mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-30 23:54:04 +08:00
913cce5a1e
Use the %pg format specifier to save on stack consumption and code size. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Song Liu <song@kernel.org>
5249 lines
144 KiB
C
5249 lines
144 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* raid10.c : Multiple Devices driver for Linux
|
|
*
|
|
* Copyright (C) 2000-2004 Neil Brown
|
|
*
|
|
* RAID-10 support for md.
|
|
*
|
|
* Base on code in raid1.c. See raid1.c for further copyright information.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/module.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/raid/md_p.h>
|
|
#include <trace/events/block.h>
|
|
#include "md.h"
|
|
#include "raid10.h"
|
|
#include "raid0.h"
|
|
#include "md-bitmap.h"
|
|
|
|
/*
|
|
* RAID10 provides a combination of RAID0 and RAID1 functionality.
|
|
* The layout of data is defined by
|
|
* chunk_size
|
|
* raid_disks
|
|
* near_copies (stored in low byte of layout)
|
|
* far_copies (stored in second byte of layout)
|
|
* far_offset (stored in bit 16 of layout )
|
|
* use_far_sets (stored in bit 17 of layout )
|
|
* use_far_sets_bugfixed (stored in bit 18 of layout )
|
|
*
|
|
* The data to be stored is divided into chunks using chunksize. Each device
|
|
* is divided into far_copies sections. In each section, chunks are laid out
|
|
* in a style similar to raid0, but near_copies copies of each chunk is stored
|
|
* (each on a different drive). The starting device for each section is offset
|
|
* near_copies from the starting device of the previous section. Thus there
|
|
* are (near_copies * far_copies) of each chunk, and each is on a different
|
|
* drive. near_copies and far_copies must be at least one, and their product
|
|
* is at most raid_disks.
|
|
*
|
|
* If far_offset is true, then the far_copies are handled a bit differently.
|
|
* The copies are still in different stripes, but instead of being very far
|
|
* apart on disk, there are adjacent stripes.
|
|
*
|
|
* The far and offset algorithms are handled slightly differently if
|
|
* 'use_far_sets' is true. In this case, the array's devices are grouped into
|
|
* sets that are (near_copies * far_copies) in size. The far copied stripes
|
|
* are still shifted by 'near_copies' devices, but this shifting stays confined
|
|
* to the set rather than the entire array. This is done to improve the number
|
|
* of device combinations that can fail without causing the array to fail.
|
|
* Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
|
|
* on a device):
|
|
* A B C D A B C D E
|
|
* ... ...
|
|
* D A B C E A B C D
|
|
* Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
|
|
* [A B] [C D] [A B] [C D E]
|
|
* |...| |...| |...| | ... |
|
|
* [B A] [D C] [B A] [E C D]
|
|
*/
|
|
|
|
static void allow_barrier(struct r10conf *conf);
|
|
static void lower_barrier(struct r10conf *conf);
|
|
static int _enough(struct r10conf *conf, int previous, int ignore);
|
|
static int enough(struct r10conf *conf, int ignore);
|
|
static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
|
|
int *skipped);
|
|
static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
|
|
static void end_reshape_write(struct bio *bio);
|
|
static void end_reshape(struct r10conf *conf);
|
|
|
|
#define raid10_log(md, fmt, args...) \
|
|
do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
|
|
|
|
#include "raid1-10.c"
|
|
|
|
/*
|
|
* for resync bio, r10bio pointer can be retrieved from the per-bio
|
|
* 'struct resync_pages'.
|
|
*/
|
|
static inline struct r10bio *get_resync_r10bio(struct bio *bio)
|
|
{
|
|
return get_resync_pages(bio)->raid_bio;
|
|
}
|
|
|
|
static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
|
|
{
|
|
struct r10conf *conf = data;
|
|
int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
|
|
|
|
/* allocate a r10bio with room for raid_disks entries in the
|
|
* bios array */
|
|
return kzalloc(size, gfp_flags);
|
|
}
|
|
|
|
#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
|
|
/* amount of memory to reserve for resync requests */
|
|
#define RESYNC_WINDOW (1024*1024)
|
|
/* maximum number of concurrent requests, memory permitting */
|
|
#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
|
|
#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
|
|
#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
|
|
|
|
/*
|
|
* When performing a resync, we need to read and compare, so
|
|
* we need as many pages are there are copies.
|
|
* When performing a recovery, we need 2 bios, one for read,
|
|
* one for write (we recover only one drive per r10buf)
|
|
*
|
|
*/
|
|
static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
|
|
{
|
|
struct r10conf *conf = data;
|
|
struct r10bio *r10_bio;
|
|
struct bio *bio;
|
|
int j;
|
|
int nalloc, nalloc_rp;
|
|
struct resync_pages *rps;
|
|
|
|
r10_bio = r10bio_pool_alloc(gfp_flags, conf);
|
|
if (!r10_bio)
|
|
return NULL;
|
|
|
|
if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
|
|
test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
|
|
nalloc = conf->copies; /* resync */
|
|
else
|
|
nalloc = 2; /* recovery */
|
|
|
|
/* allocate once for all bios */
|
|
if (!conf->have_replacement)
|
|
nalloc_rp = nalloc;
|
|
else
|
|
nalloc_rp = nalloc * 2;
|
|
rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
|
|
if (!rps)
|
|
goto out_free_r10bio;
|
|
|
|
/*
|
|
* Allocate bios.
|
|
*/
|
|
for (j = nalloc ; j-- ; ) {
|
|
bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
|
|
if (!bio)
|
|
goto out_free_bio;
|
|
bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
|
|
r10_bio->devs[j].bio = bio;
|
|
if (!conf->have_replacement)
|
|
continue;
|
|
bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
|
|
if (!bio)
|
|
goto out_free_bio;
|
|
bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
|
|
r10_bio->devs[j].repl_bio = bio;
|
|
}
|
|
/*
|
|
* Allocate RESYNC_PAGES data pages and attach them
|
|
* where needed.
|
|
*/
|
|
for (j = 0; j < nalloc; j++) {
|
|
struct bio *rbio = r10_bio->devs[j].repl_bio;
|
|
struct resync_pages *rp, *rp_repl;
|
|
|
|
rp = &rps[j];
|
|
if (rbio)
|
|
rp_repl = &rps[nalloc + j];
|
|
|
|
bio = r10_bio->devs[j].bio;
|
|
|
|
if (!j || test_bit(MD_RECOVERY_SYNC,
|
|
&conf->mddev->recovery)) {
|
|
if (resync_alloc_pages(rp, gfp_flags))
|
|
goto out_free_pages;
|
|
} else {
|
|
memcpy(rp, &rps[0], sizeof(*rp));
|
|
resync_get_all_pages(rp);
|
|
}
|
|
|
|
rp->raid_bio = r10_bio;
|
|
bio->bi_private = rp;
|
|
if (rbio) {
|
|
memcpy(rp_repl, rp, sizeof(*rp));
|
|
rbio->bi_private = rp_repl;
|
|
}
|
|
}
|
|
|
|
return r10_bio;
|
|
|
|
out_free_pages:
|
|
while (--j >= 0)
|
|
resync_free_pages(&rps[j]);
|
|
|
|
j = 0;
|
|
out_free_bio:
|
|
for ( ; j < nalloc; j++) {
|
|
if (r10_bio->devs[j].bio)
|
|
bio_uninit(r10_bio->devs[j].bio);
|
|
kfree(r10_bio->devs[j].bio);
|
|
if (r10_bio->devs[j].repl_bio)
|
|
bio_uninit(r10_bio->devs[j].repl_bio);
|
|
kfree(r10_bio->devs[j].repl_bio);
|
|
}
|
|
kfree(rps);
|
|
out_free_r10bio:
|
|
rbio_pool_free(r10_bio, conf);
|
|
return NULL;
|
|
}
|
|
|
|
static void r10buf_pool_free(void *__r10_bio, void *data)
|
|
{
|
|
struct r10conf *conf = data;
|
|
struct r10bio *r10bio = __r10_bio;
|
|
int j;
|
|
struct resync_pages *rp = NULL;
|
|
|
|
for (j = conf->copies; j--; ) {
|
|
struct bio *bio = r10bio->devs[j].bio;
|
|
|
|
if (bio) {
|
|
rp = get_resync_pages(bio);
|
|
resync_free_pages(rp);
|
|
bio_uninit(bio);
|
|
kfree(bio);
|
|
}
|
|
|
|
bio = r10bio->devs[j].repl_bio;
|
|
if (bio) {
|
|
bio_uninit(bio);
|
|
kfree(bio);
|
|
}
|
|
}
|
|
|
|
/* resync pages array stored in the 1st bio's .bi_private */
|
|
kfree(rp);
|
|
|
|
rbio_pool_free(r10bio, conf);
|
|
}
|
|
|
|
static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < conf->geo.raid_disks; i++) {
|
|
struct bio **bio = & r10_bio->devs[i].bio;
|
|
if (!BIO_SPECIAL(*bio))
|
|
bio_put(*bio);
|
|
*bio = NULL;
|
|
bio = &r10_bio->devs[i].repl_bio;
|
|
if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
|
|
bio_put(*bio);
|
|
*bio = NULL;
|
|
}
|
|
}
|
|
|
|
static void free_r10bio(struct r10bio *r10_bio)
|
|
{
|
|
struct r10conf *conf = r10_bio->mddev->private;
|
|
|
|
put_all_bios(conf, r10_bio);
|
|
mempool_free(r10_bio, &conf->r10bio_pool);
|
|
}
|
|
|
|
static void put_buf(struct r10bio *r10_bio)
|
|
{
|
|
struct r10conf *conf = r10_bio->mddev->private;
|
|
|
|
mempool_free(r10_bio, &conf->r10buf_pool);
|
|
|
|
lower_barrier(conf);
|
|
}
|
|
|
|
static void reschedule_retry(struct r10bio *r10_bio)
|
|
{
|
|
unsigned long flags;
|
|
struct mddev *mddev = r10_bio->mddev;
|
|
struct r10conf *conf = mddev->private;
|
|
|
|
spin_lock_irqsave(&conf->device_lock, flags);
|
|
list_add(&r10_bio->retry_list, &conf->retry_list);
|
|
conf->nr_queued ++;
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
|
|
/* wake up frozen array... */
|
|
wake_up(&conf->wait_barrier);
|
|
|
|
md_wakeup_thread(mddev->thread);
|
|
}
|
|
|
|
/*
|
|
* raid_end_bio_io() is called when we have finished servicing a mirrored
|
|
* operation and are ready to return a success/failure code to the buffer
|
|
* cache layer.
