mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-17 01:04:19 +08:00
d8ed45c5dc
This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
4113 lines
110 KiB
C
4113 lines
110 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Fast Userspace Mutexes (which I call "Futexes!").
|
|
* (C) Rusty Russell, IBM 2002
|
|
*
|
|
* Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
|
|
* (C) Copyright 2003 Red Hat Inc, All Rights Reserved
|
|
*
|
|
* Removed page pinning, fix privately mapped COW pages and other cleanups
|
|
* (C) Copyright 2003, 2004 Jamie Lokier
|
|
*
|
|
* Robust futex support started by Ingo Molnar
|
|
* (C) Copyright 2006 Red Hat Inc, All Rights Reserved
|
|
* Thanks to Thomas Gleixner for suggestions, analysis and fixes.
|
|
*
|
|
* PI-futex support started by Ingo Molnar and Thomas Gleixner
|
|
* Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
|
|
* Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
|
|
*
|
|
* PRIVATE futexes by Eric Dumazet
|
|
* Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
|
|
*
|
|
* Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
|
|
* Copyright (C) IBM Corporation, 2009
|
|
* Thanks to Thomas Gleixner for conceptual design and careful reviews.
|
|
*
|
|
* Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
|
|
* enough at me, Linus for the original (flawed) idea, Matthew
|
|
* Kirkwood for proof-of-concept implementation.
|
|
*
|
|
* "The futexes are also cursed."
|
|
* "But they come in a choice of three flavours!"
|
|
*/
|
|
#include <linux/compat.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/file.h>
|
|
#include <linux/jhash.h>
|
|
#include <linux/init.h>
|
|
#include <linux/futex.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/export.h>
|
|
#include <linux/magic.h>
|
|
#include <linux/pid.h>
|
|
#include <linux/nsproxy.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/sched/rt.h>
|
|
#include <linux/sched/wake_q.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/fault-inject.h>
|
|
#include <linux/refcount.h>
|
|
|
|
#include <asm/futex.h>
|
|
|
|
#include "locking/rtmutex_common.h"
|
|
|
|
/*
|
|
* READ this before attempting to hack on futexes!
|
|
*
|
|
* Basic futex operation and ordering guarantees
|
|
* =============================================
|
|
*
|
|
* The waiter reads the futex value in user space and calls
|
|
* futex_wait(). This function computes the hash bucket and acquires
|
|
* the hash bucket lock. After that it reads the futex user space value
|
|
* again and verifies that the data has not changed. If it has not changed
|
|
* it enqueues itself into the hash bucket, releases the hash bucket lock
|
|
* and schedules.
|
|
*
|
|
* The waker side modifies the user space value of the futex and calls
|
|
* futex_wake(). This function computes the hash bucket and acquires the
|
|
* hash bucket lock. Then it looks for waiters on that futex in the hash
|
|
* bucket and wakes them.
|
|
*
|
|
* In futex wake up scenarios where no tasks are blocked on a futex, taking
|
|
* the hb spinlock can be avoided and simply return. In order for this
|
|
* optimization to work, ordering guarantees must exist so that the waiter
|
|
* being added to the list is acknowledged when the list is concurrently being
|
|
* checked by the waker, avoiding scenarios like the following:
|
|
*
|
|
* CPU 0 CPU 1
|
|
* val = *futex;
|
|
* sys_futex(WAIT, futex, val);
|
|
* futex_wait(futex, val);
|
|
* uval = *futex;
|
|
* *futex = newval;
|
|
* sys_futex(WAKE, futex);
|
|
* futex_wake(futex);
|
|
* if (queue_empty())
|
|
* return;
|
|
* if (uval == val)
|
|
* lock(hash_bucket(futex));
|
|
* queue();
|
|
* unlock(hash_bucket(futex));
|
|
* schedule();
|
|
*
|
|
* This would cause the waiter on CPU 0 to wait forever because it
|
|
* missed the transition of the user space value from val to newval
|
|
* and the waker did not find the waiter in the hash bucket queue.
|
|
*
|
|
* The correct serialization ensures that a waiter either observes
|
|
* the changed user space value before blocking or is woken by a
|
|
* concurrent waker:
|
|
*
|
|
* CPU 0 CPU 1
|
|
* val = *futex;
|
|
* sys_futex(WAIT, futex, val);
|
|
* futex_wait(futex, val);
|
|
*
|
|
* waiters++; (a)
|
|
* smp_mb(); (A) <-- paired with -.
|
|
* |
|
|
* lock(hash_bucket(futex)); |
|
|
* |
|
|
* uval = *futex; |
|
|
* | *futex = newval;
|
|
* | sys_futex(WAKE, futex);
|
|
* | futex_wake(futex);
|
|
* |
|
|
* `--------> smp_mb(); (B)
|
|
* if (uval == val)
|
|
* queue();
|
|
* unlock(hash_bucket(futex));
|
|
* schedule(); if (waiters)
|
|
* lock(hash_bucket(futex));
|
|
* else wake_waiters(futex);
|
|
* waiters--; (b) unlock(hash_bucket(futex));
|
|
*
|
|
* Where (A) orders the waiters increment and the futex value read through
|
|
* atomic operations (see hb_waiters_inc) and where (B) orders the write
|
|
* to futex and the waiters read (see hb_waiters_pending()).
|
|
*
|
|
* This yields the following case (where X:=waiters, Y:=futex):
|
|
*
|
|
* X = Y = 0
|
|
*
|
|
* w[X]=1 w[Y]=1
|
|
* MB MB
|
|
* r[Y]=y r[X]=x
|
|
*
|
|
* Which guarantees that x==0 && y==0 is impossible; which translates back into
|
|
* the guarantee that we cannot both miss the futex variable change and the
|
|
* enqueue.
|
|
*
|
|
* Note that a new waiter is accounted for in (a) even when it is possible that
|
|
* the wait call can return error, in which case we backtrack from it in (b).
|
|
* Refer to the comment in queue_lock().
|
|
*
|
|
* Similarly, in order to account for waiters being requeued on another
|
|
* address we always increment the waiters for the destination bucket before
|
|
* acquiring the lock. It then decrements them again after releasing it -
|
|
* the code that actually moves the futex(es) between hash buckets (requeue_futex)
|
|
* will do the additional required waiter count housekeeping. This is done for
|
|
* double_lock_hb() and double_unlock_hb(), respectively.
|
|
*/
|
|
|
|
#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
|
|
#define futex_cmpxchg_enabled 1
|
|
#else
|
|
static int __read_mostly futex_cmpxchg_enabled;
|
|
#endif
|
|
|
|
/*
|
|
* Futex flags used to encode options to functions and preserve them across
|
|
* restarts.
|
|
*/
|
|
#ifdef CONFIG_MMU
|
|
# define FLAGS_SHARED 0x01
|
|
#else
|
|
/*
|
|
* NOMMU does not have per process address space. Let the compiler optimize
|
|
* code away.
|
|
*/
|
|
# define FLAGS_SHARED 0x00
|
|
#endif
|
|
#define FLAGS_CLOCKRT 0x02
|
|
#define FLAGS_HAS_TIMEOUT 0x04
|
|
|
|
/*
|
|
* Priority Inheritance state:
|
|
*/
|
|
struct futex_pi_state {
|
|
/*
|
|
* list of 'owned' pi_state instances - these have to be
|
|
* cleaned up in do_exit() if the task exits prematurely:
|
|
*/
|
|
struct list_head list;
|
|
|
|
/*
|
|
* The PI object:
|
|
*/
|
|
struct rt_mutex pi_mutex;
|
|
|
|
struct task_struct *owner;
|
|
refcount_t refcount;
|
|
|
|
union futex_key key;
|
|
} __randomize_layout;
|
|
|
|
/**
|
|
* struct futex_q - The hashed futex queue entry, one per waiting task
|
|
* @list: priority-sorted list of tasks waiting on this futex
|
|
* @task: the task waiting on the futex
|
|
* @lock_ptr: the hash bucket lock
|
|
* @key: the key the futex is hashed on
|
|
* @pi_state: optional priority inheritance state
|
|
* @rt_waiter: rt_waiter storage for use with requeue_pi
|
|
* @requeue_pi_key: the requeue_pi target futex key
|
|
* @bitset: bitset for the optional bitmasked wakeup
|
|
*
|
|
* We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
|
|
* we can wake only the relevant ones (hashed queues may be shared).
|
|
*
|
|
* A futex_q has a woken state, just like tasks have TASK_RUNNING.
|
|
* It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
|
|
* The order of wakeup is always to make the first condition true, then
|
|
* the second.
|
|
*
|
|
* PI futexes are typically woken before they are removed from the hash list via
|
|
* the rt_mutex code. See unqueue_me_pi().
|
|
*/
|
|
struct futex_q {
|
|
struct plist_node list;
|
|
|
|
struct task_struct *task;
|
|
spinlock_t *lock_ptr;
|
|
union futex_key key;
|
|
struct futex_pi_state *pi_state;
|
|
struct rt_mutex_waiter *rt_waiter;
|
|
union futex_key *requeue_pi_key;
|
|
u32 bitset;
|
|
} __randomize_layout;
|
|
|
|
static const struct futex_q futex_q_init = {
|
|
/* list gets initialized in queue_me()*/
|
|
.key = FUTEX_KEY_INIT,
|
|
.bitset = FUTEX_BITSET_MATCH_ANY
|
|
};
|
|
|
|
/*
|
|
* Hash buckets are shared by all the futex_keys that hash to the same
|
|
* location. Each key may have multiple futex_q structures, one for each task
|
|
* waiting on a futex.
|
|
*/
|
|
struct futex_hash_bucket {
|
|
atomic_t waiters;
|
|
spinlock_t lock;
|
|
struct plist_head chain;
|
|
} ____cacheline_aligned_in_smp;
|
|
|
|
/*
|
|
* The base of the bucket array and its size are always used together
|
|
* (after initialization only in hash_futex()), so ensure that they
|
|
* reside in the same cacheline.
|
|
*/
|
|
static struct {
|
|
struct futex_hash_bucket *queues;
|
|
unsigned long hashsize;
|
|
} __futex_data __read_mostly __aligned(2*sizeof(long));
|
|
#define futex_queues (__futex_data.queues)
|
|
#define futex_hashsize (__futex_data.hashsize)
|
|
|
|
|
|
/*
|
|
* Fault injections for futexes.
|
|
*/
|
|
#ifdef CONFIG_FAIL_FUTEX
|
|
|
|
static struct {
|
|
struct fault_attr attr;
|
|
|
|
bool ignore_private;
|
|
} fail_futex = {
|
|
.attr = FAULT_ATTR_INITIALIZER,
|
|
.ignore_private = false,
|
|
};
|
|
|
|
static int __init setup_fail_futex(char *str)
|
|
{
|
|
return setup_fault_attr(&fail_futex.attr, str);
|
|
}
|
|
__setup("fail_futex=", setup_fail_futex);
|
|
|
|
static bool should_fail_futex(bool fshared)
|
|
{
|
|
if (fail_futex.ignore_private && !fshared)
|
|
return false;
|
|
|
|
return should_fail(&fail_futex.attr, 1);
|
|
}
|
|
|
|
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
|
|
|
|
static int __init fail_futex_debugfs(void)
|
|
{
|
|
umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
|
|
struct dentry *dir;
|
|
|
|
dir = fault_create_debugfs_attr("fail_futex", NULL,
|
|
&fail_futex.attr);
|
|
if (IS_ERR(dir))
|
|
return PTR_ERR(dir);
|
|
|
|
debugfs_create_bool("ignore-private", mode, dir,
|
|
&fail_futex.ignore_private);
|
|
return 0;
|
|
}
|
|
|
|
late_initcall(fail_futex_debugfs);
|
|
|
|
#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
|
|
|
|
#else
|
|
static inline bool should_fail_futex(bool fshared)
|
|
{
|
|
return false;
|
|
}
|
|
#endif /* CONFIG_FAIL_FUTEX */
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static void compat_exit_robust_list(struct task_struct *curr);
|
|
#else
|
|
static inline void compat_exit_robust_list(struct task_struct *curr) { }
|
|
#endif
|
|
|
|
/*
|
|
* Reflects a new waiter being added to the waitqueue.
|
|
*/
|
|
static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
atomic_inc(&hb->waiters);
|
|
/*
|
|
* Full barrier (A), see the ordering comment above.
|
|
*/
|
|
smp_mb__after_atomic();
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Reflects a waiter being removed from the waitqueue by wakeup
|
|
* paths.
|
|
*/
|
|
static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
atomic_dec(&hb->waiters);
|
|
#endif
|
|
}
|
|
|
|
static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* Full barrier (B), see the ordering comment above.
|
|
*/
|
|
smp_mb();
|
|
return atomic_read(&hb->waiters);
|
|
#else
|
|
return 1;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* hash_futex - Return the hash bucket in the global hash
|
|
* @key: Pointer to the futex key for which the hash is calculated
|
|
*
|
|
* We hash on the keys returned from get_futex_key (see below) and return the
|
|
* corresponding hash bucket in the global hash.
|
|
*/
|
|
static struct futex_hash_bucket *hash_futex(union futex_key *key)
|
|
{
|
|
u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
|
|
key->both.offset);
|
|
|
|
return &futex_queues[hash & (futex_hashsize - 1)];
|
|
}
|
|
|
|
|
|
/**
|
|
* match_futex - Check whether two futex keys are equal
|
|
* @key1: Pointer to key1
|
|
* @key2: Pointer to key2
|
|
*
|
|
* Return 1 if two futex_keys are equal, 0 otherwise.
|
|
*/
|
|
static inline int match_futex(union futex_key *key1, union futex_key *key2)
|
|
{
|
|
return (key1 && key2
|
|
&& key1->both.word == key2->both.word
|
|
&& key1->both.ptr == key2->both.ptr
|
|
&& key1->both.offset == key2->both.offset);
|
|
}
|
|
|
|
enum futex_access {
|
|
FUTEX_READ,
|
|
FUTEX_WRITE
|
|
};
|
|
|
|
/**
|
|
* futex_setup_timer - set up the sleeping hrtimer.
|
|
* @time: ptr to the given timeout value
|
|
* @timeout: the hrtimer_sleeper structure to be set up
|
|
* @flags: futex flags
|
|
* @range_ns: optional range in ns
|
|
*
|
|
* Return: Initialized hrtimer_sleeper structure or NULL if no timeout
|
|
* value given
|
|
*/
|
|
static inline struct hrtimer_sleeper *
|
|
futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
|
|
int flags, u64 range_ns)
|
|
{
|
|
if (!time)
|
|
return NULL;
|
|
|
|
hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
|
|
CLOCK_REALTIME : CLOCK_MONOTONIC,
|
|
HRTIMER_MODE_ABS);
|
|
/*
|
|
* If range_ns is 0, calling hrtimer_set_expires_range_ns() is
|
|
* effectively the same as calling hrtimer_set_expires().
|
|
*/
|
|
hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
|
|
|
|
return timeout;
|
|
}
|
|
|
|
/*
|
|
* Generate a machine wide unique identifier for this inode.
|
|
*
|
|
* This relies on u64 not wrapping in the life-time of the machine; which with
|
|
* 1ns resolution means almost 585 years.
|
|
*
|
|
* This further relies on the fact that a well formed program will not unmap
|
|
* the file while it has a (shared) futex waiting on it. This mapping will have
|
|
* a file reference which pins the mount and inode.
|
|
*
|
|
* If for some reason an inode gets evicted and read back in again, it will get
|
|
* a new sequence number and will _NOT_ match, even though it is the exact same
|
|
* file.
|
|
*
|
|
* It is important that match_futex() will never have a false-positive, esp.
|
|
* for PI futexes that can mess up the state. The above argues that false-negatives
|
|
* are only possible for malformed programs.
|
|
*/
|
|
static u64 get_inode_sequence_number(struct inode *inode)
|
|
{
|
|
static atomic64_t i_seq;
|
|
u64 old;
|
|
|
|
/* Does the inode already have a sequence number? */
|
|
old = atomic64_read(&inode->i_sequence);
|
|
if (likely(old))
|
|
return old;
|
|
|
|
for (;;) {
|
|
u64 new = atomic64_add_return(1, &i_seq);
|
|
if (WARN_ON_ONCE(!new))
|
|
continue;
|
|
|
|
old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
|
|
if (old)
|
|
return old;
|
|
return new;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* get_futex_key() - Get parameters which are the keys for a futex
|
|
* @uaddr: virtual address of the futex
|
|
* @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
|
|
* @key: address where result is stored.
|
|
* @rw: mapping needs to be read/write (values: FUTEX_READ,
|
|
* FUTEX_WRITE)
|
|
*
|
|
* Return: a negative error code or 0
|
|
*
|
|
* The key words are stored in @key on success.
|
|
*
|
|
* For shared mappings (when @fshared), the key is:
|
|
*
|
|
* ( inode->i_sequence, page->index, offset_within_page )
|
|
*
|
|
* [ also see get_inode_sequence_number() ]
|
|
*
|
|
* For private mappings (or when !@fshared), the key is:
|
|
*
|
|
* ( current->mm, address, 0 )
|
|
*
|
|
* This allows (cross process, where applicable) identification of the futex
|
|
* without keeping the page pinned for the duration of the FUTEX_WAIT.
