mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-04 09:34:12 +08:00
d2912cb15b
Based on 2 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license version 2 as published by the free software foundation this program is free software you can redistribute it and or modify it under the terms of the gnu general public license version 2 as published by the free software foundation # extracted by the scancode license scanner the SPDX license identifier GPL-2.0-only has been chosen to replace the boilerplate/reference in 4122 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Enrico Weigelt <info@metux.net> Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Allison Randal <allison@lohutok.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190604081206.933168790@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2183 lines
64 KiB
C
2183 lines
64 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/****************************************************************************
|
|
* Driver for Solarflare network controllers and boards
|
|
* Copyright 2011-2013 Solarflare Communications Inc.
|
|
*/
|
|
|
|
/* Theory of operation:
|
|
*
|
|
* PTP support is assisted by firmware running on the MC, which provides
|
|
* the hardware timestamping capabilities. Both transmitted and received
|
|
* PTP event packets are queued onto internal queues for subsequent processing;
|
|
* this is because the MC operations are relatively long and would block
|
|
* block NAPI/interrupt operation.
|
|
*
|
|
* Receive event processing:
|
|
* The event contains the packet's UUID and sequence number, together
|
|
* with the hardware timestamp. The PTP receive packet queue is searched
|
|
* for this UUID/sequence number and, if found, put on a pending queue.
|
|
* Packets not matching are delivered without timestamps (MCDI events will
|
|
* always arrive after the actual packet).
|
|
* It is important for the operation of the PTP protocol that the ordering
|
|
* of packets between the event and general port is maintained.
|
|
*
|
|
* Work queue processing:
|
|
* If work waiting, synchronise host/hardware time
|
|
*
|
|
* Transmit: send packet through MC, which returns the transmission time
|
|
* that is converted to an appropriate timestamp.
|
|
*
|
|
* Receive: the packet's reception time is converted to an appropriate
|
|
* timestamp.
|
|
*/
|
|
#include <linux/ip.h>
|
|
#include <linux/udp.h>
|
|
#include <linux/time.h>
|
|
#include <linux/ktime.h>
|
|
#include <linux/module.h>
|
|
#include <linux/net_tstamp.h>
|
|
#include <linux/pps_kernel.h>
|
|
#include <linux/ptp_clock_kernel.h>
|
|
#include "net_driver.h"
|
|
#include "efx.h"
|
|
#include "mcdi.h"
|
|
#include "mcdi_pcol.h"
|
|
#include "io.h"
|
|
#include "farch_regs.h"
|
|
#include "nic.h"
|
|
|
|
/* Maximum number of events expected to make up a PTP event */
|
|
#define MAX_EVENT_FRAGS 3
|
|
|
|
/* Maximum delay, ms, to begin synchronisation */
|
|
#define MAX_SYNCHRONISE_WAIT_MS 2
|
|
|
|
/* How long, at most, to spend synchronising */
|
|
#define SYNCHRONISE_PERIOD_NS 250000
|
|
|
|
/* How often to update the shared memory time */
|
|
#define SYNCHRONISATION_GRANULARITY_NS 200
|
|
|
|
/* Minimum permitted length of a (corrected) synchronisation time */
|
|
#define DEFAULT_MIN_SYNCHRONISATION_NS 120
|
|
|
|
/* Maximum permitted length of a (corrected) synchronisation time */
|
|
#define MAX_SYNCHRONISATION_NS 1000
|
|
|
|
/* How many (MC) receive events that can be queued */
|
|
#define MAX_RECEIVE_EVENTS 8
|
|
|
|
/* Length of (modified) moving average. */
|
|
#define AVERAGE_LENGTH 16
|
|
|
|
/* How long an unmatched event or packet can be held */
|
|
#define PKT_EVENT_LIFETIME_MS 10
|
|
|
|
/* Offsets into PTP packet for identification. These offsets are from the
|
|
* start of the IP header, not the MAC header. Note that neither PTP V1 nor
|
|
* PTP V2 permit the use of IPV4 options.
|
|
*/
|
|
#define PTP_DPORT_OFFSET 22
|
|
|
|
#define PTP_V1_VERSION_LENGTH 2
|
|
#define PTP_V1_VERSION_OFFSET 28
|
|
|
|
#define PTP_V1_UUID_LENGTH 6
|
|
#define PTP_V1_UUID_OFFSET 50
|
|
|
|
#define PTP_V1_SEQUENCE_LENGTH 2
|
|
#define PTP_V1_SEQUENCE_OFFSET 58
|
|
|
|
/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
|
|
* includes IP header.
|
|
*/
|
|
#define PTP_V1_MIN_LENGTH 64
|
|
|
|
#define PTP_V2_VERSION_LENGTH 1
|
|
#define PTP_V2_VERSION_OFFSET 29
|
|
|
|
#define PTP_V2_UUID_LENGTH 8
|
|
#define PTP_V2_UUID_OFFSET 48
|
|
|
|
/* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
|
|
* the MC only captures the last six bytes of the clock identity. These values
|
|
* reflect those, not the ones used in the standard. The standard permits
|
|
* mapping of V1 UUIDs to V2 UUIDs with these same values.
|
|
*/
|
|
#define PTP_V2_MC_UUID_LENGTH 6
|
|
#define PTP_V2_MC_UUID_OFFSET 50
|
|
|
|
#define PTP_V2_SEQUENCE_LENGTH 2
|
|
#define PTP_V2_SEQUENCE_OFFSET 58
|
|
|
|
/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
|
|
* includes IP header.
|
|
*/
|
|
#define PTP_V2_MIN_LENGTH 63
|
|
|
|
#define PTP_MIN_LENGTH 63
|
|
|
|
#define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */
|
|
#define PTP_EVENT_PORT 319
|
|
#define PTP_GENERAL_PORT 320
|
|
|
|
/* Annoyingly the format of the version numbers are different between
|
|
* versions 1 and 2 so it isn't possible to simply look for 1 or 2.
|
|
*/
|
|
#define PTP_VERSION_V1 1
|
|
|
|
#define PTP_VERSION_V2 2
|
|
#define PTP_VERSION_V2_MASK 0x0f
|
|
|
|
enum ptp_packet_state {
|
|
PTP_PACKET_STATE_UNMATCHED = 0,
|
|
PTP_PACKET_STATE_MATCHED,
|
|
PTP_PACKET_STATE_TIMED_OUT,
|
|
PTP_PACKET_STATE_MATCH_UNWANTED
|
|
};
|
|
|
|
/* NIC synchronised with single word of time only comprising
|
|
* partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
|
|
*/
|
|
#define MC_NANOSECOND_BITS 30
|
|
#define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1)
|
|
#define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
|
|
|
|
/* Maximum parts-per-billion adjustment that is acceptable */
|
|
#define MAX_PPB 1000000
|
|
|
|
/* Precalculate scale word to avoid long long division at runtime */
|
|
/* This is equivalent to 2^66 / 10^9. */
|
|
#define PPB_SCALE_WORD ((1LL << (57)) / 1953125LL)
|
|
|
|
/* How much to shift down after scaling to convert to FP40 */
|
|
#define PPB_SHIFT_FP40 26
|
|
/* ... and FP44. */
|
|
#define PPB_SHIFT_FP44 22
|
|
|
|
#define PTP_SYNC_ATTEMPTS 4
|
|
|
|
/**
|
|
* struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
|
|
* @words: UUID and (partial) sequence number
|
|
* @expiry: Time after which the packet should be delivered irrespective of
|
|
* event arrival.
|
|
* @state: The state of the packet - whether it is ready for processing or
|
|
* whether that is of no interest.
|
|
*/
|
|
struct efx_ptp_match {
|
|
u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
|
|
unsigned long expiry;
|
|
enum ptp_packet_state state;
|
|
};
|
|
|
|
/**
|
|
* struct efx_ptp_event_rx - A PTP receive event (from MC)
|
|
* @seq0: First part of (PTP) UUID
|
|
* @seq1: Second part of (PTP) UUID and sequence number
|
|
* @hwtimestamp: Event timestamp
|
|
*/
|
|
struct efx_ptp_event_rx {
|
|
struct list_head link;
|
|
u32 seq0;
|
|
u32 seq1;
|
|
ktime_t hwtimestamp;
|
|
unsigned long expiry;
|
|
};
|
|
|
|
/**
|
|
* struct efx_ptp_timeset - Synchronisation between host and MC
|
|
* @host_start: Host time immediately before hardware timestamp taken
|
|
* @major: Hardware timestamp, major
|
|
* @minor: Hardware timestamp, minor
|
|
* @host_end: Host time immediately after hardware timestamp taken
|
|
* @wait: Number of NIC clock ticks between hardware timestamp being read and
|
|
* host end time being seen
|
|
* @window: Difference of host_end and host_start
|
|
* @valid: Whether this timeset is valid
|
|
*/
|
|
struct efx_ptp_timeset {
|
|
u32 host_start;
|
|
u32 major;
|
|
u32 minor;
|
|
u32 host_end;
|
|
u32 wait;
|
|
u32 window; /* Derived: end - start, allowing for wrap */
|
|
};
|
|
|
|
/**
|
|
* struct efx_ptp_data - Precision Time Protocol (PTP) state
|
|
* @efx: The NIC context
|
|
* @channel: The PTP channel (Siena only)
|
|
* @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
|
|
* separate events)
|
|
* @rxq: Receive SKB queue (awaiting timestamps)
|
|
* @txq: Transmit SKB queue
|
|
* @evt_list: List of MC receive events awaiting packets
|
|
* @evt_free_list: List of free events
|
|
* @evt_lock: Lock for manipulating evt_list and evt_free_list
|
|
* @rx_evts: Instantiated events (on evt_list and evt_free_list)
|
|
* @workwq: Work queue for processing pending PTP operations
|
|
* @work: Work task
|
|
* @reset_required: A serious error has occurred and the PTP task needs to be
|
|
* reset (disable, enable).
