(X) | OP3(Y))
|
|
#define ASI(X) (((X) & 0xff) << 5)
|
|
|
|
#define CONDN COND(0x0)
|
|
#define CONDE COND(0x1)
|
|
#define CONDLE COND(0x2)
|
|
#define CONDL COND(0x3)
|
|
#define CONDLEU COND(0x4)
|
|
#define CONDCS COND(0x5)
|
|
#define CONDNEG COND(0x6)
|
|
#define CONDVC COND(0x7)
|
|
#define CONDA COND(0x8)
|
|
#define CONDNE COND(0x9)
|
|
#define CONDG COND(0xa)
|
|
#define CONDGE COND(0xb)
|
|
#define CONDGU COND(0xc)
|
|
#define CONDCC COND(0xd)
|
|
#define CONDPOS COND(0xe)
|
|
#define CONDVS COND(0xf)
|
|
|
|
#define CONDGEU CONDCC
|
|
#define CONDLU CONDCS
|
|
|
|
#define WDISP22(X) (((X) >> 2) & 0x3fffff)
|
|
#define WDISP19(X) (((X) >> 2) & 0x7ffff)
|
|
|
|
/* The 10-bit branch displacement for CBCOND is split into two fields */
|
|
static u32 WDISP10(u32 off)
|
|
{
|
|
u32 ret = ((off >> 2) & 0xff) << 5;
|
|
|
|
ret |= ((off >> (2 + 8)) & 0x03) << 19;
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define CBCONDE CBCOND(0x09)
|
|
#define CBCONDLE CBCOND(0x0a)
|
|
#define CBCONDL CBCOND(0x0b)
|
|
#define CBCONDLEU CBCOND(0x0c)
|
|
#define CBCONDCS CBCOND(0x0d)
|
|
#define CBCONDN CBCOND(0x0e)
|
|
#define CBCONDVS CBCOND(0x0f)
|
|
#define CBCONDNE CBCOND(0x19)
|
|
#define CBCONDG CBCOND(0x1a)
|
|
#define CBCONDGE CBCOND(0x1b)
|
|
#define CBCONDGU CBCOND(0x1c)
|
|
#define CBCONDCC CBCOND(0x1d)
|
|
#define CBCONDPOS CBCOND(0x1e)
|
|
#define CBCONDVC CBCOND(0x1f)
|
|
|
|
#define CBCONDGEU CBCONDCC
|
|
#define CBCONDLU CBCONDCS
|
|
|
|
#define ANNUL (1 << 29)
|
|
#define XCC (1 << 21)
|
|
|
|
#define BRANCH (F2(0, 1) | XCC)
|
|
#define CBCOND_OP (F2(0, 3) | XCC)
|
|
|
|
#define BA (BRANCH | CONDA)
|
|
#define BG (BRANCH | CONDG)
|
|
#define BL (BRANCH | CONDL)
|
|
#define BLE (BRANCH | CONDLE)
|
|
#define BGU (BRANCH | CONDGU)
|
|
#define BLEU (BRANCH | CONDLEU)
|
|
#define BGE (BRANCH | CONDGE)
|
|
#define BGEU (BRANCH | CONDGEU)
|
|
#define BLU (BRANCH | CONDLU)
|
|
#define BE (BRANCH | CONDE)
|
|
#define BNE (BRANCH | CONDNE)
|
|
|
|
#define SETHI(K, REG) \
|
|
(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
|
|
#define OR_LO(K, REG) \
|
|
(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
|
|
|
|
#define ADD F3(2, 0x00)
|
|
#define AND F3(2, 0x01)
|
|
#define ANDCC F3(2, 0x11)
|
|
#define OR F3(2, 0x02)
|
|
#define XOR F3(2, 0x03)
|
|
#define SUB F3(2, 0x04)
|
|
#define SUBCC F3(2, 0x14)
|
|
#define MUL F3(2, 0x0a)
|
|
#define MULX F3(2, 0x09)
|
|
#define UDIVX F3(2, 0x0d)
|
|
#define DIV F3(2, 0x0e)
|
|
#define SLL F3(2, 0x25)
|
|
#define SLLX (F3(2, 0x25)|(1<<12))
|
|
#define SRA F3(2, 0x27)
|
|
#define SRAX (F3(2, 0x27)|(1<<12))
|
|
#define SRL F3(2, 0x26)
|
|
#define SRLX (F3(2, 0x26)|(1<<12))
|
|
#define JMPL F3(2, 0x38)
|
|
#define SAVE F3(2, 0x3c)
|
|
#define RESTORE F3(2, 0x3d)
|
|
#define CALL F1(1)
|
|
#define BR F2(0, 0x01)
|
|
#define RD_Y F3(2, 0x28)
|
|
#define WR_Y F3(2, 0x30)
|
|
|
|
#define LD32 F3(3, 0x00)
|
|
#define LD8 F3(3, 0x01)
|
|
#define LD16 F3(3, 0x02)
|
|
#define LD64 F3(3, 0x0b)
|
|
#define LD64A F3(3, 0x1b)
|
|
#define ST8 F3(3, 0x05)
|
|
#define ST16 F3(3, 0x06)
|
|
#define ST32 F3(3, 0x04)
|
|
#define ST64 F3(3, 0x0e)
|
|
|
|
#define CAS F3(3, 0x3c)
|
|
#define CASX F3(3, 0x3e)
|
|
|
|
#define LDPTR LD64
|
|
#define BASE_STACKFRAME 176
|
|
|
|
#define LD32I (LD32 | IMMED)
|
|
#define LD8I (LD8 | IMMED)
|
|
#define LD16I (LD16 | IMMED)
|
|
#define LD64I (LD64 | IMMED)
|
|
#define LDPTRI (LDPTR | IMMED)
|
|
#define ST32I (ST32 | IMMED)
|
|
|
|
struct jit_ctx {
|
|
struct bpf_prog *prog;
|
|
unsigned int *offset;
|
|
int idx;
|
|
int epilogue_offset;
|
|
bool tmp_1_used;
|
|
bool tmp_2_used;
|
|
bool tmp_3_used;
|
|
bool saw_frame_pointer;
|
|
bool saw_call;
|
|
bool saw_tail_call;
|
|
u32 *image;
|
|
};
|
|
|
|
#define TMP_REG_1 (MAX_BPF_JIT_REG + 0)
|
|
#define TMP_REG_2 (MAX_BPF_JIT_REG + 1)
|
|
#define TMP_REG_3 (MAX_BPF_JIT_REG + 2)
|
|
|
|
/* Map BPF registers to SPARC registers */
|
|
static const int bpf2sparc[] = {
|
|
/* return value from in-kernel function, and exit value from eBPF */
|
|
[BPF_REG_0] = O5,
|
|
|
|
/* arguments from eBPF program to in-kernel function */
|
|
[BPF_REG_1] = O0,
|
|
[BPF_REG_2] = O1,
|
|
[BPF_REG_3] = O2,
|
|
[BPF_REG_4] = O3,
|
|
[BPF_REG_5] = O4,
|
|
|
|
/* callee saved registers that in-kernel function will preserve */
|
|
[BPF_REG_6] = L0,
|
|
[BPF_REG_7] = L1,
|
|
[BPF_REG_8] = L2,
|
|
[BPF_REG_9] = L3,
|
|
|
|
/* read-only frame pointer to access stack */
|
|
[BPF_REG_FP] = L6,
|
|
|
|
[BPF_REG_AX] = G7,
|
|
|
|
/* temporary register for internal BPF JIT */
|
|
[TMP_REG_1] = G1,
|
|
[TMP_REG_2] = G2,
|
|
[TMP_REG_3] = G3,
|
|
};
|
|
|
|
static void emit(const u32 insn, struct jit_ctx *ctx)
|
|
{
|
|
if (ctx->image != NULL)
|
|
ctx->image[ctx->idx] = insn;
|
|
|
|
ctx->idx++;
|
|
}
|
|
|
|
static void emit_call(u32 *func, struct jit_ctx *ctx)
|
|
{
|
|
if (ctx->image != NULL) {
|
|
void *here = &ctx->image[ctx->idx];
|
|
unsigned int off;
|
|
|
|
off = (void *)func - here;
|
|
ctx->image[ctx->idx] = CALL | ((off >> 2) & 0x3fffffff);
|
|
}
|
|
ctx->idx++;
|
|
}
|
|
|
|
static void emit_nop(struct jit_ctx *ctx)
|
|
{
|
|
emit(SETHI(0, G0), ctx);
|
|
}
|
|
|
|
static void emit_reg_move(u32 from, u32 to, struct jit_ctx *ctx)
|
|
{
|
|
emit(OR | RS1(G0) | RS2(from) | RD(to), ctx);