|
|
*
|
|
* lock_page() might sleep, the caller should not hold a spinlock.
|
|
*/
|
|
static int
|
|
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
|
|
{
|
|
unsigned long address = (unsigned long)uaddr;
|
|
struct mm_struct *mm = current->mm;
|
|
struct page *page, *tail;
|
|
struct address_space *mapping;
|
|
int err, ro = 0;
|
|
|
|
/*
|
|
* The futex address must be "naturally" aligned.
|
|
*/
|
|
key->both.offset = address % PAGE_SIZE;
|
|
if (unlikely((address % sizeof(u32)) != 0))
|
|
return -EINVAL;
|
|
address -= key->both.offset;
|
|
|
|
if (unlikely(!access_ok(uaddr, sizeof(u32))))
|
|
return -EFAULT;
|
|
|
|
if (unlikely(should_fail_futex(fshared)))
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* PROCESS_PRIVATE futexes are fast.
|
|
* As the mm cannot disappear under us and the 'key' only needs
|
|
* virtual address, we dont even have to find the underlying vma.
|
|
* Note : We do have to check 'uaddr' is a valid user address,
|
|
* but access_ok() should be faster than find_vma()
|
|
*/
|
|
if (!fshared) {
|
|
key->private.mm = mm;
|
|
key->private.address = address;
|
|
return 0;
|
|
}
|
|
|
|
again:
|
|
/* Ignore any VERIFY_READ mapping (futex common case) */
|
|
if (unlikely(should_fail_futex(fshared)))
|
|
return -EFAULT;
|
|
|
|
err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
|
|
/*
|
|
* If write access is not required (eg. FUTEX_WAIT), try
|
|
* and get read-only access.
|
|
*/
|
|
if (err == -EFAULT && rw == FUTEX_READ) {
|
|
err = get_user_pages_fast(address, 1, 0, &page);
|
|
ro = 1;
|
|
}
|
|
if (err < 0)
|
|
return err;
|
|
else
|
|
err = 0;
|
|
|
|
/*
|
|
* The treatment of mapping from this point on is critical. The page
|
|
* lock protects many things but in this context the page lock
|
|
* stabilizes mapping, prevents inode freeing in the shared
|
|
* file-backed region case and guards against movement to swap cache.
|
|
*
|
|
* Strictly speaking the page lock is not needed in all cases being
|
|
* considered here and page lock forces unnecessarily serialization
|
|
* From this point on, mapping will be re-verified if necessary and
|
|
* page lock will be acquired only if it is unavoidable
|
|
*
|
|
* Mapping checks require the head page for any compound page so the
|
|
* head page and mapping is looked up now. For anonymous pages, it
|
|
* does not matter if the page splits in the future as the key is
|
|
* based on the address. For filesystem-backed pages, the tail is
|
|
* required as the index of the page determines the key. For
|
|
* base pages, there is no tail page and tail == page.
|
|
*/
|
|
tail = page;
|
|
page = compound_head(page);
|
|
mapping = READ_ONCE(page->mapping);
|
|
|
|
/*
|
|
* If page->mapping is NULL, then it cannot be a PageAnon
|
|
* page; but it might be the ZERO_PAGE or in the gate area or
|
|
* in a special mapping (all cases which we are happy to fail);
|
|
* or it may have been a good file page when get_user_pages_fast
|
|
* found it, but truncated or holepunched or subjected to
|
|
* invalidate_complete_page2 before we got the page lock (also
|
|
* cases which we are happy to fail). And we hold a reference,
|
|
* so refcount care in invalidate_complete_page's remove_mapping
|
|
* prevents drop_caches from setting mapping to NULL beneath us.
|
|
*
|
|
* The case we do have to guard against is when memory pressure made
|
|
* shmem_writepage move it from filecache to swapcache beneath us:
|
|
* an unlikely race, but we do need to retry for page->mapping.
|
|
*/
|
|
if (unlikely(!mapping)) {
|
|
int shmem_swizzled;
|
|
|
|
/*
|
|
* Page lock is required to identify which special case above
|
|
* applies. If this is really a shmem page then the page lock
|
|
* will prevent unexpected transitions.
|
|
*/
|
|
lock_page(page);
|
|
shmem_swizzled = PageSwapCache(page) || page->mapping;
|
|
unlock_page(page);
|
|
put_page(page);
|
|
|
|
if (shmem_swizzled)
|
|
goto again;
|
|
|
|
return -EFAULT;
|
|
}
|
|
|
|
/*
|
|
* Private mappings are handled in a simple way.
|
|
*
|
|
* If the futex key is stored on an anonymous page, then the associated
|
|
* object is the mm which is implicitly pinned by the calling process.
|
|
*
|
|
* NOTE: When userspace waits on a MAP_SHARED mapping, even if
|
|
* it's a read-only handle, it's expected that futexes attach to
|
|
* the object not the particular process.
|
|
*/
|
|
if (PageAnon(page)) {
|
|
/*
|
|
* A RO anonymous page will never change and thus doesn't make
|
|
* sense for futex operations.
|
|
*/
|
|
if (unlikely(should_fail_futex(fshared)) || ro) {
|
|
err = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
|
|
key->private.mm = mm;
|
|
key->private.address = address;
|
|
|
|
} else {
|
|
struct inode *inode;
|
|
|
|
/*
|
|
* The associated futex object in this case is the inode and
|
|
* the page->mapping must be traversed. Ordinarily this should
|
|
* be stabilised under page lock but it's not strictly
|
|
* necessary in this case as we just want to pin the inode, not
|
|
* update the radix tree or anything like that.
|
|
*
|
|
* The RCU read lock is taken as the inode is finally freed
|
|
* under RCU. If the mapping still matches expectations then the
|
|
* mapping->host can be safely accessed as being a valid inode.
|
|
*/
|
|
rcu_read_lock();
|
|
|
|
if (READ_ONCE(page->mapping) != mapping) {
|
|
rcu_read_unlock();
|
|
put_page(page);
|
|
|
|
goto again;
|
|
}
|
|
|
|
inode = READ_ONCE(mapping->host);
|
|
if (!inode) {
|
|
rcu_read_unlock();
|
|
put_page(page);
|
|
|
|
goto again;
|
|
}
|
|
|
|
key->both.offset |= FUT_OFF_INODE; /* inode-based key */
|
|
key->shared.i_seq = get_inode_sequence_number(inode);
|
|
key->shared.pgoff = basepage_index(tail);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
out:
|
|
put_page(page);
|
|
return err;
|
|
}
|
|
|
|
static inline void put_futex_key(union futex_key *key)
|
|
{
|
|
}
|
|
|
|
/**
|
|
* fault_in_user_writeable() - Fault in user address and verify RW access
|
|
* @uaddr: pointer to faulting user space address
|
|
*
|
|
* Slow path to fixup the fault we just took in the atomic write
|
|
* access to @uaddr.
|
|
*
|
|
* We have no generic implementation of a non-destructive write to the
|
|
* user address. We know that we faulted in the atomic pagefault
|
|
* disabled section so we can as well avoid the #PF overhead by
|
|
* calling get_user_pages() right away.
|
|
*/
|
|
static int fault_in_user_writeable(u32 __user *uaddr)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
int ret;
|
|
|
|
mmap_read_lock(mm);
|
|
ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
|
|
FAULT_FLAG_WRITE, NULL);
|
|
mmap_read_unlock(mm);
|
|
|
|
return ret < 0 ? ret : 0;
|
|
}
|
|
|
|
/**
|
|
* futex_top_waiter() - Return the highest priority waiter on a futex
|
|
* @hb: the hash bucket the futex_q's reside in
|
|
* @key: the futex key (to distinguish it from other futex futex_q's)
|
|
*
|
|
* Must be called with the hb lock held.
|
|
*/
|
|
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
|
|
union futex_key *key)
|
|
{
|
|
struct futex_q *this;
|
|
|
|
plist_for_each_entry(this, &hb->chain, list) {
|
|
if (match_futex(&this->key, key))
|
|
return this;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
|
|
u32 uval, u32 newval)
|
|
{
|
|
int ret;
|
|
|
|
pagefault_disable();
|
|
ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
|
|
pagefault_enable();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int get_futex_value_locked(u32 *dest, u32 __user *from)
|
|
{
|
|
int ret;
|
|
|
|
pagefault_disable();
|
|
ret = __get_user(*dest, from);
|
|
pagefault_enable();
|
|
|
|
return ret ? -EFAULT : 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* PI code:
|
|
*/
|
|
static int refill_pi_state_cache(void)
|
|
{
|
|
struct futex_pi_state *pi_state;
|
|
|
|
if (likely(current->pi_state_cache))
|
|
return 0;
|
|
|
|
pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
|
|
|
|
if (!pi_state)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&pi_state->list);
|
|
/* pi_mutex gets initialized later */
|
|
pi_state->owner = NULL;
|
|
refcount_set(&pi_state->refcount, 1);
|
|
pi_state->key = FUTEX_KEY_INIT;
|
|
|
|
current->pi_state_cache = pi_state;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct futex_pi_state *alloc_pi_state(void)
|
|
{
|
|
struct futex_pi_state *pi_state = current->pi_state_cache;
|
|
|
|
WARN_ON(!pi_state);
|
|
current->pi_state_cache = NULL;
|
|
|
|
return pi_state;
|
|
}
|
|
|
|
static void get_pi_state(struct futex_pi_state *pi_state)
|
|
{
|
|
WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
|
|
}
|
|
|
|
/*
|
|
* Drops a reference to the pi_state object and frees or caches it
|
|
* when the last reference is gone.
|
|
*/
|
|
static void put_pi_state(struct futex_pi_state *pi_state)
|
|
{
|
|
if (!pi_state)
|
|
return;
|
|
|
|
if (!refcount_dec_and_test(&pi_state->refcount))
|
|
return;
|
|
|
|
/*
|
|
* If pi_state->owner is NULL, the owner is most probably dying
|
|
* and has cleaned up the pi_state already
|
|
*/
|
|
if (pi_state->owner) {
|
|
struct task_struct *owner;
|
|
|
|
raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
|
|
owner = pi_state->owner;
|
|
if (owner) {
|
|
raw_spin_lock(&owner->pi_lock);
|
|
list_del_init(&pi_state->list);
|
|
raw_spin_unlock(&owner->pi_lock);
|
|
}
|
|
rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
|
|
raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
|
|
}
|
|
|
|
if (current->pi_state_cache) {
|
|
kfree(pi_state);
|
|
} else {
|
|
/*
|
|
* pi_state->list is already empty.
|
|
* clear pi_state->owner.
|
|
* refcount is at 0 - put it back to 1.
|
|
*/
|
|
pi_state->owner = NULL;
|
|
refcount_set(&pi_state->refcount, 1);
|
|
current->pi_state_cache = pi_state;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_FUTEX_PI
|
|
|
|
/*
|
|
* This task is holding PI mutexes at exit time => bad.
|
|
* Kernel cleans up PI-state, but userspace is likely hosed.
|
|
* (Robust-futex cleanup is separate and might save the day for userspace.)
|
|
*/
|
|
static void exit_pi_state_list(struct task_struct *curr)
|
|
{
|
|
struct list_head *next, *head = &curr->pi_state_list;
|
|
struct futex_pi_state *pi_state;
|
|
struct futex_hash_bucket *hb;
|
|
union futex_key key = FUTEX_KEY_INIT;
|
|
|
|
if (!futex_cmpxchg_enabled)
|
|
return;
|
|
/*
|
|
* We are a ZOMBIE and nobody can enqueue itself on
|
|
* pi_state_list anymore, but we have to be careful
|
|
* versus waiters unqueueing themselves:
|
|
*/
|
|
raw_spin_lock_irq(&curr->pi_lock);
|
|
while (!list_empty(head)) {
|
|
next = head->next;
|
|
pi_state = list_entry(next, struct futex_pi_state, list);
|
|
key = pi_state->key;
|
|
hb = hash_futex(&key);
|
|
|
|
/*
|
|
* We can race against put_pi_state() removing itself from the
|
|
* list (a waiter going away). put_pi_state() will first
|
|
* decrement the reference count and then modify the list, so
|
|
* its possible to see the list entry but fail this reference
|
|
* acquire.
|
|
*
|
|
* In that case; drop the locks to let put_pi_state() make
|
|
* progress and retry the loop.
|
|
*/
|
|
if (!refcount_inc_not_zero(&pi_state->refcount)) {
|
|
raw_spin_unlock_irq(&curr->pi_lock);
|
|
cpu_relax();
|
|
raw_spin_lock_irq(&curr->pi_lock);
|
|
continue;
|
|
}
|
|
raw_spin_unlock_irq(&curr->pi_lock);
|
|
|
|
spin_lock(&hb->lock);
|
|
raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
|
|
raw_spin_lock(&curr->pi_lock);
|
|
/*
|
|
* We dropped the pi-lock, so re-check whether this
|
|
* task still owns the PI-state:
|
|
*/
|
|
if (head->next != next) {
|
|
/* retain curr->pi_lock for the loop invariant */
|
|
raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
|
|
spin_unlock(&hb->lock);
|
|
put_pi_state(pi_state);
|
|
continue;
|
|
}
|
|
|
|
WARN_ON(pi_state->owner != curr);
|
|
WARN_ON(list_empty(&pi_state->list));
|
|
list_del_init(&pi_state->list);
|
|
pi_state->owner = NULL;
|
|
|
|
raw_spin_unlock(&curr->pi_lock);
|
|
raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
|
|
spin_unlock(&hb->lock);
|
|
|
|
rt_mutex_futex_unlock(&pi_state->pi_mutex);
|
|
put_pi_state(pi_state);
|
|
|
|
raw_spin_lock_irq(&curr->pi_lock);
|
|
}
|
|
raw_spin_unlock_irq(&curr->pi_lock);
|
|
}
|
|
#else
|
|
static inline void exit_pi_state_list(struct task_struct *curr) { }
|
|
#endif
|
|
|
|
/*
|
|
* We need to check the following states:
|
|
*
|
|
* Waiter | pi_state | pi->owner | uTID | uODIED | ?
|
|
*
|
|
* [1] NULL | --- | --- | 0 | 0/1 | Valid
|
|
* [2] NULL | --- | --- | >0 | 0/1 | Valid
|
|
*
|
|
* [3] Found | NULL | -- | Any | 0/1 | Invalid
|
|
*
|
|
* [4] Found | Found | NULL | 0 | 1 | Valid
|
|
* [5] Found | Found | NULL | >0 | 1 | Invalid
|
|
*
|
|
* [6] Found | Found | task | 0 | 1 | Valid
|
|
*
|
|
* [7] Found | Found | NULL | Any | 0 | Invalid
|
|
*
|
|
* [8] Found | Found | task | ==taskTID | 0/1 | Valid
|
|
* [9] Found | Found | task | 0 | 0 | Invalid
|
|
* [10] Found | Found | task | !=taskTID | 0/1 | Invalid
|
|
*
|
|
* [1] Indicates that the kernel can acquire the futex atomically. We
|
|
* came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
|
|
*
|
|
* [2] Valid, if TID does not belong to a kernel thread. If no matching
|
|
* thread is found then it indicates that the owner TID has died.
|
|
*
|
|
* [3] Invalid. The waiter is queued on a non PI futex
|
|
*
|
|
* [4] Valid state after exit_robust_list(), which sets the user space
|
|
* value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
|
|
*
|
|
* [5] The user space value got manipulated between exit_robust_list()
|
|
* and exit_pi_state_list()
|
|
*
|
|
* [6] Valid state after exit_pi_state_list() which sets the new owner in
|
|
* the pi_state but cannot access the user space value.
|
|
*
|
|
* [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
|
|
*
|
|
* [8] Owner and user space value match
|
|
*
|
|
* [9] There is no transient state which sets the user space TID to 0
|
|
* except exit_robust_list(), but this is indicated by the
|
|
* FUTEX_OWNER_DIED bit. See [4]
|
|
*
|
|
* [10] There is no transient state which leaves owner and user space
|
|
* TID out of sync.
|
|
*
|
|
*
|
|
* Serialization and lifetime rules:
|
|
*
|
|
* hb->lock:
|
|
*
|
|
* hb -> futex_q, relation
|
|
* futex_q -> pi_state, relation
|
|
*
|
|
* (cannot be raw because hb can contain arbitrary amount
|
|
* of futex_q's)
|
|
*
|
|
* pi_mutex->wait_lock:
|
|
*
|
|
* {uval, pi_state}
|
|
*
|
|
* (and pi_mutex 'obviously')
|
|
*
|
|
* p->pi_lock:
|
|
*
|
|
* p->pi_state_list -> pi_state->list, relation
|
|
*
|
|
* pi_state->refcount:
|
|
*
|
|
* pi_state lifetime
|
|
*
|
|
*
|
|
* Lock order:
|
|
*
|
|
* hb->lock
|
|
* pi_mutex->wait_lock
|
|
* p->pi_lock
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* Validate that the existing waiter has a pi_state and sanity check
|
|
* the pi_state against the user space value. If correct, attach to
|
|
* it.
