mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-24 12:44:11 +08:00
2d987e64e8
Normally we include the full register name in the defines for fields within registers but this has not been followed for ID registers. In preparation for automatic generation of defines add the _EL1s into the defines for ID_AA64MMFR0_EL1 to follow the convention. No functional changes. Signed-off-by: Mark Brown <broonie@kernel.org> Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com> Link: https://lore.kernel.org/r/20220905225425.1871461-5-broonie@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
427 lines
11 KiB
C
427 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2012,2013 - ARM Ltd
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*
|
|
* Derived from arch/arm/kvm/reset.c
|
|
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
|
|
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/hw_breakpoint.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
|
|
#include <kvm/arm_arch_timer.h>
|
|
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/fpsimd.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/kvm_arm.h>
|
|
#include <asm/kvm_asm.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/virt.h>
|
|
|
|
/* Maximum phys_shift supported for any VM on this host */
|
|
static u32 kvm_ipa_limit;
|
|
|
|
/*
|
|
* ARMv8 Reset Values
|
|
*/
|
|
#define VCPU_RESET_PSTATE_EL1 (PSR_MODE_EL1h | PSR_A_BIT | PSR_I_BIT | \
|
|
PSR_F_BIT | PSR_D_BIT)
|
|
|
|
#define VCPU_RESET_PSTATE_SVC (PSR_AA32_MODE_SVC | PSR_AA32_A_BIT | \
|
|
PSR_AA32_I_BIT | PSR_AA32_F_BIT)
|
|
|
|
unsigned int kvm_sve_max_vl;
|
|
|
|
int kvm_arm_init_sve(void)
|
|
{
|
|
if (system_supports_sve()) {
|
|
kvm_sve_max_vl = sve_max_virtualisable_vl();
|
|
|
|
/*
|
|
* The get_sve_reg()/set_sve_reg() ioctl interface will need
|
|
* to be extended with multiple register slice support in
|
|
* order to support vector lengths greater than
|
|
* VL_ARCH_MAX:
|
|
*/
|
|
if (WARN_ON(kvm_sve_max_vl > VL_ARCH_MAX))
|
|
kvm_sve_max_vl = VL_ARCH_MAX;
|
|
|
|
/*
|
|
* Don't even try to make use of vector lengths that
|
|
* aren't available on all CPUs, for now:
|
|
*/
|
|
if (kvm_sve_max_vl < sve_max_vl())
|
|
pr_warn("KVM: SVE vector length for guests limited to %u bytes\n",
|
|
kvm_sve_max_vl);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vcpu_enable_sve(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!system_supports_sve())
|
|
return -EINVAL;
|
|
|
|
vcpu->arch.sve_max_vl = kvm_sve_max_vl;
|
|
|
|
/*
|
|
* Userspace can still customize the vector lengths by writing
|
|
* KVM_REG_ARM64_SVE_VLS. Allocation is deferred until
|
|
* kvm_arm_vcpu_finalize(), which freezes the configuration.
|
|
*/
|
|
vcpu_set_flag(vcpu, GUEST_HAS_SVE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Finalize vcpu's maximum SVE vector length, allocating
|
|
* vcpu->arch.sve_state as necessary.
|
|
*/
|
|
static int kvm_vcpu_finalize_sve(struct kvm_vcpu *vcpu)
|
|
{
|
|
void *buf;
|
|
unsigned int vl;
|
|
size_t reg_sz;
|
|
int ret;
|
|
|
|
vl = vcpu->arch.sve_max_vl;
|
|
|
|
/*
|
|
* Responsibility for these properties is shared between
|
|
* kvm_arm_init_sve(), kvm_vcpu_enable_sve() and
|
|
* set_sve_vls(). Double-check here just to be sure:
|
|
*/
|
|
if (WARN_ON(!sve_vl_valid(vl) || vl > sve_max_virtualisable_vl() ||
|
|
vl > VL_ARCH_MAX))
|
|
return -EIO;
|
|
|
|
reg_sz = vcpu_sve_state_size(vcpu);
|
|
buf = kzalloc(reg_sz, GFP_KERNEL_ACCOUNT);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
ret = kvm_share_hyp(buf, buf + reg_sz);
|
|
if (ret) {
|
|
kfree(buf);
|
|
return ret;
|
|
}
|
|
|
|
vcpu->arch.sve_state = buf;
|
|
vcpu_set_flag(vcpu, VCPU_SVE_FINALIZED);
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature)
|
|
{
|
|
switch (feature) {
|
|
case KVM_ARM_VCPU_SVE:
|
|
if (!vcpu_has_sve(vcpu))
|
|
return -EINVAL;
|
|
|
|
if (kvm_arm_vcpu_sve_finalized(vcpu))
|
|
return -EPERM;
|
|
|
|
return kvm_vcpu_finalize_sve(vcpu);
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (vcpu_has_sve(vcpu) && !kvm_arm_vcpu_sve_finalized(vcpu))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu)
|
|
{
|
|
void *sve_state = vcpu->arch.sve_state;
|
|
|
|
kvm_vcpu_unshare_task_fp(vcpu);
|
|
kvm_unshare_hyp(vcpu, vcpu + 1);
|
|
if (sve_state)
|
|
kvm_unshare_hyp(sve_state, sve_state + vcpu_sve_state_size(vcpu));
|
|
kfree(sve_state);
|
|
}
|
|
|
|
static void kvm_vcpu_reset_sve(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (vcpu_has_sve(vcpu))
|
|
memset(vcpu->arch.sve_state, 0, vcpu_sve_state_size(vcpu));
|
|
}
|
|
|
|
static int kvm_vcpu_enable_ptrauth(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* For now make sure that both address/generic pointer authentication
|
|
* features are requested by the userspace together and the system
|
|
* supports these capabilities.