|
|
}
|
|
|
|
/* Emit 32-bit constant, zero extended. */
|
|
static void emit_set_const(s32 K, u32 reg, struct jit_ctx *ctx)
|
|
{
|
|
emit(SETHI(K, reg), ctx);
|
|
emit(OR_LO(K, reg), ctx);
|
|
}
|
|
|
|
/* Emit 32-bit constant, sign extended. */
|
|
static void emit_set_const_sext(s32 K, u32 reg, struct jit_ctx *ctx)
|
|
{
|
|
if (K >= 0) {
|
|
emit(SETHI(K, reg), ctx);
|
|
emit(OR_LO(K, reg), ctx);
|
|
} else {
|
|
u32 hbits = ~(u32) K;
|
|
u32 lbits = -0x400 | (u32) K;
|
|
|
|
emit(SETHI(hbits, reg), ctx);
|
|
emit(XOR | IMMED | RS1(reg) | S13(lbits) | RD(reg), ctx);
|
|
}
|
|
}
|
|
|
|
static void emit_alu(u32 opcode, u32 src, u32 dst, struct jit_ctx *ctx)
|
|
{
|
|
emit(opcode | RS1(dst) | RS2(src) | RD(dst), ctx);
|
|
}
|
|
|
|
static void emit_alu3(u32 opcode, u32 a, u32 b, u32 c, struct jit_ctx *ctx)
|
|
{
|
|
emit(opcode | RS1(a) | RS2(b) | RD(c), ctx);
|
|
}
|
|
|
|
static void emit_alu_K(unsigned int opcode, unsigned int dst, unsigned int imm,
|
|
struct jit_ctx *ctx)
|
|
{
|
|
bool small_immed = is_simm13(imm);
|
|
unsigned int insn = opcode;
|
|
|
|
insn |= RS1(dst) | RD(dst);
|
|
if (small_immed) {
|
|
emit(insn | IMMED | S13(imm), ctx);
|
|
} else {
|
|
unsigned int tmp = bpf2sparc[TMP_REG_1];
|
|
|
|
ctx->tmp_1_used = true;
|
|
|
|
emit_set_const_sext(imm, tmp, ctx);
|
|
emit(insn | RS2(tmp), ctx);
|
|
}
|
|
}
|
|
|
|
static void emit_alu3_K(unsigned int opcode, unsigned int src, unsigned int imm,
|
|
unsigned int dst, struct jit_ctx *ctx)
|
|
{
|
|
bool small_immed = is_simm13(imm);
|
|
unsigned int insn = opcode;
|
|
|
|
insn |= RS1(src) | RD(dst);
|
|
if (small_immed) {
|
|
emit(insn | IMMED | S13(imm), ctx);
|
|
} else {
|
|
unsigned int tmp = bpf2sparc[TMP_REG_1];
|
|
|
|
ctx->tmp_1_used = true;
|
|
|
|
emit_set_const_sext(imm, tmp, ctx);
|
|
emit(insn | RS2(tmp), ctx);
|
|
}
|
|
}
|
|
|
|
static void emit_loadimm32(s32 K, unsigned int dest, struct jit_ctx *ctx)
|
|
{
|
|
if (K >= 0 && is_simm13(K)) {
|
|
/* or %g0, K, DEST */
|
|
emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
|
|
} else {
|
|
emit_set_const(K, dest, ctx);
|
|
}
|
|
}
|
|
|
|
static void emit_loadimm(s32 K, unsigned int dest, struct jit_ctx *ctx)
|
|
{
|
|
if (is_simm13(K)) {
|
|
/* or %g0, K, DEST */
|
|
emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
|
|
} else {
|
|
emit_set_const(K, dest, ctx);
|
|
}
|
|
}
|
|
|
|
static void emit_loadimm_sext(s32 K, unsigned int dest, struct jit_ctx *ctx)
|
|
{
|
|
if (is_simm13(K)) {
|
|
/* or %g0, K, DEST */
|
|
emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
|
|
} else {
|
|
emit_set_const_sext(K, dest, ctx);
|
|
}
|
|
}
|
|
|
|
static void analyze_64bit_constant(u32 high_bits, u32 low_bits,
|
|
int *hbsp, int *lbsp, int *abbasp)
|
|
{
|
|
int lowest_bit_set, highest_bit_set, all_bits_between_are_set;
|
|
int i;
|
|
|
|
lowest_bit_set = highest_bit_set = -1;
|
|
i = 0;
|
|
do {
|
|
if ((lowest_bit_set == -1) && ((low_bits >> i) & 1))
|
|
lowest_bit_set = i;
|
|
if ((highest_bit_set == -1) && ((high_bits >> (32 - i - 1)) & 1))
|
|
highest_bit_set = (64 - i - 1);
|
|
} while (++i < 32 && (highest_bit_set == -1 ||
|
|
lowest_bit_set == -1));
|
|
if (i == 32) {
|
|
i = 0;
|
|
do {
|
|
if (lowest_bit_set == -1 && ((high_bits >> i) & 1))
|
|
lowest_bit_set = i + 32;
|
|
if (highest_bit_set == -1 &&
|
|
((low_bits >> (32 - i - 1)) & 1))
|
|
highest_bit_set = 32 - i - 1;
|
|
} while (++i < 32 && (highest_bit_set == -1 ||
|
|
lowest_bit_set == -1));
|
|
}
|
|
|
|
all_bits_between_are_set = 1;
|
|
for (i = lowest_bit_set; i <= highest_bit_set; i++) {
|
|
if (i < 32) {
|
|
if ((low_bits & (1 << i)) != 0)
|
|
continue;
|
|
} else {
|
|
if ((high_bits & (1 << (i - 32))) != 0)
|
|
continue;
|
|
}
|
|
all_bits_between_are_set = 0;
|
|
break;
|
|
}
|
|
*hbsp = highest_bit_set;
|
|
*lbsp = lowest_bit_set;
|
|
*abbasp = all_bits_between_are_set;
|
|
}
|
|
|
|
static unsigned long create_simple_focus_bits(unsigned long high_bits,
|
|
unsigned long low_bits,
|
|
int lowest_bit_set, int shift)
|
|
{
|
|
long hi, lo;
|
|
|
|
if (lowest_bit_set < 32) {
|
|
lo = (low_bits >> lowest_bit_set) << shift;
|
|
hi = ((high_bits << (32 - lowest_bit_set)) << shift);
|
|
} else {
|
|
lo = 0;
|
|
hi = ((high_bits >> (lowest_bit_set - 32)) << shift);
|
|
}
|
|
return hi | lo;
|
|
}
|
|
|
|
static bool const64_is_2insns(unsigned long high_bits,
|
|
unsigned long low_bits)
|
|
{
|
|
int highest_bit_set, lowest_bit_set, all_bits_between_are_set;
|
|
|
|
if (high_bits == 0 || high_bits == 0xffffffff)
|
|
return true;
|
|
|
|
analyze_64bit_constant(high_bits, low_bits,
|
|
&highest_bit_set, &lowest_bit_set,
|
|
&all_bits_between_are_set);
|
|
|
|
if ((highest_bit_set == 63 || lowest_bit_set == 0) &&
|
|
all_bits_between_are_set != 0)
|
|
return true;
|
|
|
|
if (highest_bit_set - lowest_bit_set < 21)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void sparc_emit_set_const64_quick2(unsigned long high_bits,
|
|
unsigned long low_imm,
|
|
unsigned int dest,
|
|
int shift_count, struct jit_ctx *ctx)
|
|
{
|
|
emit_loadimm32(high_bits, dest, ctx);
|
|
|
|
/* Now shift it up into place. */
|
|
emit_alu_K(SLLX, dest, shift_count, ctx);
|
|
|
|
/* If there is a low immediate part piece, finish up by
|
|
* putting that in as well.