|
|
*/
|
|
static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
|
|
struct futex_pi_state *pi_state,
|
|
struct futex_pi_state **ps)
|
|
{
|
|
pid_t pid = uval & FUTEX_TID_MASK;
|
|
u32 uval2;
|
|
int ret;
|
|
|
|
/*
|
|
* Userspace might have messed up non-PI and PI futexes [3]
|
|
*/
|
|
if (unlikely(!pi_state))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* We get here with hb->lock held, and having found a
|
|
* futex_top_waiter(). This means that futex_lock_pi() of said futex_q
|
|
* has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
|
|
* which in turn means that futex_lock_pi() still has a reference on
|
|
* our pi_state.
|
|
*
|
|
* The waiter holding a reference on @pi_state also protects against
|
|
* the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
|
|
* and futex_wait_requeue_pi() as it cannot go to 0 and consequently
|
|
* free pi_state before we can take a reference ourselves.
|
|
*/
|
|
WARN_ON(!refcount_read(&pi_state->refcount));
|
|
|
|
/*
|
|
* Now that we have a pi_state, we can acquire wait_lock
|
|
* and do the state validation.
|
|
*/
|
|
raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
|
|
|
|
/*
|
|
* Since {uval, pi_state} is serialized by wait_lock, and our current
|
|
* uval was read without holding it, it can have changed. Verify it
|
|
* still is what we expect it to be, otherwise retry the entire
|
|
* operation.
|
|
*/
|
|
if (get_futex_value_locked(&uval2, uaddr))
|
|
goto out_efault;
|
|
|
|
if (uval != uval2)
|
|
goto out_eagain;
|
|
|
|
/*
|
|
* Handle the owner died case:
|
|
*/
|
|
if (uval & FUTEX_OWNER_DIED) {
|
|
/*
|
|
* exit_pi_state_list sets owner to NULL and wakes the
|
|
* topmost waiter. The task which acquires the
|
|
* pi_state->rt_mutex will fixup owner.
|
|
*/
|
|
if (!pi_state->owner) {
|
|
/*
|
|
* No pi state owner, but the user space TID
|
|
* is not 0. Inconsistent state. [5]
|
|
*/
|
|
if (pid)
|
|
goto out_einval;
|
|
/*
|
|
* Take a ref on the state and return success. [4]
|
|
*/
|
|
goto out_attach;
|
|
}
|
|
|
|
/*
|
|
* If TID is 0, then either the dying owner has not
|
|
* yet executed exit_pi_state_list() or some waiter
|
|
* acquired the rtmutex in the pi state, but did not
|
|
* yet fixup the TID in user space.
|
|
*
|
|
* Take a ref on the state and return success. [6]
|
|
*/
|
|
if (!pid)
|
|
goto out_attach;
|
|
} else {
|
|
/*
|
|
* If the owner died bit is not set, then the pi_state
|
|
* must have an owner. [7]
|
|
*/
|
|
if (!pi_state->owner)
|
|
goto out_einval;
|
|
}
|
|
|
|
/*
|
|
* Bail out if user space manipulated the futex value. If pi
|
|
* state exists then the owner TID must be the same as the
|
|
* user space TID. [9/10]
|
|
*/
|
|
if (pid != task_pid_vnr(pi_state->owner))
|
|
goto out_einval;
|
|
|
|
out_attach:
|
|
get_pi_state(pi_state);
|
|
raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
|
|
*ps = pi_state;
|
|
return 0;
|
|
|
|
out_einval:
|
|
ret = -EINVAL;
|
|
goto out_error;
|
|
|
|
out_eagain:
|
|
ret = -EAGAIN;
|
|
goto out_error;
|
|
|
|
out_efault:
|
|
ret = -EFAULT;
|
|
goto out_error;
|
|
|
|
out_error:
|
|
raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* wait_for_owner_exiting - Block until the owner has exited
|
|
* @ret: owner's current futex lock status
|
|
* @exiting: Pointer to the exiting task
|
|
*
|
|
* Caller must hold a refcount on @exiting.
|
|
*/
|
|
static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
|
|
{
|
|
if (ret != -EBUSY) {
|
|
WARN_ON_ONCE(exiting);
|
|
return;
|
|
}
|
|
|
|
if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
|
|
return;
|
|
|
|
mutex_lock(&exiting->futex_exit_mutex);
|
|
/*
|
|
* No point in doing state checking here. If the waiter got here
|
|
* while the task was in exec()->exec_futex_release() then it can
|
|
* have any FUTEX_STATE_* value when the waiter has acquired the
|
|
* mutex. OK, if running, EXITING or DEAD if it reached exit()
|
|
* already. Highly unlikely and not a problem. Just one more round
|
|
* through the futex maze.
|
|
*/
|
|
mutex_unlock(&exiting->futex_exit_mutex);
|
|
|
|
put_task_struct(exiting);
|
|
}
|
|
|
|
static int handle_exit_race(u32 __user *uaddr, u32 uval,
|
|
struct task_struct *tsk)
|
|
{
|
|
u32 uval2;
|
|
|
|
/*
|
|
* If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
|
|
* caller that the alleged owner is busy.
|
|
*/
|
|
if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
|
|
return -EBUSY;
|
|
|
|
/*
|
|
* Reread the user space value to handle the following situation:
|
|
*
|
|
* CPU0 CPU1
|
|
*
|
|
* sys_exit() sys_futex()
|
|
* do_exit() futex_lock_pi()
|
|
* futex_lock_pi_atomic()
|
|
* exit_signals(tsk) No waiters:
|
|
* tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
|
|
* mm_release(tsk) Set waiter bit
|
|
* exit_robust_list(tsk) { *uaddr = 0x80000PID;
|
|
* Set owner died attach_to_pi_owner() {
|
|
* *uaddr = 0xC0000000; tsk = get_task(PID);
|
|
* } if (!tsk->flags & PF_EXITING) {
|
|
* ... attach();
|
|
* tsk->futex_state = } else {
|
|
* FUTEX_STATE_DEAD; if (tsk->futex_state !=
|
|
* FUTEX_STATE_DEAD)
|
|
* return -EAGAIN;
|
|
* return -ESRCH; <--- FAIL
|
|
* }
|
|
*
|
|
* Returning ESRCH unconditionally is wrong here because the
|
|
* user space value has been changed by the exiting task.
|
|
*
|
|
* The same logic applies to the case where the exiting task is
|
|
* already gone.
|
|
*/
|
|
if (get_futex_value_locked(&uval2, uaddr))
|
|
return -EFAULT;
|
|
|
|
/* If the user space value has changed, try again. */
|
|
if (uval2 != uval)
|
|
return -EAGAIN;
|
|
|
|
/*
|
|
* The exiting task did not have a robust list, the robust list was
|
|
* corrupted or the user space value in *uaddr is simply bogus.
|
|
* Give up and tell user space.
|
|
*/
|
|
return -ESRCH;
|
|
}
|
|
|
|
/*
|
|
* Lookup the task for the TID provided from user space and attach to
|
|
* it after doing proper sanity checks.
|
|
*/
|
|
static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
|
|
struct futex_pi_state **ps,
|
|
struct task_struct **exiting)
|
|
{
|
|
pid_t pid = uval & FUTEX_TID_MASK;
|
|
struct futex_pi_state *pi_state;
|
|
struct task_struct *p;
|
|
|
|
/*
|
|
* We are the first waiter - try to look up the real owner and attach
|
|
* the new pi_state to it, but bail out when TID = 0 [1]
|
|
*
|
|
* The !pid check is paranoid. None of the call sites should end up
|
|
* with pid == 0, but better safe than sorry. Let the caller retry
|
|
*/
|
|
if (!pid)
|
|
return -EAGAIN;
|
|
p = find_get_task_by_vpid(pid);
|
|
if (!p)
|
|
return handle_exit_race(uaddr, uval, NULL);
|
|
|
|
if (unlikely(p->flags & PF_KTHREAD)) {
|
|
put_task_struct(p);
|
|
return -EPERM;
|
|
}
|
|
|
|
/*
|
|
* We need to look at the task state to figure out, whether the
|
|
* task is exiting. To protect against the change of the task state
|
|
* in futex_exit_release(), we do this protected by p->pi_lock:
|
|
*/
|
|
raw_spin_lock_irq(&p->pi_lock);
|
|
if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
|
|
/*
|
|
* The task is on the way out. When the futex state is
|
|
* FUTEX_STATE_DEAD, we know that the task has finished
|
|
* the cleanup:
|
|
*/
|
|
int ret = handle_exit_race(uaddr, uval, p);
|
|
|
|
raw_spin_unlock_irq(&p->pi_lock);
|
|
/*
|
|
* If the owner task is between FUTEX_STATE_EXITING and
|
|
* FUTEX_STATE_DEAD then store the task pointer and keep
|
|
* the reference on the task struct. The calling code will
|
|
* drop all locks, wait for the task to reach
|
|
* FUTEX_STATE_DEAD and then drop the refcount. This is
|
|
* required to prevent a live lock when the current task
|
|
* preempted the exiting task between the two states.
|
|
*/
|
|
if (ret == -EBUSY)
|
|
*exiting = p;
|
|
else
|
|
put_task_struct(p);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* No existing pi state. First waiter. [2]
|
|
*
|
|
* This creates pi_state, we have hb->lock held, this means nothing can
|
|
* observe this state, wait_lock is irrelevant.
|
|
*/
|
|
pi_state = alloc_pi_state();
|
|
|
|
/*
|
|
* Initialize the pi_mutex in locked state and make @p
|
|
* the owner of it:
|
|
*/
|
|
rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
|
|
|
|
/* Store the key for possible exit cleanups: */
|
|
pi_state->key = *key;
|
|
|
|
WARN_ON(!list_empty(&pi_state->list));
|
|
list_add(&pi_state->list, &p->pi_state_list);
|
|
/*
|
|
* Assignment without holding pi_state->pi_mutex.wait_lock is safe
|
|
* because there is no concurrency as the object is not published yet.
|
|
*/
|
|
pi_state->owner = p;
|
|
raw_spin_unlock_irq(&p->pi_lock);
|
|
|
|
put_task_struct(p);
|
|
|
|
*ps = pi_state;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int lookup_pi_state(u32 __user *uaddr, u32 uval,
|
|
struct futex_hash_bucket *hb,
|
|
union futex_key *key, struct futex_pi_state **ps,
|
|
struct task_struct **exiting)
|
|
{
|
|
struct futex_q *top_waiter = futex_top_waiter(hb, key);
|
|
|
|
/*
|
|
* If there is a waiter on that futex, validate it and
|
|
* attach to the pi_state when the validation succeeds.
|
|
*/
|
|
if (top_waiter)
|
|
return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
|
|
|
|
/*
|
|
* We are the first waiter - try to look up the owner based on
|
|
* @uval and attach to it.
|
|
*/
|
|
return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
|
|
}
|
|
|
|
static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
|
|
{
|
|
int err;
|
|
u32 uninitialized_var(curval);
|
|
|
|
if (unlikely(should_fail_futex(true)))
|
|
return -EFAULT;
|
|
|
|
err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
/* If user space value changed, let the caller retry */
|
|
return curval != uval ? -EAGAIN : 0;
|
|
}
|
|
|
|
/**
|
|
* futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
|
|
* @uaddr: the pi futex user address
|
|
* @hb: the pi futex hash bucket
|
|
* @key: the futex key associated with uaddr and hb
|
|
* @ps: the pi_state pointer where we store the result of the
|
|
* lookup
|
|
* @task: the task to perform the atomic lock work for. This will
|
|
* be "current" except in the case of requeue pi.
|
|
* @exiting: Pointer to store the task pointer of the owner task
|
|
* which is in the middle of exiting
|
|
* @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
|
|
*
|
|
* Return:
|
|
* - 0 - ready to wait;
|
|
* - 1 - acquired the lock;
|
|
* - <0 - error
|
|
*
|
|
* The hb->lock and futex_key refs shall be held by the caller.
|
|
*
|
|
* @exiting is only set when the return value is -EBUSY. If so, this holds
|
|
* a refcount on the exiting task on return and the caller needs to drop it
|
|
* after waiting for the exit to complete.
|
|
*/
|
|
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
|
|
union futex_key *key,
|
|
struct futex_pi_state **ps,
|
|
struct task_struct *task,
|
|
struct task_struct **exiting,
|
|
int set_waiters)
|
|
{
|
|
u32 uval, newval, vpid = task_pid_vnr(task);
|
|
struct futex_q *top_waiter;
|
|
int ret;
|
|
|
|
/*
|
|
* Read the user space value first so we can validate a few
|
|
* things before proceeding further.
|
|
*/
|
|
if (get_futex_value_locked(&uval, uaddr))
|
|
return -EFAULT;
|
|
|
|
if (unlikely(should_fail_futex(true)))
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* Detect deadlocks.
|
|
*/
|
|
if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
|
|
return -EDEADLK;
|
|
|
|
if ((unlikely(should_fail_futex(true))))
|
|
return -EDEADLK;
|
|
|
|
/*
|
|
* Lookup existing state first. If it exists, try to attach to
|
|
* its pi_state.
|
|
*/
|
|
top_waiter = futex_top_waiter(hb, key);
|
|
if (top_waiter)
|
|
return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
|
|
|
|
/*
|
|
* No waiter and user TID is 0. We are here because the
|
|
* waiters or the owner died bit is set or called from
|
|
* requeue_cmp_pi or for whatever reason something took the
|
|
* syscall.
|
|
*/
|
|
if (!(uval & FUTEX_TID_MASK)) {
|
|
/*
|
|
* We take over the futex. No other waiters and the user space
|
|
* TID is 0. We preserve the owner died bit.
|
|
*/
|
|
newval = uval & FUTEX_OWNER_DIED;
|
|
newval |= vpid;
|
|
|
|
/* The futex requeue_pi code can enforce the waiters bit */
|
|
if (set_waiters)
|
|
newval |= FUTEX_WAITERS;
|
|
|
|
ret = lock_pi_update_atomic(uaddr, uval, newval);
|
|
/* If the take over worked, return 1 */
|
|
return ret < 0 ? ret : 1;
|
|
}
|
|
|
|
/*
|
|
* First waiter. Set the waiters bit before attaching ourself to
|
|
* the owner. If owner tries to unlock, it will be forced into
|
|
* the kernel and blocked on hb->lock.
|
|
*/
|
|
newval = uval | FUTEX_WAITERS;
|
|
ret = lock_pi_update_atomic(uaddr, uval, newval);
|
|
if (ret)
|
|
return ret;
|
|
/*
|
|
* If the update of the user space value succeeded, we try to
|
|
* attach to the owner. If that fails, no harm done, we only
|
|
* set the FUTEX_WAITERS bit in the user space variable.
|
|
*/
|
|
return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
|
|
}
|
|
|
|
/**
|
|
* __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
|
|
* @q: The futex_q to unqueue
|
|
*
|
|
* The q->lock_ptr must not be NULL and must be held by the caller.
|
|
*/
|
|
static void __unqueue_futex(struct futex_q *q)
|
|
{
|
|
struct futex_hash_bucket *hb;
|
|
|
|
if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
|
|
return;
|
|
lockdep_assert_held(q->lock_ptr);
|
|
|
|
hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
|
|
plist_del(&q->list, &hb->chain);
|
|
hb_waiters_dec(hb);
|
|
}
|
|
|
|
/*
|
|
* The hash bucket lock must be held when this is called.
|
|
* Afterwards, the futex_q must not be accessed. Callers
|
|
* must ensure to later call wake_up_q() for the actual
|
|
* wakeups to occur.
|
|
*/
|
|
static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
|
|
{
|
|
struct task_struct *p = q->task;
|
|
|
|
if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
|
|
return;
|
|
|
|
get_task_struct(p);
|
|
__unqueue_futex(q);
|
|
/*
|
|
* The waiting task can free the futex_q as soon as q->lock_ptr = NULL
|
|
* is written, without taking any locks. This is possible in the event
|
|
* of a spurious wakeup, for example. A memory barrier is required here
|
|
* to prevent the following store to lock_ptr from getting ahead of the
|
|
* plist_del in __unqueue_futex().
|
|
*/
|
|
smp_store_release(&q->lock_ptr, NULL);
|
|
|
|
/*
|
|
* Queue the task for later wakeup for after we've released
|
|
* the hb->lock.
|
|
*/
|
|
wake_q_add_safe(wake_q, p);
|
|
}
|
|
|
|
/*
|
|
* Caller must hold a reference on @pi_state.
|
|
*/
|
|
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
|
|
{
|
|
u32 uninitialized_var(curval), newval;
|
|
struct task_struct *new_owner;
|
|
bool postunlock = false;
|
|
DEFINE_WAKE_Q(wake_q);
|
|
int ret = 0;
|
|
|
|
new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
|
|
if (WARN_ON_ONCE(!new_owner)) {
|
|
/*
|
|
* As per the comment in futex_unlock_pi() this should not happen.
|
|
*
|
|
* When this happens, give up our locks and try again, giving
|
|
* the futex_lock_pi() instance time to complete, either by
|
|
* waiting on the rtmutex or removing itself from the futex
|
|
* queue.
|
|
*/
|
|
ret = -EAGAIN;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* We pass it to the next owner. The WAITERS bit is always kept
|
|
* enabled while there is PI state around. We cleanup the owner
|
|
* died bit, because we are the owner.
