mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-21 21:34:58 +08:00
a023748d53
Pull x86 mm tree changes from Ingo Molnar: "The biggest change is full PAT support from Jürgen Gross: The x86 architecture offers via the PAT (Page Attribute Table) a way to specify different caching modes in page table entries. The PAT MSR contains 8 entries each specifying one of 6 possible cache modes. A pte references one of those entries via 3 bits: _PAGE_PAT, _PAGE_PWT and _PAGE_PCD. The Linux kernel currently supports only 4 different cache modes. The PAT MSR is set up in a way that the setting of _PAGE_PAT in a pte doesn't matter: the top 4 entries in the PAT MSR are the same as the 4 lower entries. This results in the kernel not supporting e.g. write-through mode. Especially this cache mode would speed up drivers of video cards which now have to use uncached accesses. OTOH some old processors (Pentium) don't support PAT correctly and the Xen hypervisor has been using a different PAT MSR configuration for some time now and can't change that as this setting is part of the ABI. This patch set abstracts the cache mode from the pte and introduces tables to translate between cache mode and pte bits (the default cache mode "write back" is hard-wired to PAT entry 0). The tables are statically initialized with values being compatible to old processors and current usage. As soon as the PAT MSR is changed (or - in case of Xen - is read at boot time) the tables are changed accordingly. Requests of mappings with special cache modes are always possible now, in case they are not supported there will be a fallback to a compatible but slower mode. Summing it up, this patch set adds the following features: - capability to support WT and WP cache modes on processors with full PAT support - processors with no or uncorrect PAT support are still working as today, even if WT or WP cache mode are selected by drivers for some pages - reduction of Xen special handling regarding cache mode Another change is a boot speedup on ridiculously large RAM systems, plus other smaller fixes" * 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (22 commits) x86: mm: Move PAT only functions to mm/pat.c xen: Support Xen pv-domains using PAT x86: Enable PAT to use cache mode translation tables x86: Respect PAT bit when copying pte values between large and normal pages x86: Support PAT bit in pagetable dump for lower levels x86: Clean up pgtable_types.h x86: Use new cache mode type in memtype related functions x86: Use new cache mode type in mm/ioremap.c x86: Use new cache mode type in setting page attributes x86: Remove looking for setting of _PAGE_PAT_LARGE in pageattr.c x86: Use new cache mode type in track_pfn_remap() and track_pfn_insert() x86: Use new cache mode type in mm/iomap_32.c x86: Use new cache mode type in asm/pgtable.h x86: Use new cache mode type in arch/x86/mm/init_64.c x86: Use new cache mode type in arch/x86/pci x86: Use new cache mode type in drivers/video/fbdev/vermilion x86: Use new cache mode type in drivers/video/fbdev/gbefb.c x86: Use new cache mode type in include/asm/fb.h x86: Make page cache mode a real type x86: mm: Use 2GB memory block size on large-memory x86-64 systems ...
1004 lines
24 KiB
C
1004 lines
24 KiB
C
/*
|
|
* Handle caching attributes in page tables (PAT)
|
|
*
|
|
* Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
|
|
* Suresh B Siddha <suresh.b.siddha@intel.com>
|
|
*
|
|
* Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
|
|
*/
|
|
|
|
#include <linux/seq_file.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/rbtree.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/x86_init.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/fcntl.h>
|
|
#include <asm/e820.h>
|
|
#include <asm/mtrr.h>
|
|
#include <asm/page.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/pat.h>
|
|
#include <asm/io.h>
|
|
|
|
#include "pat_internal.h"
|
|
#include "mm_internal.h"
|
|
|
|
#ifdef CONFIG_X86_PAT
|
|
int __read_mostly pat_enabled = 1;
|
|
|
|
static inline void pat_disable(const char *reason)
|
|
{
|
|
pat_enabled = 0;
|
|
printk(KERN_INFO "%s\n", reason);
|
|
}
|
|
|
|
static int __init nopat(char *str)
|
|
{
|
|
pat_disable("PAT support disabled.");
|
|
return 0;
|
|
}
|
|
early_param("nopat", nopat);
|
|
#else
|
|
static inline void pat_disable(const char *reason)
|
|
{
|
|
(void)reason;
|
|
}
|
|
#endif
|
|
|
|
|
|
int pat_debug_enable;
|
|
|
|
static int __init pat_debug_setup(char *str)
|
|
{
|
|
pat_debug_enable = 1;
|
|
return 0;
|
|
}
|
|
__setup("debugpat", pat_debug_setup);
|
|
|
|
static u64 __read_mostly boot_pat_state;
|
|
|
|
#ifdef CONFIG_X86_PAT
|
|
/*
|
|
* X86 PAT uses page flags WC and Uncached together to keep track of
|
|
* memory type of pages that have backing page struct. X86 PAT supports 3
|
|
* different memory types, _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC and
|
|
* _PAGE_CACHE_MODE_UC_MINUS and fourth state where page's memory type has not
|
|
* been changed from its default (value of -1 used to denote this).