|
|
*/
|
|
if (low_imm != 0)
|
|
emit(OR | IMMED | RS1(dest) | S13(low_imm) | RD(dest), ctx);
|
|
}
|
|
|
|
static void emit_loadimm64(u64 K, unsigned int dest, struct jit_ctx *ctx)
|
|
{
|
|
int all_bits_between_are_set, lowest_bit_set, highest_bit_set;
|
|
unsigned int tmp = bpf2sparc[TMP_REG_1];
|
|
u32 low_bits = (K & 0xffffffff);
|
|
u32 high_bits = (K >> 32);
|
|
|
|
/* These two tests also take care of all of the one
|
|
* instruction cases.
|
|
*/
|
|
if (high_bits == 0xffffffff && (low_bits & 0x80000000))
|
|
return emit_loadimm_sext(K, dest, ctx);
|
|
if (high_bits == 0x00000000)
|
|
return emit_loadimm32(K, dest, ctx);
|
|
|
|
analyze_64bit_constant(high_bits, low_bits, &highest_bit_set,
|
|
&lowest_bit_set, &all_bits_between_are_set);
|
|
|
|
/* 1) mov -1, %reg
|
|
* sllx %reg, shift, %reg
|
|
* 2) mov -1, %reg
|
|
* srlx %reg, shift, %reg
|
|
* 3) mov some_small_const, %reg
|
|
* sllx %reg, shift, %reg
|
|
*/
|
|
if (((highest_bit_set == 63 || lowest_bit_set == 0) &&
|
|
all_bits_between_are_set != 0) ||
|
|
((highest_bit_set - lowest_bit_set) < 12)) {
|
|
int shift = lowest_bit_set;
|
|
long the_const = -1;
|
|
|
|
if ((highest_bit_set != 63 && lowest_bit_set != 0) ||
|
|
all_bits_between_are_set == 0) {
|
|
the_const =
|
|
create_simple_focus_bits(high_bits, low_bits,
|
|
lowest_bit_set, 0);
|
|
} else if (lowest_bit_set == 0)
|
|
shift = -(63 - highest_bit_set);
|
|
|
|
emit(OR | IMMED | RS1(G0) | S13(the_const) | RD(dest), ctx);
|
|
if (shift > 0)
|
|
emit_alu_K(SLLX, dest, shift, ctx);
|
|
else if (shift < 0)
|
|
emit_alu_K(SRLX, dest, -shift, ctx);
|
|
|
|
return;
|
|
}
|
|
|
|
/* Now a range of 22 or less bits set somewhere.
|
|
* 1) sethi %hi(focus_bits), %reg
|
|
* sllx %reg, shift, %reg
|
|
* 2) sethi %hi(focus_bits), %reg
|
|
* srlx %reg, shift, %reg
|
|
*/
|
|
if ((highest_bit_set - lowest_bit_set) < 21) {
|
|
unsigned long focus_bits =
|
|
create_simple_focus_bits(high_bits, low_bits,
|
|
lowest_bit_set, 10);
|
|
|
|
emit(SETHI(focus_bits, dest), ctx);
|
|
|
|
/* If lowest_bit_set == 10 then a sethi alone could
|
|
* have done it.
|
|
*/
|
|
if (lowest_bit_set < 10)
|
|
emit_alu_K(SRLX, dest, 10 - lowest_bit_set, ctx);
|
|
else if (lowest_bit_set > 10)
|
|
emit_alu_K(SLLX, dest, lowest_bit_set - 10, ctx);
|
|
return;
|
|
}
|
|
|
|
/* Ok, now 3 instruction sequences. */
|
|
if (low_bits == 0) {
|
|
emit_loadimm32(high_bits, dest, ctx);
|
|
emit_alu_K(SLLX, dest, 32, ctx);
|
|
return;
|
|
}
|
|
|
|
/* We may be able to do something quick
|
|
* when the constant is negated, so try that.
|
|
*/
|
|
if (const64_is_2insns((~high_bits) & 0xffffffff,
|
|
(~low_bits) & 0xfffffc00)) {
|
|
/* NOTE: The trailing bits get XOR'd so we need the
|
|
* non-negated bits, not the negated ones.
|
|
*/
|
|
unsigned long trailing_bits = low_bits & 0x3ff;
|
|
|
|
if ((((~high_bits) & 0xffffffff) == 0 &&
|
|
((~low_bits) & 0x80000000) == 0) ||
|
|
(((~high_bits) & 0xffffffff) == 0xffffffff &&
|
|
((~low_bits) & 0x80000000) != 0)) {
|
|
unsigned long fast_int = (~low_bits & 0xffffffff);
|
|
|
|
if ((is_sethi(fast_int) &&
|
|
(~high_bits & 0xffffffff) == 0)) {
|
|
emit(SETHI(fast_int, dest), ctx);
|
|
} else if (is_simm13(fast_int)) {
|
|
emit(OR | IMMED | RS1(G0) | S13(fast_int) | RD(dest), ctx);
|
|
} else {
|
|
emit_loadimm64(fast_int, dest, ctx);
|
|
}
|
|
} else {
|
|
u64 n = ((~low_bits) & 0xfffffc00) |
|
|
(((unsigned long)((~high_bits) & 0xffffffff))<<32);
|
|
emit_loadimm64(n, dest, ctx);
|
|
}
|
|
|
|
low_bits = -0x400 | trailing_bits;
|
|
|
|
emit(XOR | IMMED | RS1(dest) | S13(low_bits) | RD(dest), ctx);
|
|
return;
|
|
}
|
|
|
|
/* 1) sethi %hi(xxx), %reg
|
|
* or %reg, %lo(xxx), %reg
|
|
* sllx %reg, yyy, %reg
|
|
*/
|
|
if ((highest_bit_set - lowest_bit_set) < 32) {
|
|
unsigned long focus_bits =
|
|
create_simple_focus_bits(high_bits, low_bits,
|
|
lowest_bit_set, 0);
|
|
|
|
/* So what we know is that the set bits straddle the
|
|
* middle of the 64-bit word.