|
|
*/
|
|
newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
|
|
|
|
if (unlikely(should_fail_futex(true)))
|
|
ret = -EFAULT;
|
|
|
|
ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
|
|
if (!ret && (curval != uval)) {
|
|
/*
|
|
* If a unconditional UNLOCK_PI operation (user space did not
|
|
* try the TID->0 transition) raced with a waiter setting the
|
|
* FUTEX_WAITERS flag between get_user() and locking the hash
|
|
* bucket lock, retry the operation.
|
|
*/
|
|
if ((FUTEX_TID_MASK & curval) == uval)
|
|
ret = -EAGAIN;
|
|
else
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* This is a point of no return; once we modify the uval there is no
|
|
* going back and subsequent operations must not fail.
|
|
*/
|
|
|
|
raw_spin_lock(&pi_state->owner->pi_lock);
|
|
WARN_ON(list_empty(&pi_state->list));
|
|
list_del_init(&pi_state->list);
|
|
raw_spin_unlock(&pi_state->owner->pi_lock);
|
|
|
|
raw_spin_lock(&new_owner->pi_lock);
|
|
WARN_ON(!list_empty(&pi_state->list));
|
|
list_add(&pi_state->list, &new_owner->pi_state_list);
|
|
pi_state->owner = new_owner;
|
|
raw_spin_unlock(&new_owner->pi_lock);
|
|
|
|
postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
|
|
|
|
out_unlock:
|
|
raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
|
|
|
|
if (postunlock)
|
|
rt_mutex_postunlock(&wake_q);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Express the locking dependencies for lockdep:
|
|
*/
|
|
static inline void
|
|
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
|
|
{
|
|
if (hb1 <= hb2) {
|
|
spin_lock(&hb1->lock);
|
|
if (hb1 < hb2)
|
|
spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
|
|
} else { /* hb1 > hb2 */
|
|
spin_lock(&hb2->lock);
|
|
spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
|
|
{
|
|
spin_unlock(&hb1->lock);
|
|
if (hb1 != hb2)
|
|
spin_unlock(&hb2->lock);
|
|
}
|
|
|
|
/*
|
|
* Wake up waiters matching bitset queued on this futex (uaddr).
|
|
*/
|
|
static int
|
|
futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
|
|
{
|
|
struct futex_hash_bucket *hb;
|
|
struct futex_q *this, *next;
|
|
union futex_key key = FUTEX_KEY_INIT;
|
|
int ret;
|
|
DEFINE_WAKE_Q(wake_q);
|
|
|
|
if (!bitset)
|
|
return -EINVAL;
|
|
|
|
ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
|
|
if (unlikely(ret != 0))
|
|
goto out;
|
|
|
|
hb = hash_futex(&key);
|
|
|
|
/* Make sure we really have tasks to wakeup */
|
|
if (!hb_waiters_pending(hb))
|
|
goto out_put_key;
|
|
|
|
spin_lock(&hb->lock);
|
|
|
|
plist_for_each_entry_safe(this, next, &hb->chain, list) {
|
|
if (match_futex (&this->key, &key)) {
|
|
if (this->pi_state || this->rt_waiter) {
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
/* Check if one of the bits is set in both bitsets */
|
|
if (!(this->bitset & bitset))
|
|
continue;
|
|
|
|
mark_wake_futex(&wake_q, this);
|
|
if (++ret >= nr_wake)
|
|
break;
|
|
}
|
|
}
|
|
|
|
spin_unlock(&hb->lock);
|
|
wake_up_q(&wake_q);
|
|
out_put_key:
|
|
put_futex_key(&key);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
|
|
{
|
|
unsigned int op = (encoded_op & 0x70000000) >> 28;
|
|
unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
|
|
int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
|
|
int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
|
|
int oldval, ret;
|
|
|
|
if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
|
|
if (oparg < 0 || oparg > 31) {
|
|
char comm[sizeof(current->comm)];
|
|
/*
|
|
* kill this print and return -EINVAL when userspace
|
|
* is sane again
|
|
*/
|
|
pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
|
|
get_task_comm(comm, current), oparg);
|
|
oparg &= 31;
|
|
}
|
|
oparg = 1 << oparg;
|
|
}
|
|
|
|
pagefault_disable();
|
|
ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
|
|
pagefault_enable();
|
|
if (ret)
|
|
return ret;
|
|
|
|
switch (cmp) {
|
|
case FUTEX_OP_CMP_EQ:
|
|
return oldval == cmparg;
|
|
case FUTEX_OP_CMP_NE:
|
|
return oldval != cmparg;
|
|
case FUTEX_OP_CMP_LT:
|
|
return oldval < cmparg;
|
|
case FUTEX_OP_CMP_GE:
|
|
return oldval >= cmparg;
|
|
case FUTEX_OP_CMP_LE:
|
|
return oldval <= cmparg;
|
|
case FUTEX_OP_CMP_GT:
|
|
return oldval > cmparg;
|
|
default:
|
|
return -ENOSYS;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Wake up all waiters hashed on the physical page that is mapped
|
|
* to this virtual address:
|
|
*/
|
|
static int
|
|
futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
|
|
int nr_wake, int nr_wake2, int op)
|
|
{
|
|
union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
|
|
struct futex_hash_bucket *hb1, *hb2;
|
|
struct futex_q *this, *next;
|
|
int ret, op_ret;
|
|
DEFINE_WAKE_Q(wake_q);
|
|
|
|
retry:
|
|
ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
|
|
if (unlikely(ret != 0))
|
|
goto out;
|
|
ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
|
|
if (unlikely(ret != 0))
|
|
goto out_put_key1;
|
|
|
|
hb1 = hash_futex(&key1);
|
|
hb2 = hash_futex(&key2);
|
|
|
|
retry_private:
|
|
double_lock_hb(hb1, hb2);
|
|
op_ret = futex_atomic_op_inuser(op, uaddr2);
|
|
if (unlikely(op_ret < 0)) {
|
|
double_unlock_hb(hb1, hb2);
|
|
|
|
if (!IS_ENABLED(CONFIG_MMU) ||
|
|
unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
|
|
/*
|
|
* we don't get EFAULT from MMU faults if we don't have
|
|
* an MMU, but we might get them from range checking
|
|
*/
|
|
ret = op_ret;
|
|
goto out_put_keys;
|
|
}
|
|
|
|
if (op_ret == -EFAULT) {
|
|
ret = fault_in_user_writeable(uaddr2);
|
|
if (ret)
|
|
goto out_put_keys;
|
|
}
|
|
|
|
if (!(flags & FLAGS_SHARED)) {
|
|
cond_resched();
|
|
goto retry_private;
|
|
}
|
|
|
|
put_futex_key(&key2);
|
|
put_futex_key(&key1);
|
|
cond_resched();
|
|
goto retry;
|
|
}
|
|
|
|
plist_for_each_entry_safe(this, next, &hb1->chain, list) {
|
|
if (match_futex (&this->key, &key1)) {
|
|
if (this->pi_state || this->rt_waiter) {
|
|
ret = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
mark_wake_futex(&wake_q, this);
|
|
if (++ret >= nr_wake)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (op_ret > 0) {
|
|
op_ret = 0;
|
|
plist_for_each_entry_safe(this, next, &hb2->chain, list) {
|
|
if (match_futex (&this->key, &key2)) {
|
|
if (this->pi_state || this->rt_waiter) {
|
|
ret = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
mark_wake_futex(&wake_q, this);
|
|
if (++op_ret >= nr_wake2)
|
|
break;
|
|
}
|
|
}
|
|
ret += op_ret;
|
|
}
|
|
|
|
out_unlock:
|
|
double_unlock_hb(hb1, hb2);
|
|
wake_up_q(&wake_q);
|
|
out_put_keys:
|
|
put_futex_key(&key2);
|
|
out_put_key1:
|
|
put_futex_key(&key1);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* requeue_futex() - Requeue a futex_q from one hb to another
|
|
* @q: the futex_q to requeue
|
|
* @hb1: the source hash_bucket
|
|
* @hb2: the target hash_bucket
|
|
* @key2: the new key for the requeued futex_q
|
|
*/
|
|
static inline
|
|
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
|
|
struct futex_hash_bucket *hb2, union futex_key *key2)
|
|
{
|
|
|
|
/*
|
|
* If key1 and key2 hash to the same bucket, no need to
|
|
* requeue.
|
|
*/
|
|
if (likely(&hb1->chain != &hb2->chain)) {
|
|
plist_del(&q->list, &hb1->chain);
|
|
hb_waiters_dec(hb1);
|
|
hb_waiters_inc(hb2);
|
|
plist_add(&q->list, &hb2->chain);
|
|
q->lock_ptr = &hb2->lock;
|
|
}
|
|
q->key = *key2;
|
|
}
|
|
|
|
/**
|
|
* requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
|
|
* @q: the futex_q
|
|
* @key: the key of the requeue target futex
|
|
* @hb: the hash_bucket of the requeue target futex
|
|
*
|
|
* During futex_requeue, with requeue_pi=1, it is possible to acquire the
|
|
* target futex if it is uncontended or via a lock steal. Set the futex_q key
|
|
* to the requeue target futex so the waiter can detect the wakeup on the right
|
|
* futex, but remove it from the hb and NULL the rt_waiter so it can detect
|
|
* atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
|
|
* to protect access to the pi_state to fixup the owner later. Must be called
|
|
* with both q->lock_ptr and hb->lock held.
|
|
*/
|
|
static inline
|
|
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
|
|
struct futex_hash_bucket *hb)
|
|
{
|
|
q->key = *key;
|
|
|
|
__unqueue_futex(q);
|
|
|
|
WARN_ON(!q->rt_waiter);
|
|
q->rt_waiter = NULL;
|
|
|
|
q->lock_ptr = &hb->lock;
|
|
|
|
wake_up_state(q->task, TASK_NORMAL);
|
|
}
|
|
|
|
/**
|
|
* futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
|
|
* @pifutex: the user address of the to futex
|
|
* @hb1: the from futex hash bucket, must be locked by the caller
|
|
* @hb2: the to futex hash bucket, must be locked by the caller
|
|
* @key1: the from futex key
|
|
* @key2: the to futex key
|
|
* @ps: address to store the pi_state pointer
|
|
* @exiting: Pointer to store the task pointer of the owner task
|
|
* which is in the middle of exiting
|
|
* @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
|
|
*
|
|
* Try and get the lock on behalf of the top waiter if we can do it atomically.
|
|
* Wake the top waiter if we succeed. If the caller specified set_waiters,
|
|
* then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
|
|
* hb1 and hb2 must be held by the caller.
|
|
*
|
|
* @exiting is only set when the return value is -EBUSY. If so, this holds
|
|
* a refcount on the exiting task on return and the caller needs to drop it
|
|
* after waiting for the exit to complete.
|
|
*
|
|
* Return:
|
|
* - 0 - failed to acquire the lock atomically;
|
|
* - >0 - acquired the lock, return value is vpid of the top_waiter
|
|
* - <0 - error
|
|
*/
|
|
static int
|
|
futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
|
|
struct futex_hash_bucket *hb2, union futex_key *key1,
|
|
union futex_key *key2, struct futex_pi_state **ps,
|
|
struct task_struct **exiting, int set_waiters)
|
|
{
|
|
struct futex_q *top_waiter = NULL;
|
|
u32 curval;
|
|
int ret, vpid;
|
|
|
|
if (get_futex_value_locked(&curval, pifutex))
|
|
return -EFAULT;
|
|
|
|
if (unlikely(should_fail_futex(true)))
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* Find the top_waiter and determine if there are additional waiters.
|
|
* If the caller intends to requeue more than 1 waiter to pifutex,
|
|
* force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
|
|
* as we have means to handle the possible fault. If not, don't set
|
|
* the bit unecessarily as it will force the subsequent unlock to enter
|
|
* the kernel.
|
|
*/
|
|
top_waiter = futex_top_waiter(hb1, key1);
|
|
|
|
/* There are no waiters, nothing for us to do. */
|
|
if (!top_waiter)
|
|
return 0;
|
|
|
|
/* Ensure we requeue to the expected futex. */
|
|
if (!match_futex(top_waiter->requeue_pi_key, key2))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
|
|
* the contended case or if set_waiters is 1. The pi_state is returned
|
|
* in ps in contended cases.
|
|
*/
|
|
vpid = task_pid_vnr(top_waiter->task);
|
|
ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
|
|
exiting, set_waiters);
|
|
if (ret == 1) {
|
|
requeue_pi_wake_futex(top_waiter, key2, hb2);
|
|
return vpid;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* futex_requeue() - Requeue waiters from uaddr1 to uaddr2
|
|
* @uaddr1: source futex user address
|
|
* @flags: futex flags (FLAGS_SHARED, etc.)
|
|
* @uaddr2: target futex user address
|
|
* @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
|
|
* @nr_requeue: number of waiters to requeue (0-INT_MAX)
|
|
* @cmpval: @uaddr1 expected value (or %NULL)
|
|
* @requeue_pi: if we are attempting to requeue from a non-pi futex to a
|
|
* pi futex (pi to pi requeue is not supported)
|
|
*
|
|
* Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
|
|
* uaddr2 atomically on behalf of the top waiter.
|
|
*
|
|
* Return:
|
|
* - >=0 - on success, the number of tasks requeued or woken;
|
|
* - <0 - on error
|
|
*/
|
|
static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
|
|
u32 __user *uaddr2, int nr_wake, int nr_requeue,
|
|
u32 *cmpval, int requeue_pi)
|
|
{
|
|
union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
|
|
int task_count = 0, ret;
|
|
struct futex_pi_state *pi_state = NULL;
|
|
struct futex_hash_bucket *hb1, *hb2;
|
|
struct futex_q *this, *next;
|
|
DEFINE_WAKE_Q(wake_q);
|
|
|
|
if (nr_wake < 0 || nr_requeue < 0)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* When PI not supported: return -ENOSYS if requeue_pi is true,
|
|
* consequently the compiler knows requeue_pi is always false past
|
|
* this point which will optimize away all the conditional code
|
|
* further down.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
|
|
return -ENOSYS;
|
|
|
|
if (requeue_pi) {
|
|
/*
|
|
* Requeue PI only works on two distinct uaddrs. This
|
|
* check is only valid for private futexes. See below.
|
|
*/
|
|
if (uaddr1 == uaddr2)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* requeue_pi requires a pi_state, try to allocate it now
|
|
* without any locks in case it fails.
|
|
*/
|
|
if (refill_pi_state_cache())
|
|
return -ENOMEM;
|
|
/*
|
|
* requeue_pi must wake as many tasks as it can, up to nr_wake
|
|
* + nr_requeue, since it acquires the rt_mutex prior to
|
|
* returning to userspace, so as to not leave the rt_mutex with
|
|
* waiters and no owner. However, second and third wake-ups
|
|
* cannot be predicted as they involve race conditions with the
|
|
* first wake and a fault while looking up the pi_state. Both
|
|
* pthread_cond_signal() and pthread_cond_broadcast() should
|
|
* use nr_wake=1.
|
|
*/
|
|
if (nr_wake != 1)
|
|
return -EINVAL;
|
|
}
|
|
|
|
retry:
|
|
ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
|
|
if (unlikely(ret != 0))
|
|
goto out;
|
|
ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
|
|
requeue_pi ? FUTEX_WRITE : FUTEX_READ);
|
|
if (unlikely(ret != 0))
|
|
goto out_put_key1;
|
|
|
|
/*
|
|
* The check above which compares uaddrs is not sufficient for
|
|
* shared futexes. We need to compare the keys:
|
|
*/
|
|
if (requeue_pi && match_futex(&key1, &key2)) {
|
|
ret = -EINVAL;
|
|
goto out_put_keys;
|
|
}
|
|
|
|
hb1 = hash_futex(&key1);
|
|
hb2 = hash_futex(&key2);
|
|
|
|
retry_private:
|
|
hb_waiters_inc(hb2);
|
|
double_lock_hb(hb1, hb2);
|
|
|
|
if (likely(cmpval != NULL)) {
|
|
u32 curval;
|
|
|
|
ret = get_futex_value_locked(&curval, uaddr1);
|
|
|
|
if (unlikely(ret)) {
|
|
double_unlock_hb(hb1, hb2);
|
|
hb_waiters_dec(hb2);
|
|
|
|
ret = get_user(curval, uaddr1);
|
|
if (ret)
|
|
goto out_put_keys;
|
|
|
|
if (!(flags & FLAGS_SHARED))
|
|
goto retry_private;
|
|
|
|
put_futex_key(&key2);
|
|
put_futex_key(&key1);
|
|
goto retry;
|
|
}
|
|
if (curval != *cmpval) {
|
|
ret = -EAGAIN;
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
|
|
struct task_struct *exiting = NULL;
|
|
|
|
/*
|
|
* Attempt to acquire uaddr2 and wake the top waiter. If we
|
|
* intend to requeue waiters, force setting the FUTEX_WAITERS
|
|
* bit. We force this here where we are able to easily handle
|
|
* faults rather in the requeue loop below.