|
|
*/
|
|
static void raid_end_bio_io(struct r10bio *r10_bio)
|
|
{
|
|
struct bio *bio = r10_bio->master_bio;
|
|
struct r10conf *conf = r10_bio->mddev->private;
|
|
|
|
if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
|
|
bio->bi_status = BLK_STS_IOERR;
|
|
|
|
if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
|
|
bio_end_io_acct(bio, r10_bio->start_time);
|
|
bio_endio(bio);
|
|
/*
|
|
* Wake up any possible resync thread that waits for the device
|
|
* to go idle.
|
|
*/
|
|
allow_barrier(conf);
|
|
|
|
free_r10bio(r10_bio);
|
|
}
|
|
|
|
/*
|
|
* Update disk head position estimator based on IRQ completion info.
|
|
*/
|
|
static inline void update_head_pos(int slot, struct r10bio *r10_bio)
|
|
{
|
|
struct r10conf *conf = r10_bio->mddev->private;
|
|
|
|
conf->mirrors[r10_bio->devs[slot].devnum].head_position =
|
|
r10_bio->devs[slot].addr + (r10_bio->sectors);
|
|
}
|
|
|
|
/*
|
|
* Find the disk number which triggered given bio
|
|
*/
|
|
static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
|
|
struct bio *bio, int *slotp, int *replp)
|
|
{
|
|
int slot;
|
|
int repl = 0;
|
|
|
|
for (slot = 0; slot < conf->geo.raid_disks; slot++) {
|
|
if (r10_bio->devs[slot].bio == bio)
|
|
break;
|
|
if (r10_bio->devs[slot].repl_bio == bio) {
|
|
repl = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
update_head_pos(slot, r10_bio);
|
|
|
|
if (slotp)
|
|
*slotp = slot;
|
|
if (replp)
|
|
*replp = repl;
|
|
return r10_bio->devs[slot].devnum;
|
|
}
|
|
|
|
static void raid10_end_read_request(struct bio *bio)
|
|
{
|
|
int uptodate = !bio->bi_status;
|
|
struct r10bio *r10_bio = bio->bi_private;
|
|
int slot;
|
|
struct md_rdev *rdev;
|
|
struct r10conf *conf = r10_bio->mddev->private;
|
|
|
|
slot = r10_bio->read_slot;
|
|
rdev = r10_bio->devs[slot].rdev;
|
|
/*
|
|
* this branch is our 'one mirror IO has finished' event handler:
|
|
*/
|
|
update_head_pos(slot, r10_bio);
|
|
|
|
if (uptodate) {
|
|
/*
|
|
* Set R10BIO_Uptodate in our master bio, so that
|
|
* we will return a good error code to the higher
|
|
* levels even if IO on some other mirrored buffer fails.
|
|
*
|
|
* The 'master' represents the composite IO operation to
|
|
* user-side. So if something waits for IO, then it will
|
|
* wait for the 'master' bio.
|
|
*/
|
|
set_bit(R10BIO_Uptodate, &r10_bio->state);
|
|
} else {
|
|
/* If all other devices that store this block have
|
|
* failed, we want to return the error upwards rather
|
|
* than fail the last device. Here we redefine
|
|
* "uptodate" to mean "Don't want to retry"
|
|
*/
|
|
if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
|
|
rdev->raid_disk))
|
|
uptodate = 1;
|
|
}
|
|
if (uptodate) {
|
|
raid_end_bio_io(r10_bio);
|
|
rdev_dec_pending(rdev, conf->mddev);
|
|
} else {
|
|
/*
|
|
* oops, read error - keep the refcount on the rdev
|
|
*/
|
|
pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
|
|
mdname(conf->mddev),
|
|
rdev->bdev,
|
|
(unsigned long long)r10_bio->sector);
|
|
set_bit(R10BIO_ReadError, &r10_bio->state);
|
|
reschedule_retry(r10_bio);
|
|
}
|
|
}
|
|
|
|
static void close_write(struct r10bio *r10_bio)
|
|
{
|
|
/* clear the bitmap if all writes complete successfully */
|
|
md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
|
|
r10_bio->sectors,
|
|
!test_bit(R10BIO_Degraded, &r10_bio->state),
|
|
0);
|
|
md_write_end(r10_bio->mddev);
|
|
}
|
|
|
|
static void one_write_done(struct r10bio *r10_bio)
|
|
{
|
|
if (atomic_dec_and_test(&r10_bio->remaining)) {
|
|
if (test_bit(R10BIO_WriteError, &r10_bio->state))
|
|
reschedule_retry(r10_bio);
|
|
else {
|
|
close_write(r10_bio);
|
|
if (test_bit(R10BIO_MadeGood, &r10_bio->state))
|
|
reschedule_retry(r10_bio);
|
|
else
|
|
raid_end_bio_io(r10_bio);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void raid10_end_write_request(struct bio *bio)
|
|
{
|
|
struct r10bio *r10_bio = bio->bi_private;
|
|
int dev;
|
|
int dec_rdev = 1;
|
|
struct r10conf *conf = r10_bio->mddev->private;
|
|
int slot, repl;
|
|
struct md_rdev *rdev = NULL;
|
|
struct bio *to_put = NULL;
|
|
bool discard_error;
|
|
|
|
discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
|
|
|
|
dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
|
|
|
|
if (repl)
|
|
rdev = conf->mirrors[dev].replacement;
|
|
if (!rdev) {
|
|
smp_rmb();
|
|
repl = 0;
|
|
rdev = conf->mirrors[dev].rdev;
|
|
}
|
|
/*
|
|
* this branch is our 'one mirror IO has finished' event handler:
|
|
*/
|
|
if (bio->bi_status && !discard_error) {
|
|
if (repl)
|
|
/* Never record new bad blocks to replacement,
|
|
* just fail it.
|
|
*/
|
|
md_error(rdev->mddev, rdev);
|
|
else {
|
|
set_bit(WriteErrorSeen, &rdev->flags);
|
|
if (!test_and_set_bit(WantReplacement, &rdev->flags))
|
|
set_bit(MD_RECOVERY_NEEDED,
|
|
&rdev->mddev->recovery);
|
|
|
|
dec_rdev = 0;
|
|
if (test_bit(FailFast, &rdev->flags) &&
|
|
(bio->bi_opf & MD_FAILFAST)) {
|
|
md_error(rdev->mddev, rdev);
|
|
}
|
|
|
|
/*
|
|
* When the device is faulty, it is not necessary to
|
|
* handle write error.
|
|
*/
|
|
if (!test_bit(Faulty, &rdev->flags))
|
|
set_bit(R10BIO_WriteError, &r10_bio->state);
|
|
else {
|
|
/* Fail the request */
|
|
set_bit(R10BIO_Degraded, &r10_bio->state);
|
|
r10_bio->devs[slot].bio = NULL;
|
|
to_put = bio;
|
|
dec_rdev = 1;
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
* Set R10BIO_Uptodate in our master bio, so that
|
|
* we will return a good error code for to the higher
|
|
* levels even if IO on some other mirrored buffer fails.