|
|
*/
|
|
sparc_emit_set_const64_quick2(focus_bits, 0, dest,
|
|
lowest_bit_set, ctx);
|
|
return;
|
|
}
|
|
|
|
/* 1) sethi %hi(high_bits), %reg
|
|
* or %reg, %lo(high_bits), %reg
|
|
* sllx %reg, 32, %reg
|
|
* or %reg, low_bits, %reg
|
|
*/
|
|
if (is_simm13(low_bits) && ((int)low_bits > 0)) {
|
|
sparc_emit_set_const64_quick2(high_bits, low_bits,
|
|
dest, 32, ctx);
|
|
return;
|
|
}
|
|
|
|
/* Oh well, we tried... Do a full 64-bit decomposition. */
|
|
ctx->tmp_1_used = true;
|
|
|
|
emit_loadimm32(high_bits, tmp, ctx);
|
|
emit_loadimm32(low_bits, dest, ctx);
|
|
emit_alu_K(SLLX, tmp, 32, ctx);
|
|
emit(OR | RS1(dest) | RS2(tmp) | RD(dest), ctx);
|
|
}
|
|
|
|
static void emit_branch(unsigned int br_opc, unsigned int from_idx, unsigned int to_idx,
|
|
struct jit_ctx *ctx)
|
|
{
|
|
unsigned int off = to_idx - from_idx;
|
|
|
|
if (br_opc & XCC)
|
|
emit(br_opc | WDISP19(off << 2), ctx);
|
|
else
|
|
emit(br_opc | WDISP22(off << 2), ctx);
|
|
}
|
|
|
|
static void emit_cbcond(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
|
|
const u8 dst, const u8 src, struct jit_ctx *ctx)
|
|
{
|
|
unsigned int off = to_idx - from_idx;
|
|
|
|
emit(cb_opc | WDISP10(off << 2) | RS1(dst) | RS2(src), ctx);
|
|
}
|
|
|
|
static void emit_cbcondi(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
|
|
const u8 dst, s32 imm, struct jit_ctx *ctx)
|
|
{
|
|
unsigned int off = to_idx - from_idx;
|
|
|
|
emit(cb_opc | IMMED | WDISP10(off << 2) | RS1(dst) | S5(imm), ctx);
|
|
}
|
|
|
|
#define emit_read_y(REG, CTX) emit(RD_Y | RD(REG), CTX)
|
|
#define emit_write_y(REG, CTX) emit(WR_Y | IMMED | RS1(REG) | S13(0), CTX)
|
|
|
|
#define emit_cmp(R1, R2, CTX) \
|
|
emit(SUBCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
|
|
|
|
#define emit_cmpi(R1, IMM, CTX) \
|
|
emit(SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
|
|
|
|
#define emit_btst(R1, R2, CTX) \
|
|
emit(ANDCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
|
|
|
|
#define emit_btsti(R1, IMM, CTX) \
|
|
emit(ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
|
|
|
|
static int emit_compare_and_branch(const u8 code, const u8 dst, u8 src,
|
|
const s32 imm, bool is_imm, int branch_dst,
|
|
struct jit_ctx *ctx)
|
|
{
|
|
bool use_cbcond = (sparc64_elf_hwcap & AV_SPARC_CBCOND) != 0;
|
|
const u8 tmp = bpf2sparc[TMP_REG_1];
|
|
|
|
branch_dst = ctx->offset[branch_dst];
|
|
|
|
if (!is_simm10(branch_dst - ctx->idx) ||
|
|
BPF_OP(code) == BPF_JSET)
|
|
use_cbcond = false;
|
|
|
|
if (is_imm) {
|
|
bool fits = true;
|
|
|
|
if (use_cbcond) {
|
|
if (!is_simm5(imm))
|
|
fits = false;
|
|
} else if (!is_simm13(imm)) {
|
|
fits = false;
|
|
}
|
|
if (!fits) {
|
|
ctx->tmp_1_used = true;
|
|
emit_loadimm_sext(imm, tmp, ctx);
|
|
src = tmp;
|
|
is_imm = false;
|
|
}
|
|
}
|
|
|
|
if (!use_cbcond) {
|
|
u32 br_opcode;
|
|
|
|
if (BPF_OP(code) == BPF_JSET) {
|
|
if (is_imm)
|
|
emit_btsti(dst, imm, ctx);
|
|
else
|
|
emit_btst(dst, src, ctx);
|
|
} else {
|
|
if (is_imm)
|
|
emit_cmpi(dst, imm, ctx);
|
|
else
|
|
emit_cmp(dst, src, ctx);
|
|
}
|
|
switch (BPF_OP(code)) {
|
|
case BPF_JEQ:
|
|
br_opcode = BE;
|
|
break;
|
|
case BPF_JGT:
|
|
br_opcode = BGU;
|
|
break;
|
|
case BPF_JLT:
|
|
br_opcode = BLU;
|
|
break;
|
|
case BPF_JGE:
|
|
br_opcode = BGEU;
|
|
break;
|
|
case BPF_JLE:
|
|
br_opcode = BLEU;
|
|
break;
|
|
case BPF_JSET:
|
|
case BPF_JNE:
|
|
br_opcode = BNE;
|
|
break;
|
|
case BPF_JSGT:
|
|
br_opcode = BG;
|
|
break;
|
|
case BPF_JSLT:
|
|
br_opcode = BL;
|
|
break;
|
|
case BPF_JSGE:
|
|
br_opcode = BGE;
|
|
break;
|
|
case BPF_JSLE:
|
|
br_opcode = BLE;
|
|
break;
|
|
default:
|
|
/* Make sure we dont leak kernel information to the
|
|
* user.
|
|
*/
|
|
return -EFAULT;
|
|
}
|
|
emit_branch(br_opcode, ctx->idx, branch_dst, ctx);
|
|
emit_nop(ctx);
|
|
} else {
|
|
u32 cbcond_opcode;
|
|
|
|
switch (BPF_OP(code)) {
|
|
case BPF_JEQ:
|
|
cbcond_opcode = CBCONDE;
|
|
break;
|
|
case BPF_JGT:
|
|
cbcond_opcode = CBCONDGU;
|
|
break;
|
|
case BPF_JLT:
|
|
cbcond_opcode = CBCONDLU;
|
|
break;
|
|
case BPF_JGE:
|
|
cbcond_opcode = CBCONDGEU;
|
|
break;
|
|
case BPF_JLE:
|
|
cbcond_opcode = CBCONDLEU;
|
|
break;
|
|
case BPF_JNE:
|
|
cbcond_opcode = CBCONDNE;
|
|
break;
|
|
case BPF_JSGT:
|
|
cbcond_opcode = CBCONDG;
|
|
break;
|
|
case BPF_JSLT:
|
|
cbcond_opcode = CBCONDL;
|
|
break;
|
|
case BPF_JSGE:
|
|
cbcond_opcode = CBCONDGE;
|
|
break;
|
|
case BPF_JSLE:
|
|
cbcond_opcode = CBCONDLE;
|
|
break;
|
|
default:
|
|
/* Make sure we dont leak kernel information to the
|
|
* user.
|
|
*/
|
|
return -EFAULT;
|
|
}
|
|
cbcond_opcode |= CBCOND_OP;
|
|
if (is_imm)
|
|
emit_cbcondi(cbcond_opcode, ctx->idx, branch_dst,
|
|
dst, imm, ctx);
|
|
else
|
|
emit_cbcond(cbcond_opcode, ctx->idx, branch_dst,
|
|
dst, src, ctx);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Just skip the save instruction and the ctx register move. */
|
|
#define BPF_TAILCALL_PROLOGUE_SKIP 32
|
|
#define BPF_TAILCALL_CNT_SP_OFF (STACK_BIAS + 128)
|
|
|
|
static void build_prologue(struct jit_ctx *ctx)
|
|
{
|
|
s32 stack_needed = BASE_STACKFRAME;
|
|
|
|
if (ctx->saw_frame_pointer || ctx->saw_tail_call) {
|
|
struct bpf_prog *prog = ctx->prog;
|
|
u32 stack_depth;
|
|
|
|
stack_depth = prog->aux->stack_depth;
|
|
stack_needed += round_up(stack_depth, 16);
|
|
}
|
|
|
|
if (ctx->saw_tail_call)
|
|
stack_needed += 8;
|
|
|
|
/* save %sp, -176, %sp */
|
|