|
|
*/
|
|
ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
|
|
&key2, &pi_state,
|
|
&exiting, nr_requeue);
|
|
|
|
/*
|
|
* At this point the top_waiter has either taken uaddr2 or is
|
|
* waiting on it. If the former, then the pi_state will not
|
|
* exist yet, look it up one more time to ensure we have a
|
|
* reference to it. If the lock was taken, ret contains the
|
|
* vpid of the top waiter task.
|
|
* If the lock was not taken, we have pi_state and an initial
|
|
* refcount on it. In case of an error we have nothing.
|
|
*/
|
|
if (ret > 0) {
|
|
WARN_ON(pi_state);
|
|
task_count++;
|
|
/*
|
|
* If we acquired the lock, then the user space value
|
|
* of uaddr2 should be vpid. It cannot be changed by
|
|
* the top waiter as it is blocked on hb2 lock if it
|
|
* tries to do so. If something fiddled with it behind
|
|
* our back the pi state lookup might unearth it. So
|
|
* we rather use the known value than rereading and
|
|
* handing potential crap to lookup_pi_state.
|
|
*
|
|
* If that call succeeds then we have pi_state and an
|
|
* initial refcount on it.
|
|
*/
|
|
ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
|
|
&pi_state, &exiting);
|
|
}
|
|
|
|
switch (ret) {
|
|
case 0:
|
|
/* We hold a reference on the pi state. */
|
|
break;
|
|
|
|
/* If the above failed, then pi_state is NULL */
|
|
case -EFAULT:
|
|
double_unlock_hb(hb1, hb2);
|
|
hb_waiters_dec(hb2);
|
|
put_futex_key(&key2);
|
|
put_futex_key(&key1);
|
|
ret = fault_in_user_writeable(uaddr2);
|
|
if (!ret)
|
|
goto retry;
|
|
goto out;
|
|
case -EBUSY:
|
|
case -EAGAIN:
|
|
/*
|
|
* Two reasons for this:
|
|
* - EBUSY: Owner is exiting and we just wait for the
|
|
* exit to complete.
|
|
* - EAGAIN: The user space value changed.
|
|
*/
|
|
double_unlock_hb(hb1, hb2);
|
|
hb_waiters_dec(hb2);
|
|
put_futex_key(&key2);
|
|
put_futex_key(&key1);
|
|
/*
|
|
* Handle the case where the owner is in the middle of
|
|
* exiting. Wait for the exit to complete otherwise
|
|
* this task might loop forever, aka. live lock.
|
|
*/
|
|
wait_for_owner_exiting(ret, exiting);
|
|
cond_resched();
|
|
goto retry;
|
|
default:
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
plist_for_each_entry_safe(this, next, &hb1->chain, list) {
|
|
if (task_count - nr_wake >= nr_requeue)
|
|
break;
|
|
|
|
if (!match_futex(&this->key, &key1))
|
|
continue;
|
|
|
|
/*
|
|
* FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
|
|
* be paired with each other and no other futex ops.
|
|
*
|
|
* We should never be requeueing a futex_q with a pi_state,
|
|
* which is awaiting a futex_unlock_pi().
|
|
*/
|
|
if ((requeue_pi && !this->rt_waiter) ||
|
|
(!requeue_pi && this->rt_waiter) ||
|
|
this->pi_state) {
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Wake nr_wake waiters. For requeue_pi, if we acquired the
|
|
* lock, we already woke the top_waiter. If not, it will be
|
|
* woken by futex_unlock_pi().
|
|
*/
|
|
if (++task_count <= nr_wake && !requeue_pi) {
|
|
mark_wake_futex(&wake_q, this);
|
|
continue;
|
|
}
|
|
|
|
/* Ensure we requeue to the expected futex for requeue_pi. */
|
|
if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Requeue nr_requeue waiters and possibly one more in the case
|
|
* of requeue_pi if we couldn't acquire the lock atomically.
|
|
*/
|
|
if (requeue_pi) {
|
|
/*
|
|
* Prepare the waiter to take the rt_mutex. Take a
|
|
* refcount on the pi_state and store the pointer in
|
|
* the futex_q object of the waiter.
|
|
*/
|
|
get_pi_state(pi_state);
|
|
this->pi_state = pi_state;
|
|
ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
|
|
this->rt_waiter,
|
|
this->task);
|
|
if (ret == 1) {
|
|
/*
|
|
* We got the lock. We do neither drop the
|
|
* refcount on pi_state nor clear
|
|
* this->pi_state because the waiter needs the
|
|
* pi_state for cleaning up the user space
|
|
* value. It will drop the refcount after
|
|
* doing so.
|
|
*/
|
|
requeue_pi_wake_futex(this, &key2, hb2);
|
|
continue;
|
|
} else if (ret) {
|
|
/*
|
|
* rt_mutex_start_proxy_lock() detected a
|
|
* potential deadlock when we tried to queue
|
|
* that waiter. Drop the pi_state reference
|
|
* which we took above and remove the pointer
|
|
* to the state from the waiters futex_q
|
|
* object.
|
|
*/
|
|
this->pi_state = NULL;
|
|
put_pi_state(pi_state);
|
|
/*
|
|
* We stop queueing more waiters and let user
|
|
* space deal with the mess.
|
|
*/
|
|
break;
|
|
}
|
|
}
|
|
requeue_futex(this, hb1, hb2, &key2);
|
|
}
|
|
|
|
/*
|
|
* We took an extra initial reference to the pi_state either
|
|
* in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
|
|
* need to drop it here again.
|
|
*/
|
|
put_pi_state(pi_state);
|
|
|
|
out_unlock:
|
|
double_unlock_hb(hb1, hb2);
|
|
wake_up_q(&wake_q);
|
|
hb_waiters_dec(hb2);
|
|
|
|
out_put_keys:
|
|
put_futex_key(&key2);
|
|
out_put_key1:
|
|
put_futex_key(&key1);
|
|
out:
|
|
return ret ? ret : task_count;
|
|
}
|
|
|
|
/* The key must be already stored in q->key. */
|
|
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
|
|
__acquires(&hb->lock)
|
|
{
|
|
struct futex_hash_bucket *hb;
|
|
|
|
hb = hash_futex(&q->key);
|
|
|
|
/*
|
|
* Increment the counter before taking the lock so that
|
|
* a potential waker won't miss a to-be-slept task that is
|
|
* waiting for the spinlock. This is safe as all queue_lock()
|
|
* users end up calling queue_me(). Similarly, for housekeeping,
|
|
* decrement the counter at queue_unlock() when some error has
|
|
* occurred and we don't end up adding the task to the list.
|
|
*/
|
|
hb_waiters_inc(hb); /* implies smp_mb(); (A) */
|
|
|
|
q->lock_ptr = &hb->lock;
|
|
|
|
spin_lock(&hb->lock);
|
|
return hb;
|
|
}
|
|
|
|
static inline void
|
|
queue_unlock(struct futex_hash_bucket *hb)
|
|
__releases(&hb->lock)
|
|
{
|
|
spin_unlock(&hb->lock);
|
|
hb_waiters_dec(hb);
|
|
}
|
|
|
|
static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
|
|
{
|
|
int prio;
|
|
|
|
/*
|
|
* The priority used to register this element is
|
|
* - either the real thread-priority for the real-time threads
|
|
* (i.e. threads with a priority lower than MAX_RT_PRIO)
|
|
* - or MAX_RT_PRIO for non-RT threads.
|
|
* Thus, all RT-threads are woken first in priority order, and
|
|
* the others are woken last, in FIFO order.
|
|
*/
|
|
prio = min(current->normal_prio, MAX_RT_PRIO);
|
|
|
|
plist_node_init(&q->list, prio);
|
|
plist_add(&q->list, &hb->chain);
|
|
q->task = current;
|
|
}
|
|
|
|
/**
|
|
* queue_me() - Enqueue the futex_q on the futex_hash_bucket
|
|
* @q: The futex_q to enqueue
|
|
* @hb: The destination hash bucket
|
|
*
|
|
* The hb->lock must be held by the caller, and is released here. A call to
|
|
* queue_me() is typically paired with exactly one call to unqueue_me(). The
|
|
* exceptions involve the PI related operations, which may use unqueue_me_pi()
|
|
* or nothing if the unqueue is done as part of the wake process and the unqueue
|
|
* state is implicit in the state of woken task (see futex_wait_requeue_pi() for
|
|
* an example).
|
|
*/
|
|
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
|
|
__releases(&hb->lock)
|
|
{
|
|
__queue_me(q, hb);
|
|
spin_unlock(&hb->lock);
|
|
}
|
|
|
|
/**
|
|
* unqueue_me() - Remove the futex_q from its futex_hash_bucket
|
|
* @q: The futex_q to unqueue
|
|
*
|
|
* The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
|
|
* be paired with exactly one earlier call to queue_me().
|
|
*
|
|
* Return:
|
|
* - 1 - if the futex_q was still queued (and we removed unqueued it);
|
|
* - 0 - if the futex_q was already removed by the waking thread
|
|
*/
|
|
static int unqueue_me(struct futex_q *q)
|
|
{
|
|
spinlock_t *lock_ptr;
|
|
int ret = 0;
|
|
|
|
/* In the common case we don't take the spinlock, which is nice. */
|
|
retry:
|
|
/*
|
|
* q->lock_ptr can change between this read and the following spin_lock.
|
|
* Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
|
|
* optimizing lock_ptr out of the logic below.
|
|
*/
|
|
lock_ptr = READ_ONCE(q->lock_ptr);
|
|
if (lock_ptr != NULL) {
|
|
spin_lock(lock_ptr);
|
|
/*
|
|
* q->lock_ptr can change between reading it and
|
|
* spin_lock(), causing us to take the wrong lock. This
|
|
* corrects the race condition.
|
|
*
|
|
* Reasoning goes like this: if we have the wrong lock,
|
|
* q->lock_ptr must have changed (maybe several times)
|
|
* between reading it and the spin_lock(). It can
|
|
* change again after the spin_lock() but only if it was
|
|
* already changed before the spin_lock(). It cannot,
|
|
* however, change back to the original value. Therefore
|
|
* we can detect whether we acquired the correct lock.
|
|
*/
|
|
if (unlikely(lock_ptr != q->lock_ptr)) {
|
|
spin_unlock(lock_ptr);
|
|
goto retry;
|
|
}
|
|
__unqueue_futex(q);
|
|
|
|
BUG_ON(q->pi_state);
|
|
|
|
spin_unlock(lock_ptr);
|
|
ret = 1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* PI futexes can not be requeued and must remove themself from the
|
|
* hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
|
|
* and dropped here.
|
|
*/
|
|
static void unqueue_me_pi(struct futex_q *q)
|
|
__releases(q->lock_ptr)
|
|
{
|
|
__unqueue_futex(q);
|
|
|
|
BUG_ON(!q->pi_state);
|
|
put_pi_state(q->pi_state);
|
|
q->pi_state = NULL;
|
|
|
|
spin_unlock(q->lock_ptr);
|
|
}
|
|
|
|
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
|
|
struct task_struct *argowner)
|
|
{
|
|
struct futex_pi_state *pi_state = q->pi_state;
|
|
u32 uval, uninitialized_var(curval), newval;
|
|
struct task_struct *oldowner, *newowner;
|
|
u32 newtid;
|
|
int ret, err = 0;
|
|
|
|
lockdep_assert_held(q->lock_ptr);
|
|
|
|
raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
|
|
|
|
oldowner = pi_state->owner;
|
|
|
|
/*
|
|
* We are here because either:
|
|
*
|
|
* - we stole the lock and pi_state->owner needs updating to reflect
|
|
* that (@argowner == current),
|
|
*
|
|
* or:
|
|
*
|
|
* - someone stole our lock and we need to fix things to point to the
|
|
* new owner (@argowner == NULL).
|
|
*
|
|
* Either way, we have to replace the TID in the user space variable.
|
|
* This must be atomic as we have to preserve the owner died bit here.
|
|
*
|
|
* Note: We write the user space value _before_ changing the pi_state
|
|
* because we can fault here. Imagine swapped out pages or a fork
|
|
* that marked all the anonymous memory readonly for cow.
|
|
*
|
|
* Modifying pi_state _before_ the user space value would leave the
|
|
* pi_state in an inconsistent state when we fault here, because we
|
|
* need to drop the locks to handle the fault. This might be observed
|
|
* in the PID check in lookup_pi_state.
|
|
*/
|
|
retry:
|
|
if (!argowner) {
|
|
if (oldowner != current) {
|
|
/*
|
|
* We raced against a concurrent self; things are
|
|
* already fixed up. Nothing to do.
|
|
*/
|
|
ret = 0;
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
|
|
/* We got the lock after all, nothing to fix. */
|
|
ret = 0;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Since we just failed the trylock; there must be an owner.
|
|
*/
|
|
newowner = rt_mutex_owner(&pi_state->pi_mutex);
|
|
BUG_ON(!newowner);
|
|
} else {
|
|
WARN_ON_ONCE(argowner != current);
|
|
if (oldowner == current) {
|
|
/*
|
|
* We raced against a concurrent self; things are
|
|
* already fixed up. Nothing to do.
|
|
*/
|
|
ret = 0;
|
|
goto out_unlock;
|
|
}
|
|
newowner = argowner;
|
|
}
|
|
|
|
newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
|
|
/* Owner died? */
|
|
if (!pi_state->owner)
|
|
newtid |= FUTEX_OWNER_DIED;
|
|
|
|
err = get_futex_value_locked(&uval, uaddr);
|
|
if (err)
|
|
goto handle_err;
|
|
|
|
for (;;) {
|
|
newval = (uval & FUTEX_OWNER_DIED) | newtid;
|
|
|
|
err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
|
|
if (err)
|
|
goto handle_err;
|
|
|
|
if (curval == uval)
|
|
break;
|
|
uval = curval;
|
|
}
|
|
|
|
/*
|
|
* We fixed up user space. Now we need to fix the pi_state
|
|
* itself.
|
|
*/
|
|
if (pi_state->owner != NULL) {
|
|
raw_spin_lock(&pi_state->owner->pi_lock);
|
|
WARN_ON(list_empty(&pi_state->list));
|
|
list_del_init(&pi_state->list);
|
|
raw_spin_unlock(&pi_state->owner->pi_lock);
|
|
}
|
|
|
|
pi_state->owner = newowner;
|
|
|
|
raw_spin_lock(&newowner->pi_lock);
|
|
WARN_ON(!list_empty(&pi_state->list));
|
|
list_add(&pi_state->list, &newowner->pi_state_list);
|
|
raw_spin_unlock(&newowner->pi_lock);
|
|
raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
|
|
|
|
return 0;
|
|
|
|
/*
|
|
* In order to reschedule or handle a page fault, we need to drop the
|
|
* locks here. In the case of a fault, this gives the other task
|
|
* (either the highest priority waiter itself or the task which stole
|
|
* the rtmutex) the chance to try the fixup of the pi_state. So once we
|
|
* are back from handling the fault we need to check the pi_state after
|
|
* reacquiring the locks and before trying to do another fixup. When
|
|
* the fixup has been done already we simply return.
|
|
*
|
|
* Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
|
|
* drop hb->lock since the caller owns the hb -> futex_q relation.
|
|
* Dropping the pi_mutex->wait_lock requires the state revalidate.
|
|
*/
|
|
handle_err:
|
|
raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
|
|
spin_unlock(q->lock_ptr);
|
|
|
|
switch (err) {
|
|
case -EFAULT:
|
|
ret = fault_in_user_writeable(uaddr);
|
|
break;
|
|
|
|
case -EAGAIN:
|
|
cond_resched();
|
|
ret = 0;
|
|
break;
|
|
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
ret = err;
|
|
break;
|
|
}
|
|
|
|
spin_lock(q->lock_ptr);
|
|
raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
|
|
|
|
/*
|
|
* Check if someone else fixed it for us:
|
|
*/
|
|
if (pi_state->owner != oldowner) {
|
|
ret = 0;
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
goto retry;
|
|
|
|
out_unlock:
|
|
raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
|
|
return ret;
|
|
}
|
|
|
|
static long futex_wait_restart(struct restart_block *restart);
|
|
|
|
/**
|
|
* fixup_owner() - Post lock pi_state and corner case management
|
|
* @uaddr: user address of the futex
|
|
* @q: futex_q (contains pi_state and access to the rt_mutex)
|
|
* @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
|
|
*
|
|
* After attempting to lock an rt_mutex, this function is called to cleanup
|
|
* the pi_state owner as well as handle race conditions that may allow us to
|
|
* acquire the lock. Must be called with the hb lock held.
|
|
*
|
|
* Return:
|
|
* - 1 - success, lock taken;
|
|
* - 0 - success, lock not taken;
|
|
* - <0 - on error (-EFAULT)
|
|
*/
|
|
static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (locked) {
|
|
/*
|
|
* Got the lock. We might not be the anticipated owner if we
|
|
* did a lock-steal - fix up the PI-state in that case:
|
|
*
|
|
* Speculative pi_state->owner read (we don't hold wait_lock);
|
|
* since we own the lock pi_state->owner == current is the
|
|
* stable state, anything else needs more attention.