|
|
* Note we do not support _PAGE_CACHE_MODE_UC here.
|
|
*/
|
|
|
|
#define _PGMT_DEFAULT 0
|
|
#define _PGMT_WC (1UL << PG_arch_1)
|
|
#define _PGMT_UC_MINUS (1UL << PG_uncached)
|
|
#define _PGMT_WB (1UL << PG_uncached | 1UL << PG_arch_1)
|
|
#define _PGMT_MASK (1UL << PG_uncached | 1UL << PG_arch_1)
|
|
#define _PGMT_CLEAR_MASK (~_PGMT_MASK)
|
|
|
|
static inline enum page_cache_mode get_page_memtype(struct page *pg)
|
|
{
|
|
unsigned long pg_flags = pg->flags & _PGMT_MASK;
|
|
|
|
if (pg_flags == _PGMT_DEFAULT)
|
|
return -1;
|
|
else if (pg_flags == _PGMT_WC)
|
|
return _PAGE_CACHE_MODE_WC;
|
|
else if (pg_flags == _PGMT_UC_MINUS)
|
|
return _PAGE_CACHE_MODE_UC_MINUS;
|
|
else
|
|
return _PAGE_CACHE_MODE_WB;
|
|
}
|
|
|
|
static inline void set_page_memtype(struct page *pg,
|
|
enum page_cache_mode memtype)
|
|
{
|
|
unsigned long memtype_flags;
|
|
unsigned long old_flags;
|
|
unsigned long new_flags;
|
|
|
|
switch (memtype) {
|
|
case _PAGE_CACHE_MODE_WC:
|
|
memtype_flags = _PGMT_WC;
|
|
break;
|
|
case _PAGE_CACHE_MODE_UC_MINUS:
|
|
memtype_flags = _PGMT_UC_MINUS;
|
|
break;
|
|
case _PAGE_CACHE_MODE_WB:
|
|
memtype_flags = _PGMT_WB;
|
|
break;
|
|
default:
|
|
memtype_flags = _PGMT_DEFAULT;
|
|
break;
|
|
}
|
|
|
|
do {
|
|
old_flags = pg->flags;
|
|
new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
|
|
} while (cmpxchg(&pg->flags, old_flags, new_flags) != old_flags);
|
|
}
|
|
#else
|
|
static inline enum page_cache_mode get_page_memtype(struct page *pg)
|
|
{
|
|
return -1;
|
|
}
|
|
static inline void set_page_memtype(struct page *pg,
|
|
enum page_cache_mode memtype)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
enum {
|
|
PAT_UC = 0, /* uncached */
|
|
PAT_WC = 1, /* Write combining */
|
|
PAT_WT = 4, /* Write Through */
|
|
PAT_WP = 5, /* Write Protected */
|
|
PAT_WB = 6, /* Write Back (default) */
|
|
PAT_UC_MINUS = 7, /* UC, but can be overriden by MTRR */
|
|
};
|
|
|
|
#define CM(c) (_PAGE_CACHE_MODE_ ## c)
|
|
|
|
static enum page_cache_mode pat_get_cache_mode(unsigned pat_val, char *msg)
|
|
{
|
|
enum page_cache_mode cache;
|
|
char *cache_mode;
|
|
|
|
switch (pat_val) {
|
|
case PAT_UC: cache = CM(UC); cache_mode = "UC "; break;
|
|
case PAT_WC: cache = CM(WC); cache_mode = "WC "; break;
|
|
case PAT_WT: cache = CM(WT); cache_mode = "WT "; break;
|
|
case PAT_WP: cache = CM(WP); cache_mode = "WP "; break;
|
|
case PAT_WB: cache = CM(WB); cache_mode = "WB "; break;
|
|
case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
|
|
default: cache = CM(WB); cache_mode = "WB "; break;
|
|
}
|
|
|
|
memcpy(msg, cache_mode, 4);
|
|
|
|
return cache;
|
|
}
|
|
|
|
#undef CM
|
|
|
|
/*
|
|
* Update the cache mode to pgprot translation tables according to PAT
|
|
* configuration.