emit(SAVE | IMMED | RS1(SP) | S13(-stack_needed) | RD(SP), ctx);
|
|
|
|
/* tail_call_cnt = 0 */
|
|
if (ctx->saw_tail_call) {
|
|
u32 off = BPF_TAILCALL_CNT_SP_OFF;
|
|
|
|
emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(G0), ctx);
|
|
} else {
|
|
emit_nop(ctx);
|
|
}
|
|
if (ctx->saw_frame_pointer) {
|
|
const u8 vfp = bpf2sparc[BPF_REG_FP];
|
|
|
|
emit(ADD | IMMED | RS1(FP) | S13(STACK_BIAS) | RD(vfp), ctx);
|
|
} else {
|
|
emit_nop(ctx);
|
|
}
|
|
|
|
emit_reg_move(I0, O0, ctx);
|
|
emit_reg_move(I1, O1, ctx);
|
|
emit_reg_move(I2, O2, ctx);
|
|
emit_reg_move(I3, O3, ctx);
|
|
emit_reg_move(I4, O4, ctx);
|
|
/* If you add anything here, adjust BPF_TAILCALL_PROLOGUE_SKIP above. */
|
|
}
|
|
|
|
static void build_epilogue(struct jit_ctx *ctx)
|
|
{
|
|
ctx->epilogue_offset = ctx->idx;
|
|
|
|
/* ret (jmpl %i7 + 8, %g0) */
|
|
emit(JMPL | IMMED | RS1(I7) | S13(8) | RD(G0), ctx);
|
|
|
|
/* restore %i5, %g0, %o0 */
|
|
emit(RESTORE | RS1(bpf2sparc[BPF_REG_0]) | RS2(G0) | RD(O0), ctx);
|
|
}
|
|
|
|
static void emit_tail_call(struct jit_ctx *ctx)
|
|
{
|
|
const u8 bpf_array = bpf2sparc[BPF_REG_2];
|
|
const u8 bpf_index = bpf2sparc[BPF_REG_3];
|
|
const u8 tmp = bpf2sparc[TMP_REG_1];
|
|
u32 off;
|
|
|
|
ctx->saw_tail_call = true;
|
|
|
|
off = offsetof(struct bpf_array, map.max_entries);
|
|
emit(LD32 | IMMED | RS1(bpf_array) | S13(off) | RD(tmp), ctx);
|
|
emit_cmp(bpf_index, tmp, ctx);
|
|
#define OFFSET1 17
|
|
emit_branch(BGEU, ctx->idx, ctx->idx + OFFSET1, ctx);
|
|
emit_nop(ctx);
|
|
|
|
off = BPF_TAILCALL_CNT_SP_OFF;
|
|
emit(LD32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
|
|
emit_cmpi(tmp, MAX_TAIL_CALL_CNT, ctx);
|
|
#define OFFSET2 13
|
|
emit_branch(BGU, ctx->idx, ctx->idx + OFFSET2, ctx);
|
|
emit_nop(ctx);
|
|
|
|
emit_alu_K(ADD, tmp, 1, ctx);
|
|
off = BPF_TAILCALL_CNT_SP_OFF;
|
|
emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
|
|
|
|
emit_alu3_K(SLL, bpf_index, 3, tmp, ctx);
|
|
emit_alu(ADD, bpf_array, tmp, ctx);
|
|
off = offsetof(struct bpf_array, ptrs);
|
|
emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
|
|
|
|
emit_cmpi(tmp, 0, ctx);
|
|
#define OFFSET3 5
|
|
emit_branch(BE, ctx->idx, ctx->idx + OFFSET3, ctx);
|
|
emit_nop(ctx);
|
|
|
|
off = offsetof(struct bpf_prog, bpf_func);
|
|
emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
|
|
|
|
off = BPF_TAILCALL_PROLOGUE_SKIP;
|
|
emit(JMPL | IMMED | RS1(tmp) | S13(off) | RD(G0), ctx);
|
|
emit_nop(ctx);
|
|
}
|
|
|
|
static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
|
|
{
|
|
const u8 code = insn->code;
|
|
const u8 dst = bpf2sparc[insn->dst_reg];
|
|
const u8 src = bpf2sparc[insn->src_reg];
|
|
const int i = insn - ctx->prog->insnsi;
|
|
const s16 off = insn->off;
|
|
const s32 imm = insn->imm;
|
|
|
|
if (insn->src_reg == BPF_REG_FP)
|
|
ctx->saw_frame_pointer = true;
|
|
|
|
switch (code) {
|
|
/* dst = src */
|
|
case BPF_ALU | BPF_MOV | BPF_X:
|
|
emit_alu3_K(SRL, src, 0, dst, ctx);
|
|
if (insn_is_zext(&insn[1]))
|
|
return 1;
|
|
break;
|
|
case BPF_ALU64 | BPF_MOV | BPF_X:
|
|
emit_reg_move(src, dst, ctx);
|
|
break;
|
|
/* dst = dst OP src */
|
|
case BPF_ALU | BPF_ADD | BPF_X:
|
|
case BPF_ALU64 | BPF_ADD | BPF_X:
|
|
emit_alu(ADD, src, dst, ctx);
|
|
goto do_alu32_trunc;
|
|
case BPF_ALU | BPF_SUB | BPF_X:
|
|
case BPF_ALU64 | BPF_SUB | BPF_X:
|
|
emit_alu(SUB, src, dst, ctx);
|
|
goto do_alu32_trunc;
|
|
case BPF_ALU | BPF_AND | BPF_X:
|
|
case BPF_ALU64 | BPF_AND | BPF_X:
|
|
emit_alu(AND, src, dst, ctx);
|
|
goto do_alu32_trunc;
|
|
case BPF_ALU | BPF_OR | BPF_X:
|
|
case BPF_ALU64 | BPF_OR | BPF_X:
|
|
emit_alu(OR, src, dst, ctx);
|
|
goto do_alu32_trunc;
|
|
case BPF_ALU | BPF_XOR | BPF_X:
|
|
case BPF_ALU64 | BPF_XOR | BPF_X:
|
|
emit_alu(XOR, src, dst, ctx);
|
|
goto do_alu32_trunc;
|
|
case BPF_ALU | BPF_MUL | BPF_X:
|
|
emit_alu(MUL, src, dst, ctx);
|
|
goto do_alu32_trunc;
|
|
case BPF_ALU64 | BPF_MUL | BPF_X:
|
|
emit_alu(MULX, src, dst, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_DIV | BPF_X:
|
|
emit_write_y(G0, ctx);
|
|
emit_alu(DIV, src, dst, ctx);
|
|
if (insn_is_zext(&insn[1]))
|
|
return 1;
|
|
break;
|
|
case BPF_ALU64 | BPF_DIV | BPF_X:
|
|
emit_alu(UDIVX, src, dst, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_MOD | BPF_X: {
|
|
const u8 tmp = bpf2sparc[TMP_REG_1];
|
|
|
|
ctx->tmp_1_used = true;
|
|
|
|
emit_write_y(G0, ctx);
|
|
emit_alu3(DIV, dst, src, tmp, ctx);
|
|
emit_alu3(MULX, tmp, src, tmp, ctx);
|
|
emit_alu3(SUB, dst, tmp, dst, ctx);
|
|
goto do_alu32_trunc;
|
|
}
|
|
case BPF_ALU64 | BPF_MOD | BPF_X: {
|
|
const u8 tmp = bpf2sparc[TMP_REG_1];
|
|
|
|
ctx->tmp_1_used = true;
|
|
|
|
emit_alu3(UDIVX, dst, src, tmp, ctx);
|
|
emit_alu3(MULX, tmp, src, tmp, ctx);
|
|
emit_alu3(SUB, dst, tmp, dst, ctx);
|
|
break;
|
|
}
|
|
case BPF_ALU | BPF_LSH | BPF_X:
|
|
emit_alu(SLL, src, dst, ctx);
|
|
goto do_alu32_trunc;
|
|
case BPF_ALU64 | BPF_LSH | BPF_X:
|
|
emit_alu(SLLX, src, dst, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_RSH | BPF_X:
|
|
emit_alu(SRL, src, dst, ctx);
|
|
if (insn_is_zext(&insn[1]))
|
|
return 1;
|
|
break;
|
|
case BPF_ALU64 | BPF_RSH | BPF_X:
|
|
emit_alu(SRLX, src, dst, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_ARSH | BPF_X:
|
|
emit_alu(SRA, src, dst, ctx);
|
|
goto do_alu32_trunc;
|
|
case BPF_ALU64 | BPF_ARSH | BPF_X:
|
|
emit_alu(SRAX, src, dst, ctx);
|
|
break;
|
|
|
|
/* dst = -dst */
|
|