|
|
*/
|
|
if (q->pi_state->owner != current)
|
|
ret = fixup_pi_state_owner(uaddr, q, current);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If we didn't get the lock; check if anybody stole it from us. In
|
|
* that case, we need to fix up the uval to point to them instead of
|
|
* us, otherwise bad things happen. [10]
|
|
*
|
|
* Another speculative read; pi_state->owner == current is unstable
|
|
* but needs our attention.
|
|
*/
|
|
if (q->pi_state->owner == current) {
|
|
ret = fixup_pi_state_owner(uaddr, q, NULL);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Paranoia check. If we did not take the lock, then we should not be
|
|
* the owner of the rt_mutex.
|
|
*/
|
|
if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
|
|
printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
|
|
"pi-state %p\n", ret,
|
|
q->pi_state->pi_mutex.owner,
|
|
q->pi_state->owner);
|
|
}
|
|
|
|
out:
|
|
return ret ? ret : locked;
|
|
}
|
|
|
|
/**
|
|
* futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
|
|
* @hb: the futex hash bucket, must be locked by the caller
|
|
* @q: the futex_q to queue up on
|
|
* @timeout: the prepared hrtimer_sleeper, or null for no timeout
|
|
*/
|
|
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
|
|
struct hrtimer_sleeper *timeout)
|
|
{
|
|
/*
|
|
* The task state is guaranteed to be set before another task can
|
|
* wake it. set_current_state() is implemented using smp_store_mb() and
|
|
* queue_me() calls spin_unlock() upon completion, both serializing
|
|
* access to the hash list and forcing another memory barrier.
|
|
*/
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
queue_me(q, hb);
|
|
|
|
/* Arm the timer */
|
|
if (timeout)
|
|
hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
|
|
|
|
/*
|
|
* If we have been removed from the hash list, then another task
|
|
* has tried to wake us, and we can skip the call to schedule().
|
|
*/
|
|
if (likely(!plist_node_empty(&q->list))) {
|
|
/*
|
|
* If the timer has already expired, current will already be
|
|
* flagged for rescheduling. Only call schedule if there
|
|
* is no timeout, or if it has yet to expire.
|
|
*/
|
|
if (!timeout || timeout->task)
|
|
freezable_schedule();
|
|
}
|
|
__set_current_state(TASK_RUNNING);
|
|
}
|
|
|
|
/**
|
|
* futex_wait_setup() - Prepare to wait on a futex
|
|
* @uaddr: the futex userspace address
|
|
* @val: the expected value
|
|
* @flags: futex flags (FLAGS_SHARED, etc.)
|
|
* @q: the associated futex_q
|
|
* @hb: storage for hash_bucket pointer to be returned to caller
|
|
*
|
|
* Setup the futex_q and locate the hash_bucket. Get the futex value and
|
|
* compare it with the expected value. Handle atomic faults internally.
|
|
* Return with the hb lock held and a q.key reference on success, and unlocked
|
|
* with no q.key reference on failure.
|
|
*
|
|
* Return:
|
|
* - 0 - uaddr contains val and hb has been locked;
|
|
* - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
|
|
*/
|
|
static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
|
|
struct futex_q *q, struct futex_hash_bucket **hb)
|
|
{
|
|
u32 uval;
|
|
int ret;
|
|
|
|
/*
|
|
* Access the page AFTER the hash-bucket is locked.
|
|
* Order is important:
|
|
*
|
|
* Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
|
|
* Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
|
|
*
|
|
* The basic logical guarantee of a futex is that it blocks ONLY
|
|
* if cond(var) is known to be true at the time of blocking, for
|
|
* any cond. If we locked the hash-bucket after testing *uaddr, that
|
|
* would open a race condition where we could block indefinitely with
|
|
* cond(var) false, which would violate the guarantee.
|
|
*
|
|
* On the other hand, we insert q and release the hash-bucket only
|
|
* after testing *uaddr. This guarantees that futex_wait() will NOT
|
|
* absorb a wakeup if *uaddr does not match the desired values
|
|
* while the syscall executes.
|
|
*/
|
|
retry:
|
|
ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
|
|
if (unlikely(ret != 0))
|
|
return ret;
|
|
|
|
retry_private:
|
|
*hb = queue_lock(q);
|
|
|
|
ret = get_futex_value_locked(&uval, uaddr);
|
|
|
|
if (ret) {
|
|
queue_unlock(*hb);
|
|
|
|
ret = get_user(uval, uaddr);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (!(flags & FLAGS_SHARED))
|
|
goto retry_private;
|
|
|
|
put_futex_key(&q->key);
|
|
goto retry;
|
|
}
|
|
|
|
if (uval != val) {
|
|
queue_unlock(*hb);
|
|
ret = -EWOULDBLOCK;
|
|
}
|
|
|
|
out:
|
|
if (ret)
|
|
put_futex_key(&q->key);
|
|
return ret;
|
|
}
|
|
|
|
static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
|
|
ktime_t *abs_time, u32 bitset)
|
|
{
|
|
struct hrtimer_sleeper timeout, *to;
|
|
struct restart_block *restart;
|
|
struct futex_hash_bucket *hb;
|
|
struct futex_q q = futex_q_init;
|
|
int ret;
|
|
|
|
if (!bitset)
|
|
return -EINVAL;
|
|
q.bitset = bitset;
|
|
|
|
to = futex_setup_timer(abs_time, &timeout, flags,
|
|
current->timer_slack_ns);
|
|
retry:
|
|
/*
|
|
* Prepare to wait on uaddr. On success, holds hb lock and increments
|
|
* q.key refs.
|
|
*/
|
|
ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* queue_me and wait for wakeup, timeout, or a signal. */
|
|
futex_wait_queue_me(hb, &q, to);
|
|
|
|
/* If we were woken (and unqueued), we succeeded, whatever. */
|
|
ret = 0;
|
|
/* unqueue_me() drops q.key ref */
|
|
if (!unqueue_me(&q))
|
|
goto out;
|
|
ret = -ETIMEDOUT;
|
|
if (to && !to->task)
|
|
goto out;
|
|
|
|
/*
|
|
* We expect signal_pending(current), but we might be the
|
|
* victim of a spurious wakeup as well.
|
|
*/
|
|
if (!signal_pending(current))
|
|
goto retry;
|
|
|
|
ret = -ERESTARTSYS;
|
|
if (!abs_time)
|
|
goto out;
|
|
|
|
restart = ¤t->restart_block;
|
|
restart->fn = futex_wait_restart;
|
|
restart->futex.uaddr = uaddr;
|
|
restart->futex.val = val;
|
|
restart->futex.time = *abs_time;
|
|
restart->futex.bitset = bitset;
|
|
restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
|
|
|
|
ret = -ERESTART_RESTARTBLOCK;
|
|
|
|
out:
|
|
if (to) {
|
|
hrtimer_cancel(&to->timer);
|
|
destroy_hrtimer_on_stack(&to->timer);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
static long futex_wait_restart(struct restart_block *restart)
|
|
{
|
|
u32 __user *uaddr = restart->futex.uaddr;
|
|
ktime_t t, *tp = NULL;
|
|
|
|
if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
|
|
t = restart->futex.time;
|
|
tp = &t;
|
|
}
|
|
restart->fn = do_no_restart_syscall;
|
|
|
|
return (long)futex_wait(uaddr, restart->futex.flags,
|
|
restart->futex.val, tp, restart->futex.bitset);
|
|
}
|
|
|
|
|
|
/*
|
|
* Userspace tried a 0 -> TID atomic transition of the futex value
|
|
* and failed. The kernel side here does the whole locking operation:
|
|
* if there are waiters then it will block as a consequence of relying
|
|
* on rt-mutexes, it does PI, etc. (Due to races the kernel might see
|
|
* a 0 value of the futex too.).
|
|
*
|
|
* Also serves as futex trylock_pi()'ing, and due semantics.
|
|
*/
|
|
static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
|
|
ktime_t *time, int trylock)
|
|
{
|
|
struct hrtimer_sleeper timeout, *to;
|
|
struct futex_pi_state *pi_state = NULL;
|
|
struct task_struct *exiting = NULL;
|
|
struct rt_mutex_waiter rt_waiter;
|
|
struct futex_hash_bucket *hb;
|
|
struct futex_q q = futex_q_init;
|
|
int res, ret;
|
|
|
|
if (!IS_ENABLED(CONFIG_FUTEX_PI))
|
|
return -ENOSYS;
|
|
|
|
if (refill_pi_state_cache())
|
|
return -ENOMEM;
|
|
|
|
to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
|
|
|
|
retry:
|
|
ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
|
|
if (unlikely(ret != 0))
|
|
goto out;
|
|
|
|
retry_private:
|
|
hb = queue_lock(&q);
|
|
|
|
ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
|
|
&exiting, 0);
|
|
if (unlikely(ret)) {
|
|
/*
|
|
* Atomic work succeeded and we got the lock,
|
|
* or failed. Either way, we do _not_ block.
|
|
*/
|
|
switch (ret) {
|
|
case 1:
|
|
/* We got the lock. */
|
|
ret = 0;
|
|
goto out_unlock_put_key;
|
|
case -EFAULT:
|
|
goto uaddr_faulted;
|
|
case -EBUSY:
|
|
case -EAGAIN:
|
|
/*
|
|
* Two reasons for this:
|
|
* - EBUSY: Task is exiting and we just wait for the
|
|
* exit to complete.
|
|
* - EAGAIN: The user space value changed.
|
|
*/
|
|
queue_unlock(hb);
|
|
put_futex_key(&q.key);
|
|
/*
|
|
* Handle the case where the owner is in the middle of
|
|
* exiting. Wait for the exit to complete otherwise
|
|
* this task might loop forever, aka. live lock.
|
|
*/
|
|
wait_for_owner_exiting(ret, exiting);
|
|
cond_resched();
|
|
goto retry;
|
|
default:
|
|
goto out_unlock_put_key;
|
|
}
|
|
}
|
|
|
|
WARN_ON(!q.pi_state);
|
|
|
|
/*
|
|
* Only actually queue now that the atomic ops are done:
|
|
*/
|
|
__queue_me(&q, hb);
|
|
|
|
if (trylock) {
|
|
ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
|
|
/* Fixup the trylock return value: */
|
|
ret = ret ? 0 : -EWOULDBLOCK;
|
|
goto no_block;
|
|
}
|
|
|
|
rt_mutex_init_waiter(&rt_waiter);
|
|
|
|
/*
|
|
* On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
|
|
* hold it while doing rt_mutex_start_proxy(), because then it will
|
|
* include hb->lock in the blocking chain, even through we'll not in
|
|
* fact hold it while blocking. This will lead it to report -EDEADLK
|
|
* and BUG when futex_unlock_pi() interleaves with this.
|
|
*
|
|
* Therefore acquire wait_lock while holding hb->lock, but drop the
|
|
* latter before calling __rt_mutex_start_proxy_lock(). This
|
|
* interleaves with futex_unlock_pi() -- which does a similar lock
|
|
* handoff -- such that the latter can observe the futex_q::pi_state
|
|
* before __rt_mutex_start_proxy_lock() is done.
|
|
*/
|
|
raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
|
|
spin_unlock(q.lock_ptr);
|
|
/*
|
|
* __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
|
|
* such that futex_unlock_pi() is guaranteed to observe the waiter when
|
|
* it sees the futex_q::pi_state.
|
|
*/
|
|
ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
|
|
raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
|
|
|
|
if (ret) {
|
|
if (ret == 1)
|
|
ret = 0;
|
|
goto cleanup;
|
|
}
|
|
|
|
if (unlikely(to))
|
|
hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
|
|
|
|
ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
|
|
|
|
cleanup:
|
|
spin_lock(q.lock_ptr);
|
|
/*
|
|
* If we failed to acquire the lock (deadlock/signal/timeout), we must
|
|
* first acquire the hb->lock before removing the lock from the
|
|
* rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
|
|
* lists consistent.
|
|
*
|
|
* In particular; it is important that futex_unlock_pi() can not
|
|
* observe this inconsistency.
|
|
*/
|
|
if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
|
|
ret = 0;
|
|
|
|
no_block:
|
|
/*
|
|
* Fixup the pi_state owner and possibly acquire the lock if we
|
|
* haven't already.
|
|
*/
|
|
res = fixup_owner(uaddr, &q, !ret);
|
|
/*
|
|
* If fixup_owner() returned an error, proprogate that. If it acquired
|
|
* the lock, clear our -ETIMEDOUT or -EINTR.
|
|
*/
|
|
if (res)
|
|
ret = (res < 0) ? res : 0;
|
|
|
|
/*
|
|
* If fixup_owner() faulted and was unable to handle the fault, unlock
|
|
* it and return the fault to userspace.
|
|
*/
|
|
if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
|
|
pi_state = q.pi_state;
|
|
get_pi_state(pi_state);
|
|
}
|
|
|
|
/* Unqueue and drop the lock */
|
|
unqueue_me_pi(&q);
|
|
|
|
if (pi_state) {
|
|
rt_mutex_futex_unlock(&pi_state->pi_mutex);
|
|
put_pi_state(pi_state);
|
|
}
|
|
|
|
goto out_put_key;
|
|
|
|
out_unlock_put_key:
|
|
queue_unlock(hb);
|
|
|
|
out_put_key:
|
|
put_futex_key(&q.key);
|
|
out:
|
|
if (to) {
|
|
hrtimer_cancel(&to->timer);
|
|
destroy_hrtimer_on_stack(&to->timer);
|
|
}
|
|
return ret != -EINTR ? ret : -ERESTARTNOINTR;
|
|
|
|
uaddr_faulted:
|
|
queue_unlock(hb);
|
|
|
|
ret = fault_in_user_writeable(uaddr);
|
|
if (ret)
|
|
goto out_put_key;
|
|
|
|
if (!(flags & FLAGS_SHARED))
|
|
goto retry_private;
|
|
|
|
put_futex_key(&q.key);
|
|
goto retry;
|
|
}
|
|
|
|
/*
|
|
* Userspace attempted a TID -> 0 atomic transition, and failed.
|
|
* This is the in-kernel slowpath: we look up the PI state (if any),
|
|
* and do the rt-mutex unlock.
|
|
*/
|
|
static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
|
|
{
|
|
u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
|
|
union futex_key key = FUTEX_KEY_INIT;
|
|
struct futex_hash_bucket *hb;
|
|
struct futex_q *top_waiter;
|
|
int ret;
|
|
|
|
if (!IS_ENABLED(CONFIG_FUTEX_PI))
|
|
return -ENOSYS;
|
|
|
|
retry:
|
|
if (get_user(uval, uaddr))
|
|
return -EFAULT;
|
|
/*
|
|
* We release only a lock we actually own:
|
|
*/
|
|
if ((uval & FUTEX_TID_MASK) != vpid)
|
|
return -EPERM;
|
|
|
|
ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
hb = hash_futex(&key);
|
|
spin_lock(&hb->lock);
|
|
|
|
/*
|
|
* Check waiters first. We do not trust user space values at
|
|
* all and we at least want to know if user space fiddled
|
|
* with the futex value instead of blindly unlocking.
|
|
*/
|
|
top_waiter = futex_top_waiter(hb, &key);
|
|
if (top_waiter) {
|
|
struct futex_pi_state *pi_state = top_waiter->pi_state;
|
|
|
|
ret = -EINVAL;
|
|
if (!pi_state)
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* If current does not own the pi_state then the futex is
|
|
* inconsistent and user space fiddled with the futex value.
|
|
*/
|
|
if (pi_state->owner != current)
|
|
goto out_unlock;
|
|
|
|
get_pi_state(pi_state);
|
|
/*
|
|
* By taking wait_lock while still holding hb->lock, we ensure
|
|
* there is no point where we hold neither; and therefore
|
|
* wake_futex_pi() must observe a state consistent with what we
|
|
* observed.
|
|
*
|
|
* In particular; this forces __rt_mutex_start_proxy() to
|
|
* complete such that we're guaranteed to observe the
|
|
* rt_waiter. Also see the WARN in wake_futex_pi().
|
|
*/
|
|
raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
|
|
spin_unlock(&hb->lock);
|
|
|
|
/* drops pi_state->pi_mutex.wait_lock */
|
|
ret = wake_futex_pi(uaddr, uval, pi_state);
|
|
|
|
put_pi_state(pi_state);
|
|
|
|
/*
|
|
* Success, we're done! No tricky corner cases.
|
|
*/
|
|
if (!ret)
|
|
goto out_putkey;
|
|
/*
|
|
* The atomic access to the futex value generated a
|
|
* pagefault, so retry the user-access and the wakeup:
|
|
*/
|
|
if (ret == -EFAULT)
|
|
goto pi_faulted;
|
|
/*
|
|
* A unconditional UNLOCK_PI op raced against a waiter
|
|
* setting the FUTEX_WAITERS bit. Try again.
|
|
*/
|
|
if (ret == -EAGAIN)
|
|
goto pi_retry;
|
|
/*
|
|
* wake_futex_pi has detected invalid state. Tell user
|
|
* space.
|
|
*/
|
|
goto out_putkey;
|
|
}
|
|
|
|
/*
|
|
* We have no kernel internal state, i.e. no waiters in the
|
|
* kernel. Waiters which are about to queue themselves are stuck
|
|
* on hb->lock. So we can safely ignore them. We do neither
|
|
* preserve the WAITERS bit not the OWNER_DIED one. We are the
|
|
* owner.