|
|
* @rxfilter_event: Receive filter when operating
|
|
* @rxfilter_general: Receive filter when operating
|
|
* @config: Current timestamp configuration
|
|
* @enabled: PTP operation enabled
|
|
* @mode: Mode in which PTP operating (PTP version)
|
|
* @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
|
|
* @nic_to_kernel_time: Function to convert from NIC to kernel time
|
|
* @nic_time.minor_max: Wrap point for NIC minor times
|
|
* @nic_time.sync_event_diff_min: Minimum acceptable difference between time
|
|
* in packet prefix and last MCDI time sync event i.e. how much earlier than
|
|
* the last sync event time a packet timestamp can be.
|
|
* @nic_time.sync_event_diff_max: Maximum acceptable difference between time
|
|
* in packet prefix and last MCDI time sync event i.e. how much later than
|
|
* the last sync event time a packet timestamp can be.
|
|
* @nic_time.sync_event_minor_shift: Shift required to make minor time from
|
|
* field in MCDI time sync event.
|
|
* @min_synchronisation_ns: Minimum acceptable corrected sync window
|
|
* @capabilities: Capabilities flags from the NIC
|
|
* @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
|
|
* timestamps
|
|
* @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
|
|
* timestamps
|
|
* @ts_corrections.pps_out: PPS output error (information only)
|
|
* @ts_corrections.pps_in: Required driver correction of PPS input timestamps
|
|
* @ts_corrections.general_tx: Required driver correction of general packet
|
|
* transmit timestamps
|
|
* @ts_corrections.general_rx: Required driver correction of general packet
|
|
* receive timestamps
|
|
* @evt_frags: Partly assembled PTP events
|
|
* @evt_frag_idx: Current fragment number
|
|
* @evt_code: Last event code
|
|
* @start: Address at which MC indicates ready for synchronisation
|
|
* @host_time_pps: Host time at last PPS
|
|
* @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
|
|
* frequency adjustment into a fixed point fractional nanosecond format.
|
|
* @current_adjfreq: Current ppb adjustment.
|
|
* @phc_clock: Pointer to registered phc device (if primary function)
|
|
* @phc_clock_info: Registration structure for phc device
|
|
* @pps_work: pps work task for handling pps events
|
|
* @pps_workwq: pps work queue
|
|
* @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
|
|
* @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
|
|
* allocations in main data path).
|
|
* @good_syncs: Number of successful synchronisations.
|
|
* @fast_syncs: Number of synchronisations requiring short delay
|
|
* @bad_syncs: Number of failed synchronisations.
|
|
* @sync_timeouts: Number of synchronisation timeouts
|
|
* @no_time_syncs: Number of synchronisations with no good times.
|
|
* @invalid_sync_windows: Number of sync windows with bad durations.
|
|
* @undersize_sync_windows: Number of corrected sync windows that are too small
|
|
* @oversize_sync_windows: Number of corrected sync windows that are too large
|
|
* @rx_no_timestamp: Number of packets received without a timestamp.
|
|
* @timeset: Last set of synchronisation statistics.
|
|
* @xmit_skb: Transmit SKB function.
|
|
*/
|
|
struct efx_ptp_data {
|
|
struct efx_nic *efx;
|
|
struct efx_channel *channel;
|
|
bool rx_ts_inline;
|
|
struct sk_buff_head rxq;
|
|
struct sk_buff_head txq;
|
|
struct list_head evt_list;
|
|
struct list_head evt_free_list;
|
|
spinlock_t evt_lock;
|
|
struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
|
|
struct workqueue_struct *workwq;
|
|
struct work_struct work;
|
|
bool reset_required;
|
|
u32 rxfilter_event;
|
|
u32 rxfilter_general;
|
|
bool rxfilter_installed;
|
|
struct hwtstamp_config config;
|
|
bool enabled;
|
|
unsigned int mode;
|
|
void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
|
|
ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
|
|
s32 correction);
|
|
struct {
|
|
u32 minor_max;
|
|
u32 sync_event_diff_min;
|
|
u32 sync_event_diff_max;
|
|
unsigned int sync_event_minor_shift;
|
|
} nic_time;
|
|
unsigned int min_synchronisation_ns;
|
|
unsigned int capabilities;
|
|
struct {
|
|
s32 ptp_tx;
|
|
s32 ptp_rx;
|
|
s32 pps_out;
|
|
s32 pps_in;
|
|
s32 general_tx;
|
|
s32 general_rx;
|
|
} ts_corrections;
|
|
efx_qword_t evt_frags[MAX_EVENT_FRAGS];
|
|
int evt_frag_idx;
|
|
int evt_code;
|
|
struct efx_buffer start;
|
|
struct pps_event_time host_time_pps;
|
|
unsigned int adjfreq_ppb_shift;
|
|
s64 current_adjfreq;
|
|
struct ptp_clock *phc_clock;
|
|
struct ptp_clock_info phc_clock_info;
|
|
struct work_struct pps_work;
|
|
struct workqueue_struct *pps_workwq;
|
|
bool nic_ts_enabled;
|
|
_MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX);
|
|
|
|
unsigned int good_syncs;
|
|
unsigned int fast_syncs;
|
|
unsigned int bad_syncs;
|
|
unsigned int sync_timeouts;
|
|
unsigned int no_time_syncs;
|
|
unsigned int invalid_sync_windows;
|
|
unsigned int undersize_sync_windows;
|
|
unsigned int oversize_sync_windows;
|
|
unsigned int rx_no_timestamp;
|
|
struct efx_ptp_timeset
|
|
timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
|
|
void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb);
|
|
};
|
|
|
|
static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
|
|
static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
|
|
static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
|
|
static int efx_phc_settime(struct ptp_clock_info *ptp,
|
|
const struct timespec64 *e_ts);
|
|
static int efx_phc_enable(struct ptp_clock_info *ptp,
|
|
struct ptp_clock_request *request, int on);
|
|
|
|
bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx)
|
|
{
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
|
|
return ((efx_nic_rev(efx) >= EFX_REV_HUNT_A0) &&
|
|
(nic_data->datapath_caps2 &
|
|
(1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_MAC_TIMESTAMPING_LBN)
|
|
));
|
|
}
|
|
|
|
/* PTP 'extra' channel is still a traffic channel, but we only create TX queues
|
|
* if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
|
|
*/
|
|
static bool efx_ptp_want_txqs(struct efx_channel *channel)
|
|
{
|
|
return efx_ptp_use_mac_tx_timestamps(channel->efx);
|
|
}
|
|
|
|
#define PTP_SW_STAT(ext_name, field_name) \
|
|
{ #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
|
|
#define PTP_MC_STAT(ext_name, mcdi_name) \
|
|
{ #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
|
|
static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
|
|
PTP_SW_STAT(ptp_good_syncs, good_syncs),
|
|
PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
|
|
PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
|
|
PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
|
|
PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
|
|
PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
|
|
PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
|
|
PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
|
|
PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
|
|
PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
|
|
PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
|
|
PTP_MC_STAT(ptp_timestamp_packets, TS),
|
|
PTP_MC_STAT(ptp_filter_matches, FM),
|
|
PTP_MC_STAT(ptp_non_filter_matches, NFM),
|
|
};
|
|
#define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
|
|
static const unsigned long efx_ptp_stat_mask[] = {
|
|
[0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
|
|
};
|
|
|
|
size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
|
|
{
|
|
if (!efx->ptp_data)
|
|
return 0;
|
|
|
|
return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
|
|
efx_ptp_stat_mask, strings);
|
|
}
|
|
|
|
size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
|
|
size_t i;
|
|
int rc;
|
|
|
|
if (!efx->ptp_data)
|
|
return 0;
|
|
|
|
/* Copy software statistics */
|
|
for (i = 0; i < PTP_STAT_COUNT; i++) {
|
|
if (efx_ptp_stat_desc[i].dma_width)
|
|
continue;
|
|
stats[i] = *(unsigned int *)((char *)efx->ptp_data +
|
|
efx_ptp_stat_desc[i].offset);
|
|
}
|
|
|
|
/* Fetch MC statistics. We *must* fill in all statistics or
|
|
* risk leaking kernel memory to userland, so if the MCDI
|
|
* request fails we pretend we got zeroes.
|
|
*/
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
|
|
outbuf, sizeof(outbuf), NULL);
|
|
if (rc)
|
|
memset(outbuf, 0, sizeof(outbuf));
|
|
efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
|
|
efx_ptp_stat_mask,
|
|
stats, _MCDI_PTR(outbuf, 0), false);
|
|
|
|
return PTP_STAT_COUNT;
|
|
}
|
|
|
|
/* For Siena platforms NIC time is s and ns */
|
|
static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
|
|
{
|
|
struct timespec64 ts = ns_to_timespec64(ns);
|
|
*nic_major = (u32)ts.tv_sec;
|
|
*nic_minor = ts.tv_nsec;
|
|
}
|
|
|
|
static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
|
|
s32 correction)
|
|
{
|
|
ktime_t kt = ktime_set(nic_major, nic_minor);
|
|
if (correction >= 0)
|
|
kt = ktime_add_ns(kt, (u64)correction);
|
|
else
|
|
kt = ktime_sub_ns(kt, (u64)-correction);
|
|
return kt;
|
|
}
|
|
|
|
/* To convert from s27 format to ns we multiply then divide by a power of 2.