|
|
* Using lower indices is preferred, so we start with highest index.
|
|
*/
|
|
void pat_init_cache_modes(void)
|
|
{
|
|
int i;
|
|
enum page_cache_mode cache;
|
|
char pat_msg[33];
|
|
u64 pat;
|
|
|
|
rdmsrl(MSR_IA32_CR_PAT, pat);
|
|
pat_msg[32] = 0;
|
|
for (i = 7; i >= 0; i--) {
|
|
cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
|
|
pat_msg + 4 * i);
|
|
update_cache_mode_entry(i, cache);
|
|
}
|
|
pr_info("PAT configuration [0-7]: %s\n", pat_msg);
|
|
}
|
|
|
|
#define PAT(x, y) ((u64)PAT_ ## y << ((x)*8))
|
|
|
|
void pat_init(void)
|
|
{
|
|
u64 pat;
|
|
bool boot_cpu = !boot_pat_state;
|
|
|
|
if (!pat_enabled)
|
|
return;
|
|
|
|
if (!cpu_has_pat) {
|
|
if (!boot_pat_state) {
|
|
pat_disable("PAT not supported by CPU.");
|
|
return;
|
|
} else {
|
|
/*
|
|
* If this happens we are on a secondary CPU, but
|
|
* switched to PAT on the boot CPU. We have no way to
|
|
* undo PAT.
|
|
*/
|
|
printk(KERN_ERR "PAT enabled, "
|
|
"but not supported by secondary CPU\n");
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/* Set PWT to Write-Combining. All other bits stay the same */
|
|
/*
|
|
* PTE encoding used in Linux:
|
|
* PAT
|
|
* |PCD
|
|
* ||PWT
|
|
* |||
|
|
* 000 WB _PAGE_CACHE_WB
|
|
* 001 WC _PAGE_CACHE_WC
|
|
* 010 UC- _PAGE_CACHE_UC_MINUS
|
|
* 011 UC _PAGE_CACHE_UC
|
|
* PAT bit unused
|
|
*/
|
|
pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
|
|
PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
|
|
|
|
/* Boot CPU check */
|
|
if (!boot_pat_state)
|
|
rdmsrl(MSR_IA32_CR_PAT, boot_pat_state);
|
|
|
|
wrmsrl(MSR_IA32_CR_PAT, pat);
|
|
|
|
if (boot_cpu)
|
|
pat_init_cache_modes();
|
|
}
|
|
|
|
#undef PAT
|
|
|
|
static DEFINE_SPINLOCK(memtype_lock); /* protects memtype accesses */
|
|
|
|
/*
|
|
* Does intersection of PAT memory type and MTRR memory type and returns
|
|
* the resulting memory type as PAT understands it.
|
|
* (Type in pat and mtrr will not have same value)
|
|
* The intersection is based on "Effective Memory Type" tables in IA-32
|
|
* SDM vol 3a
|
|
*/
|
|
static unsigned long pat_x_mtrr_type(u64 start, u64 end,
|
|
enum page_cache_mode req_type)
|
|
{
|
|
/*
|
|
* Look for MTRR hint to get the effective type in case where PAT
|
|
* request is for WB.
|
|
*/
|
|
if (req_type == _PAGE_CACHE_MODE_WB) {
|
|
u8 mtrr_type;
|
|
|
|
mtrr_type = mtrr_type_lookup(start, end);
|
|
if (mtrr_type != MTRR_TYPE_WRBACK)
|
|
return _PAGE_CACHE_MODE_UC_MINUS;
|
|
|
|
return _PAGE_CACHE_MODE_WB;
|
|
}
|
|
|
|
return req_type;
|
|
}
|
|
|
|
struct pagerange_state {
|
|
unsigned long cur_pfn;
|
|
int ram;
|
|
int not_ram;
|
|
};
|
|
|
|
static int
|
|
pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
|
|
{
|
|
struct pagerange_state *state = arg;
|
|
|
|
state->not_ram |= initial_pfn > state->cur_pfn;
|
|
state->ram |= total_nr_pages > 0;
|
|
state->cur_pfn = initial_pfn + total_nr_pages;
|
|
|
|
return state->ram && state->not_ram;
|
|
}
|
|
|
|
static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
|
|
{
|
|
int ret = 0;
|
|
unsigned long start_pfn = start >> PAGE_SHIFT;
|
|
unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
struct pagerange_state state = {start_pfn, 0, 0};
|
|
|
|
/*
|
|
* For legacy reasons, physical address range in the legacy ISA
|
|
* region is tracked as non-RAM. This will allow users of
|
|
* /dev/mem to map portions of legacy ISA region, even when
|
|
* some of those portions are listed(or not even listed) with
|
|
* different e820 types(RAM/reserved/..)