|
|
*/
|
|
if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
|
|
spin_unlock(&hb->lock);
|
|
switch (ret) {
|
|
case -EFAULT:
|
|
goto pi_faulted;
|
|
|
|
case -EAGAIN:
|
|
goto pi_retry;
|
|
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
goto out_putkey;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If uval has changed, let user space handle it.
|
|
*/
|
|
ret = (curval == uval) ? 0 : -EAGAIN;
|
|
|
|
out_unlock:
|
|
spin_unlock(&hb->lock);
|
|
out_putkey:
|
|
put_futex_key(&key);
|
|
return ret;
|
|
|
|
pi_retry:
|
|
put_futex_key(&key);
|
|
cond_resched();
|
|
goto retry;
|
|
|
|
pi_faulted:
|
|
put_futex_key(&key);
|
|
|
|
ret = fault_in_user_writeable(uaddr);
|
|
if (!ret)
|
|
goto retry;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
|
|
* @hb: the hash_bucket futex_q was original enqueued on
|
|
* @q: the futex_q woken while waiting to be requeued
|
|
* @key2: the futex_key of the requeue target futex
|
|
* @timeout: the timeout associated with the wait (NULL if none)
|
|
*
|
|
* Detect if the task was woken on the initial futex as opposed to the requeue
|
|
* target futex. If so, determine if it was a timeout or a signal that caused
|
|
* the wakeup and return the appropriate error code to the caller. Must be
|
|
* called with the hb lock held.
|
|
*
|
|
* Return:
|
|
* - 0 = no early wakeup detected;
|
|
* - <0 = -ETIMEDOUT or -ERESTARTNOINTR
|
|
*/
|
|
static inline
|
|
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
|
|
struct futex_q *q, union futex_key *key2,
|
|
struct hrtimer_sleeper *timeout)
|
|
{
|
|
int ret = 0;
|
|
|
|
/*
|
|
* With the hb lock held, we avoid races while we process the wakeup.
|
|
* We only need to hold hb (and not hb2) to ensure atomicity as the
|
|
* wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
|
|
* It can't be requeued from uaddr2 to something else since we don't
|
|
* support a PI aware source futex for requeue.
|
|
*/
|
|
if (!match_futex(&q->key, key2)) {
|
|
WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
|
|
/*
|
|
* We were woken prior to requeue by a timeout or a signal.
|
|
* Unqueue the futex_q and determine which it was.
|
|
*/
|
|
plist_del(&q->list, &hb->chain);
|
|
hb_waiters_dec(hb);
|
|
|
|
/* Handle spurious wakeups gracefully */
|
|
ret = -EWOULDBLOCK;
|
|
if (timeout && !timeout->task)
|
|
ret = -ETIMEDOUT;
|
|
else if (signal_pending(current))
|
|
ret = -ERESTARTNOINTR;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
|
|
* @uaddr: the futex we initially wait on (non-pi)
|
|
* @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
|
|
* the same type, no requeueing from private to shared, etc.
|
|
* @val: the expected value of uaddr
|
|
* @abs_time: absolute timeout
|
|
* @bitset: 32 bit wakeup bitset set by userspace, defaults to all
|
|
* @uaddr2: the pi futex we will take prior to returning to user-space
|
|
*
|
|
* The caller will wait on uaddr and will be requeued by futex_requeue() to
|
|
* uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
|
|
* on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
|
|
* userspace. This ensures the rt_mutex maintains an owner when it has waiters;
|
|
* without one, the pi logic would not know which task to boost/deboost, if
|
|
* there was a need to.
|
|
*
|
|
* We call schedule in futex_wait_queue_me() when we enqueue and return there
|
|
* via the following--
|
|
* 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
|
|
* 2) wakeup on uaddr2 after a requeue
|
|
* 3) signal
|
|
* 4) timeout
|
|
*
|
|
* If 3, cleanup and return -ERESTARTNOINTR.
|
|
*
|
|
* If 2, we may then block on trying to take the rt_mutex and return via:
|
|
* 5) successful lock
|
|
* 6) signal
|
|
* 7) timeout
|
|
* 8) other lock acquisition failure
|
|
*
|
|
* If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
|
|
*
|
|
* If 4 or 7, we cleanup and return with -ETIMEDOUT.
|
|
*
|
|
* Return:
|
|
* - 0 - On success;
|
|
* - <0 - On error
|
|
*/
|
|
static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
|
|
u32 val, ktime_t *abs_time, u32 bitset,
|
|
u32 __user *uaddr2)
|
|
{
|
|
struct hrtimer_sleeper timeout, *to;
|
|
struct futex_pi_state *pi_state = NULL;
|
|
struct rt_mutex_waiter rt_waiter;
|
|
struct futex_hash_bucket *hb;
|
|
union futex_key key2 = FUTEX_KEY_INIT;
|
|
struct futex_q q = futex_q_init;
|
|
int res, ret;
|
|
|
|
if (!IS_ENABLED(CONFIG_FUTEX_PI))
|
|
return -ENOSYS;
|
|
|
|
if (uaddr == uaddr2)
|
|
return -EINVAL;
|
|
|
|
if (!bitset)
|
|
return -EINVAL;
|
|
|
|
to = futex_setup_timer(abs_time, &timeout, flags,
|
|
current->timer_slack_ns);
|
|
|
|
/*
|
|
* The waiter is allocated on our stack, manipulated by the requeue
|
|
* code while we sleep on uaddr.
|
|
*/
|
|
rt_mutex_init_waiter(&rt_waiter);
|
|
|
|
ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
|
|
if (unlikely(ret != 0))
|
|
goto out;
|
|
|
|
q.bitset = bitset;
|
|
q.rt_waiter = &rt_waiter;
|
|
q.requeue_pi_key = &key2;
|
|
|
|
/*
|
|
* Prepare to wait on uaddr. On success, increments q.key (key1) ref
|
|
* count.
|
|
*/
|
|
ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
|
|
if (ret)
|
|
goto out_key2;
|
|
|
|
/*
|
|
* The check above which compares uaddrs is not sufficient for
|
|
* shared futexes. We need to compare the keys:
|
|
*/
|
|
if (match_futex(&q.key, &key2)) {
|
|
queue_unlock(hb);
|
|
ret = -EINVAL;
|
|
goto out_put_keys;
|
|
}
|
|
|
|
/* Queue the futex_q, drop the hb lock, wait for wakeup. */
|
|
futex_wait_queue_me(hb, &q, to);
|
|
|
|
spin_lock(&hb->lock);
|
|
ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
|
|
spin_unlock(&hb->lock);
|
|
if (ret)
|
|
goto out_put_keys;
|
|
|
|
/*
|
|
* In order for us to be here, we know our q.key == key2, and since
|
|
* we took the hb->lock above, we also know that futex_requeue() has
|
|
* completed and we no longer have to concern ourselves with a wakeup
|
|
* race with the atomic proxy lock acquisition by the requeue code. The
|
|
* futex_requeue dropped our key1 reference and incremented our key2
|
|
* reference count.
|
|
*/
|
|
|
|
/* Check if the requeue code acquired the second futex for us. */
|
|
if (!q.rt_waiter) {
|
|
/*
|
|
* Got the lock. We might not be the anticipated owner if we
|
|
* did a lock-steal - fix up the PI-state in that case.
|
|
*/
|
|
if (q.pi_state && (q.pi_state->owner != current)) {
|
|
spin_lock(q.lock_ptr);
|
|
ret = fixup_pi_state_owner(uaddr2, &q, current);
|
|
if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
|
|
pi_state = q.pi_state;
|
|
get_pi_state(pi_state);
|
|
}
|
|
/*
|
|
* Drop the reference to the pi state which
|
|
* the requeue_pi() code acquired for us.
|
|
*/
|
|
put_pi_state(q.pi_state);
|
|
spin_unlock(q.lock_ptr);
|
|
}
|
|
} else {
|
|
struct rt_mutex *pi_mutex;
|
|
|
|
/*
|
|
* We have been woken up by futex_unlock_pi(), a timeout, or a
|
|
* signal. futex_unlock_pi() will not destroy the lock_ptr nor
|
|
* the pi_state.
|
|
*/
|
|
WARN_ON(!q.pi_state);
|
|
pi_mutex = &q.pi_state->pi_mutex;
|
|
ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
|
|
|
|
spin_lock(q.lock_ptr);
|
|
if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
|
|
ret = 0;
|
|
|
|
debug_rt_mutex_free_waiter(&rt_waiter);
|
|
/*
|
|
* Fixup the pi_state owner and possibly acquire the lock if we
|
|
* haven't already.
|
|
*/
|
|
res = fixup_owner(uaddr2, &q, !ret);
|
|
/*
|
|
* If fixup_owner() returned an error, proprogate that. If it
|
|
* acquired the lock, clear -ETIMEDOUT or -EINTR.
|
|
*/
|
|
if (res)
|
|
ret = (res < 0) ? res : 0;
|
|
|
|
/*
|
|
* If fixup_pi_state_owner() faulted and was unable to handle
|
|
* the fault, unlock the rt_mutex and return the fault to
|
|
* userspace.
|
|
*/
|
|
if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
|
|
pi_state = q.pi_state;
|
|
get_pi_state(pi_state);
|
|
}
|
|
|
|
/* Unqueue and drop the lock. */
|
|
unqueue_me_pi(&q);
|
|
}
|
|
|
|
if (pi_state) {
|
|
rt_mutex_futex_unlock(&pi_state->pi_mutex);
|
|
put_pi_state(pi_state);
|
|
}
|
|
|
|
if (ret == -EINTR) {
|
|
/*
|
|
* We've already been requeued, but cannot restart by calling
|
|
* futex_lock_pi() directly. We could restart this syscall, but
|
|
* it would detect that the user space "val" changed and return
|
|
* -EWOULDBLOCK. Save the overhead of the restart and return
|
|
* -EWOULDBLOCK directly.
|
|
*/
|
|
ret = -EWOULDBLOCK;
|
|
}
|
|
|
|
out_put_keys:
|
|
put_futex_key(&q.key);
|
|
out_key2:
|
|
put_futex_key(&key2);
|
|
|
|
out:
|
|
if (to) {
|
|
hrtimer_cancel(&to->timer);
|
|
destroy_hrtimer_on_stack(&to->timer);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Support for robust futexes: the kernel cleans up held futexes at
|
|
* thread exit time.
|
|
*
|
|
* Implementation: user-space maintains a per-thread list of locks it
|
|
* is holding. Upon do_exit(), the kernel carefully walks this list,
|
|
* and marks all locks that are owned by this thread with the
|
|
* FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
|
|
* always manipulated with the lock held, so the list is private and
|
|
* per-thread. Userspace also maintains a per-thread 'list_op_pending'
|
|
* field, to allow the kernel to clean up if the thread dies after
|
|
* acquiring the lock, but just before it could have added itself to
|
|
* the list. There can only be one such pending lock.
|
|
*/
|
|
|
|
/**
|
|
* sys_set_robust_list() - Set the robust-futex list head of a task
|
|
* @head: pointer to the list-head
|
|
* @len: length of the list-head, as userspace expects
|
|
*/
|
|
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
|
|
size_t, len)
|
|
{
|
|
if (!futex_cmpxchg_enabled)
|
|
return -ENOSYS;
|
|
/*
|
|
* The kernel knows only one size for now:
|
|
*/
|
|
if (unlikely(len != sizeof(*head)))
|
|
return -EINVAL;
|
|
|
|
current->robust_list = head;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* sys_get_robust_list() - Get the robust-futex list head of a task
|
|
* @pid: pid of the process [zero for current task]
|
|
* @head_ptr: pointer to a list-head pointer, the kernel fills it in
|
|
* @len_ptr: pointer to a length field, the kernel fills in the header size
|
|
*/
|
|
SYSCALL_DEFINE3(get_robust_list, int, pid,
|
|
struct robust_list_head __user * __user *, head_ptr,
|
|
size_t __user *, len_ptr)
|
|
{
|
|
struct robust_list_head __user *head;
|
|
unsigned long ret;
|
|
struct task_struct *p;
|
|
|
|
if (!futex_cmpxchg_enabled)
|
|
return -ENOSYS;
|
|
|
|
rcu_read_lock();
|
|
|
|
ret = -ESRCH;
|
|
if (!pid)
|
|
p = current;
|
|
else {
|
|
p = find_task_by_vpid(pid);
|
|
if (!p)
|
|
goto err_unlock;
|
|
}
|
|
|
|
ret = -EPERM;
|
|
if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
|
|
goto err_unlock;
|
|
|
|
head = p->robust_list;
|
|
rcu_read_unlock();
|
|
|
|
if (put_user(sizeof(*head), len_ptr))
|
|
return -EFAULT;
|
|
return put_user(head, head_ptr);
|
|
|
|
err_unlock:
|
|
rcu_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Constants for the pending_op argument of handle_futex_death */
|
|
#define HANDLE_DEATH_PENDING true
|
|
#define HANDLE_DEATH_LIST false
|
|
|
|
/*
|
|
* Process a futex-list entry, check whether it's owned by the
|
|
* dying task, and do notification if so:
|
|
*/
|
|
static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
|
|
bool pi, bool pending_op)
|
|
{
|
|
u32 uval, uninitialized_var(nval), mval;
|
|
int err;
|
|
|
|
/* Futex address must be 32bit aligned */
|
|
if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
|
|
return -1;
|
|
|
|
retry:
|
|
if (get_user(uval, uaddr))
|
|
return -1;
|
|
|
|
/*
|
|
* Special case for regular (non PI) futexes. The unlock path in
|
|
* user space has two race scenarios:
|
|
*
|
|
* 1. The unlock path releases the user space futex value and
|
|
* before it can execute the futex() syscall to wake up
|
|
* waiters it is killed.
|
|
*
|
|
* 2. A woken up waiter is killed before it can acquire the
|
|
* futex in user space.
|
|
*
|
|
* In both cases the TID validation below prevents a wakeup of
|
|
* potential waiters which can cause these waiters to block
|
|
* forever.
|
|
*
|
|
* In both cases the following conditions are met:
|
|
*
|
|
* 1) task->robust_list->list_op_pending != NULL
|
|
* @pending_op == true
|
|
* 2) User space futex value == 0
|
|
* 3) Regular futex: @pi == false
|
|
*
|
|
* If these conditions are met, it is safe to attempt waking up a
|
|
* potential waiter without touching the user space futex value and
|
|
* trying to set the OWNER_DIED bit. The user space futex value is
|
|
* uncontended and the rest of the user space mutex state is
|
|
* consistent, so a woken waiter will just take over the
|
|
* uncontended futex. Setting the OWNER_DIED bit would create
|
|
* inconsistent state and malfunction of the user space owner died
|
|
* handling.
|
|
*/
|
|
if (pending_op && !pi && !uval) {
|
|
futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
|
|
return 0;
|
|
}
|
|
|
|
if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
|
|
return 0;
|
|
|
|
/*
|
|
* Ok, this dying thread is truly holding a futex
|
|
* of interest. Set the OWNER_DIED bit atomically
|
|
* via cmpxchg, and if the value had FUTEX_WAITERS
|
|
* set, wake up a waiter (if any). (We have to do a
|
|
* futex_wake() even if OWNER_DIED is already set -
|
|
* to handle the rare but possible case of recursive
|
|
* thread-death.) The rest of the cleanup is done in
|
|
* userspace.
|
|
*/
|
|
mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
|
|
|
|
/*
|
|
* We are not holding a lock here, but we want to have
|
|
* the pagefault_disable/enable() protection because
|
|
* we want to handle the fault gracefully. If the
|
|
* access fails we try to fault in the futex with R/W
|
|
* verification via get_user_pages. get_user() above
|
|
* does not guarantee R/W access. If that fails we
|
|
* give up and leave the futex locked.
|
|
*/
|
|
if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
|
|
switch (err) {
|
|
case -EFAULT:
|
|
if (fault_in_user_writeable(uaddr))
|
|
return -1;
|
|
goto retry;
|
|
|
|
case -EAGAIN:
|
|
cond_resched();
|
|
goto retry;
|
|
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
if (nval != uval)
|
|
goto retry;
|
|
|
|
/*
|
|
* Wake robust non-PI futexes here. The wakeup of
|
|
* PI futexes happens in exit_pi_state():
|
|
*/
|
|
if (!pi && (uval & FUTEX_WAITERS))
|
|
futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Fetch a robust-list pointer. Bit 0 signals PI futexes:
|
|
*/
|
|
static inline int fetch_robust_entry(struct robust_list __user **entry,
|
|
struct robust_list __user * __user *head,
|
|
unsigned int *pi)
|
|
{
|
|
unsigned long uentry;
|
|
|
|
if (get_user(uentry, (unsigned long __user *)head))
|
|
return -EFAULT;
|
|
|
|
*entry = (void __user *)(uentry & ~1UL);
|
|
*pi = uentry & 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Walk curr->robust_list (very carefully, it's a userspace list!)
|
|
* and mark any locks found there dead, and notify any waiters.
|
|
*
|
|
* We silently return on any sign of list-walking problem.