|
|
* For the conversion from ns to s27, the operation is also converted to a
|
|
* multiply and shift.
|
|
*/
|
|
#define S27_TO_NS_SHIFT (27)
|
|
#define NS_TO_S27_MULT (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
|
|
#define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT)
|
|
#define S27_MINOR_MAX (1 << S27_TO_NS_SHIFT)
|
|
|
|
/* For Huntington platforms NIC time is in seconds and fractions of a second
|
|
* where the minor register only uses 27 bits in units of 2^-27s.
|
|
*/
|
|
static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
|
|
{
|
|
struct timespec64 ts = ns_to_timespec64(ns);
|
|
u32 maj = (u32)ts.tv_sec;
|
|
u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
|
|
(1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
|
|
|
|
/* The conversion can result in the minor value exceeding the maximum.
|
|
* In this case, round up to the next second.
|
|
*/
|
|
if (min >= S27_MINOR_MAX) {
|
|
min -= S27_MINOR_MAX;
|
|
maj++;
|
|
}
|
|
|
|
*nic_major = maj;
|
|
*nic_minor = min;
|
|
}
|
|
|
|
static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
|
|
{
|
|
u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
|
|
(1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
|
|
return ktime_set(nic_major, ns);
|
|
}
|
|
|
|
static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
|
|
s32 correction)
|
|
{
|
|
/* Apply the correction and deal with carry */
|
|
nic_minor += correction;
|
|
if ((s32)nic_minor < 0) {
|
|
nic_minor += S27_MINOR_MAX;
|
|
nic_major--;
|
|
} else if (nic_minor >= S27_MINOR_MAX) {
|
|
nic_minor -= S27_MINOR_MAX;
|
|
nic_major++;
|
|
}
|
|
|
|
return efx_ptp_s27_to_ktime(nic_major, nic_minor);
|
|
}
|
|
|
|
/* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
|
|
static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor)
|
|
{
|
|
struct timespec64 ts = ns_to_timespec64(ns);
|
|
|
|
*nic_major = (u32)ts.tv_sec;
|
|
*nic_minor = ts.tv_nsec * 4;
|
|
}
|
|
|
|
static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor,
|
|
s32 correction)
|
|
{
|
|
ktime_t kt;
|
|
|
|
nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4);
|
|
correction = DIV_ROUND_CLOSEST(correction, 4);
|
|
|
|
kt = ktime_set(nic_major, nic_minor);
|
|
|
|
if (correction >= 0)
|
|
kt = ktime_add_ns(kt, (u64)correction);
|
|
else
|
|
kt = ktime_sub_ns(kt, (u64)-correction);
|
|
return kt;
|
|
}
|
|
|
|
struct efx_channel *efx_ptp_channel(struct efx_nic *efx)
|
|
{
|
|
return efx->ptp_data ? efx->ptp_data->channel : NULL;
|
|
}
|
|
|
|
static u32 last_sync_timestamp_major(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel = efx_ptp_channel(efx);
|
|
u32 major = 0;
|
|
|
|
if (channel)
|
|
major = channel->sync_timestamp_major;
|
|
return major;
|
|
}
|
|
|
|
/* The 8000 series and later can provide the time from the MAC, which is only
|
|
* 48 bits long and provides meta-information in the top 2 bits.
|
|
*/
|
|
static ktime_t
|
|
efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx,
|
|
struct efx_ptp_data *ptp,
|
|
u32 nic_major, u32 nic_minor,
|
|
s32 correction)
|
|
{
|
|
ktime_t kt = { 0 };
|
|
|
|
if (!(nic_major & 0x80000000)) {
|
|
WARN_ON_ONCE(nic_major >> 16);
|
|
/* Use the top bits from the latest sync event. */
|
|
nic_major &= 0xffff;
|
|
nic_major |= (last_sync_timestamp_major(efx) & 0xffff0000);
|
|
|
|
kt = ptp->nic_to_kernel_time(nic_major, nic_minor,
|
|
correction);
|
|
}
|
|
return kt;
|
|
}
|
|
|
|
ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue)
|
|
{
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
ktime_t kt;
|
|
|
|
if (efx_ptp_use_mac_tx_timestamps(efx))
|
|
kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp,
|
|
tx_queue->completed_timestamp_major,
|
|
tx_queue->completed_timestamp_minor,
|
|
ptp->ts_corrections.general_tx);
|
|
else
|
|
kt = ptp->nic_to_kernel_time(
|
|
tx_queue->completed_timestamp_major,
|
|
tx_queue->completed_timestamp_minor,
|
|
ptp->ts_corrections.general_tx);
|
|
return kt;
|
|
}
|
|
|
|
/* Get PTP attributes and set up time conversions */
|
|
static int efx_ptp_get_attributes(struct efx_nic *efx)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
int rc;
|
|
u32 fmt;
|
|
size_t out_len;
|
|
|
|
/* Get the PTP attributes. If the NIC doesn't support the operation we
|
|
* use the default format for compatibility with older NICs i.e.
|
|
* seconds and nanoseconds.
|
|
*/
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
|
|
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
|
|
outbuf, sizeof(outbuf), &out_len);
|
|
if (rc == 0) {
|
|
fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
|
|
} else if (rc == -EINVAL) {
|
|
fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
|
|
} else if (rc == -EPERM) {
|
|
netif_info(efx, probe, efx->net_dev, "no PTP support\n");
|
|
return rc;
|
|
} else {
|
|
efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
|
|
outbuf, sizeof(outbuf), rc);
|
|
return rc;
|
|
}
|
|
|
|
switch (fmt) {
|
|
case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION:
|
|
ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
|
|
ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
|
|
ptp->nic_time.minor_max = 1 << 27;
|
|
ptp->nic_time.sync_event_minor_shift = 19;
|
|
break;
|
|
case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS:
|
|
ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
|
|
ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
|
|
ptp->nic_time.minor_max = 1000000000;
|
|
ptp->nic_time.sync_event_minor_shift = 22;
|
|
break;
|
|
case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS:
|
|
ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns;
|
|
ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction;
|
|
ptp->nic_time.minor_max = 4000000000UL;
|
|
ptp->nic_time.sync_event_minor_shift = 24;
|
|
break;
|
|
default:
|
|
return -ERANGE;
|
|
}
|
|
|
|
/* Precalculate acceptable difference between the minor time in the
|
|
* packet prefix and the last MCDI time sync event. We expect the
|
|
* packet prefix timestamp to be after of sync event by up to one
|
|
* sync event interval (0.25s) but we allow it to exceed this by a
|
|
* fuzz factor of (0.1s)
|
|
*/
|
|
ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max
|
|
- (ptp->nic_time.minor_max / 10);
|
|
ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4)
|
|
+ (ptp->nic_time.minor_max / 10);
|
|
|
|
/* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
|
|
* operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
|
|
* a value to use for the minimum acceptable corrected synchronization
|
|
* window and may return further capabilities.
|
|
* If we have the extra information store it. For older firmware that
|
|
* does not implement the extended command use the default value.
|
|
*/
|
|
if (rc == 0 &&
|
|
out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST)
|
|
ptp->min_synchronisation_ns =
|
|
MCDI_DWORD(outbuf,
|
|
PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
|
|
else
|
|
ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
|
|
|
|
if (rc == 0 &&
|
|
out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
|
|
ptp->capabilities = MCDI_DWORD(outbuf,
|
|
PTP_OUT_GET_ATTRIBUTES_CAPABILITIES);
|
|
else
|
|
ptp->capabilities = 0;
|
|
|
|
/* Set up the shift for conversion between frequency
|
|
* adjustments in parts-per-billion and the fixed-point
|
|
* fractional ns format that the adapter uses.
|
|
*/
|
|
if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN))
|
|
ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44;
|
|
else
|
|
ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Get PTP timestamp corrections */
|
|
static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN);
|
|
int rc;
|
|
size_t out_len;
|
|
|
|
/* Get the timestamp corrections from the NIC. If this operation is
|
|
* not supported (older NICs) then no correction is required.
|
|
*/
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_OP,
|
|
MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
|
|
|
|
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
|
|
outbuf, sizeof(outbuf), &out_len);
|
|
if (rc == 0) {
|
|
efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf,
|
|
PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
|
|
efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf,
|
|
PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
|
|
efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
|
|
PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
|
|
efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
|
|
PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
|
|
|
|
if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) {
|
|
efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD(
|
|
outbuf,
|
|
PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX);
|
|
efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD(
|
|
outbuf,
|
|
PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX);
|
|
} else {
|
|
efx->ptp_data->ts_corrections.general_tx =
|
|
efx->ptp_data->ts_corrections.ptp_tx;
|
|
efx->ptp_data->ts_corrections.general_rx =
|
|
efx->ptp_data->ts_corrections.ptp_rx;
|
|
}
|
|
} else if (rc == -EINVAL) {
|
|
efx->ptp_data->ts_corrections.ptp_tx = 0;
|
|
efx->ptp_data->ts_corrections.ptp_rx = 0;
|
|
efx->ptp_data->ts_corrections.pps_out = 0;
|
|
efx->ptp_data->ts_corrections.pps_in = 0;
|
|
efx->ptp_data->ts_corrections.general_tx = 0;
|
|
efx->ptp_data->ts_corrections.general_rx = 0;
|
|
} else {
|
|
efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf,
|
|
sizeof(outbuf), rc);
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Enable MCDI PTP support. */
|
|
static int efx_ptp_enable(struct efx_nic *efx)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
|
|
MCDI_DECLARE_BUF_ERR(outbuf);
|
|
int rc;
|
|
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
|
|
efx->ptp_data->channel ?