|
|
*/
|
|
if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
|
|
start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
|
|
|
|
if (start_pfn < end_pfn) {
|
|
ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
|
|
&state, pagerange_is_ram_callback);
|
|
}
|
|
|
|
return (ret > 0) ? -1 : (state.ram ? 1 : 0);
|
|
}
|
|
|
|
/*
|
|
* For RAM pages, we use page flags to mark the pages with appropriate type.
|
|
* Here we do two pass:
|
|
* - Find the memtype of all the pages in the range, look for any conflicts
|
|
* - In case of no conflicts, set the new memtype for pages in the range
|
|
*/
|
|
static int reserve_ram_pages_type(u64 start, u64 end,
|
|
enum page_cache_mode req_type,
|
|
enum page_cache_mode *new_type)
|
|
{
|
|
struct page *page;
|
|
u64 pfn;
|
|
|
|
if (req_type == _PAGE_CACHE_MODE_UC) {
|
|
/* We do not support strong UC */
|
|
WARN_ON_ONCE(1);
|
|
req_type = _PAGE_CACHE_MODE_UC_MINUS;
|
|
}
|
|
|
|
for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
|
|
enum page_cache_mode type;
|
|
|
|
page = pfn_to_page(pfn);
|
|
type = get_page_memtype(page);
|
|
if (type != -1) {
|
|
pr_info("reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
|
|
start, end - 1, type, req_type);
|
|
if (new_type)
|
|
*new_type = type;
|
|
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
|
|
if (new_type)
|
|
*new_type = req_type;
|
|
|
|
for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
|
|
page = pfn_to_page(pfn);
|
|
set_page_memtype(page, req_type);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int free_ram_pages_type(u64 start, u64 end)
|
|
{
|
|
struct page *page;
|
|
u64 pfn;
|
|
|
|
for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
|
|
page = pfn_to_page(pfn);
|
|
set_page_memtype(page, -1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* req_type typically has one of the:
|
|
* - _PAGE_CACHE_MODE_WB
|
|
* - _PAGE_CACHE_MODE_WC
|
|
* - _PAGE_CACHE_MODE_UC_MINUS
|
|
* - _PAGE_CACHE_MODE_UC
|
|
*
|
|
* If new_type is NULL, function will return an error if it cannot reserve the
|
|
* region with req_type. If new_type is non-NULL, function will return
|
|
* available type in new_type in case of no error. In case of any error
|
|
* it will return a negative return value.
|
|
*/
|
|
int reserve_memtype(u64 start, u64 end, enum page_cache_mode req_type,
|
|
enum page_cache_mode *new_type)
|
|
{
|
|
struct memtype *new;
|
|
enum page_cache_mode actual_type;
|
|
int is_range_ram;
|
|
int err = 0;
|
|
|
|
BUG_ON(start >= end); /* end is exclusive */
|
|
|
|
if (!pat_enabled) {
|
|
/* This is identical to page table setting without PAT */
|
|
if (new_type) {
|
|
if (req_type == _PAGE_CACHE_MODE_WC)
|
|
*new_type = _PAGE_CACHE_MODE_UC_MINUS;
|
|
else
|
|
*new_type = req_type;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Low ISA region is always mapped WB in page table. No need to track */
|
|
if (x86_platform.is_untracked_pat_range(start, end)) {
|
|
if (new_type)
|
|
*new_type = _PAGE_CACHE_MODE_WB;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Call mtrr_lookup to get the type hint. This is an
|
|
* optimization for /dev/mem mmap'ers into WB memory (BIOS
|
|
* tools and ACPI tools). Use WB request for WB memory and use
|
|
* UC_MINUS otherwise.