case BPF_ALU | BPF_NEG:
|
|
case BPF_ALU64 | BPF_NEG:
|
|
emit(SUB | RS1(0) | RS2(dst) | RD(dst), ctx);
|
|
goto do_alu32_trunc;
|
|
|
|
case BPF_ALU | BPF_END | BPF_FROM_BE:
|
|
switch (imm) {
|
|
case 16:
|
|
emit_alu_K(SLL, dst, 16, ctx);
|
|
emit_alu_K(SRL, dst, 16, ctx);
|
|
if (insn_is_zext(&insn[1]))
|
|
return 1;
|
|
break;
|
|
case 32:
|
|
if (!ctx->prog->aux->verifier_zext)
|
|
emit_alu_K(SRL, dst, 0, ctx);
|
|
break;
|
|
case 64:
|
|
/* nop */
|
|
break;
|
|
|
|
}
|
|
break;
|
|
|
|
/* dst = BSWAP##imm(dst) */
|
|
case BPF_ALU | BPF_END | BPF_FROM_LE: {
|
|
const u8 tmp = bpf2sparc[TMP_REG_1];
|
|
const u8 tmp2 = bpf2sparc[TMP_REG_2];
|
|
|
|
ctx->tmp_1_used = true;
|
|
switch (imm) {
|
|
case 16:
|
|
emit_alu3_K(AND, dst, 0xff, tmp, ctx);
|
|
emit_alu3_K(SRL, dst, 8, dst, ctx);
|
|
emit_alu3_K(AND, dst, 0xff, dst, ctx);
|
|
emit_alu3_K(SLL, tmp, 8, tmp, ctx);
|
|
emit_alu(OR, tmp, dst, ctx);
|
|
if (insn_is_zext(&insn[1]))
|
|
return 1;
|
|
break;
|
|
|
|
case 32:
|
|
ctx->tmp_2_used = true;
|
|
emit_alu3_K(SRL, dst, 24, tmp, ctx); /* tmp = dst >> 24 */
|
|
emit_alu3_K(SRL, dst, 16, tmp2, ctx); /* tmp2 = dst >> 16 */
|
|
emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
|
|
emit_alu3_K(SLL, tmp2, 8, tmp2, ctx); /* tmp2 = tmp2 << 8 */
|
|
emit_alu(OR, tmp2, tmp, ctx); /* tmp = tmp | tmp2 */
|
|
emit_alu3_K(SRL, dst, 8, tmp2, ctx); /* tmp2 = dst >> 8 */
|
|
emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
|
|
emit_alu3_K(SLL, tmp2, 16, tmp2, ctx); /* tmp2 = tmp2 << 16 */
|
|
emit_alu(OR, tmp2, tmp, ctx); /* tmp = tmp | tmp2 */
|
|
emit_alu3_K(AND, dst, 0xff, dst, ctx); /* dst = dst & 0xff */
|
|
emit_alu3_K(SLL, dst, 24, dst, ctx); /* dst = dst << 24 */
|
|
emit_alu(OR, tmp, dst, ctx); /* dst = dst | tmp */
|
|
if (insn_is_zext(&insn[1]))
|
|
return 1;
|
|
break;
|
|
|
|
case 64:
|
|
emit_alu3_K(ADD, SP, STACK_BIAS + 128, tmp, ctx);
|
|
emit(ST64 | RS1(tmp) | RS2(G0) | RD(dst), ctx);
|
|
emit(LD64A | ASI(ASI_PL) | RS1(tmp) | RS2(G0) | RD(dst), ctx);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
/* dst = imm */
|
|
case BPF_ALU | BPF_MOV | BPF_K:
|
|
emit_loadimm32(imm, dst, ctx);
|
|
if (insn_is_zext(&insn[1]))
|
|
return 1;
|
|
break;
|
|
case BPF_ALU64 | BPF_MOV | BPF_K:
|
|
emit_loadimm_sext(imm, dst, ctx);
|
|
break;
|
|
/* dst = dst OP imm */
|
|
case BPF_ALU | BPF_ADD | BPF_K:
|
|
case BPF_ALU64 | BPF_ADD | BPF_K:
|
|
emit_alu_K(ADD, dst, imm, ctx);
|
|
goto do_alu32_trunc;
|
|
case BPF_ALU | BPF_SUB | BPF_K:
|
|
case BPF_ALU64 | BPF_SUB | BPF_K:
|
|
emit_alu_K(SUB, dst, imm, ctx);
|
|
goto do_alu32_trunc;
|
|
case BPF_ALU | BPF_AND | BPF_K:
|
|
case BPF_ALU64 | BPF_AND | BPF_K:
|
|
emit_alu_K(AND, dst, imm, ctx);
|
|
goto do_alu32_trunc;
|
|
case BPF_ALU | BPF_OR | BPF_K:
|
|
case BPF_ALU64 | BPF_OR | BPF_K:
|
|
emit_alu_K(OR, dst, imm, ctx);
|
|
goto do_alu32_trunc;
|
|
case BPF_ALU | BPF_XOR | BPF_K:
|
|
case BPF_ALU64 | BPF_XOR | BPF_K:
|
|
emit_alu_K(XOR, dst, imm, ctx);
|
|
goto do_alu32_trunc;
|
|
case BPF_ALU | BPF_MUL | BPF_K:
|
|
emit_alu_K(MUL, dst, imm, ctx);
|
|
goto do_alu32_trunc;
|
|
case BPF_ALU64 | BPF_MUL | BPF_K:
|
|
emit_alu_K(MULX, dst, imm, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_DIV | BPF_K:
|
|
if (imm == 0)
|
|
return -EINVAL;
|
|
|
|
emit_write_y(G0, ctx);
|
|
emit_alu_K(DIV, dst, imm, ctx);
|
|
goto do_alu32_trunc;
|
|
case BPF_ALU64 | BPF_DIV | BPF_K:
|
|
if (imm == 0)
|
|
return -EINVAL;
|
|
|
|
emit_alu_K(UDIVX, dst, imm, ctx);
|
|
break;
|
|
case BPF_ALU64 | BPF_MOD | BPF_K:
|
|
case BPF_ALU | BPF_MOD | BPF_K: {
|
|
const u8 tmp = bpf2sparc[TMP_REG_2];
|
|
unsigned int div;
|
|
|
|
if (imm == 0)
|
|
return -EINVAL;
|
|
|
|
div = (BPF_CLASS(code) == BPF_ALU64) ? UDIVX : DIV;
|
|
|
|
ctx->tmp_2_used = true;
|
|
|
|
if (BPF_CLASS(code) != BPF_ALU64)
|
|
emit_write_y(G0, ctx);
|
|
if (is_simm13(imm)) {
|
|
emit(div | IMMED | RS1(dst) | S13(imm) | RD(tmp), ctx);
|
|
emit(MULX | IMMED | RS1(tmp) | S13(imm) | RD(tmp), ctx);
|
|
emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
|
|
} else {
|
|
const u8 tmp1 = bpf2sparc[TMP_REG_1];
|
|
|
|
ctx->tmp_1_used = true;
|
|
|
|
emit_set_const_sext(imm, tmp1, ctx);
|
|
emit(div | RS1(dst) | RS2(tmp1) | RD(tmp), ctx);
|
|
emit(MULX | RS1(tmp) | RS2(tmp1) | RD(tmp), ctx);
|
|
emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
|
|
}
|
|
goto do_alu32_trunc;
|
|
}
|
|
case BPF_ALU | BPF_LSH | BPF_K:
|
|
emit_alu_K(SLL, dst, imm, ctx);
|
|
goto do_alu32_trunc;
|
|
case BPF_ALU64 | BPF_LSH | BPF_K:
|
|
emit_alu_K(SLLX, dst, imm, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_RSH | BPF_K:
|
|
emit_alu_K(SRL, dst, imm, ctx);
|
|
if (insn_is_zext(&insn[1]))
|
|
return 1;
|
|
break;
|
|
case BPF_ALU64 | BPF_RSH | BPF_K:
|
|
emit_alu_K(SRLX, dst, imm, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_ARSH | BPF_K:
|
|
emit_alu_K(SRA, dst, imm, ctx);
|
|
goto do_alu32_trunc;
|
|
case BPF_ALU64 | BPF_ARSH | BPF_K:
|
|
emit_alu_K(SRAX, dst, imm, ctx);
|
|
break;
|
|
|
|
do_alu32_trunc:
|
|
if (BPF_CLASS(code) == BPF_ALU &&
|
|
!ctx->prog->aux->verifier_zext)
|
|
emit_alu_K(SRL, dst, 0, ctx);
|
|
break;
|
|
|
|
/* JUMP off */
|
|
case BPF_JMP | BPF_JA:
|
|
emit_branch(BA, ctx->idx, ctx->offset[i + off], ctx);
|
|
emit_nop(ctx);
|
|
break;
|
|
/* IF (dst COND src) JUMP off */
|
|
case BPF_JMP | BPF_JEQ | BPF_X:
|
|
case BPF_JMP | BPF_JGT | BPF_X:
|
|
case BPF_JMP | BPF_JLT | BPF_X:
|
|