|
|
efx->ptp_data->channel->channel : 0);
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
|
|
|
|
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
|
|
outbuf, sizeof(outbuf), NULL);
|
|
rc = (rc == -EALREADY) ? 0 : rc;
|
|
if (rc)
|
|
efx_mcdi_display_error(efx, MC_CMD_PTP,
|
|
MC_CMD_PTP_IN_ENABLE_LEN,
|
|
outbuf, sizeof(outbuf), rc);
|
|
return rc;
|
|
}
|
|
|
|
/* Disable MCDI PTP support.
|
|
*
|
|
* Note that this function should never rely on the presence of ptp_data -
|
|
* may be called before that exists.
|
|
*/
|
|
static int efx_ptp_disable(struct efx_nic *efx)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
|
|
MCDI_DECLARE_BUF_ERR(outbuf);
|
|
int rc;
|
|
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
|
|
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
|
|
outbuf, sizeof(outbuf), NULL);
|
|
rc = (rc == -EALREADY) ? 0 : rc;
|
|
/* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
|
|
* should only have been called during probe.
|
|
*/
|
|
if (rc == -ENOSYS || rc == -EPERM)
|
|
netif_info(efx, probe, efx->net_dev, "no PTP support\n");
|
|
else if (rc)
|
|
efx_mcdi_display_error(efx, MC_CMD_PTP,
|
|
MC_CMD_PTP_IN_DISABLE_LEN,
|
|
outbuf, sizeof(outbuf), rc);
|
|
return rc;
|
|
}
|
|
|
|
static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
while ((skb = skb_dequeue(q))) {
|
|
local_bh_disable();
|
|
netif_receive_skb(skb);
|
|
local_bh_enable();
|
|
}
|
|
}
|
|
|
|
static void efx_ptp_handle_no_channel(struct efx_nic *efx)
|
|
{
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"ERROR: PTP requires MSI-X and 1 additional interrupt"
|
|
"vector. PTP disabled\n");
|
|
}
|
|
|
|
/* Repeatedly send the host time to the MC which will capture the hardware
|
|
* time.
|
|
*/
|
|
static void efx_ptp_send_times(struct efx_nic *efx,
|
|
struct pps_event_time *last_time)
|
|
{
|
|
struct pps_event_time now;
|
|
struct timespec64 limit;
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
int *mc_running = ptp->start.addr;
|
|
|
|
pps_get_ts(&now);
|
|
limit = now.ts_real;
|
|
timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
|
|
|
|
/* Write host time for specified period or until MC is done */
|
|
while ((timespec64_compare(&now.ts_real, &limit) < 0) &&
|
|
READ_ONCE(*mc_running)) {
|
|
struct timespec64 update_time;
|
|
unsigned int host_time;
|
|
|
|
/* Don't update continuously to avoid saturating the PCIe bus */
|
|
update_time = now.ts_real;
|
|
timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
|
|
do {
|
|
pps_get_ts(&now);
|
|
} while ((timespec64_compare(&now.ts_real, &update_time) < 0) &&
|
|
READ_ONCE(*mc_running));
|
|
|
|
/* Synchronise NIC with single word of time only */
|
|
host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
|
|
now.ts_real.tv_nsec);
|
|
/* Update host time in NIC memory */
|
|
efx->type->ptp_write_host_time(efx, host_time);
|
|
}
|
|
*last_time = now;
|
|
}
|
|
|
|
/* Read a timeset from the MC's results and partial process. */
|
|
static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
|
|
struct efx_ptp_timeset *timeset)
|
|
{
|
|
unsigned start_ns, end_ns;
|
|
|
|
timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
|
|
timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
|
|
timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
|
|
timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
|
|
timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
|
|
|
|
/* Ignore seconds */
|
|
start_ns = timeset->host_start & MC_NANOSECOND_MASK;
|
|
end_ns = timeset->host_end & MC_NANOSECOND_MASK;
|
|
/* Allow for rollover */
|
|
if (end_ns < start_ns)
|
|
end_ns += NSEC_PER_SEC;
|
|
/* Determine duration of operation */
|
|
timeset->window = end_ns - start_ns;
|
|
}
|
|
|
|
/* Process times received from MC.
|
|
*
|
|
* Extract times from returned results, and establish the minimum value
|
|
* seen. The minimum value represents the "best" possible time and events
|
|
* too much greater than this are rejected - the machine is, perhaps, too
|
|
* busy. A number of readings are taken so that, hopefully, at least one good
|
|
* synchronisation will be seen in the results.
|
|
*/
|
|
static int
|
|
efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
|
|
size_t response_length,
|
|
const struct pps_event_time *last_time)
|
|
{
|
|
unsigned number_readings =
|
|
MCDI_VAR_ARRAY_LEN(response_length,
|
|
PTP_OUT_SYNCHRONIZE_TIMESET);
|
|
unsigned i;
|
|
unsigned ngood = 0;
|
|
unsigned last_good = 0;
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
u32 last_sec;
|
|
u32 start_sec;
|
|
struct timespec64 delta;
|
|
ktime_t mc_time;
|
|
|
|
if (number_readings == 0)
|
|
return -EAGAIN;
|
|
|
|
/* Read the set of results and find the last good host-MC
|
|
* synchronization result. The MC times when it finishes reading the
|
|
* host time so the corrected window time should be fairly constant
|
|
* for a given platform. Increment stats for any results that appear
|
|
* to be erroneous.
|
|
*/
|
|
for (i = 0; i < number_readings; i++) {
|
|
s32 window, corrected;
|
|
struct timespec64 wait;
|
|
|
|
efx_ptp_read_timeset(
|
|
MCDI_ARRAY_STRUCT_PTR(synch_buf,
|
|
PTP_OUT_SYNCHRONIZE_TIMESET, i),
|
|
&ptp->timeset[i]);
|
|
|
|
wait = ktime_to_timespec64(
|
|
ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
|
|
window = ptp->timeset[i].window;
|
|
corrected = window - wait.tv_nsec;
|
|
|
|
/* We expect the uncorrected synchronization window to be at
|
|
* least as large as the interval between host start and end
|
|
* times. If it is smaller than this then this is mostly likely
|
|
* to be a consequence of the host's time being adjusted.
|
|
* Check that the corrected sync window is in a reasonable
|
|
* range. If it is out of range it is likely to be because an
|
|
* interrupt or other delay occurred between reading the system
|
|
* time and writing it to MC memory.
|
|
*/
|
|
if (window < SYNCHRONISATION_GRANULARITY_NS) {
|
|
++ptp->invalid_sync_windows;
|
|
} else if (corrected >= MAX_SYNCHRONISATION_NS) {
|
|
++ptp->oversize_sync_windows;
|
|
} else if (corrected < ptp->min_synchronisation_ns) {
|
|
++ptp->undersize_sync_windows;
|
|
} else {
|
|
ngood++;
|
|
last_good = i;
|
|
}
|
|
}
|
|
|
|
if (ngood == 0) {
|
|
netif_warn(efx, drv, efx->net_dev,
|
|
"PTP no suitable synchronisations\n");
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/* Calculate delay from last good sync (host time) to last_time.
|
|
* It is possible that the seconds rolled over between taking
|
|
* the start reading and the last value written by the host. The
|
|
* timescales are such that a gap of more than one second is never
|
|
* expected. delta is *not* normalised.
|
|
*/
|
|
start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
|
|
last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
|
|
if (start_sec != last_sec &&
|
|
((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
|
|
netif_warn(efx, hw, efx->net_dev,
|
|
"PTP bad synchronisation seconds\n");
|
|
return -EAGAIN;
|
|
}
|
|
delta.tv_sec = (last_sec - start_sec) & 1;
|
|
delta.tv_nsec =
|
|
last_time->ts_real.tv_nsec -
|
|
(ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
|
|
|
|
/* Convert the NIC time at last good sync into kernel time.
|
|
* No correction is required - this time is the output of a
|
|
* firmware process.
|
|
*/
|
|
mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
|
|
ptp->timeset[last_good].minor, 0);
|
|
|
|
/* Calculate delay from NIC top of second to last_time */
|
|
delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec;
|
|
|
|
/* Set PPS timestamp to match NIC top of second */
|
|
ptp->host_time_pps = *last_time;
|
|
pps_sub_ts(&ptp->host_time_pps, delta);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Synchronize times between the host and the MC */
|
|
static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
|
|
{
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
|
|
size_t response_length;
|
|
int rc;
|
|
unsigned long timeout;
|
|
struct pps_event_time last_time = {};
|
|
unsigned int loops = 0;
|
|
int *start = ptp->start.addr;
|
|
|
|
MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
|
|
MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
|
|
MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
|
|
num_readings);
|
|
MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
|
|
ptp->start.dma_addr);
|
|
|
|
/* Clear flag that signals MC ready */
|
|
WRITE_ONCE(*start, 0);
|
|
rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
|
|
MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
|
|
EFX_WARN_ON_ONCE_PARANOID(rc);
|
|
|
|
/* Wait for start from MCDI (or timeout) */
|
|
timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
|
|
while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) {
|
|
udelay(20); /* Usually start MCDI execution quickly */
|
|
loops++;
|
|
}
|
|
|
|
if (loops <= 1)
|
|
++ptp->fast_syncs;
|
|
if (!time_before(jiffies, timeout))
|
|
++ptp->sync_timeouts;
|
|
|
|
if (READ_ONCE(*start))
|
|
efx_ptp_send_times(efx, &last_time);
|
|
|
|
/* Collect results */
|
|
rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
|
|
MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
|
|
synch_buf, sizeof(synch_buf),
|
|
&response_length);
|
|
if (rc == 0) {
|
|
rc = efx_ptp_process_times(efx, synch_buf, response_length,
|
|
&last_time);
|
|
if (rc == 0)
|
|
++ptp->good_syncs;
|
|
else
|
|
++ptp->no_time_syncs;
|
|
}
|
|
|
|
/* Increment the bad syncs counter if the synchronize fails, whatever
|
|
* the reason.