|
|
*/
|
|
actual_type = pat_x_mtrr_type(start, end, req_type);
|
|
|
|
if (new_type)
|
|
*new_type = actual_type;
|
|
|
|
is_range_ram = pat_pagerange_is_ram(start, end);
|
|
if (is_range_ram == 1) {
|
|
|
|
err = reserve_ram_pages_type(start, end, req_type, new_type);
|
|
|
|
return err;
|
|
} else if (is_range_ram < 0) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
new = kzalloc(sizeof(struct memtype), GFP_KERNEL);
|
|
if (!new)
|
|
return -ENOMEM;
|
|
|
|
new->start = start;
|
|
new->end = end;
|
|
new->type = actual_type;
|
|
|
|
spin_lock(&memtype_lock);
|
|
|
|
err = rbt_memtype_check_insert(new, new_type);
|
|
if (err) {
|
|
printk(KERN_INFO "reserve_memtype failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
|
|
start, end - 1,
|
|
cattr_name(new->type), cattr_name(req_type));
|
|
kfree(new);
|
|
spin_unlock(&memtype_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
spin_unlock(&memtype_lock);
|
|
|
|
dprintk("reserve_memtype added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
|
|
start, end - 1, cattr_name(new->type), cattr_name(req_type),
|
|
new_type ? cattr_name(*new_type) : "-");
|
|
|
|
return err;
|
|
}
|
|
|
|
int free_memtype(u64 start, u64 end)
|
|
{
|
|
int err = -EINVAL;
|
|
int is_range_ram;
|
|
struct memtype *entry;
|
|
|
|
if (!pat_enabled)
|
|
return 0;
|
|
|
|
/* Low ISA region is always mapped WB. No need to track */
|
|
if (x86_platform.is_untracked_pat_range(start, end))
|
|
return 0;
|
|
|
|
is_range_ram = pat_pagerange_is_ram(start, end);
|
|
if (is_range_ram == 1) {
|
|
|
|
err = free_ram_pages_type(start, end);
|
|
|
|
return err;
|
|
} else if (is_range_ram < 0) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
spin_lock(&memtype_lock);
|
|
entry = rbt_memtype_erase(start, end);
|
|
spin_unlock(&memtype_lock);
|
|
|
|
if (!entry) {
|
|
printk(KERN_INFO "%s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
|
|
current->comm, current->pid, start, end - 1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
kfree(entry);
|
|
|
|
dprintk("free_memtype request [mem %#010Lx-%#010Lx]\n", start, end - 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* lookup_memtype - Looksup the memory type for a physical address
|
|
* @paddr: physical address of which memory type needs to be looked up
|
|
*
|
|
* Only to be called when PAT is enabled
|
|
*
|
|
* Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
|
|
* or _PAGE_CACHE_MODE_UC
|
|
*/
|
|
static enum page_cache_mode lookup_memtype(u64 paddr)
|
|
{
|
|
enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
|
|
struct memtype *entry;
|
|
|
|
if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
|
|
return rettype;
|
|
|
|
if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
|
|
struct page *page;
|
|
page = pfn_to_page(paddr >> PAGE_SHIFT);
|
|
rettype = get_page_memtype(page);
|
|
/*
|
|
* -1 from get_page_memtype() implies RAM page is in its
|
|
* default state and not reserved, and hence of type WB
|
|
*/
|
|
if (rettype == -1)
|
|
rettype = _PAGE_CACHE_MODE_WB;
|
|
|
|
return rettype;
|
|
}
|
|
|
|
spin_lock(&memtype_lock);
|
|
|
|
entry = rbt_memtype_lookup(paddr);
|
|
if (entry != NULL)
|
|
rettype = entry->type;
|
|
else
|
|
rettype = _PAGE_CACHE_MODE_UC_MINUS;
|
|
|
|
spin_unlock(&memtype_lock);
|
|
return rettype;
|
|
}
|
|
|
|
/**
|
|
* io_reserve_memtype - Request a memory type mapping for a region of memory
|
|
* @start: start (physical address) of the region
|
|
* @end: end (physical address) of the region
|
|
* @type: A pointer to memtype, with requested type. On success, requested
|
|
* or any other compatible type that was available for the region is returned
|
|
*
|
|
* On success, returns 0
|
|
* On failure, returns non-zero
|
|
*/
|
|
int io_reserve_memtype(resource_size_t start, resource_size_t end,
|
|
enum page_cache_mode *type)
|
|
{
|
|
resource_size_t size = end - start;
|
|
enum page_cache_mode req_type = *type;
|
|
enum page_cache_mode new_type;
|
|
int ret;
|
|
|
|
WARN_ON_ONCE(iomem_map_sanity_check(start, size));