|
|
*/
|
|
static void exit_robust_list(struct task_struct *curr)
|
|
{
|
|
struct robust_list_head __user *head = curr->robust_list;
|
|
struct robust_list __user *entry, *next_entry, *pending;
|
|
unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
|
|
unsigned int uninitialized_var(next_pi);
|
|
unsigned long futex_offset;
|
|
int rc;
|
|
|
|
if (!futex_cmpxchg_enabled)
|
|
return;
|
|
|
|
/*
|
|
* Fetch the list head (which was registered earlier, via
|
|
* sys_set_robust_list()):
|
|
*/
|
|
if (fetch_robust_entry(&entry, &head->list.next, &pi))
|
|
return;
|
|
/*
|
|
* Fetch the relative futex offset:
|
|
*/
|
|
if (get_user(futex_offset, &head->futex_offset))
|
|
return;
|
|
/*
|
|
* Fetch any possibly pending lock-add first, and handle it
|
|
* if it exists:
|
|
*/
|
|
if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
|
|
return;
|
|
|
|
next_entry = NULL; /* avoid warning with gcc */
|
|
while (entry != &head->list) {
|
|
/*
|
|
* Fetch the next entry in the list before calling
|
|
* handle_futex_death:
|
|
*/
|
|
rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
|
|
/*
|
|
* A pending lock might already be on the list, so
|
|
* don't process it twice:
|
|
*/
|
|
if (entry != pending) {
|
|
if (handle_futex_death((void __user *)entry + futex_offset,
|
|
curr, pi, HANDLE_DEATH_LIST))
|
|
return;
|
|
}
|
|
if (rc)
|
|
return;
|
|
entry = next_entry;
|
|
pi = next_pi;
|
|
/*
|
|
* Avoid excessively long or circular lists:
|
|
*/
|
|
if (!--limit)
|
|
break;
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
if (pending) {
|
|
handle_futex_death((void __user *)pending + futex_offset,
|
|
curr, pip, HANDLE_DEATH_PENDING);
|
|
}
|
|
}
|
|
|
|
static void futex_cleanup(struct task_struct *tsk)
|
|
{
|
|
if (unlikely(tsk->robust_list)) {
|
|
exit_robust_list(tsk);
|
|
tsk->robust_list = NULL;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
if (unlikely(tsk->compat_robust_list)) {
|
|
compat_exit_robust_list(tsk);
|
|
tsk->compat_robust_list = NULL;
|
|
}
|
|
#endif
|
|
|
|
if (unlikely(!list_empty(&tsk->pi_state_list)))
|
|
exit_pi_state_list(tsk);
|
|
}
|
|
|
|
/**
|
|
* futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
|
|
* @tsk: task to set the state on
|
|
*
|
|
* Set the futex exit state of the task lockless. The futex waiter code
|
|
* observes that state when a task is exiting and loops until the task has
|
|
* actually finished the futex cleanup. The worst case for this is that the
|
|
* waiter runs through the wait loop until the state becomes visible.
|
|
*
|
|
* This is called from the recursive fault handling path in do_exit().
|
|
*
|
|
* This is best effort. Either the futex exit code has run already or
|
|
* not. If the OWNER_DIED bit has been set on the futex then the waiter can
|
|
* take it over. If not, the problem is pushed back to user space. If the
|
|
* futex exit code did not run yet, then an already queued waiter might
|
|
* block forever, but there is nothing which can be done about that.
|
|
*/
|
|
void futex_exit_recursive(struct task_struct *tsk)
|
|
{
|
|
/* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
|
|
if (tsk->futex_state == FUTEX_STATE_EXITING)
|
|
mutex_unlock(&tsk->futex_exit_mutex);
|
|
tsk->futex_state = FUTEX_STATE_DEAD;
|
|
}
|
|
|
|
static void futex_cleanup_begin(struct task_struct *tsk)
|
|
{
|
|
/*
|
|
* Prevent various race issues against a concurrent incoming waiter
|
|
* including live locks by forcing the waiter to block on
|
|
* tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
|
|
* attach_to_pi_owner().
|
|
*/
|
|
mutex_lock(&tsk->futex_exit_mutex);
|
|
|
|
/*
|
|
* Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
|
|
*
|
|
* This ensures that all subsequent checks of tsk->futex_state in
|
|
* attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
|
|
* tsk->pi_lock held.
|
|
*
|
|
* It guarantees also that a pi_state which was queued right before
|
|
* the state change under tsk->pi_lock by a concurrent waiter must
|
|
* be observed in exit_pi_state_list().
|
|
*/
|
|
raw_spin_lock_irq(&tsk->pi_lock);
|
|
tsk->futex_state = FUTEX_STATE_EXITING;
|
|
raw_spin_unlock_irq(&tsk->pi_lock);
|
|
}
|
|
|
|
static void futex_cleanup_end(struct task_struct *tsk, int state)
|
|
{
|
|
/*
|
|
* Lockless store. The only side effect is that an observer might
|
|
* take another loop until it becomes visible.
|
|
*/
|
|
tsk->futex_state = state;
|
|
/*
|
|
* Drop the exit protection. This unblocks waiters which observed
|
|
* FUTEX_STATE_EXITING to reevaluate the state.
|
|
*/
|
|
mutex_unlock(&tsk->futex_exit_mutex);
|
|
}
|
|
|
|
void futex_exec_release(struct task_struct *tsk)
|
|
{
|
|
/*
|
|
* The state handling is done for consistency, but in the case of
|
|
* exec() there is no way to prevent futher damage as the PID stays
|
|
* the same. But for the unlikely and arguably buggy case that a
|
|
* futex is held on exec(), this provides at least as much state
|
|
* consistency protection which is possible.
|
|
*/
|
|
futex_cleanup_begin(tsk);
|
|
futex_cleanup(tsk);
|
|
/*
|
|
* Reset the state to FUTEX_STATE_OK. The task is alive and about
|
|
* exec a new binary.
|
|
*/
|
|
futex_cleanup_end(tsk, FUTEX_STATE_OK);
|
|
}
|
|
|
|
void futex_exit_release(struct task_struct *tsk)
|
|
{
|
|
futex_cleanup_begin(tsk);
|
|
futex_cleanup(tsk);
|
|
futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
|
|
}
|
|
|
|
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
|
|
u32 __user *uaddr2, u32 val2, u32 val3)
|
|
{
|
|
int cmd = op & FUTEX_CMD_MASK;
|
|
unsigned int flags = 0;
|
|
|
|
if (!(op & FUTEX_PRIVATE_FLAG))
|
|
flags |= FLAGS_SHARED;
|
|
|
|
if (op & FUTEX_CLOCK_REALTIME) {
|
|
flags |= FLAGS_CLOCKRT;
|
|
if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
|
|
cmd != FUTEX_WAIT_REQUEUE_PI)
|
|
return -ENOSYS;
|
|
}
|
|
|
|
switch (cmd) {
|
|
case FUTEX_LOCK_PI:
|
|
case FUTEX_UNLOCK_PI:
|
|
case FUTEX_TRYLOCK_PI:
|
|
case FUTEX_WAIT_REQUEUE_PI:
|
|
case FUTEX_CMP_REQUEUE_PI:
|
|
if (!futex_cmpxchg_enabled)
|
|
return -ENOSYS;
|
|
}
|
|
|
|
switch (cmd) {
|
|
case FUTEX_WAIT:
|
|
val3 = FUTEX_BITSET_MATCH_ANY;
|
|
/* fall through */
|
|
case FUTEX_WAIT_BITSET:
|
|
return futex_wait(uaddr, flags, val, timeout, val3);
|
|
case FUTEX_WAKE:
|
|
val3 = FUTEX_BITSET_MATCH_ANY;
|
|
/* fall through */
|
|
case FUTEX_WAKE_BITSET:
|
|
return futex_wake(uaddr, flags, val, val3);
|
|
case FUTEX_REQUEUE:
|
|
return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
|
|
case FUTEX_CMP_REQUEUE:
|
|
return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
|
|
case FUTEX_WAKE_OP:
|
|
return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
|
|
case FUTEX_LOCK_PI:
|
|
return futex_lock_pi(uaddr, flags, timeout, 0);
|
|
case FUTEX_UNLOCK_PI:
|
|
return futex_unlock_pi(uaddr, flags);
|
|
case FUTEX_TRYLOCK_PI:
|
|
return futex_lock_pi(uaddr, flags, NULL, 1);
|
|
case FUTEX_WAIT_REQUEUE_PI:
|
|
val3 = FUTEX_BITSET_MATCH_ANY;
|
|
return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
|
|
uaddr2);
|
|
case FUTEX_CMP_REQUEUE_PI:
|
|
return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
|
|
}
|
|
return -ENOSYS;
|
|
}
|
|
|
|
|
|
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
|
|
struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
|
|
u32, val3)
|
|
{
|
|
struct timespec64 ts;
|
|
ktime_t t, *tp = NULL;
|
|
u32 val2 = 0;
|
|
int cmd = op & FUTEX_CMD_MASK;
|
|
|
|
if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
|
|
cmd == FUTEX_WAIT_BITSET ||
|
|
cmd == FUTEX_WAIT_REQUEUE_PI)) {
|
|
if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
|
|
return -EFAULT;
|
|
if (get_timespec64(&ts, utime))
|
|
return -EFAULT;
|
|
if (!timespec64_valid(&ts))
|
|
return -EINVAL;
|
|
|
|
t = timespec64_to_ktime(ts);
|
|
if (cmd == FUTEX_WAIT)
|
|
t = ktime_add_safe(ktime_get(), t);
|
|
tp = &t;
|
|
}
|
|
/*
|
|
* requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
|
|
* number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
|
|
*/
|
|
if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
|
|
cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
|
|
val2 = (u32) (unsigned long) utime;
|
|
|
|
return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
/*
|
|
* Fetch a robust-list pointer. Bit 0 signals PI futexes:
|
|
*/
|
|
static inline int
|
|
compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
|
|
compat_uptr_t __user *head, unsigned int *pi)
|
|
{
|
|
if (get_user(*uentry, head))
|
|
return -EFAULT;
|
|
|
|
*entry = compat_ptr((*uentry) & ~1);
|
|
*pi = (unsigned int)(*uentry) & 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __user *futex_uaddr(struct robust_list __user *entry,
|
|
compat_long_t futex_offset)
|
|
{
|
|
compat_uptr_t base = ptr_to_compat(entry);
|
|
void __user *uaddr = compat_ptr(base + futex_offset);
|
|
|
|
return uaddr;
|
|
}
|
|
|
|
/*
|
|
* Walk curr->robust_list (very carefully, it's a userspace list!)
|
|
* and mark any locks found there dead, and notify any waiters.
|
|
*
|
|
* We silently return on any sign of list-walking problem.
|
|
*/
|
|
static void compat_exit_robust_list(struct task_struct *curr)
|
|
{
|
|
struct compat_robust_list_head __user *head = curr->compat_robust_list;
|
|
struct robust_list __user *entry, *next_entry, *pending;
|
|
unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
|
|
unsigned int uninitialized_var(next_pi);
|
|
compat_uptr_t uentry, next_uentry, upending;
|
|
compat_long_t futex_offset;
|
|
int rc;
|
|
|
|
if (!futex_cmpxchg_enabled)
|
|
return;
|
|
|
|
/*
|
|
* Fetch the list head (which was registered earlier, via
|
|
* sys_set_robust_list()):
|
|
*/
|
|
if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
|
|
return;
|
|
/*
|
|
* Fetch the relative futex offset:
|
|
*/
|
|
if (get_user(futex_offset, &head->futex_offset))
|
|
return;
|
|
/*
|
|
* Fetch any possibly pending lock-add first, and handle it
|
|
* if it exists:
|
|
*/
|
|
if (compat_fetch_robust_entry(&upending, &pending,
|
|
&head->list_op_pending, &pip))
|
|
return;
|
|
|
|
next_entry = NULL; /* avoid warning with gcc */
|
|
while (entry != (struct robust_list __user *) &head->list) {
|
|
/*
|
|
* Fetch the next entry in the list before calling
|
|
* handle_futex_death:
|
|
*/
|
|
rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
|
|
(compat_uptr_t __user *)&entry->next, &next_pi);
|
|
/*
|
|
* A pending lock might already be on the list, so
|
|
* dont process it twice:
|
|
*/
|
|
if (entry != pending) {
|
|
void __user *uaddr = futex_uaddr(entry, futex_offset);
|
|
|
|
if (handle_futex_death(uaddr, curr, pi,
|
|
HANDLE_DEATH_LIST))
|
|
return;
|
|
}
|
|
if (rc)
|
|
return;
|
|
uentry = next_uentry;
|
|
entry = next_entry;
|
|
pi = next_pi;
|
|
/*
|
|
* Avoid excessively long or circular lists:
|
|
*/
|
|
if (!--limit)
|
|
break;
|
|
|
|
cond_resched();
|
|
}
|
|
if (pending) {
|
|
void __user *uaddr = futex_uaddr(pending, futex_offset);
|
|
|
|
handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
|
|
}
|
|
}
|
|
|
|
COMPAT_SYSCALL_DEFINE2(set_robust_list,
|
|
struct compat_robust_list_head __user *, head,
|
|
compat_size_t, len)
|
|
{
|
|
if (!futex_cmpxchg_enabled)
|
|
return -ENOSYS;
|
|
|
|
if (unlikely(len != sizeof(*head)))
|
|
return -EINVAL;
|
|
|
|
current->compat_robust_list = head;
|
|
|
|
return 0;
|
|
}
|
|
|
|
COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
|
|
compat_uptr_t __user *, head_ptr,
|
|
compat_size_t __user *, len_ptr)
|
|
{
|
|
struct compat_robust_list_head __user *head;
|
|
unsigned long ret;
|
|
struct task_struct *p;
|
|
|
|
if (!futex_cmpxchg_enabled)
|
|
return -ENOSYS;
|
|
|
|
rcu_read_lock();
|
|
|
|
ret = -ESRCH;
|
|
if (!pid)
|
|
p = current;
|
|
else {
|
|
p = find_task_by_vpid(pid);
|
|
if (!p)
|
|
goto err_unlock;
|
|
}
|
|
|
|
ret = -EPERM;
|
|
if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
|
|
goto err_unlock;
|
|
|
|
head = p->compat_robust_list;
|
|
rcu_read_unlock();
|
|
|
|
if (put_user(sizeof(*head), len_ptr))
|
|
return -EFAULT;
|
|
return put_user(ptr_to_compat(head), head_ptr);
|
|
|
|
err_unlock:
|
|
rcu_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_COMPAT */
|
|
|
|
#ifdef CONFIG_COMPAT_32BIT_TIME
|
|
SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
|
|
struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
|
|
u32, val3)
|
|
{
|
|
struct timespec64 ts;
|
|
ktime_t t, *tp = NULL;
|
|
int val2 = 0;
|
|
int cmd = op & FUTEX_CMD_MASK;
|
|
|
|
if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
|
|
cmd == FUTEX_WAIT_BITSET ||
|
|
cmd == FUTEX_WAIT_REQUEUE_PI)) {
|
|
if (get_old_timespec32(&ts, utime))
|
|
return -EFAULT;
|
|
if (!timespec64_valid(&ts))
|
|
return -EINVAL;
|
|
|
|
t = timespec64_to_ktime(ts);
|
|
if (cmd == FUTEX_WAIT)
|
|
t = ktime_add_safe(ktime_get(), t);
|
|
tp = &t;
|
|
}
|
|
if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
|
|
cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
|
|
val2 = (int) (unsigned long) utime;
|
|
|
|
return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
|
|
}
|
|
#endif /* CONFIG_COMPAT_32BIT_TIME */
|
|
|
|
static void __init futex_detect_cmpxchg(void)
|
|
{
|
|
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
|
|
u32 curval;
|
|
|
|
/*
|
|
* This will fail and we want it. Some arch implementations do
|
|
* runtime detection of the futex_atomic_cmpxchg_inatomic()
|
|
* functionality. We want to know that before we call in any
|
|
* of the complex code paths. Also we want to prevent
|
|
* registration of robust lists in that case. NULL is
|
|
* guaranteed to fault and we get -EFAULT on functional
|
|
* implementation, the non-functional ones will return
|
|
* -ENOSYS.
|
|
*/
|
|
if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
|
|
futex_cmpxchg_enabled = 1;
|
|
#endif
|
|
}
|
|
|
|
static int __init futex_init(void)
|
|
{
|
|
unsigned int futex_shift;
|
|
unsigned long i;
|
|
|
|
#if CONFIG_BASE_SMALL
|
|
futex_hashsize = 16;
|
|
#else
|
|
futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
|
|
#endif
|
|
|
|
futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
|
|
futex_hashsize, 0,
|
|
futex_hashsize < 256 ? HASH_SMALL : 0,
|
|
&futex_shift, NULL,
|
|
futex_hashsize, futex_hashsize);
|
|
futex_hashsize = 1UL << futex_shift;
|
|
|
|
futex_detect_cmpxchg();
|
|
|
|
for (i = 0; i < futex_hashsize; i++) {
|
|
atomic_set(&futex_queues[i].waiters, 0);
|
|
plist_head_init(&futex_queues[i].chain);
|
|
spin_lock_init(&futex_queues[i].lock);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
core_initcall(futex_init);
|