|
|
*/
|
|
if (!test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
|
|
!test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features) ||
|
|
!system_has_full_ptr_auth())
|
|
return -EINVAL;
|
|
|
|
vcpu_set_flag(vcpu, GUEST_HAS_PTRAUTH);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_set_vm_width() - set the register width for the guest
|
|
* @vcpu: Pointer to the vcpu being configured
|
|
*
|
|
* Set both KVM_ARCH_FLAG_EL1_32BIT and KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED
|
|
* in the VM flags based on the vcpu's requested register width, the HW
|
|
* capabilities and other options (such as MTE).
|
|
* When REG_WIDTH_CONFIGURED is already set, the vcpu settings must be
|
|
* consistent with the value of the FLAG_EL1_32BIT bit in the flags.
|
|
*
|
|
* Return: 0 on success, negative error code on failure.
|
|
*/
|
|
static int kvm_set_vm_width(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
bool is32bit;
|
|
|
|
is32bit = vcpu_has_feature(vcpu, KVM_ARM_VCPU_EL1_32BIT);
|
|
|
|
lockdep_assert_held(&kvm->lock);
|
|
|
|
if (test_bit(KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED, &kvm->arch.flags)) {
|
|
/*
|
|
* The guest's register width is already configured.
|
|
* Make sure that the vcpu is consistent with it.
|
|
*/
|
|
if (is32bit == test_bit(KVM_ARCH_FLAG_EL1_32BIT, &kvm->arch.flags))
|
|
return 0;
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!cpus_have_const_cap(ARM64_HAS_32BIT_EL1) && is32bit)
|
|
return -EINVAL;
|
|
|
|
/* MTE is incompatible with AArch32 */
|
|
if (kvm_has_mte(kvm) && is32bit)
|
|
return -EINVAL;
|
|
|
|
if (is32bit)
|
|
set_bit(KVM_ARCH_FLAG_EL1_32BIT, &kvm->arch.flags);
|
|
|
|
set_bit(KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED, &kvm->arch.flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_reset_vcpu - sets core registers and sys_regs to reset value
|
|
* @vcpu: The VCPU pointer
|
|
*
|
|
* This function sets the registers on the virtual CPU struct to their
|
|
* architecturally defined reset values, except for registers whose reset is
|
|
* deferred until kvm_arm_vcpu_finalize().
|
|
*
|
|
* Note: This function can be called from two paths: The KVM_ARM_VCPU_INIT
|
|
* ioctl or as part of handling a request issued by another VCPU in the PSCI
|
|
* handling code. In the first case, the VCPU will not be loaded, and in the
|
|
* second case the VCPU will be loaded. Because this function operates purely
|
|
* on the memory-backed values of system registers, we want to do a full put if
|
|
* we were loaded (handling a request) and load the values back at the end of
|
|
* the function. Otherwise we leave the state alone. In both cases, we
|
|
* disable preemption around the vcpu reset as we would otherwise race with
|
|
* preempt notifiers which also call put/load.
|
|
*/
|
|
int kvm_reset_vcpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_reset_state reset_state;
|
|
int ret;
|
|
bool loaded;
|
|
u32 pstate;
|
|
|
|
mutex_lock(&vcpu->kvm->lock);
|
|
ret = kvm_set_vm_width(vcpu);
|
|
if (!ret) {
|
|
reset_state = vcpu->arch.reset_state;
|
|
WRITE_ONCE(vcpu->arch.reset_state.reset, false);
|
|
}
|
|
mutex_unlock(&vcpu->kvm->lock);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Reset PMU outside of the non-preemptible section */
|
|
kvm_pmu_vcpu_reset(vcpu);
|
|
|
|
preempt_disable();
|
|
loaded = (vcpu->cpu != -1);
|
|
if (loaded)
|
|
kvm_arch_vcpu_put(vcpu);
|
|
|
|
if (!kvm_arm_vcpu_sve_finalized(vcpu)) {
|
|
if (test_bit(KVM_ARM_VCPU_SVE, vcpu->arch.features)) {
|
|
ret = kvm_vcpu_enable_sve(vcpu);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
} else {
|
|
kvm_vcpu_reset_sve(vcpu);
|
|
}
|
|
|
|
if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
|
|
test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features)) {
|
|
if (kvm_vcpu_enable_ptrauth(vcpu)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
switch (vcpu->arch.target) {
|
|
default:
|
|
if (vcpu_el1_is_32bit(vcpu)) {
|
|
pstate = VCPU_RESET_PSTATE_SVC;
|
|
} else {
|
|
pstate = VCPU_RESET_PSTATE_EL1;
|
|
}
|
|
|
|
if (kvm_vcpu_has_pmu(vcpu) && !kvm_arm_support_pmu_v3()) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Reset core registers */
|
|
memset(vcpu_gp_regs(vcpu), 0, sizeof(*vcpu_gp_regs(vcpu)));
|
|
memset(&vcpu->arch.ctxt.fp_regs, 0, sizeof(vcpu->arch.ctxt.fp_regs));
|
|
vcpu->arch.ctxt.spsr_abt = 0;
|
|
vcpu->arch.ctxt.spsr_und = 0;
|
|
vcpu->arch.ctxt.spsr_irq = 0;
|
|
vcpu->arch.ctxt.spsr_fiq = 0;
|
|
vcpu_gp_regs(vcpu)->pstate = pstate;
|
|
|
|
/* Reset system registers */
|
|
kvm_reset_sys_regs(vcpu);
|
|
|
|
/*
|
|
* Additional reset state handling that PSCI may have imposed on us.