|
|
|
|
ret = reserve_memtype(start, end, req_type, &new_type);
|
|
if (ret)
|
|
goto out_err;
|
|
|
|
if (!is_new_memtype_allowed(start, size, req_type, new_type))
|
|
goto out_free;
|
|
|
|
if (kernel_map_sync_memtype(start, size, new_type) < 0)
|
|
goto out_free;
|
|
|
|
*type = new_type;
|
|
return 0;
|
|
|
|
out_free:
|
|
free_memtype(start, end);
|
|
ret = -EBUSY;
|
|
out_err:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* io_free_memtype - Release a memory type mapping for a region of memory
|
|
* @start: start (physical address) of the region
|
|
* @end: end (physical address) of the region
|
|
*/
|
|
void io_free_memtype(resource_size_t start, resource_size_t end)
|
|
{
|
|
free_memtype(start, end);
|
|
}
|
|
|
|
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
|
|
unsigned long size, pgprot_t vma_prot)
|
|
{
|
|
return vma_prot;
|
|
}
|
|
|
|
#ifdef CONFIG_STRICT_DEVMEM
|
|
/* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM*/
|
|
static inline int range_is_allowed(unsigned long pfn, unsigned long size)
|
|
{
|
|
return 1;
|
|
}
|
|
#else
|
|
/* This check is needed to avoid cache aliasing when PAT is enabled */
|
|
static inline int range_is_allowed(unsigned long pfn, unsigned long size)
|
|
{
|
|
u64 from = ((u64)pfn) << PAGE_SHIFT;
|
|
u64 to = from + size;
|
|
u64 cursor = from;
|
|
|
|
if (!pat_enabled)
|
|
return 1;
|
|
|
|
while (cursor < to) {
|
|
if (!devmem_is_allowed(pfn)) {
|
|
printk(KERN_INFO "Program %s tried to access /dev/mem between [mem %#010Lx-%#010Lx]\n",
|
|
current->comm, from, to - 1);
|
|
return 0;
|
|
}
|
|
cursor += PAGE_SIZE;
|
|
pfn++;
|
|
}
|
|
return 1;
|
|
}
|
|
#endif /* CONFIG_STRICT_DEVMEM */
|
|
|
|
int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
|
|
unsigned long size, pgprot_t *vma_prot)
|
|
{
|
|
enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
|
|
|
|
if (!range_is_allowed(pfn, size))
|
|
return 0;
|
|
|
|
if (file->f_flags & O_DSYNC)
|
|
pcm = _PAGE_CACHE_MODE_UC_MINUS;
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/*
|
|
* On the PPro and successors, the MTRRs are used to set
|
|
* memory types for physical addresses outside main memory,
|
|
* so blindly setting UC or PWT on those pages is wrong.
|
|
* For Pentiums and earlier, the surround logic should disable
|
|
* caching for the high addresses through the KEN pin, but
|
|
* we maintain the tradition of paranoia in this code.
|
|
*/
|
|
if (!pat_enabled &&
|
|
!(boot_cpu_has(X86_FEATURE_MTRR) ||
|
|
boot_cpu_has(X86_FEATURE_K6_MTRR) ||
|
|
boot_cpu_has(X86_FEATURE_CYRIX_ARR) ||
|
|
boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) &&
|
|
(pfn << PAGE_SHIFT) >= __pa(high_memory)) {
|
|
pcm = _PAGE_CACHE_MODE_UC;
|
|
}
|
|
#endif
|
|
|
|
*vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
|
|
cachemode2protval(pcm));
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Change the memory type for the physial address range in kernel identity
|
|
* mapping space if that range is a part of identity map.
|
|
*/
|
|
int kernel_map_sync_memtype(u64 base, unsigned long size,
|
|
enum page_cache_mode pcm)
|
|
{
|
|
unsigned long id_sz;
|
|
|
|
if (base > __pa(high_memory-1))
|
|
return 0;
|
|
|
|
/*
|
|
* some areas in the middle of the kernel identity range
|
|
* are not mapped, like the PCI space.
|
|
*/
|
|
if (!page_is_ram(base >> PAGE_SHIFT))
|
|
return 0;
|
|
|
|
id_sz = (__pa(high_memory-1) <= base + size) ?
|
|
__pa(high_memory) - base :
|
|
size;
|
|
|
|
if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
|
|
printk(KERN_INFO "%s:%d ioremap_change_attr failed %s "
|
|
"for [mem %#010Lx-%#010Lx]\n",
|
|
current->comm, current->pid,
|
|
cattr_name(pcm),
|
|
base, (unsigned long long)(base + size-1));
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Internal interface to reserve a range of physical memory with prot.
|
|
* Reserved non RAM regions only and after successful reserve_memtype,
|
|
* this func also keeps identity mapping (if any) in sync with this new prot.