|
|
*
|
|
* The 'master' represents the composite IO operation to
|
|
* user-side. So if something waits for IO, then it will
|
|
* wait for the 'master' bio.
|
|
*/
|
|
sector_t first_bad;
|
|
int bad_sectors;
|
|
|
|
/*
|
|
* Do not set R10BIO_Uptodate if the current device is
|
|
* rebuilding or Faulty. This is because we cannot use
|
|
* such device for properly reading the data back (we could
|
|
* potentially use it, if the current write would have felt
|
|
* before rdev->recovery_offset, but for simplicity we don't
|
|
* check this here.
|
|
*/
|
|
if (test_bit(In_sync, &rdev->flags) &&
|
|
!test_bit(Faulty, &rdev->flags))
|
|
set_bit(R10BIO_Uptodate, &r10_bio->state);
|
|
|
|
/* Maybe we can clear some bad blocks. */
|
|
if (is_badblock(rdev,
|
|
r10_bio->devs[slot].addr,
|
|
r10_bio->sectors,
|
|
&first_bad, &bad_sectors) && !discard_error) {
|
|
bio_put(bio);
|
|
if (repl)
|
|
r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
|
|
else
|
|
r10_bio->devs[slot].bio = IO_MADE_GOOD;
|
|
dec_rdev = 0;
|
|
set_bit(R10BIO_MadeGood, &r10_bio->state);
|
|
}
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Let's see if all mirrored write operations have finished
|
|
* already.
|
|
*/
|
|
one_write_done(r10_bio);
|
|
if (dec_rdev)
|
|
rdev_dec_pending(rdev, conf->mddev);
|
|
if (to_put)
|
|
bio_put(to_put);
|
|
}
|
|
|
|
/*
|
|
* RAID10 layout manager
|
|
* As well as the chunksize and raid_disks count, there are two
|
|
* parameters: near_copies and far_copies.
|
|
* near_copies * far_copies must be <= raid_disks.
|
|
* Normally one of these will be 1.
|
|
* If both are 1, we get raid0.
|
|
* If near_copies == raid_disks, we get raid1.
|
|
*
|
|
* Chunks are laid out in raid0 style with near_copies copies of the
|
|
* first chunk, followed by near_copies copies of the next chunk and
|
|
* so on.
|
|
* If far_copies > 1, then after 1/far_copies of the array has been assigned
|
|
* as described above, we start again with a device offset of near_copies.
|
|
* So we effectively have another copy of the whole array further down all
|
|
* the drives, but with blocks on different drives.
|
|
* With this layout, and block is never stored twice on the one device.
|
|
*
|
|
* raid10_find_phys finds the sector offset of a given virtual sector
|
|
* on each device that it is on.
|
|
*
|
|
* raid10_find_virt does the reverse mapping, from a device and a
|
|
* sector offset to a virtual address
|
|
*/
|
|
|
|
static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
|
|
{
|
|
int n,f;
|
|
sector_t sector;
|
|
sector_t chunk;
|
|
sector_t stripe;
|
|
int dev;
|
|
int slot = 0;
|
|
int last_far_set_start, last_far_set_size;
|
|
|
|
last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
|
|
last_far_set_start *= geo->far_set_size;
|
|
|
|
last_far_set_size = geo->far_set_size;
|
|
last_far_set_size += (geo->raid_disks % geo->far_set_size);
|
|
|
|
/* now calculate first sector/dev */
|
|
chunk = r10bio->sector >> geo->chunk_shift;
|
|
sector = r10bio->sector & geo->chunk_mask;
|
|
|
|
chunk *= geo->near_copies;
|
|
stripe = chunk;
|
|
dev = sector_div(stripe, geo->raid_disks);
|
|
if (geo->far_offset)
|
|
stripe *= geo->far_copies;
|
|
|
|
sector += stripe << geo->chunk_shift;
|
|
|
|
/* and calculate all the others */
|
|
for (n = 0; n < geo->near_copies; n++) {
|
|
int d = dev;
|
|
int set;
|
|
sector_t s = sector;
|
|
r10bio->devs[slot].devnum = d;
|
|
r10bio->devs[slot].addr = s;
|
|
slot++;
|
|
|
|
for (f = 1; f < geo->far_copies; f++) {
|
|
set = d / geo->far_set_size;
|
|
d += geo->near_copies;
|
|
|
|
if ((geo->raid_disks % geo->far_set_size) &&
|
|
(d > last_far_set_start)) {
|
|
d -= last_far_set_start;
|
|
d %= last_far_set_size;
|
|
d += last_far_set_start;
|
|
} else {
|
|
d %= geo->far_set_size;
|
|
d += geo->far_set_size * set;
|
|
}
|
|
s += geo->stride;
|
|
r10bio->devs[slot].devnum = d;
|
|
r10bio->devs[slot].addr = s;
|
|
slot++;
|
|
}
|
|
dev++;
|
|
if (dev >= geo->raid_disks) {
|
|
dev = 0;
|
|
sector += (geo->chunk_mask + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
|
|
{
|
|
struct geom *geo = &conf->geo;
|
|
|
|
if (conf->reshape_progress != MaxSector &&
|
|
((r10bio->sector >= conf->reshape_progress) !=
|
|
conf->mddev->reshape_backwards)) {
|
|
set_bit(R10BIO_Previous, &r10bio->state);
|
|
geo = &conf->prev;
|
|
} else
|
|
clear_bit(R10BIO_Previous, &r10bio->state);
|
|
|
|
__raid10_find_phys(geo, r10bio);
|
|
}
|
|
|
|
static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
|
|
{
|
|
sector_t offset, chunk, vchunk;
|
|
/* Never use conf->prev as this is only called during resync
|
|
* or recovery, so reshape isn't happening
|
|
*/
|
|
struct geom *geo = &conf->geo;
|
|
int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
|
|
int far_set_size = geo->far_set_size;
|
|
int last_far_set_start;
|
|
|
|
if (geo->raid_disks % geo->far_set_size) {
|
|
last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
|
|
last_far_set_start *= geo->far_set_size;
|
|
|
|
if (dev >= last_far_set_start) {
|
|
far_set_size = geo->far_set_size;
|
|
far_set_size += (geo->raid_disks % geo->far_set_size);
|
|
far_set_start = last_far_set_start;
|
|
}
|
|
}
|
|
|
|
offset = sector & geo->chunk_mask;
|
|
if (geo->far_offset) {
|
|
int fc;
|
|
chunk = sector >> geo->chunk_shift;
|
|
fc = sector_div(chunk, geo->far_copies);
|
|
dev -= fc * geo->near_copies;
|
|
if (dev < far_set_start)
|
|
dev += far_set_size;
|
|
} else {
|
|
while (sector >= geo->stride) {
|
|
sector -= geo->stride;
|
|
if (dev < (geo->near_copies + far_set_start))
|
|
dev += far_set_size - geo->near_copies;
|
|
else
|
|
dev -= geo->near_copies;
|
|
}
|
|
chunk = sector >> geo->chunk_shift;
|
|
}
|
|
vchunk = chunk * geo->raid_disks + dev;
|
|
sector_div(vchunk, geo->near_copies);
|
|
return (vchunk << geo->chunk_shift) + offset;
|
|
}
|
|
|
|
/*
|
|
* This routine returns the disk from which the requested read should
|
|
* be done. There is a per-array 'next expected sequential IO' sector
|
|
* number - if this matches on the next IO then we use the last disk.
|
|
* There is also a per-disk 'last know head position' sector that is
|
|
* maintained from IRQ contexts, both the normal and the resync IO
|
|
* completion handlers update this position correctly. If there is no
|
|
* perfect sequential match then we pick the disk whose head is closest.
|
|
*
|
|
* If there are 2 mirrors in the same 2 devices, performance degrades
|
|
* because position is mirror, not device based.
|
|
*
|
|
* The rdev for the device selected will have nr_pending incremented.
|
|
*/
|
|
|
|
/*
|
|
* FIXME: possibly should rethink readbalancing and do it differently
|
|
* depending on near_copies / far_copies geometry.