case BPF_JMP | BPF_JGE | BPF_X:
|
|
case BPF_JMP | BPF_JLE | BPF_X:
|
|
case BPF_JMP | BPF_JNE | BPF_X:
|
|
case BPF_JMP | BPF_JSGT | BPF_X:
|
|
case BPF_JMP | BPF_JSLT | BPF_X:
|
|
case BPF_JMP | BPF_JSGE | BPF_X:
|
|
case BPF_JMP | BPF_JSLE | BPF_X:
|
|
case BPF_JMP | BPF_JSET | BPF_X: {
|
|
int err;
|
|
|
|
err = emit_compare_and_branch(code, dst, src, 0, false, i + off, ctx);
|
|
if (err)
|
|
return err;
|
|
break;
|
|
}
|
|
/* IF (dst COND imm) JUMP off */
|
|
case BPF_JMP | BPF_JEQ | BPF_K:
|
|
case BPF_JMP | BPF_JGT | BPF_K:
|
|
case BPF_JMP | BPF_JLT | BPF_K:
|
|
case BPF_JMP | BPF_JGE | BPF_K:
|
|
case BPF_JMP | BPF_JLE | BPF_K:
|
|
case BPF_JMP | BPF_JNE | BPF_K:
|
|
case BPF_JMP | BPF_JSGT | BPF_K:
|
|
case BPF_JMP | BPF_JSLT | BPF_K:
|
|
case BPF_JMP | BPF_JSGE | BPF_K:
|
|
case BPF_JMP | BPF_JSLE | BPF_K:
|
|
case BPF_JMP | BPF_JSET | BPF_K: {
|
|
int err;
|
|
|
|
err = emit_compare_and_branch(code, dst, 0, imm, true, i + off, ctx);
|
|
if (err)
|
|
return err;
|
|
break;
|
|
}
|
|
|
|
/* function call */
|
|
case BPF_JMP | BPF_CALL:
|
|
{
|
|
u8 *func = ((u8 *)__bpf_call_base) + imm;
|
|
|
|
ctx->saw_call = true;
|
|
|
|
emit_call((u32 *)func, ctx);
|
|
emit_nop(ctx);
|
|
|
|
emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
|
|
break;
|
|
}
|
|
|
|
/* tail call */
|
|
case BPF_JMP | BPF_TAIL_CALL:
|
|
emit_tail_call(ctx);
|
|
break;
|
|
|
|
/* function return */
|
|
case BPF_JMP | BPF_EXIT:
|
|
/* Optimization: when last instruction is EXIT,
|
|
simply fallthrough to epilogue. */
|
|
if (i == ctx->prog->len - 1)
|
|
break;
|
|
emit_branch(BA, ctx->idx, ctx->epilogue_offset, ctx);
|
|
emit_nop(ctx);
|
|
break;
|
|
|
|
/* dst = imm64 */
|
|
case BPF_LD | BPF_IMM | BPF_DW:
|
|
{
|
|
const struct bpf_insn insn1 = insn[1];
|
|
u64 imm64;
|
|
|
|
imm64 = (u64)insn1.imm << 32 | (u32)imm;
|
|
emit_loadimm64(imm64, dst, ctx);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* LDX: dst = *(size *)(src + off) */
|
|
case BPF_LDX | BPF_MEM | BPF_W:
|
|
case BPF_LDX | BPF_MEM | BPF_H:
|
|
case BPF_LDX | BPF_MEM | BPF_B:
|
|
case BPF_LDX | BPF_MEM | BPF_DW: {
|
|
const u8 tmp = bpf2sparc[TMP_REG_1];
|
|
u32 opcode = 0, rs2;
|
|
|
|
ctx->tmp_1_used = true;
|
|
switch (BPF_SIZE(code)) {
|
|
case BPF_W:
|
|
opcode = LD32;
|
|
break;
|
|
case BPF_H:
|
|
opcode = LD16;
|
|
break;
|
|
case BPF_B:
|
|
opcode = LD8;
|
|
break;
|
|
case BPF_DW:
|
|
opcode = LD64;
|
|
break;
|
|
}
|
|
|
|
if (is_simm13(off)) {
|
|
opcode |= IMMED;
|
|
rs2 = S13(off);
|
|
} else {
|
|
emit_loadimm(off, tmp, ctx);
|
|
rs2 = RS2(tmp);
|
|
}
|
|
emit(opcode | RS1(src) | rs2 | RD(dst), ctx);
|
|
if (opcode != LD64 && insn_is_zext(&insn[1]))
|
|
return 1;
|
|
break;
|
|
}
|
|
/* ST: *(size *)(dst + off) = imm */
|
|
case BPF_ST | BPF_MEM | BPF_W:
|
|
case BPF_ST | BPF_MEM | BPF_H:
|
|
case BPF_ST | BPF_MEM | BPF_B:
|
|
case BPF_ST | BPF_MEM | BPF_DW: {
|
|
const u8 tmp = bpf2sparc[TMP_REG_1];
|
|
const u8 tmp2 = bpf2sparc[TMP_REG_2];
|
|
u32 opcode = 0, rs2;
|
|
|
|
if (insn->dst_reg == BPF_REG_FP)
|
|
ctx->saw_frame_pointer = true;
|
|
|
|
ctx->tmp_2_used = true;
|
|
emit_loadimm(imm, tmp2, ctx);
|
|
|
|
switch (BPF_SIZE(code)) {
|
|
case BPF_W:
|
|
opcode = ST32;
|
|
break;
|
|
case BPF_H:
|
|
opcode = ST16;
|
|
break;
|
|
case BPF_B:
|
|
opcode = ST8;
|
|
break;
|
|
case BPF_DW:
|
|
opcode = ST64;
|
|
break;
|
|
}
|
|
|
|
if (is_simm13(off)) {
|
|
opcode |= IMMED;
|
|
rs2 = S13(off);
|
|
} else {
|
|
ctx->tmp_1_used = true;
|
|
emit_loadimm(off, tmp, ctx);
|
|
rs2 = RS2(tmp);
|
|
}
|
|
emit(opcode | RS1(dst) | rs2 | RD(tmp2), ctx);
|
|
break;
|
|
}
|
|
|
|
/* STX: *(size *)(dst + off) = src */
|
|
case BPF_STX | BPF_MEM | BPF_W:
|
|
case BPF_STX | BPF_MEM | BPF_H:
|
|
case BPF_STX | BPF_MEM | BPF_B:
|
|
case BPF_STX | BPF_MEM | BPF_DW: {
|
|
const u8 tmp = bpf2sparc[TMP_REG_1];
|
|
u32 opcode = 0, rs2;
|
|
|
|
if (insn->dst_reg == BPF_REG_FP)
|
|
ctx->saw_frame_pointer = true;
|
|
|
|
switch (BPF_SIZE(code)) {
|
|
case BPF_W:
|
|
opcode = ST32;
|
|
break;
|
|
case BPF_H:
|
|
opcode = ST16;
|
|
break;
|
|
case BPF_B:
|
|
opcode = ST8;
|
|
break;
|
|
case BPF_DW:
|
|
opcode = ST64;
|
|
break;
|
|
}
|
|
if (is_simm13(off)) {
|
|
opcode |= IMMED;
|
|
rs2 = S13(off);
|
|
} else {
|
|
ctx->tmp_1_used = true;
|
|
emit_loadimm(off, tmp, ctx);
|
|
rs2 = RS2(tmp);
|
|
}
|
|
emit(opcode | RS1(dst) | rs2 | RD(src), ctx);
|
|
break;
|
|
}
|
|
|
|
case BPF_STX | BPF_ATOMIC | BPF_W: {
|
|
const u8 tmp = bpf2sparc[TMP_REG_1];
|
|
const u8 tmp2 = bpf2sparc[TMP_REG_2];
|
|
const u8 tmp3 = bpf2sparc[TMP_REG_3];
|
|
|
|
if (insn->imm != BPF_ADD) {
|
|
pr_err_once("unknown atomic op %02x\n", insn->imm);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* lock *(u32 *)(dst + off) += src */
|
|
|
|
if (insn->dst_reg == BPF_REG_FP)
|
|
ctx->saw_frame_pointer = true;
|
|
|
|
ctx->tmp_1_used = true;
|
|
ctx->tmp_2_used = true;
|
|
ctx->tmp_3_used = true;
|
|
emit_loadimm(off, tmp, ctx);
|
|
emit_alu3(ADD, dst, tmp, tmp, ctx);
|
|
|
|
emit(LD32 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
|
|
emit_alu3(ADD, tmp2, src, tmp3, ctx);
|
|
emit(CAS | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
|
|
emit_cmp(tmp2, tmp3, ctx);
|
|
emit_branch(BNE, 4, 0, ctx);
|
|
emit_nop(ctx);
|
|
break;
|
|
}
|
|
/* STX XADD: lock *(u64 *)(dst + off) += src */
|
|
case BPF_STX | BPF_ATOMIC | BPF_DW: {
|
|
const u8 tmp = bpf2sparc[TMP_REG_1];
|
|
const u8 tmp2 = bpf2sparc[TMP_REG_2];