|
|
*/
|
|
static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
|
|
int strict_prot)
|
|
{
|
|
int is_ram = 0;
|
|
int ret;
|
|
enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
|
|
enum page_cache_mode pcm = want_pcm;
|
|
|
|
is_ram = pat_pagerange_is_ram(paddr, paddr + size);
|
|
|
|
/*
|
|
* reserve_pfn_range() for RAM pages. We do not refcount to keep
|
|
* track of number of mappings of RAM pages. We can assert that
|
|
* the type requested matches the type of first page in the range.
|
|
*/
|
|
if (is_ram) {
|
|
if (!pat_enabled)
|
|
return 0;
|
|
|
|
pcm = lookup_memtype(paddr);
|
|
if (want_pcm != pcm) {
|
|
printk(KERN_WARNING "%s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
|
|
current->comm, current->pid,
|
|
cattr_name(want_pcm),
|
|
(unsigned long long)paddr,
|
|
(unsigned long long)(paddr + size - 1),
|
|
cattr_name(pcm));
|
|
*vma_prot = __pgprot((pgprot_val(*vma_prot) &
|
|
(~_PAGE_CACHE_MASK)) |
|
|
cachemode2protval(pcm));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
ret = reserve_memtype(paddr, paddr + size, want_pcm, &pcm);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (pcm != want_pcm) {
|
|
if (strict_prot ||
|
|
!is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
|
|
free_memtype(paddr, paddr + size);
|
|
printk(KERN_ERR "%s:%d map pfn expected mapping type %s"
|
|
" for [mem %#010Lx-%#010Lx], got %s\n",
|
|
current->comm, current->pid,
|
|
cattr_name(want_pcm),
|
|
(unsigned long long)paddr,
|
|
(unsigned long long)(paddr + size - 1),
|
|
cattr_name(pcm));
|
|
return -EINVAL;
|
|
}
|
|
/*
|
|
* We allow returning different type than the one requested in
|
|
* non strict case.
|
|
*/
|
|
*vma_prot = __pgprot((pgprot_val(*vma_prot) &
|
|
(~_PAGE_CACHE_MASK)) |
|
|
cachemode2protval(pcm));
|
|
}
|
|
|
|
if (kernel_map_sync_memtype(paddr, size, pcm) < 0) {
|
|
free_memtype(paddr, paddr + size);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Internal interface to free a range of physical memory.
|
|
* Frees non RAM regions only.
|
|
*/
|
|
static void free_pfn_range(u64 paddr, unsigned long size)
|
|
{
|
|
int is_ram;
|
|
|
|
is_ram = pat_pagerange_is_ram(paddr, paddr + size);
|
|
if (is_ram == 0)
|
|
free_memtype(paddr, paddr + size);
|
|
}
|
|
|
|
/*
|
|
* track_pfn_copy is called when vma that is covering the pfnmap gets
|
|
* copied through copy_page_range().
|
|
*
|
|
* If the vma has a linear pfn mapping for the entire range, we get the prot
|
|
* from pte and reserve the entire vma range with single reserve_pfn_range call.
|
|
*/
|
|
int track_pfn_copy(struct vm_area_struct *vma)
|
|
{
|
|
resource_size_t paddr;
|
|
unsigned long prot;
|
|
unsigned long vma_size = vma->vm_end - vma->vm_start;
|
|
pgprot_t pgprot;
|
|
|
|
if (vma->vm_flags & VM_PAT) {
|
|
/*
|
|
* reserve the whole chunk covered by vma. We need the
|
|
* starting address and protection from pte.
|
|
*/
|
|
if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
|
|
WARN_ON_ONCE(1);
|
|
return -EINVAL;
|
|
}
|
|
pgprot = __pgprot(prot);
|
|
return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* prot is passed in as a parameter for the new mapping. If the vma has a
|
|
* linear pfn mapping for the entire range reserve the entire vma range with
|
|
* single reserve_pfn_range call.
|
|
*/
|
|
int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
|
|
unsigned long pfn, unsigned long addr, unsigned long size)
|
|
{
|
|
resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
|
|
enum page_cache_mode pcm;
|
|
|
|
/* reserve the whole chunk starting from paddr */
|
|
if (addr == vma->vm_start && size == (vma->vm_end - vma->vm_start)) {
|
|
int ret;
|
|
|
|
ret = reserve_pfn_range(paddr, size, prot, 0);
|
|
if (!ret)
|
|
vma->vm_flags |= VM_PAT;
|
|
return ret;
|
|
}
|
|
|
|
if (!pat_enabled)
|
|
return 0;
|
|
|
|
/*
|
|
* For anything smaller than the vma size we set prot based on the
|
|
* lookup.