|
|
*/
|
|
static struct md_rdev *read_balance(struct r10conf *conf,
|
|
struct r10bio *r10_bio,
|
|
int *max_sectors)
|
|
{
|
|
const sector_t this_sector = r10_bio->sector;
|
|
int disk, slot;
|
|
int sectors = r10_bio->sectors;
|
|
int best_good_sectors;
|
|
sector_t new_distance, best_dist;
|
|
struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
|
|
int do_balance;
|
|
int best_dist_slot, best_pending_slot;
|
|
bool has_nonrot_disk = false;
|
|
unsigned int min_pending;
|
|
struct geom *geo = &conf->geo;
|
|
|
|
raid10_find_phys(conf, r10_bio);
|
|
rcu_read_lock();
|
|
best_dist_slot = -1;
|
|
min_pending = UINT_MAX;
|
|
best_dist_rdev = NULL;
|
|
best_pending_rdev = NULL;
|
|
best_dist = MaxSector;
|
|
best_good_sectors = 0;
|
|
do_balance = 1;
|
|
clear_bit(R10BIO_FailFast, &r10_bio->state);
|
|
/*
|
|
* Check if we can balance. We can balance on the whole
|
|
* device if no resync is going on (recovery is ok), or below
|
|
* the resync window. We take the first readable disk when
|
|
* above the resync window.
|
|
*/
|
|
if ((conf->mddev->recovery_cp < MaxSector
|
|
&& (this_sector + sectors >= conf->next_resync)) ||
|
|
(mddev_is_clustered(conf->mddev) &&
|
|
md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
|
|
this_sector + sectors)))
|
|
do_balance = 0;
|
|
|
|
for (slot = 0; slot < conf->copies ; slot++) {
|
|
sector_t first_bad;
|
|
int bad_sectors;
|
|
sector_t dev_sector;
|
|
unsigned int pending;
|
|
bool nonrot;
|
|
|
|
if (r10_bio->devs[slot].bio == IO_BLOCKED)
|
|
continue;
|
|
disk = r10_bio->devs[slot].devnum;
|
|
rdev = rcu_dereference(conf->mirrors[disk].replacement);
|
|
if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
|
|
r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
|
|
rdev = rcu_dereference(conf->mirrors[disk].rdev);
|
|
if (rdev == NULL ||
|
|
test_bit(Faulty, &rdev->flags))
|
|
continue;
|
|
if (!test_bit(In_sync, &rdev->flags) &&
|
|
r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
|
|
continue;
|
|
|
|
dev_sector = r10_bio->devs[slot].addr;
|
|
if (is_badblock(rdev, dev_sector, sectors,
|
|
&first_bad, &bad_sectors)) {
|
|
if (best_dist < MaxSector)
|
|
/* Already have a better slot */
|
|
continue;
|
|
if (first_bad <= dev_sector) {
|
|
/* Cannot read here. If this is the
|
|
* 'primary' device, then we must not read
|
|
* beyond 'bad_sectors' from another device.
|
|
*/
|
|
bad_sectors -= (dev_sector - first_bad);
|
|
if (!do_balance && sectors > bad_sectors)
|
|
sectors = bad_sectors;
|
|
if (best_good_sectors > sectors)
|
|
best_good_sectors = sectors;
|
|
} else {
|
|
sector_t good_sectors =
|
|
first_bad - dev_sector;
|
|
if (good_sectors > best_good_sectors) {
|
|
best_good_sectors = good_sectors;
|
|
best_dist_slot = slot;
|
|
best_dist_rdev = rdev;
|
|
}
|
|
if (!do_balance)
|
|
/* Must read from here */
|
|
break;
|
|
}
|
|
continue;
|
|
} else
|
|
best_good_sectors = sectors;
|
|
|
|
if (!do_balance)
|
|
break;
|
|
|
|
nonrot = bdev_nonrot(rdev->bdev);
|
|
has_nonrot_disk |= nonrot;
|
|
pending = atomic_read(&rdev->nr_pending);
|
|
if (min_pending > pending && nonrot) {
|
|
min_pending = pending;
|
|
best_pending_slot = slot;
|
|
best_pending_rdev = rdev;
|
|
}
|
|
|
|
if (best_dist_slot >= 0)
|
|
/* At least 2 disks to choose from so failfast is OK */
|
|
set_bit(R10BIO_FailFast, &r10_bio->state);
|
|
/* This optimisation is debatable, and completely destroys
|
|
* sequential read speed for 'far copies' arrays. So only
|
|
* keep it for 'near' arrays, and review those later.
|
|
*/
|
|
if (geo->near_copies > 1 && !pending)
|
|
new_distance = 0;
|
|
|
|
/* for far > 1 always use the lowest address */
|
|
else if (geo->far_copies > 1)
|
|
new_distance = r10_bio->devs[slot].addr;
|
|
else
|
|
new_distance = abs(r10_bio->devs[slot].addr -
|
|
conf->mirrors[disk].head_position);
|
|
|
|
if (new_distance < best_dist) {
|
|
best_dist = new_distance;
|
|
best_dist_slot = slot;
|
|
best_dist_rdev = rdev;
|
|
}
|
|
}
|
|
if (slot >= conf->copies) {
|
|
if (has_nonrot_disk) {
|
|
slot = best_pending_slot;
|
|
rdev = best_pending_rdev;
|
|
} else {
|
|
slot = best_dist_slot;
|
|
rdev = best_dist_rdev;
|
|
}
|
|
}
|
|
|
|
if (slot >= 0) {
|
|
atomic_inc(&rdev->nr_pending);
|
|
r10_bio->read_slot = slot;
|
|
} else
|
|
rdev = NULL;
|
|
rcu_read_unlock();
|
|
*max_sectors = best_good_sectors;
|
|
|
|
return rdev;
|
|
}
|
|
|
|
static void flush_pending_writes(struct r10conf *conf)
|
|
{
|
|
/* Any writes that have been queued but are awaiting
|
|
* bitmap updates get flushed here.
|
|
*/
|
|
spin_lock_irq(&conf->device_lock);
|
|
|
|
if (conf->pending_bio_list.head) {
|
|
struct blk_plug plug;
|
|
struct bio *bio;
|
|
|
|
bio = bio_list_get(&conf->pending_bio_list);
|
|
spin_unlock_irq(&conf->device_lock);
|
|
|
|
/*
|
|
* As this is called in a wait_event() loop (see freeze_array),
|
|
* current->state might be TASK_UNINTERRUPTIBLE which will
|
|
* cause a warning when we prepare to wait again. As it is
|
|
* rare that this path is taken, it is perfectly safe to force
|
|
* us to go around the wait_event() loop again, so the warning
|
|
* is a false-positive. Silence the warning by resetting
|
|
* thread state
|
|
*/
|
|
__set_current_state(TASK_RUNNING);
|
|
|
|
blk_start_plug(&plug);
|
|
/* flush any pending bitmap writes to disk
|
|
* before proceeding w/ I/O */
|
|
md_bitmap_unplug(conf->mddev->bitmap);
|
|
wake_up(&conf->wait_barrier);
|
|
|
|
while (bio) { /* submit pending writes */
|
|
struct bio *next = bio->bi_next;
|
|
struct md_rdev *rdev = (void*)bio->bi_bdev;
|
|
bio->bi_next = NULL;
|
|
bio_set_dev(bio, rdev->bdev);
|
|
if (test_bit(Faulty, &rdev->flags)) {
|
|
bio_io_error(bio);
|
|
} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
|
|
!bdev_max_discard_sectors(bio->bi_bdev)))
|
|
/* Just ignore it */
|
|
bio_endio(bio);
|
|
else
|
|
submit_bio_noacct(bio);
|
|
bio = next;
|
|
}
|
|
blk_finish_plug(&plug);
|
|
} else
|
|
spin_unlock_irq(&conf->device_lock);
|
|
}
|
|
|
|
/* Barriers....
|
|
* Sometimes we need to suspend IO while we do something else,
|
|
* either some resync/recovery, or reconfigure the array.
|
|
* To do this we raise a 'barrier'.
|
|
* The 'barrier' is a counter that can be raised multiple times
|
|
* to count how many activities are happening which preclude
|
|
* normal IO.
|
|
* We can only raise the barrier if there is no pending IO.
|
|
* i.e. if nr_pending == 0.
|
|
* We choose only to raise the barrier if no-one is waiting for the
|
|
* barrier to go down. This means that as soon as an IO request
|
|
* is ready, no other operations which require a barrier will start
|
|
* until the IO request has had a chance.
|
|
*
|
|
* So: regular IO calls 'wait_barrier'. When that returns there
|
|
* is no backgroup IO happening, It must arrange to call
|
|
* allow_barrier when it has finished its IO.
|
|
* backgroup IO calls must call raise_barrier. Once that returns
|
|
* there is no normal IO happeing. It must arrange to call
|
|
* lower_barrier when the particular background IO completes.