|
|
*/
|
|
if (rc != 0)
|
|
++ptp->bad_syncs;
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Transmit a PTP packet via the dedicated hardware timestamped queue. */
|
|
static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb)
|
|
{
|
|
struct efx_ptp_data *ptp_data = efx->ptp_data;
|
|
struct efx_tx_queue *tx_queue;
|
|
u8 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
|
|
|
|
tx_queue = &ptp_data->channel->tx_queue[type];
|
|
if (tx_queue && tx_queue->timestamping) {
|
|
efx_enqueue_skb(tx_queue, skb);
|
|
} else {
|
|
WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
}
|
|
|
|
/* Transmit a PTP packet, via the MCDI interface, to the wire. */
|
|
static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb)
|
|
{
|
|
struct efx_ptp_data *ptp_data = efx->ptp_data;
|
|
struct skb_shared_hwtstamps timestamps;
|
|
int rc = -EIO;
|
|
MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
|
|
size_t len;
|
|
|
|
MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
|
|
MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
|
|
MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
|
|
if (skb_shinfo(skb)->nr_frags != 0) {
|
|
rc = skb_linearize(skb);
|
|
if (rc != 0)
|
|
goto fail;
|
|
}
|
|
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL) {
|
|
rc = skb_checksum_help(skb);
|
|
if (rc != 0)
|
|
goto fail;
|
|
}
|
|
skb_copy_from_linear_data(skb,
|
|
MCDI_PTR(ptp_data->txbuf,
|
|
PTP_IN_TRANSMIT_PACKET),
|
|
skb->len);
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
|
|
ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
|
|
txtime, sizeof(txtime), &len);
|
|
if (rc != 0)
|
|
goto fail;
|
|
|
|
memset(×tamps, 0, sizeof(timestamps));
|
|
timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
|
|
MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
|
|
MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
|
|
ptp_data->ts_corrections.ptp_tx);
|
|
|
|
skb_tstamp_tx(skb, ×tamps);
|
|
|
|
rc = 0;
|
|
|
|
fail:
|
|
dev_kfree_skb_any(skb);
|
|
|
|
return;
|
|
}
|
|
|
|
static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
|
|
{
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
struct list_head *cursor;
|
|
struct list_head *next;
|
|
|
|
if (ptp->rx_ts_inline)
|
|
return;
|
|
|
|
/* Drop time-expired events */
|
|
spin_lock_bh(&ptp->evt_lock);
|
|
if (!list_empty(&ptp->evt_list)) {
|
|
list_for_each_safe(cursor, next, &ptp->evt_list) {
|
|
struct efx_ptp_event_rx *evt;
|
|
|
|
evt = list_entry(cursor, struct efx_ptp_event_rx,
|
|
link);
|
|
if (time_after(jiffies, evt->expiry)) {
|
|
list_move(&evt->link, &ptp->evt_free_list);
|
|
netif_warn(efx, hw, efx->net_dev,
|
|
"PTP rx event dropped\n");
|
|
}
|
|
}
|
|
}
|
|
spin_unlock_bh(&ptp->evt_lock);
|
|
}
|
|
|
|
static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
bool evts_waiting;
|
|
struct list_head *cursor;
|
|
struct list_head *next;
|
|
struct efx_ptp_match *match;
|
|
enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
|
|
|
|
WARN_ON_ONCE(ptp->rx_ts_inline);
|
|
|
|
spin_lock_bh(&ptp->evt_lock);
|
|
evts_waiting = !list_empty(&ptp->evt_list);
|
|
spin_unlock_bh(&ptp->evt_lock);
|
|
|
|
if (!evts_waiting)
|
|
return PTP_PACKET_STATE_UNMATCHED;
|
|
|
|
match = (struct efx_ptp_match *)skb->cb;
|
|
/* Look for a matching timestamp in the event queue */
|
|
spin_lock_bh(&ptp->evt_lock);
|
|
list_for_each_safe(cursor, next, &ptp->evt_list) {
|
|
struct efx_ptp_event_rx *evt;
|
|
|
|
evt = list_entry(cursor, struct efx_ptp_event_rx, link);
|
|
if ((evt->seq0 == match->words[0]) &&
|
|
(evt->seq1 == match->words[1])) {
|
|
struct skb_shared_hwtstamps *timestamps;
|
|
|
|
/* Match - add in hardware timestamp */
|
|
timestamps = skb_hwtstamps(skb);
|
|
timestamps->hwtstamp = evt->hwtimestamp;
|
|
|
|
match->state = PTP_PACKET_STATE_MATCHED;
|
|
rc = PTP_PACKET_STATE_MATCHED;
|
|
list_move(&evt->link, &ptp->evt_free_list);
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock_bh(&ptp->evt_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Process any queued receive events and corresponding packets
|
|
*
|
|
* q is returned with all the packets that are ready for delivery.
|
|
*/
|
|
static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
|
|
{
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
struct sk_buff *skb;
|
|
|
|
while ((skb = skb_dequeue(&ptp->rxq))) {
|
|
struct efx_ptp_match *match;
|
|
|
|
match = (struct efx_ptp_match *)skb->cb;
|
|
if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
|
|
__skb_queue_tail(q, skb);
|
|
} else if (efx_ptp_match_rx(efx, skb) ==
|
|
PTP_PACKET_STATE_MATCHED) {
|
|
__skb_queue_tail(q, skb);
|
|
} else if (time_after(jiffies, match->expiry)) {
|
|
match->state = PTP_PACKET_STATE_TIMED_OUT;
|
|
++ptp->rx_no_timestamp;
|
|
__skb_queue_tail(q, skb);
|
|
} else {
|
|
/* Replace unprocessed entry and stop */
|
|
skb_queue_head(&ptp->rxq, skb);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Complete processing of a received packet */
|
|
static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
|
|
{
|
|
local_bh_disable();
|
|
netif_receive_skb(skb);
|
|
local_bh_enable();
|
|
}
|
|
|
|
static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
|
|
{
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
|
|
if (ptp->rxfilter_installed) {
|
|
efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
|
|
ptp->rxfilter_general);
|
|
efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
|
|
ptp->rxfilter_event);
|
|
ptp->rxfilter_installed = false;
|
|
}
|
|
}
|
|
|
|
static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
|
|
{
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
struct efx_filter_spec rxfilter;
|
|
int rc;
|
|
|
|
if (!ptp->channel || ptp->rxfilter_installed)
|
|
return 0;
|
|
|
|
/* Must filter on both event and general ports to ensure
|
|
* that there is no packet re-ordering.