|
|
*/
|
|
pcm = lookup_memtype(paddr);
|
|
|
|
/* Check memtype for the remaining pages */
|
|
while (size > PAGE_SIZE) {
|
|
size -= PAGE_SIZE;
|
|
paddr += PAGE_SIZE;
|
|
if (pcm != lookup_memtype(paddr))
|
|
return -EINVAL;
|
|
}
|
|
|
|
*prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) |
|
|
cachemode2protval(pcm));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
|
|
unsigned long pfn)
|
|
{
|
|
enum page_cache_mode pcm;
|
|
|
|
if (!pat_enabled)
|
|
return 0;
|
|
|
|
/* Set prot based on lookup */
|
|
pcm = lookup_memtype((resource_size_t)pfn << PAGE_SHIFT);
|
|
*prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) |
|
|
cachemode2protval(pcm));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* untrack_pfn is called while unmapping a pfnmap for a region.
|
|
* untrack can be called for a specific region indicated by pfn and size or
|
|
* can be for the entire vma (in which case pfn, size are zero).
|
|
*/
|
|
void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
|
|
unsigned long size)
|
|
{
|
|
resource_size_t paddr;
|
|
unsigned long prot;
|
|
|
|
if (!(vma->vm_flags & VM_PAT))
|
|
return;
|
|
|
|
/* free the chunk starting from pfn or the whole chunk */
|
|
paddr = (resource_size_t)pfn << PAGE_SHIFT;
|
|
if (!paddr && !size) {
|
|
if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
|
|
WARN_ON_ONCE(1);
|
|
return;
|
|
}
|
|
|
|
size = vma->vm_end - vma->vm_start;
|
|
}
|
|
free_pfn_range(paddr, size);
|
|
vma->vm_flags &= ~VM_PAT;
|
|
}
|
|
|
|
pgprot_t pgprot_writecombine(pgprot_t prot)
|
|
{
|
|
if (pat_enabled)
|
|
return __pgprot(pgprot_val(prot) |
|
|
cachemode2protval(_PAGE_CACHE_MODE_WC));
|
|
else
|
|
return pgprot_noncached(prot);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pgprot_writecombine);
|
|
|
|
#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
|
|
|
|
static struct memtype *memtype_get_idx(loff_t pos)
|
|
{
|
|
struct memtype *print_entry;
|
|
int ret;
|
|
|
|
print_entry = kzalloc(sizeof(struct memtype), GFP_KERNEL);
|
|
if (!print_entry)
|
|
return NULL;
|
|
|
|
spin_lock(&memtype_lock);
|
|
ret = rbt_memtype_copy_nth_element(print_entry, pos);
|
|
spin_unlock(&memtype_lock);
|
|
|
|
if (!ret) {
|
|
return print_entry;
|
|
} else {
|
|
kfree(print_entry);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
|
|
{
|
|
if (*pos == 0) {
|
|
++*pos;
|
|
seq_puts(seq, "PAT memtype list:\n");
|
|
}
|
|
|
|
return memtype_get_idx(*pos);
|
|
}
|
|
|
|
static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
|
|
{
|
|
++*pos;
|
|
return memtype_get_idx(*pos);
|
|
}
|
|
|
|
static void memtype_seq_stop(struct seq_file *seq, void *v)
|
|
{
|
|
}
|
|
|
|
static int memtype_seq_show(struct seq_file *seq, void *v)
|
|
{
|
|
struct memtype *print_entry = (struct memtype *)v;
|
|
|
|
seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
|
|
print_entry->start, print_entry->end);
|
|
kfree(print_entry);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations memtype_seq_ops = {
|
|
.start = memtype_seq_start,
|
|
.next = memtype_seq_next,
|
|
.stop = memtype_seq_stop,
|
|
.show = memtype_seq_show,
|
|
};
|
|
|
|
static int memtype_seq_open(struct inode *inode, struct file *file)
|
|
{
|
|
return seq_open(file, &memtype_seq_ops);
|
|
}
|
|
|
|
static const struct file_operations memtype_fops = {
|
|
.open = memtype_seq_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release,
|
|
};
|
|
|
|
static int __init pat_memtype_list_init(void)
|
|
{
|
|
if (pat_enabled) {
|
|
debugfs_create_file("pat_memtype_list", S_IRUSR,
|
|
arch_debugfs_dir, NULL, &memtype_fops);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
late_initcall(pat_memtype_list_init);
|
|
|
|
#endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
|