|
|
*/
|
|
|
|
static void raise_barrier(struct r10conf *conf, int force)
|
|
{
|
|
BUG_ON(force && !conf->barrier);
|
|
spin_lock_irq(&conf->resync_lock);
|
|
|
|
/* Wait until no block IO is waiting (unless 'force') */
|
|
wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
|
|
conf->resync_lock);
|
|
|
|
/* block any new IO from starting */
|
|
conf->barrier++;
|
|
|
|
/* Now wait for all pending IO to complete */
|
|
wait_event_lock_irq(conf->wait_barrier,
|
|
!atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
|
|
conf->resync_lock);
|
|
|
|
spin_unlock_irq(&conf->resync_lock);
|
|
}
|
|
|
|
static void lower_barrier(struct r10conf *conf)
|
|
{
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&conf->resync_lock, flags);
|
|
conf->barrier--;
|
|
spin_unlock_irqrestore(&conf->resync_lock, flags);
|
|
wake_up(&conf->wait_barrier);
|
|
}
|
|
|
|
static bool wait_barrier(struct r10conf *conf, bool nowait)
|
|
{
|
|
bool ret = true;
|
|
|
|
spin_lock_irq(&conf->resync_lock);
|
|
if (conf->barrier) {
|
|
struct bio_list *bio_list = current->bio_list;
|
|
conf->nr_waiting++;
|
|
/* Wait for the barrier to drop.
|
|
* However if there are already pending
|
|
* requests (preventing the barrier from
|
|
* rising completely), and the
|
|
* pre-process bio queue isn't empty,
|
|
* then don't wait, as we need to empty
|
|
* that queue to get the nr_pending
|
|
* count down.
|
|
*/
|
|
/* Return false when nowait flag is set */
|
|
if (nowait) {
|
|
ret = false;
|
|
} else {
|
|
raid10_log(conf->mddev, "wait barrier");
|
|
wait_event_lock_irq(conf->wait_barrier,
|
|
!conf->barrier ||
|
|
(atomic_read(&conf->nr_pending) &&
|
|
bio_list &&
|
|
(!bio_list_empty(&bio_list[0]) ||
|
|
!bio_list_empty(&bio_list[1]))) ||
|
|
/* move on if recovery thread is
|
|
* blocked by us
|
|
*/
|
|
(conf->mddev->thread->tsk == current &&
|
|
test_bit(MD_RECOVERY_RUNNING,
|
|
&conf->mddev->recovery) &&
|
|
conf->nr_queued > 0),
|
|
conf->resync_lock);
|
|
}
|
|
conf->nr_waiting--;
|
|
if (!conf->nr_waiting)
|
|
wake_up(&conf->wait_barrier);
|
|
}
|
|
/* Only increment nr_pending when we wait */
|
|
if (ret)
|
|
atomic_inc(&conf->nr_pending);
|
|
spin_unlock_irq(&conf->resync_lock);
|
|
return ret;
|
|
}
|
|
|
|
static void allow_barrier(struct r10conf *conf)
|
|
{
|
|
if ((atomic_dec_and_test(&conf->nr_pending)) ||
|
|
(conf->array_freeze_pending))
|
|
wake_up(&conf->wait_barrier);
|
|
}
|
|
|
|
static void freeze_array(struct r10conf *conf, int extra)
|
|
{
|
|
/* stop syncio and normal IO and wait for everything to
|
|
* go quiet.
|
|
* We increment barrier and nr_waiting, and then
|
|
* wait until nr_pending match nr_queued+extra
|
|
* This is called in the context of one normal IO request
|
|
* that has failed. Thus any sync request that might be pending
|
|
* will be blocked by nr_pending, and we need to wait for
|
|
* pending IO requests to complete or be queued for re-try.
|
|
* Thus the number queued (nr_queued) plus this request (extra)
|
|
* must match the number of pending IOs (nr_pending) before
|
|
* we continue.
|
|
*/
|
|
spin_lock_irq(&conf->resync_lock);
|
|
conf->array_freeze_pending++;
|
|
conf->barrier++;
|
|
conf->nr_waiting++;
|
|
wait_event_lock_irq_cmd(conf->wait_barrier,
|
|
atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
|
|
conf->resync_lock,
|
|
flush_pending_writes(conf));
|
|
|
|
conf->array_freeze_pending--;
|
|
spin_unlock_irq(&conf->resync_lock);
|
|
}
|
|
|
|
static void unfreeze_array(struct r10conf *conf)
|
|
{
|
|
/* reverse the effect of the freeze */
|
|
spin_lock_irq(&conf->resync_lock);
|
|
conf->barrier--;
|
|
conf->nr_waiting--;
|
|
wake_up(&conf->wait_barrier);
|
|
spin_unlock_irq(&conf->resync_lock);
|
|
}
|
|
|
|
static sector_t choose_data_offset(struct r10bio *r10_bio,
|
|
struct md_rdev *rdev)
|
|
{
|
|
if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
|
|
test_bit(R10BIO_Previous, &r10_bio->state))
|
|
return rdev->data_offset;
|
|
else
|
|
return rdev->new_data_offset;
|
|
}
|
|
|
|
static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
|
|
{
|
|
struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
|
|
struct mddev *mddev = plug->cb.data;
|
|
struct r10conf *conf = mddev->private;
|
|
struct bio *bio;
|
|
|
|
if (from_schedule || current->bio_list) {
|
|
spin_lock_irq(&conf->device_lock);
|
|
bio_list_merge(&conf->pending_bio_list, &plug->pending);
|
|
spin_unlock_irq(&conf->device_lock);
|
|
wake_up(&conf->wait_barrier);
|
|
md_wakeup_thread(mddev->thread);
|
|
kfree(plug);
|
|
return;
|
|
}
|
|
|
|
/* we aren't scheduling, so we can do the write-out directly. */
|
|
bio = bio_list_get(&plug->pending);
|
|
md_bitmap_unplug(mddev->bitmap);
|
|
wake_up(&conf->wait_barrier);
|
|
|
|
while (bio) { /* submit pending writes */
|
|
struct bio *next = bio->bi_next;
|
|
struct md_rdev *rdev = (void*)bio->bi_bdev;
|
|
bio->bi_next = NULL;
|
|
bio_set_dev(bio, rdev->bdev);
|
|
if (test_bit(Faulty, &rdev->flags)) {
|
|
bio_io_error(bio);
|
|
} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
|
|
!bdev_max_discard_sectors(bio->bi_bdev)))
|
|
/* Just ignore it */
|
|
bio_endio(bio);
|
|
else
|
|
submit_bio_noacct(bio);
|
|
bio = next;
|
|
}
|
|
kfree(plug);
|
|
}
|
|
|
|
/*
|
|
* 1. Register the new request and wait if the reconstruction thread has put
|
|
* up a bar for new requests. Continue immediately if no resync is active
|
|
* currently.
|
|
* 2. If IO spans the reshape position. Need to wait for reshape to pass.
|
|
*/
|
|
static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
|
|
struct bio *bio, sector_t sectors)
|
|
{
|
|
/* Bail out if REQ_NOWAIT is set for the bio */
|
|
if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
|
|
bio_wouldblock_error(bio);
|
|
return false;
|
|
}
|
|
while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
|
|
bio->bi_iter.bi_sector < conf->reshape_progress &&
|
|
bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
|
|
allow_barrier(conf);
|
|
if (bio->bi_opf & REQ_NOWAIT) {
|
|
bio_wouldblock_error(bio);
|
|
return false;
|
|
}
|
|
raid10_log(conf->mddev, "wait reshape");
|
|
wait_event(conf->wait_barrier,
|
|
conf->reshape_progress <= bio->bi_iter.bi_sector ||
|
|
conf->reshape_progress >= bio->bi_iter.bi_sector +
|
|
sectors);
|
|
wait_barrier(conf, false);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void raid10_read_request(struct mddev *mddev, struct bio *bio,
|
|
struct r10bio *r10_bio)
|
|
{
|
|
struct r10conf *conf = mddev->private;
|
|
struct bio *read_bio;
|
|
const int op = bio_op(bio);
|
|
const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
|
|
int max_sectors;
|
|
struct md_rdev *rdev;
|
|
char b[BDEVNAME_SIZE];
|
|
int slot = r10_bio->read_slot;
|
|
struct md_rdev *err_rdev = NULL;
|
|
gfp_t gfp = GFP_NOIO;
|
|
|
|
if (slot >= 0 && r10_bio->devs[slot].rdev) {
|
|
/*
|
|
* This is an error retry, but we cannot
|
|
* safely dereference the rdev in the r10_bio,
|
|
* we must use the one in conf.
|
|
* If it has already been disconnected (unlikely)
|
|
* we lose the device name in error messages.
|
|
*/
|
|
int disk;
|
|
/*
|
|
* As we are blocking raid10, it is a little safer to
|
|
* use __GFP_HIGH.