|
|
*/
|
|
efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
|
|
efx_rx_queue_index(
|
|
efx_channel_get_rx_queue(ptp->channel)));
|
|
rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
|
|
htonl(PTP_ADDRESS),
|
|
htons(PTP_EVENT_PORT));
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
rc = efx_filter_insert_filter(efx, &rxfilter, true);
|
|
if (rc < 0)
|
|
return rc;
|
|
ptp->rxfilter_event = rc;
|
|
|
|
efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
|
|
efx_rx_queue_index(
|
|
efx_channel_get_rx_queue(ptp->channel)));
|
|
rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
|
|
htonl(PTP_ADDRESS),
|
|
htons(PTP_GENERAL_PORT));
|
|
if (rc != 0)
|
|
goto fail;
|
|
|
|
rc = efx_filter_insert_filter(efx, &rxfilter, true);
|
|
if (rc < 0)
|
|
goto fail;
|
|
ptp->rxfilter_general = rc;
|
|
|
|
ptp->rxfilter_installed = true;
|
|
return 0;
|
|
|
|
fail:
|
|
efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
|
|
ptp->rxfilter_event);
|
|
return rc;
|
|
}
|
|
|
|
static int efx_ptp_start(struct efx_nic *efx)
|
|
{
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
int rc;
|
|
|
|
ptp->reset_required = false;
|
|
|
|
rc = efx_ptp_insert_multicast_filters(efx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = efx_ptp_enable(efx);
|
|
if (rc != 0)
|
|
goto fail;
|
|
|
|
ptp->evt_frag_idx = 0;
|
|
ptp->current_adjfreq = 0;
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
efx_ptp_remove_multicast_filters(efx);
|
|
return rc;
|
|
}
|
|
|
|
static int efx_ptp_stop(struct efx_nic *efx)
|
|
{
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
struct list_head *cursor;
|
|
struct list_head *next;
|
|
int rc;
|
|
|
|
if (ptp == NULL)
|
|
return 0;
|
|
|
|
rc = efx_ptp_disable(efx);
|
|
|
|
efx_ptp_remove_multicast_filters(efx);
|
|
|
|
/* Make sure RX packets are really delivered */
|
|
efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
|
|
skb_queue_purge(&efx->ptp_data->txq);
|
|
|
|
/* Drop any pending receive events */
|
|
spin_lock_bh(&efx->ptp_data->evt_lock);
|
|
list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
|
|
list_move(cursor, &efx->ptp_data->evt_free_list);
|
|
}
|
|
spin_unlock_bh(&efx->ptp_data->evt_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int efx_ptp_restart(struct efx_nic *efx)
|
|
{
|
|
if (efx->ptp_data && efx->ptp_data->enabled)
|
|
return efx_ptp_start(efx);
|
|
return 0;
|
|
}
|
|
|
|
static void efx_ptp_pps_worker(struct work_struct *work)
|
|
{
|
|
struct efx_ptp_data *ptp =
|
|
container_of(work, struct efx_ptp_data, pps_work);
|
|
struct efx_nic *efx = ptp->efx;
|
|
struct ptp_clock_event ptp_evt;
|
|
|
|
if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
|
|
return;
|
|
|
|
ptp_evt.type = PTP_CLOCK_PPSUSR;
|
|
ptp_evt.pps_times = ptp->host_time_pps;
|
|
ptp_clock_event(ptp->phc_clock, &ptp_evt);
|
|
}
|
|
|
|
static void efx_ptp_worker(struct work_struct *work)
|
|
{
|
|
struct efx_ptp_data *ptp_data =
|
|
container_of(work, struct efx_ptp_data, work);
|
|
struct efx_nic *efx = ptp_data->efx;
|
|
struct sk_buff *skb;
|
|
struct sk_buff_head tempq;
|
|
|
|
if (ptp_data->reset_required) {
|
|
efx_ptp_stop(efx);
|
|
efx_ptp_start(efx);
|
|
return;
|
|
}
|
|
|
|
efx_ptp_drop_time_expired_events(efx);
|
|
|
|
__skb_queue_head_init(&tempq);
|
|
efx_ptp_process_events(efx, &tempq);
|
|
|
|
while ((skb = skb_dequeue(&ptp_data->txq)))
|
|
ptp_data->xmit_skb(efx, skb);
|
|
|
|
while ((skb = __skb_dequeue(&tempq)))
|
|
efx_ptp_process_rx(efx, skb);
|
|
}
|
|
|
|
static const struct ptp_clock_info efx_phc_clock_info = {
|
|
.owner = THIS_MODULE,
|
|
.name = "sfc",
|
|
.max_adj = MAX_PPB,
|
|
.n_alarm = 0,
|
|
.n_ext_ts = 0,
|
|
.n_per_out = 0,
|
|
.n_pins = 0,
|
|
.pps = 1,
|
|
.adjfreq = efx_phc_adjfreq,
|
|
.adjtime = efx_phc_adjtime,
|
|
.gettime64 = efx_phc_gettime,
|
|
.settime64 = efx_phc_settime,
|
|
.enable = efx_phc_enable,
|
|
};
|
|
|
|
/* Initialise PTP state. */
|
|
int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
|
|
{
|
|
struct efx_ptp_data *ptp;
|
|
int rc = 0;
|
|
unsigned int pos;
|
|
|
|
ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
|
|
efx->ptp_data = ptp;
|
|
if (!efx->ptp_data)
|
|
return -ENOMEM;
|
|
|
|
ptp->efx = efx;
|
|
ptp->channel = channel;
|
|
ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
|
|
|
|
rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
|
|
if (rc != 0)
|
|
goto fail1;
|
|
|
|
skb_queue_head_init(&ptp->rxq);
|
|
skb_queue_head_init(&ptp->txq);
|
|
ptp->workwq = create_singlethread_workqueue("sfc_ptp");
|
|
if (!ptp->workwq) {
|
|
rc = -ENOMEM;
|
|
goto fail2;
|
|
}
|
|
|
|
if (efx_ptp_use_mac_tx_timestamps(efx)) {
|
|
ptp->xmit_skb = efx_ptp_xmit_skb_queue;
|
|
/* Request sync events on this channel. */
|
|
channel->sync_events_state = SYNC_EVENTS_QUIESCENT;
|
|
} else {
|
|
ptp->xmit_skb = efx_ptp_xmit_skb_mc;
|
|
}
|
|
|
|
INIT_WORK(&ptp->work, efx_ptp_worker);
|
|
ptp->config.flags = 0;
|
|
ptp->config.tx_type = HWTSTAMP_TX_OFF;
|
|
ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
|
|
INIT_LIST_HEAD(&ptp->evt_list);
|
|
INIT_LIST_HEAD(&ptp->evt_free_list);
|
|
spin_lock_init(&ptp->evt_lock);
|
|
for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
|
|
list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
|
|
|
|
/* Get the NIC PTP attributes and set up time conversions */
|
|
rc = efx_ptp_get_attributes(efx);
|
|
if (rc < 0)
|
|
goto fail3;
|
|
|
|
/* Get the timestamp corrections */
|
|
rc = efx_ptp_get_timestamp_corrections(efx);
|
|
if (rc < 0)
|
|
goto fail3;
|
|
|
|
if (efx->mcdi->fn_flags &
|
|
(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
|
|
ptp->phc_clock_info = efx_phc_clock_info;
|
|
ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
|
|
&efx->pci_dev->dev);
|
|
if (IS_ERR(ptp->phc_clock)) {
|
|
rc = PTR_ERR(ptp->phc_clock);
|
|
goto fail3;
|
|
} else if (ptp->phc_clock) {
|
|
INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
|
|
ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
|
|
if (!ptp->pps_workwq) {
|
|
rc = -ENOMEM;
|
|
goto fail4;
|
|
}
|
|
}
|
|
}
|
|
ptp->nic_ts_enabled = false;
|
|
|
|
return 0;
|
|
fail4:
|
|
ptp_clock_unregister(efx->ptp_data->phc_clock);
|
|
|
|
fail3:
|
|
destroy_workqueue(efx->ptp_data->workwq);
|
|
|
|
fail2:
|
|
efx_nic_free_buffer(efx, &ptp->start);
|
|
|
|
fail1:
|
|
kfree(efx->ptp_data);
|
|
efx->ptp_data = NULL;
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Initialise PTP channel.
|
|
*
|
|
* Setting core_index to zero causes the queue to be initialised and doesn't
|
|
* overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
|
|
*/
|
|
static int efx_ptp_probe_channel(struct efx_channel *channel)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
int rc;
|
|
|
|
channel->irq_moderation_us = 0;
|
|
channel->rx_queue.core_index = 0;
|
|
|
|
rc = efx_ptp_probe(efx, channel);
|
|
/* Failure to probe PTP is not fatal; this channel will just not be
|
|
* used for anything.
|
|
* In the case of EPERM, efx_ptp_probe will print its own message (in
|
|
* efx_ptp_get_attributes()), so we don't need to.
|
|
*/
|
|
if (rc && rc != -EPERM)
|
|
netif_warn(efx, drv, efx->net_dev,
|
|
"Failed to probe PTP, rc=%d\n", rc);
|
|
return 0;
|
|
}
|
|
|
|
void efx_ptp_remove(struct efx_nic *efx)
|
|
{
|
|
if (!efx->ptp_data)
|
|
return;
|
|
|
|
(void)efx_ptp_disable(efx);
|
|
|
|
cancel_work_sync(&efx->ptp_data->work);
|
|
cancel_work_sync(&efx->ptp_data->pps_work);
|
|
|
|
skb_queue_purge(&efx->ptp_data->rxq);
|
|
skb_queue_purge(&efx->ptp_data->txq);
|
|
|
|
if (efx->ptp_data->phc_clock) {
|
|
destroy_workqueue(efx->ptp_data->pps_workwq);
|
|
ptp_clock_unregister(efx->ptp_data->phc_clock);
|
|
}
|
|
|
|
destroy_workqueue(efx->ptp_data->workwq);
|
|
|
|
efx_nic_free_buffer(efx, &efx->ptp_data->start);
|
|
kfree(efx->ptp_data);
|
|
efx->ptp_data = NULL;
|
|
}
|
|
|
|
static void efx_ptp_remove_channel(struct efx_channel *channel)
|
|
{
|
|
efx_ptp_remove(channel->efx);
|
|
}
|
|
|
|
static void efx_ptp_get_channel_name(struct efx_channel *channel,
|
|
char *buf, size_t len)
|
|
{
|
|
snprintf(buf, len, "%s-ptp", channel->efx->name);
|
|
}
|
|
|
|
/* Determine whether this packet should be processed by the PTP module
|
|
* or transmitted conventionally.
|
|
*/
|
|
bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
|
|
{
|
|
return efx->ptp_data &&
|
|
efx->ptp_data->enabled &&
|
|
skb->len >= PTP_MIN_LENGTH &&
|
|
skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
|
|
likely(skb->protocol == htons(ETH_P_IP)) &&
|
|
skb_transport_header_was_set(skb) &&
|
|
skb_network_header_len(skb) >= sizeof(struct iphdr) &&
|
|
ip_hdr(skb)->protocol == IPPROTO_UDP &&
|
|
skb_headlen(skb) >=
|
|
skb_transport_offset(skb) + sizeof(struct udphdr) &&
|
|
udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
|
|
}
|
|
|
|
/* Receive a PTP packet. Packets are queued until the arrival of
|
|
* the receive timestamp from the MC - this will probably occur after the
|
|
* packet arrival because of the processing in the MC.