|
|
const u8 tmp3 = bpf2sparc[TMP_REG_3];
|
|
|
|
if (insn->imm != BPF_ADD) {
|
|
pr_err_once("unknown atomic op %02x\n", insn->imm);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (insn->dst_reg == BPF_REG_FP)
|
|
ctx->saw_frame_pointer = true;
|
|
|
|
ctx->tmp_1_used = true;
|
|
ctx->tmp_2_used = true;
|
|
ctx->tmp_3_used = true;
|
|
emit_loadimm(off, tmp, ctx);
|
|
emit_alu3(ADD, dst, tmp, tmp, ctx);
|
|
|
|
emit(LD64 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
|
|
emit_alu3(ADD, tmp2, src, tmp3, ctx);
|
|
emit(CASX | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
|
|
emit_cmp(tmp2, tmp3, ctx);
|
|
emit_branch(BNE, 4, 0, ctx);
|
|
emit_nop(ctx);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
pr_err_once("unknown opcode %02x\n", code);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int build_body(struct jit_ctx *ctx)
|
|
{
|
|
const struct bpf_prog *prog = ctx->prog;
|
|
int i;
|
|
|
|
for (i = 0; i < prog->len; i++) {
|
|
const struct bpf_insn *insn = &prog->insnsi[i];
|
|
int ret;
|
|
|
|
ret = build_insn(insn, ctx);
|
|
|
|
if (ret > 0) {
|
|
i++;
|
|
ctx->offset[i] = ctx->idx;
|
|
continue;
|
|
}
|
|
ctx->offset[i] = ctx->idx;
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void jit_fill_hole(void *area, unsigned int size)
|
|
{
|
|
u32 *ptr;
|
|
/* We are guaranteed to have aligned memory. */
|
|
for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
|
|
*ptr++ = 0x91d02005; /* ta 5 */
|
|
}
|
|
|
|
bool bpf_jit_needs_zext(void)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
struct sparc64_jit_data {
|
|
struct bpf_binary_header *header;
|
|
u8 *image;
|
|
struct jit_ctx ctx;
|
|
};
|
|
|
|
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
|
|
{
|
|
struct bpf_prog *tmp, *orig_prog = prog;
|
|
struct sparc64_jit_data *jit_data;
|
|
struct bpf_binary_header *header;
|
|
u32 prev_image_size, image_size;
|
|
bool tmp_blinded = false;
|
|
bool extra_pass = false;
|
|
struct jit_ctx ctx;
|
|
u8 *image_ptr;
|
|
int pass, i;
|
|
|
|
if (!prog->jit_requested)
|
|
return orig_prog;
|
|
|
|
tmp = bpf_jit_blind_constants(prog);
|
|
/* If blinding was requested and we failed during blinding,
|
|
* we must fall back to the interpreter.
|
|
*/
|
|
if (IS_ERR(tmp))
|
|
return orig_prog;
|
|
if (tmp != prog) {
|
|
tmp_blinded = true;
|
|
prog = tmp;
|
|
}
|
|
|
|
jit_data = prog->aux->jit_data;
|
|
if (!jit_data) {
|
|
jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
|
|
if (!jit_data) {
|
|
prog = orig_prog;
|
|
goto out;
|
|
}
|
|
prog->aux->jit_data = jit_data;
|
|
}
|
|
if (jit_data->ctx.offset) {
|
|
ctx = jit_data->ctx;
|
|
image_ptr = jit_data->image;
|
|
header = jit_data->header;
|
|
extra_pass = true;
|
|
image_size = sizeof(u32) * ctx.idx;
|
|
prev_image_size = image_size;
|
|
pass = 1;
|
|
goto skip_init_ctx;
|
|
}
|
|
|
|
memset(&ctx, 0, sizeof(ctx));
|
|
ctx.prog = prog;
|
|
|
|
ctx.offset = kmalloc_array(prog->len, sizeof(unsigned int), GFP_KERNEL);
|
|
if (ctx.offset == NULL) {
|
|
prog = orig_prog;
|
|
goto out_off;
|
|
}
|
|
|
|
/* Longest sequence emitted is for bswap32, 12 instructions. Pre-cook
|
|
* the offset array so that we converge faster.
|
|
*/
|
|
for (i = 0; i < prog->len; i++)
|
|
ctx.offset[i] = i * (12 * 4);
|
|
|
|
prev_image_size = ~0U;
|
|
for (pass = 1; pass < 40; pass++) {
|
|
ctx.idx = 0;
|
|
|
|
build_prologue(&ctx);
|
|
if (build_body(&ctx)) {
|
|
prog = orig_prog;
|
|
goto out_off;
|
|
}
|
|
build_epilogue(&ctx);
|
|
|
|
if (bpf_jit_enable > 1)
|
|
pr_info("Pass %d: size = %u, seen = [%c%c%c%c%c%c]\n", pass,
|
|
ctx.idx * 4,
|
|
ctx.tmp_1_used ? '1' : ' ',
|
|
ctx.tmp_2_used ? '2' : ' ',
|
|
ctx.tmp_3_used ? '3' : ' ',
|
|
ctx.saw_frame_pointer ? 'F' : ' ',
|
|
ctx.saw_call ? 'C' : ' ',
|
|
ctx.saw_tail_call ? 'T' : ' ');
|
|
|
|
if (ctx.idx * 4 == prev_image_size)
|
|
break;
|
|
prev_image_size = ctx.idx * 4;
|
|
cond_resched();
|
|
}
|
|
|
|
/* Now we know the actual image size. */
|
|
image_size = sizeof(u32) * ctx.idx;
|
|
header = bpf_jit_binary_alloc(image_size, &image_ptr,
|
|
sizeof(u32), jit_fill_hole);
|
|
if (header == NULL) {
|
|
prog = orig_prog;
|
|
goto out_off;
|
|
}
|
|
|
|
ctx.image = (u32 *)image_ptr;
|
|
skip_init_ctx:
|
|
ctx.idx = 0;
|
|
|
|
build_prologue(&ctx);
|
|
|
|
if (build_body(&ctx)) {
|
|
bpf_jit_binary_free(header);
|
|
prog = orig_prog;
|
|
goto out_off;
|
|
}
|
|
|
|
build_epilogue(&ctx);
|
|
|
|
if (ctx.idx * 4 != prev_image_size) {
|
|
pr_err("bpf_jit: Failed to converge, prev_size=%u size=%d\n",
|
|
prev_image_size, ctx.idx * 4);
|
|
bpf_jit_binary_free(header);
|
|
prog = orig_prog;
|
|
goto out_off;
|
|
}
|
|
|
|
if (bpf_jit_enable > 1)
|
|
bpf_jit_dump(prog->len, image_size, pass, ctx.image);
|
|
|
|
bpf_flush_icache(header, (u8 *)header + (header->pages * PAGE_SIZE));
|
|
|
|
if (!prog->is_func || extra_pass) {
|
|
bpf_jit_binary_lock_ro(header);
|
|
} else {
|
|
jit_data->ctx = ctx;
|
|
jit_data->image = image_ptr;
|
|
jit_data->header = header;
|
|
}
|
|
|
|
prog->bpf_func = (void *)ctx.image;
|
|
prog->jited = 1;
|
|
prog->jited_len = image_size;
|
|
|
|
if (!prog->is_func || extra_pass) {
|
|
bpf_prog_fill_jited_linfo(prog, ctx.offset);
|
|
out_off:
|
|
kfree(ctx.offset);
|
|
kfree(jit_data);
|
|
prog->aux->jit_data = NULL;
|
|
}
|
|
out:
|
|
if (tmp_blinded)
|
|
bpf_jit_prog_release_other(prog, prog == orig_prog ?
|
|
tmp : orig_prog);
|
|
return prog;
|
|
}
|