|
|
*/
|
|
gfp = GFP_NOIO | __GFP_HIGH;
|
|
|
|
rcu_read_lock();
|
|
disk = r10_bio->devs[slot].devnum;
|
|
err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
|
|
if (err_rdev)
|
|
bdevname(err_rdev->bdev, b);
|
|
else {
|
|
strcpy(b, "???");
|
|
/* This never gets dereferenced */
|
|
err_rdev = r10_bio->devs[slot].rdev;
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
|
|
return;
|
|
rdev = read_balance(conf, r10_bio, &max_sectors);
|
|
if (!rdev) {
|
|
if (err_rdev) {
|
|
pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
|
|
mdname(mddev), b,
|
|
(unsigned long long)r10_bio->sector);
|
|
}
|
|
raid_end_bio_io(r10_bio);
|
|
return;
|
|
}
|
|
if (err_rdev)
|
|
pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
|
|
mdname(mddev),
|
|
rdev->bdev,
|
|
(unsigned long long)r10_bio->sector);
|
|
if (max_sectors < bio_sectors(bio)) {
|
|
struct bio *split = bio_split(bio, max_sectors,
|
|
gfp, &conf->bio_split);
|
|
bio_chain(split, bio);
|
|
allow_barrier(conf);
|
|
submit_bio_noacct(bio);
|
|
wait_barrier(conf, false);
|
|
bio = split;
|
|
r10_bio->master_bio = bio;
|
|
r10_bio->sectors = max_sectors;
|
|
}
|
|
slot = r10_bio->read_slot;
|
|
|
|
if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
|
|
r10_bio->start_time = bio_start_io_acct(bio);
|
|
read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
|
|
|
|
r10_bio->devs[slot].bio = read_bio;
|
|
r10_bio->devs[slot].rdev = rdev;
|
|
|
|
read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
|
|
choose_data_offset(r10_bio, rdev);
|
|
read_bio->bi_end_io = raid10_end_read_request;
|
|
bio_set_op_attrs(read_bio, op, do_sync);
|
|
if (test_bit(FailFast, &rdev->flags) &&
|
|
test_bit(R10BIO_FailFast, &r10_bio->state))
|
|
read_bio->bi_opf |= MD_FAILFAST;
|
|
read_bio->bi_private = r10_bio;
|
|
|
|
if (mddev->gendisk)
|
|
trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
|
|
r10_bio->sector);
|
|
submit_bio_noacct(read_bio);
|
|
return;
|
|
}
|
|
|
|
static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
|
|
struct bio *bio, bool replacement,
|
|
int n_copy)
|
|
{
|
|
const int op = bio_op(bio);
|
|
const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
|
|
const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
|
|
unsigned long flags;
|
|
struct blk_plug_cb *cb;
|
|
struct raid1_plug_cb *plug = NULL;
|
|
struct r10conf *conf = mddev->private;
|
|
struct md_rdev *rdev;
|
|
int devnum = r10_bio->devs[n_copy].devnum;
|
|
struct bio *mbio;
|
|
|
|
if (replacement) {
|
|
rdev = conf->mirrors[devnum].replacement;
|
|
if (rdev == NULL) {
|
|
/* Replacement just got moved to main 'rdev' */
|
|
smp_mb();
|
|
rdev = conf->mirrors[devnum].rdev;
|
|
}
|
|
} else
|
|
rdev = conf->mirrors[devnum].rdev;
|
|
|
|
mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
|
|
if (replacement)
|
|
r10_bio->devs[n_copy].repl_bio = mbio;
|
|
else
|
|
r10_bio->devs[n_copy].bio = mbio;
|
|
|
|
mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
|
|
choose_data_offset(r10_bio, rdev));
|
|
mbio->bi_end_io = raid10_end_write_request;
|
|
bio_set_op_attrs(mbio, op, do_sync | do_fua);
|
|
if (!replacement && test_bit(FailFast,
|
|
&conf->mirrors[devnum].rdev->flags)
|
|
&& enough(conf, devnum))
|
|
mbio->bi_opf |= MD_FAILFAST;
|
|
mbio->bi_private = r10_bio;
|
|
|
|
if (conf->mddev->gendisk)
|
|
trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
|
|
r10_bio->sector);
|
|
/* flush_pending_writes() needs access to the rdev so...*/
|
|
mbio->bi_bdev = (void *)rdev;
|
|
|
|
atomic_inc(&r10_bio->remaining);
|
|
|
|
cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
|
|
if (cb)
|
|
plug = container_of(cb, struct raid1_plug_cb, cb);
|
|
else
|
|
plug = NULL;
|
|
if (plug) {
|
|
bio_list_add(&plug->pending, mbio);
|
|
} else {
|
|
spin_lock_irqsave(&conf->device_lock, flags);
|
|
bio_list_add(&conf->pending_bio_list, mbio);
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
md_wakeup_thread(mddev->thread);
|
|
}
|
|
}
|
|
|
|
static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
|
|
{
|
|
int i;
|
|
struct r10conf *conf = mddev->private;
|
|
struct md_rdev *blocked_rdev;
|
|
|
|
retry_wait:
|
|
blocked_rdev = NULL;
|
|
rcu_read_lock();
|
|
for (i = 0; i < conf->copies; i++) {
|
|
struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
|
|
struct md_rdev *rrdev = rcu_dereference(
|
|
conf->mirrors[i].replacement);
|
|
if (rdev == rrdev)
|
|
rrdev = NULL;
|
|
if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
|
|
atomic_inc(&rdev->nr_pending);
|
|
blocked_rdev = rdev;
|
|
break;
|
|
}
|
|
if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
|
|
atomic_inc(&rrdev->nr_pending);
|
|
blocked_rdev = rrdev;
|
|
break;
|
|
}
|
|
|
|
if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
|
|
sector_t first_bad;
|
|
sector_t dev_sector = r10_bio->devs[i].addr;
|
|
int bad_sectors;
|
|
int is_bad;
|
|
|
|
/*
|
|
* Discard request doesn't care the write result
|
|
* so it doesn't need to wait blocked disk here.
|
|
*/
|
|
if (!r10_bio->sectors)
|
|
continue;
|
|
|
|
is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
|
|
&first_bad, &bad_sectors);
|
|
if (is_bad < 0) {
|
|
/*
|
|
* Mustn't write here until the bad block
|
|
* is acknowledged
|
|
*/
|
|
atomic_inc(&rdev->nr_pending);
|
|
set_bit(BlockedBadBlocks, &rdev->flags);
|
|
blocked_rdev = rdev;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (unlikely(blocked_rdev)) {
|
|
/* Have to wait for this device to get unblocked, then retry */
|
|
allow_barrier(conf);
|
|
raid10_log(conf->mddev, "%s wait rdev %d blocked",
|
|
__func__, blocked_rdev->raid_disk);
|
|
md_wait_for_blocked_rdev(blocked_rdev, mddev);
|
|
wait_barrier(conf, false);
|
|
goto retry_wait;
|
|
}
|
|
}
|
|
|
|
static void raid10_write_request(struct mddev *mddev, struct bio *bio,
|
|
struct r10bio *r10_bio)
|
|
{
|
|
struct r10conf *conf = mddev->private;
|
|
int i;
|
|
sector_t sectors;
|
|
int max_sectors;
|
|
|
|
if ((mddev_is_clustered(mddev) &&
|
|
md_cluster_ops->area_resyncing(mddev, WRITE,
|
|
bio->bi_iter.bi_sector,
|
|
bio_end_sector(bio)))) {
|
|
DEFINE_WAIT(w);
|
|
/* Bail out if REQ_NOWAIT is set for the bio */
|
|
if (bio->bi_opf & REQ_NOWAIT) {
|
|
bio_wouldblock_error(bio);
|
|
return;
|
|
}
|
|
for (;;) {
|
|
prepare_to_wait(&conf->wait_barrier,
|
|
&w, TASK_IDLE);
|
|
if (!md_cluster_ops->area_resyncing(mddev, WRITE,
|
|
bio->bi_iter.bi_sector, bio_end_sector(bio)))
|
|
break;
|
|
schedule();
|
|
}
|
|
finish_wait(&conf->wait_barrier, &w);
|
|
}
|
|
|
|
sectors = r10_bio->sectors;
|
|
if (!regular_request_wait(mddev, conf, bio, sectors))
|
|
return;
|
|
if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
|
|
(mddev->reshape_backwards
|
|
? (bio->bi_iter.bi_sector < conf->reshape_safe &&
|
|
bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
|
|
: (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
|
|
bio->bi_iter.bi_sector < conf->reshape_progress))) {
|
|
/* Need to update reshape_position in metadata */
|
|
mddev->reshape_position = conf->reshape_progress;
|
|
set_mask_bits(&mddev->sb_flags, 0,
|
|
BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
|
|
md_wakeup_thread(mddev->thread);
|
|
if (bio->bi_opf & REQ_NOWAIT) {
|
|
allow_barrier(conf);
|
|
bio_wouldblock_error(bio);
|
|
return;
|
|
}
|
|
raid10_log(conf->mddev, "wait reshape metadata");
|
|
wait_event(mddev->sb_wait,
|
|
!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
|
|
|
|
conf->reshape_safe = mddev->reshape_position;
|
|
}
|
|
|
|
/* first select target devices under rcu_lock and
|
|
* inc refcount on their rdev. Record them by setting
|
|
* bios[x] to bio
|
|
* If there are known/acknowledged bad blocks on any device
|
|
* on which we have seen a write error, we want to avoid
|
|
* writing to those blocks. This potentially requires several
|
|
* writes to write around the bad blocks. Each set of writes
|
|
* gets its own r10_bio with a set of bios attached.