|
|
*/
|
|
static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
|
|
u8 *match_data_012, *match_data_345;
|
|
unsigned int version;
|
|
u8 *data;
|
|
|
|
match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
|
|
|
|
/* Correct version? */
|
|
if (ptp->mode == MC_CMD_PTP_MODE_V1) {
|
|
if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
|
|
return false;
|
|
}
|
|
data = skb->data;
|
|
version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
|
|
if (version != PTP_VERSION_V1) {
|
|
return false;
|
|
}
|
|
|
|
/* PTP V1 uses all six bytes of the UUID to match the packet
|
|
* to the timestamp
|
|
*/
|
|
match_data_012 = data + PTP_V1_UUID_OFFSET;
|
|
match_data_345 = data + PTP_V1_UUID_OFFSET + 3;
|
|
} else {
|
|
if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
|
|
return false;
|
|
}
|
|
data = skb->data;
|
|
version = data[PTP_V2_VERSION_OFFSET];
|
|
if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
|
|
return false;
|
|
}
|
|
|
|
/* The original V2 implementation uses bytes 2-7 of
|
|
* the UUID to match the packet to the timestamp. This
|
|
* discards two of the bytes of the MAC address used
|
|
* to create the UUID (SF bug 33070). The PTP V2
|
|
* enhanced mode fixes this issue and uses bytes 0-2
|
|
* and byte 5-7 of the UUID.
|
|
*/
|
|
match_data_345 = data + PTP_V2_UUID_OFFSET + 5;
|
|
if (ptp->mode == MC_CMD_PTP_MODE_V2) {
|
|
match_data_012 = data + PTP_V2_UUID_OFFSET + 2;
|
|
} else {
|
|
match_data_012 = data + PTP_V2_UUID_OFFSET + 0;
|
|
BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
|
|
}
|
|
}
|
|
|
|
/* Does this packet require timestamping? */
|
|
if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
|
|
match->state = PTP_PACKET_STATE_UNMATCHED;
|
|
|
|
/* We expect the sequence number to be in the same position in
|
|
* the packet for PTP V1 and V2
|
|
*/
|
|
BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
|
|
BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
|
|
|
|
/* Extract UUID/Sequence information */
|
|
match->words[0] = (match_data_012[0] |
|
|
(match_data_012[1] << 8) |
|
|
(match_data_012[2] << 16) |
|
|
(match_data_345[0] << 24));
|
|
match->words[1] = (match_data_345[1] |
|
|
(match_data_345[2] << 8) |
|
|
(data[PTP_V1_SEQUENCE_OFFSET +
|
|
PTP_V1_SEQUENCE_LENGTH - 1] <<
|
|
16));
|
|
} else {
|
|
match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
|
|
}
|
|
|
|
skb_queue_tail(&ptp->rxq, skb);
|
|
queue_work(ptp->workwq, &ptp->work);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Transmit a PTP packet. This has to be transmitted by the MC
|
|
* itself, through an MCDI call. MCDI calls aren't permitted
|
|
* in the transmit path so defer the actual transmission to a suitable worker.
|
|
*/
|
|
int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
|
|
{
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
|
|
skb_queue_tail(&ptp->txq, skb);
|
|
|
|
if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
|
|
(skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
|
|
efx_xmit_hwtstamp_pending(skb);
|
|
queue_work(ptp->workwq, &ptp->work);
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
int efx_ptp_get_mode(struct efx_nic *efx)
|
|
{
|
|
return efx->ptp_data->mode;
|
|
}
|
|
|
|
int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
|
|
unsigned int new_mode)
|
|
{
|
|
if ((enable_wanted != efx->ptp_data->enabled) ||
|
|
(enable_wanted && (efx->ptp_data->mode != new_mode))) {
|
|
int rc = 0;
|
|
|
|
if (enable_wanted) {
|
|
/* Change of mode requires disable */
|
|
if (efx->ptp_data->enabled &&
|
|
(efx->ptp_data->mode != new_mode)) {
|
|
efx->ptp_data->enabled = false;
|
|
rc = efx_ptp_stop(efx);
|
|
if (rc != 0)
|
|
return rc;
|
|
}
|
|
|
|
/* Set new operating mode and establish
|
|
* baseline synchronisation, which must
|
|
* succeed.
|
|
*/
|
|
efx->ptp_data->mode = new_mode;
|
|
if (netif_running(efx->net_dev))
|
|
rc = efx_ptp_start(efx);
|
|
if (rc == 0) {
|
|
rc = efx_ptp_synchronize(efx,
|
|
PTP_SYNC_ATTEMPTS * 2);
|
|
if (rc != 0)
|
|
efx_ptp_stop(efx);
|
|
}
|
|
} else {
|
|
rc = efx_ptp_stop(efx);
|
|
}
|
|
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
efx->ptp_data->enabled = enable_wanted;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
|
|
{
|
|
int rc;
|
|
|
|
if (init->flags)
|
|
return -EINVAL;
|
|
|
|
if ((init->tx_type != HWTSTAMP_TX_OFF) &&
|
|
(init->tx_type != HWTSTAMP_TX_ON))
|
|
return -ERANGE;
|
|
|
|
rc = efx->type->ptp_set_ts_config(efx, init);
|
|
if (rc)
|
|
return rc;
|
|
|
|
efx->ptp_data->config = *init;
|
|
return 0;
|
|
}
|
|
|
|
void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
|
|
{
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
struct efx_nic *primary = efx->primary;
|
|
|
|
ASSERT_RTNL();
|
|
|
|
if (!ptp)
|
|
return;
|
|
|
|
ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
|
|
SOF_TIMESTAMPING_RX_HARDWARE |
|
|
SOF_TIMESTAMPING_RAW_HARDWARE);
|
|
/* Check licensed features. If we don't have the license for TX
|
|
* timestamps, the NIC will not support them.
|
|
*/
|
|
if (efx_ptp_use_mac_tx_timestamps(efx)) {
|
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
|
|
if (!(nic_data->licensed_features &
|
|
(1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN)))
|
|
ts_info->so_timestamping &=
|
|
~SOF_TIMESTAMPING_TX_HARDWARE;
|
|
}
|
|
if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
|
|
ts_info->phc_index =
|
|
ptp_clock_index(primary->ptp_data->phc_clock);
|
|
ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
|
|
ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
|
|
}
|
|
|
|
int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
|
|
{
|
|
struct hwtstamp_config config;
|
|
int rc;
|
|
|
|
/* Not a PTP enabled port */
|
|
if (!efx->ptp_data)
|
|
return -EOPNOTSUPP;
|
|
|
|
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
|
|
return -EFAULT;
|
|
|
|
rc = efx_ptp_ts_init(efx, &config);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
return copy_to_user(ifr->ifr_data, &config, sizeof(config))
|
|
? -EFAULT : 0;
|
|
}
|
|
|
|
int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
|
|
{
|
|
if (!efx->ptp_data)
|
|
return -EOPNOTSUPP;
|
|
|
|
return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
|
|
sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
|
|
}
|
|
|
|
static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
|
|
{
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"PTP unexpected event length: got %d expected %d\n",
|
|
ptp->evt_frag_idx, expected_frag_len);
|
|
ptp->reset_required = true;
|
|
queue_work(ptp->workwq, &ptp->work);
|
|
}
|
|
|
|
/* Process a completed receive event. Put it on the event queue and
|
|
* start worker thread. This is required because event and their
|
|
* correspoding packets may come in either order.
|
|
*/
|
|
static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
|
|
{
|
|
struct efx_ptp_event_rx *evt = NULL;
|
|
|
|
if (WARN_ON_ONCE(ptp->rx_ts_inline))
|
|
return;
|
|
|
|
if (ptp->evt_frag_idx != 3) {
|
|
ptp_event_failure(efx, 3);
|
|
return;
|
|
}
|
|
|
|
spin_lock_bh(&ptp->evt_lock);
|
|
if (!list_empty(&ptp->evt_free_list)) {
|
|
evt = list_first_entry(&ptp->evt_free_list,
|
|
struct efx_ptp_event_rx, link);
|
|
list_del(&evt->link);
|
|
|
|
evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
|
|
evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
|
|
MCDI_EVENT_SRC) |
|
|
(EFX_QWORD_FIELD(ptp->evt_frags[1],
|
|
MCDI_EVENT_SRC) << 8) |
|
|
(EFX_QWORD_FIELD(ptp->evt_frags[0],
|
|
MCDI_EVENT_SRC) << 16));
|
|
evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
|
|
EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
|
|
EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
|
|
ptp->ts_corrections.ptp_rx);
|
|
evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
|
|
list_add_tail(&evt->link, &ptp->evt_list);
|
|
|
|
queue_work(ptp->workwq, &ptp->work);
|
|
} else if (net_ratelimit()) {
|
|
/* Log a rate-limited warning message. */
|
|
netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
|
|
}
|
|
spin_unlock_bh(&ptp->evt_lock);
|
|
}
|
|
|
|
static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
|
|
{
|
|
int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
|
|
if (ptp->evt_frag_idx != 1) {
|
|
ptp_event_failure(efx, 1);
|
|
return;
|
|
}
|
|
|
|
netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
|
|
}
|
|
|
|
static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
|
|
{
|
|
if (ptp->nic_ts_enabled)
|
|
queue_work(ptp->pps_workwq, &ptp->pps_work);
|
|
}
|
|
|
|
void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
|
|
{
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
|
|
|
|
if (!ptp) {
|
|
if (!efx->ptp_warned) {
|
|
netif_warn(efx, drv, efx->net_dev,
|
|
"Received PTP event but PTP not set up\n");
|
|
efx->ptp_warned = true;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (!ptp->enabled)
|
|
return;
|
|
|
|
if (ptp->evt_frag_idx == 0) {
|
|
ptp->evt_code = code;
|
|
} else if (ptp->evt_code != code) {
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"PTP out of sequence event %d\n", code);
|
|
ptp->evt_frag_idx = 0;
|
|
}
|
|
|
|
ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
|
|
if (!MCDI_EVENT_FIELD(*ev, CONT)) {
|
|
/* Process resulting event */
|
|
switch (code) {
|
|
case MCDI_EVENT_CODE_PTP_RX:
|
|
ptp_event_rx(efx, ptp);
|
|
break;
|
|
case MCDI_EVENT_CODE_PTP_FAULT:
|
|
ptp_event_fault(efx, ptp);
|
|
break;
|
|
case MCDI_EVENT_CODE_PTP_PPS:
|
|
ptp_event_pps(efx, ptp);
|
|
break;
|
|
default:
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"PTP unknown event %d\n", code);
|
|
break;
|
|
}
|
|
ptp->evt_frag_idx = 0;
|
|
} else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
|
|
netif_err(efx, hw, efx->net_dev,
|
|
"PTP too many event fragments\n");
|
|
ptp->evt_frag_idx = 0;
|
|
}
|
|
}
|
|
|
|
void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
|
|
/* When extracting the sync timestamp minor value, we should discard
|
|
* the least significant two bits. These are not required in order
|
|
* to reconstruct full-range timestamps and they are optionally used
|
|
* to report status depending on the options supplied when subscribing
|
|
* for sync events.