|
|
* Must be done after all the sys_reg reset.
|
|
*/
|
|
if (reset_state.reset) {
|
|
unsigned long target_pc = reset_state.pc;
|
|
|
|
/* Gracefully handle Thumb2 entry point */
|
|
if (vcpu_mode_is_32bit(vcpu) && (target_pc & 1)) {
|
|
target_pc &= ~1UL;
|
|
vcpu_set_thumb(vcpu);
|
|
}
|
|
|
|
/* Propagate caller endianness */
|
|
if (reset_state.be)
|
|
kvm_vcpu_set_be(vcpu);
|
|
|
|
*vcpu_pc(vcpu) = target_pc;
|
|
vcpu_set_reg(vcpu, 0, reset_state.r0);
|
|
}
|
|
|
|
/* Reset timer */
|
|
ret = kvm_timer_vcpu_reset(vcpu);
|
|
out:
|
|
if (loaded)
|
|
kvm_arch_vcpu_load(vcpu, smp_processor_id());
|
|
preempt_enable();
|
|
return ret;
|
|
}
|
|
|
|
u32 get_kvm_ipa_limit(void)
|
|
{
|
|
return kvm_ipa_limit;
|
|
}
|
|
|
|
int kvm_set_ipa_limit(void)
|
|
{
|
|
unsigned int parange;
|
|
u64 mmfr0;
|
|
|
|
mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
|
|
parange = cpuid_feature_extract_unsigned_field(mmfr0,
|
|
ID_AA64MMFR0_EL1_PARANGE_SHIFT);
|
|
/*
|
|
* IPA size beyond 48 bits could not be supported
|
|
* on either 4K or 16K page size. Hence let's cap
|
|
* it to 48 bits, in case it's reported as larger
|
|
* on the system.
|
|
*/
|
|
if (PAGE_SIZE != SZ_64K)
|
|
parange = min(parange, (unsigned int)ID_AA64MMFR0_EL1_PARANGE_48);
|
|
|
|
/*
|
|
* Check with ARMv8.5-GTG that our PAGE_SIZE is supported at
|
|
* Stage-2. If not, things will stop very quickly.
|
|
*/
|
|
switch (cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_TGRAN_2_SHIFT)) {
|
|
case ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_NONE:
|
|
kvm_err("PAGE_SIZE not supported at Stage-2, giving up\n");
|
|
return -EINVAL;
|
|
case ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_DEFAULT:
|
|
kvm_debug("PAGE_SIZE supported at Stage-2 (default)\n");
|
|
break;
|
|
case ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_MIN ... ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_MAX:
|
|
kvm_debug("PAGE_SIZE supported at Stage-2 (advertised)\n");
|
|
break;
|
|
default:
|
|
kvm_err("Unsupported value for TGRAN_2, giving up\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
kvm_ipa_limit = id_aa64mmfr0_parange_to_phys_shift(parange);
|
|
kvm_info("IPA Size Limit: %d bits%s\n", kvm_ipa_limit,
|
|
((kvm_ipa_limit < KVM_PHYS_SHIFT) ?
|
|
" (Reduced IPA size, limited VM/VMM compatibility)" : ""));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type)
|
|
{
|
|
u64 mmfr0, mmfr1;
|
|
u32 phys_shift;
|
|
|
|
if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
|
|
return -EINVAL;
|
|
|
|
phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
|
|
if (phys_shift) {
|
|
if (phys_shift > kvm_ipa_limit ||
|
|
phys_shift < ARM64_MIN_PARANGE_BITS)
|
|
return -EINVAL;
|
|
} else {
|
|
phys_shift = KVM_PHYS_SHIFT;
|
|
if (phys_shift > kvm_ipa_limit) {
|
|
pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n",
|
|
current->comm);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
|
|
mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
|
|
kvm->arch.vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
|
|
|
|
return 0;
|
|
}
|