|
|
*/
|
|
|
|
r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
|
|
raid10_find_phys(conf, r10_bio);
|
|
|
|
wait_blocked_dev(mddev, r10_bio);
|
|
|
|
rcu_read_lock();
|
|
max_sectors = r10_bio->sectors;
|
|
|
|
for (i = 0; i < conf->copies; i++) {
|
|
int d = r10_bio->devs[i].devnum;
|
|
struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
|
|
struct md_rdev *rrdev = rcu_dereference(
|
|
conf->mirrors[d].replacement);
|
|
if (rdev == rrdev)
|
|
rrdev = NULL;
|
|
if (rdev && (test_bit(Faulty, &rdev->flags)))
|
|
rdev = NULL;
|
|
if (rrdev && (test_bit(Faulty, &rrdev->flags)))
|
|
rrdev = NULL;
|
|
|
|
r10_bio->devs[i].bio = NULL;
|
|
r10_bio->devs[i].repl_bio = NULL;
|
|
|
|
if (!rdev && !rrdev) {
|
|
set_bit(R10BIO_Degraded, &r10_bio->state);
|
|
continue;
|
|
}
|
|
if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
|
|
sector_t first_bad;
|
|
sector_t dev_sector = r10_bio->devs[i].addr;
|
|
int bad_sectors;
|
|
int is_bad;
|
|
|
|
is_bad = is_badblock(rdev, dev_sector, max_sectors,
|
|
&first_bad, &bad_sectors);
|
|
if (is_bad && first_bad <= dev_sector) {
|
|
/* Cannot write here at all */
|
|
bad_sectors -= (dev_sector - first_bad);
|
|
if (bad_sectors < max_sectors)
|
|
/* Mustn't write more than bad_sectors
|
|
* to other devices yet
|
|
*/
|
|
max_sectors = bad_sectors;
|
|
/* We don't set R10BIO_Degraded as that
|
|
* only applies if the disk is missing,
|
|
* so it might be re-added, and we want to
|
|
* know to recover this chunk.
|
|
* In this case the device is here, and the
|
|
* fact that this chunk is not in-sync is
|
|
* recorded in the bad block log.
|
|
*/
|
|
continue;
|
|
}
|
|
if (is_bad) {
|
|
int good_sectors = first_bad - dev_sector;
|
|
if (good_sectors < max_sectors)
|
|
max_sectors = good_sectors;
|
|
}
|
|
}
|
|
if (rdev) {
|
|
r10_bio->devs[i].bio = bio;
|
|
atomic_inc(&rdev->nr_pending);
|
|
}
|
|
if (rrdev) {
|
|
r10_bio->devs[i].repl_bio = bio;
|
|
atomic_inc(&rrdev->nr_pending);
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (max_sectors < r10_bio->sectors)
|
|
r10_bio->sectors = max_sectors;
|
|
|
|
if (r10_bio->sectors < bio_sectors(bio)) {
|
|
struct bio *split = bio_split(bio, r10_bio->sectors,
|
|
GFP_NOIO, &conf->bio_split);
|
|
bio_chain(split, bio);
|
|
allow_barrier(conf);
|
|
submit_bio_noacct(bio);
|
|
wait_barrier(conf, false);
|
|
bio = split;
|
|
r10_bio->master_bio = bio;
|
|
}
|
|
|
|
if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
|
|
r10_bio->start_time = bio_start_io_acct(bio);
|
|
atomic_set(&r10_bio->remaining, 1);
|
|
md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
|
|
|
|
for (i = 0; i < conf->copies; i++) {
|
|
if (r10_bio->devs[i].bio)
|
|
raid10_write_one_disk(mddev, r10_bio, bio, false, i);
|
|
if (r10_bio->devs[i].repl_bio)
|
|
raid10_write_one_disk(mddev, r10_bio, bio, true, i);
|
|
}
|
|
one_write_done(r10_bio);
|
|
}
|
|
|
|
static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
|
|
{
|
|
struct r10conf *conf = mddev->private;
|
|
struct r10bio *r10_bio;
|
|
|
|
r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
|
|
|
|
r10_bio->master_bio = bio;
|
|
r10_bio->sectors = sectors;
|
|
|
|
r10_bio->mddev = mddev;
|
|
r10_bio->sector = bio->bi_iter.bi_sector;
|
|
r10_bio->state = 0;
|
|
r10_bio->read_slot = -1;
|
|
memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
|
|
conf->geo.raid_disks);
|
|
|
|
if (bio_data_dir(bio) == READ)
|
|
raid10_read_request(mddev, bio, r10_bio);
|
|
else
|
|
raid10_write_request(mddev, bio, r10_bio);
|
|
}
|
|
|
|
static void raid_end_discard_bio(struct r10bio *r10bio)
|
|
{
|
|
struct r10conf *conf = r10bio->mddev->private;
|
|
struct r10bio *first_r10bio;
|
|
|
|
while (atomic_dec_and_test(&r10bio->remaining)) {
|
|
|
|
allow_barrier(conf);
|
|
|
|
if (!test_bit(R10BIO_Discard, &r10bio->state)) {
|
|
first_r10bio = (struct r10bio *)r10bio->master_bio;
|
|
free_r10bio(r10bio);
|
|
r10bio = first_r10bio;
|
|
} else {
|
|
md_write_end(r10bio->mddev);
|
|
bio_endio(r10bio->master_bio);
|
|
free_r10bio(r10bio);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void raid10_end_discard_request(struct bio *bio)
|
|
{
|
|
struct r10bio *r10_bio = bio->bi_private;
|
|
struct r10conf *conf = r10_bio->mddev->private;
|
|
struct md_rdev *rdev = NULL;
|
|
int dev;
|
|
int slot, repl;
|
|
|
|
/*
|
|
* We don't care the return value of discard bio
|
|
*/
|
|
if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
|
|
set_bit(R10BIO_Uptodate, &r10_bio->state);
|
|
|
|
dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
|
|
if (repl)
|
|
rdev = conf->mirrors[dev].replacement;
|
|
if (!rdev) {
|
|
/*
|
|
* raid10_remove_disk uses smp_mb to make sure rdev is set to
|
|
* replacement before setting replacement to NULL. It can read
|
|
* rdev first without barrier protect even replacment is NULL
|
|
*/
|
|
smp_rmb();
|
|
rdev = conf->mirrors[dev].rdev;
|
|
}
|
|
|
|
raid_end_discard_bio(r10_bio);
|
|
rdev_dec_pending(rdev, conf->mddev);
|
|
}
|
|
|
|
/*
|
|
* There are some limitations to handle discard bio
|
|
* 1st, the discard size is bigger than stripe_size*2.
|
|
* 2st, if the discard bio spans reshape progress, we use the old way to
|
|
* handle discard bio
|
|
*/
|
|
static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
|
|
{
|
|
struct r10conf *conf = mddev->private;
|
|
struct geom *geo = &conf->geo;
|
|
int far_copies = geo->far_copies;
|
|
bool first_copy = true;
|
|
struct r10bio *r10_bio, *first_r10bio;
|
|
struct bio *split;
|
|
int disk;
|
|
sector_t chunk;
|
|
unsigned int stripe_size;
|
|
unsigned int stripe_data_disks;
|
|
sector_t split_size;
|
|
sector_t bio_start, bio_end;
|
|
sector_t first_stripe_index, last_stripe_index;
|
|
sector_t start_disk_offset;
|
|
unsigned int start_disk_index;
|
|
sector_t end_disk_offset;
|
|
unsigned int end_disk_index;
|
|
unsigned int remainder;
|
|
|
|
if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
|
|
return -EAGAIN;
|
|
|
|
if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
|
|
bio_wouldblock_error(bio);
|
|
return 0;
|
|
}
|
|
wait_barrier(conf, false);
|
|
|
|
/*
|
|
* Check reshape again to avoid reshape happens after checking
|
|
* MD_RECOVERY_RESHAPE and before wait_barrier
|
|
*/
|
|
if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
|
|
goto out;
|
|
|
|
if (geo->near_copies)
|
|
stripe_data_disks = geo->raid_disks / geo->near_copies +
|
|
geo->raid_disks % geo->near_copies;
|
|
else
|
|
stripe_data_disks = geo->raid_disks;
|
|
|
|
stripe_size = stripe_data_disks << geo->chunk_shift;
|
|
|
|
bio_start = bio->bi_iter.bi_sector;
|
|
bio_end = bio_end_sector(bio);
|
|
|
|
/*
|
|
* Maybe one discard bio is smaller than strip size or across one
|
|
* stripe and discard region is larger than one stripe size. For far
|
|
* offset layout, if the discard region is not aligned with stripe
|
|
* size, there is hole when we submit discard bio to member disk.