|
|
*/
|
|
channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
|
|
channel->sync_timestamp_minor =
|
|
(MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC)
|
|
<< ptp->nic_time.sync_event_minor_shift;
|
|
|
|
/* if sync events have been disabled then we want to silently ignore
|
|
* this event, so throw away result.
|
|
*/
|
|
(void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
|
|
SYNC_EVENTS_VALID);
|
|
}
|
|
|
|
static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
|
|
{
|
|
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
|
|
return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
|
|
#else
|
|
const u8 *data = eh + efx->rx_packet_ts_offset;
|
|
return (u32)data[0] |
|
|
(u32)data[1] << 8 |
|
|
(u32)data[2] << 16 |
|
|
(u32)data[3] << 24;
|
|
#endif
|
|
}
|
|
|
|
void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
struct efx_ptp_data *ptp = efx->ptp_data;
|
|
u32 pkt_timestamp_major, pkt_timestamp_minor;
|
|
u32 diff, carry;
|
|
struct skb_shared_hwtstamps *timestamps;
|
|
|
|
if (channel->sync_events_state != SYNC_EVENTS_VALID)
|
|
return;
|
|
|
|
pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb));
|
|
|
|
/* get the difference between the packet and sync timestamps,
|
|
* modulo one second
|
|
*/
|
|
diff = pkt_timestamp_minor - channel->sync_timestamp_minor;
|
|
if (pkt_timestamp_minor < channel->sync_timestamp_minor)
|
|
diff += ptp->nic_time.minor_max;
|
|
|
|
/* do we roll over a second boundary and need to carry the one? */
|
|
carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ?
|
|
1 : 0;
|
|
|
|
if (diff <= ptp->nic_time.sync_event_diff_max) {
|
|
/* packet is ahead of the sync event by a quarter of a second or
|
|
* less (allowing for fuzz)
|
|
*/
|
|
pkt_timestamp_major = channel->sync_timestamp_major + carry;
|
|
} else if (diff >= ptp->nic_time.sync_event_diff_min) {
|
|
/* packet is behind the sync event but within the fuzz factor.
|
|
* This means the RX packet and sync event crossed as they were
|
|
* placed on the event queue, which can sometimes happen.
|
|
*/
|
|
pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
|
|
} else {
|
|
/* it's outside tolerance in both directions. this might be
|
|
* indicative of us missing sync events for some reason, so
|
|
* we'll call it an error rather than risk giving a bogus
|
|
* timestamp.
|
|
*/
|
|
netif_vdbg(efx, drv, efx->net_dev,
|
|
"packet timestamp %x too far from sync event %x:%x\n",
|
|
pkt_timestamp_minor, channel->sync_timestamp_major,
|
|
channel->sync_timestamp_minor);
|
|
return;
|
|
}
|
|
|
|
/* attach the timestamps to the skb */
|
|
timestamps = skb_hwtstamps(skb);
|
|
timestamps->hwtstamp =
|
|
ptp->nic_to_kernel_time(pkt_timestamp_major,
|
|
pkt_timestamp_minor,
|
|
ptp->ts_corrections.general_rx);
|
|
}
|
|
|
|
static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
|
|
{
|
|
struct efx_ptp_data *ptp_data = container_of(ptp,
|
|
struct efx_ptp_data,
|
|
phc_clock_info);
|
|
struct efx_nic *efx = ptp_data->efx;
|
|
MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
|
|
s64 adjustment_ns;
|
|
int rc;
|
|
|
|
if (delta > MAX_PPB)
|
|
delta = MAX_PPB;
|
|
else if (delta < -MAX_PPB)
|
|
delta = -MAX_PPB;
|
|
|
|
/* Convert ppb to fixed point ns taking care to round correctly. */
|
|
adjustment_ns = ((s64)delta * PPB_SCALE_WORD +
|
|
(1 << (ptp_data->adjfreq_ppb_shift - 1))) >>
|
|
ptp_data->adjfreq_ppb_shift;
|
|
|
|
MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
|
|
MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
|
|
MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
|
|
MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
|
|
MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
|
|
NULL, 0, NULL);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
ptp_data->current_adjfreq = adjustment_ns;
|
|
return 0;
|
|
}
|
|
|
|
static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
|
|
{
|
|
u32 nic_major, nic_minor;
|
|
struct efx_ptp_data *ptp_data = container_of(ptp,
|
|
struct efx_ptp_data,
|
|
phc_clock_info);
|
|
struct efx_nic *efx = ptp_data->efx;
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
|
|
|
|
efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
|
|
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
|
|
MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
|
|
return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
|
|
NULL, 0, NULL);
|
|
}
|
|
|
|
static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
|
|
{
|
|
struct efx_ptp_data *ptp_data = container_of(ptp,
|
|
struct efx_ptp_data,
|
|
phc_clock_info);
|
|
struct efx_nic *efx = ptp_data->efx;
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
|
|
int rc;
|
|
ktime_t kt;
|
|
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
|
|
outbuf, sizeof(outbuf), NULL);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
kt = ptp_data->nic_to_kernel_time(
|
|
MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
|
|
MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
|
|
*ts = ktime_to_timespec64(kt);
|
|
return 0;
|
|
}
|
|
|
|
static int efx_phc_settime(struct ptp_clock_info *ptp,
|
|
const struct timespec64 *e_ts)
|
|
{
|
|
/* Get the current NIC time, efx_phc_gettime.
|
|
* Subtract from the desired time to get the offset
|
|
* call efx_phc_adjtime with the offset
|
|
*/
|
|
int rc;
|
|
struct timespec64 time_now;
|
|
struct timespec64 delta;
|
|
|
|
rc = efx_phc_gettime(ptp, &time_now);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
delta = timespec64_sub(*e_ts, time_now);
|
|
|
|
rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int efx_phc_enable(struct ptp_clock_info *ptp,
|
|
struct ptp_clock_request *request,
|
|
int enable)
|
|
{
|
|
struct efx_ptp_data *ptp_data = container_of(ptp,
|
|
struct efx_ptp_data,
|
|
phc_clock_info);
|
|
if (request->type != PTP_CLK_REQ_PPS)
|
|
return -EOPNOTSUPP;
|
|
|
|
ptp_data->nic_ts_enabled = !!enable;
|
|
return 0;
|
|
}
|
|
|
|
static const struct efx_channel_type efx_ptp_channel_type = {
|
|
.handle_no_channel = efx_ptp_handle_no_channel,
|
|
.pre_probe = efx_ptp_probe_channel,
|
|
.post_remove = efx_ptp_remove_channel,
|
|
.get_name = efx_ptp_get_channel_name,
|
|
/* no copy operation; there is no need to reallocate this channel */
|
|
.receive_skb = efx_ptp_rx,
|
|
.want_txqs = efx_ptp_want_txqs,
|
|
.keep_eventq = false,
|
|
};
|
|
|
|
void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
|
|
{
|
|
/* Check whether PTP is implemented on this NIC. The DISABLE
|
|
* operation will succeed if and only if it is implemented.
|
|
*/
|
|
if (efx_ptp_disable(efx) == 0)
|
|
efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
|
|
&efx_ptp_channel_type;
|
|
}
|
|
|
|
void efx_ptp_start_datapath(struct efx_nic *efx)
|
|
{
|
|
if (efx_ptp_restart(efx))
|
|
netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
|
|
/* re-enable timestamping if it was previously enabled */
|
|
if (efx->type->ptp_set_ts_sync_events)
|
|
efx->type->ptp_set_ts_sync_events(efx, true, true);
|
|
}
|
|
|
|
void efx_ptp_stop_datapath(struct efx_nic *efx)
|
|
{
|
|
/* temporarily disable timestamping */
|
|
if (efx->type->ptp_set_ts_sync_events)
|
|
efx->type->ptp_set_ts_sync_events(efx, false, true);
|
|
efx_ptp_stop(efx);
|
|
}
|