|
|
* For simplicity, we only handle discard bio which discard region
|
|
* is bigger than stripe_size * 2
|
|
*/
|
|
if (bio_sectors(bio) < stripe_size*2)
|
|
goto out;
|
|
|
|
/*
|
|
* Keep bio aligned with strip size.
|
|
*/
|
|
div_u64_rem(bio_start, stripe_size, &remainder);
|
|
if (remainder) {
|
|
split_size = stripe_size - remainder;
|
|
split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
|
|
bio_chain(split, bio);
|
|
allow_barrier(conf);
|
|
/* Resend the fist split part */
|
|
submit_bio_noacct(split);
|
|
wait_barrier(conf, false);
|
|
}
|
|
div_u64_rem(bio_end, stripe_size, &remainder);
|
|
if (remainder) {
|
|
split_size = bio_sectors(bio) - remainder;
|
|
split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
|
|
bio_chain(split, bio);
|
|
allow_barrier(conf);
|
|
/* Resend the second split part */
|
|
submit_bio_noacct(bio);
|
|
bio = split;
|
|
wait_barrier(conf, false);
|
|
}
|
|
|
|
bio_start = bio->bi_iter.bi_sector;
|
|
bio_end = bio_end_sector(bio);
|
|
|
|
/*
|
|
* Raid10 uses chunk as the unit to store data. It's similar like raid0.
|
|
* One stripe contains the chunks from all member disk (one chunk from
|
|
* one disk at the same HBA address). For layout detail, see 'man md 4'
|
|
*/
|
|
chunk = bio_start >> geo->chunk_shift;
|
|
chunk *= geo->near_copies;
|
|
first_stripe_index = chunk;
|
|
start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
|
|
if (geo->far_offset)
|
|
first_stripe_index *= geo->far_copies;
|
|
start_disk_offset = (bio_start & geo->chunk_mask) +
|
|
(first_stripe_index << geo->chunk_shift);
|
|
|
|
chunk = bio_end >> geo->chunk_shift;
|
|
chunk *= geo->near_copies;
|
|
last_stripe_index = chunk;
|
|
end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
|
|
if (geo->far_offset)
|
|
last_stripe_index *= geo->far_copies;
|
|
end_disk_offset = (bio_end & geo->chunk_mask) +
|
|
(last_stripe_index << geo->chunk_shift);
|
|
|
|
retry_discard:
|
|
r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
|
|
r10_bio->mddev = mddev;
|
|
r10_bio->state = 0;
|
|
r10_bio->sectors = 0;
|
|
memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
|
|
wait_blocked_dev(mddev, r10_bio);
|
|
|
|
/*
|
|
* For far layout it needs more than one r10bio to cover all regions.
|
|
* Inspired by raid10_sync_request, we can use the first r10bio->master_bio
|
|
* to record the discard bio. Other r10bio->master_bio record the first
|
|
* r10bio. The first r10bio only release after all other r10bios finish.
|
|
* The discard bio returns only first r10bio finishes
|
|
*/
|
|
if (first_copy) {
|
|
r10_bio->master_bio = bio;
|
|
set_bit(R10BIO_Discard, &r10_bio->state);
|
|
first_copy = false;
|
|
first_r10bio = r10_bio;
|
|
} else
|
|
r10_bio->master_bio = (struct bio *)first_r10bio;
|
|
|
|
/*
|
|
* first select target devices under rcu_lock and
|
|
* inc refcount on their rdev. Record them by setting
|
|
* bios[x] to bio
|
|
*/
|
|
rcu_read_lock();
|
|
for (disk = 0; disk < geo->raid_disks; disk++) {
|
|
struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
|
|
struct md_rdev *rrdev = rcu_dereference(
|
|
conf->mirrors[disk].replacement);
|
|
|
|
r10_bio->devs[disk].bio = NULL;
|
|
r10_bio->devs[disk].repl_bio = NULL;
|
|
|
|
if (rdev && (test_bit(Faulty, &rdev->flags)))
|
|
rdev = NULL;
|
|
if (rrdev && (test_bit(Faulty, &rrdev->flags)))
|
|
rrdev = NULL;
|
|
if (!rdev && !rrdev)
|
|
continue;
|
|
|
|
if (rdev) {
|
|
r10_bio->devs[disk].bio = bio;
|
|
atomic_inc(&rdev->nr_pending);
|
|
}
|
|
if (rrdev) {
|
|
r10_bio->devs[disk].repl_bio = bio;
|
|
atomic_inc(&rrdev->nr_pending);
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
atomic_set(&r10_bio->remaining, 1);
|
|
for (disk = 0; disk < geo->raid_disks; disk++) {
|
|
sector_t dev_start, dev_end;
|
|
struct bio *mbio, *rbio = NULL;
|
|
|
|
/*
|
|
* Now start to calculate the start and end address for each disk.
|
|
* The space between dev_start and dev_end is the discard region.
|
|
*
|
|
* For dev_start, it needs to consider three conditions:
|
|
* 1st, the disk is before start_disk, you can imagine the disk in
|
|
* the next stripe. So the dev_start is the start address of next
|
|
* stripe.
|
|
* 2st, the disk is after start_disk, it means the disk is at the
|
|
* same stripe of first disk
|
|
* 3st, the first disk itself, we can use start_disk_offset directly
|
|
*/
|
|
if (disk < start_disk_index)
|
|
dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
|
|
else if (disk > start_disk_index)
|
|
dev_start = first_stripe_index * mddev->chunk_sectors;
|
|
else
|
|
dev_start = start_disk_offset;
|
|
|
|
if (disk < end_disk_index)
|
|
dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
|
|
else if (disk > end_disk_index)
|
|
dev_end = last_stripe_index * mddev->chunk_sectors;
|
|
else
|
|
dev_end = end_disk_offset;
|
|
|
|
/*
|
|
* It only handles discard bio which size is >= stripe size, so
|
|
* dev_end > dev_start all the time.
|
|
* It doesn't need to use rcu lock to get rdev here. We already
|
|
* add rdev->nr_pending in the first loop.
|
|
*/
|
|
if (r10_bio->devs[disk].bio) {
|
|
struct md_rdev *rdev = conf->mirrors[disk].rdev;
|
|
mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
|
|
&mddev->bio_set);
|
|
mbio->bi_end_io = raid10_end_discard_request;
|
|
mbio->bi_private = r10_bio;
|
|
r10_bio->devs[disk].bio = mbio;
|
|
r10_bio->devs[disk].devnum = disk;
|
|
atomic_inc(&r10_bio->remaining);
|
|
md_submit_discard_bio(mddev, rdev, mbio,
|
|
dev_start + choose_data_offset(r10_bio, rdev),
|
|
dev_end - dev_start);
|
|
bio_endio(mbio);
|
|
}
|
|
if (r10_bio->devs[disk].repl_bio) {
|
|
struct md_rdev *rrdev = conf->mirrors[disk].replacement;
|
|
rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
|
|
&mddev->bio_set);
|
|
rbio->bi_end_io = raid10_end_discard_request;
|
|
rbio->bi_private = r10_bio;
|
|
r10_bio->devs[disk].repl_bio = rbio;
|
|
r10_bio->devs[disk].devnum = disk;
|
|
atomic_inc(&r10_bio->remaining);
|
|
md_submit_discard_bio(mddev, rrdev, rbio,
|
|
dev_start + choose_data_offset(r10_bio, rrdev),
|
|
dev_end - dev_start);
|
|
bio_endio(rbio);
|
|
}
|
|
}
|
|
|
|
if (!geo->far_offset && --far_copies) {
|
|
first_stripe_index += geo->stride >> geo->chunk_shift;
|
|
start_disk_offset += geo->stride;
|
|
last_stripe_index += geo->stride >> geo->chunk_shift;
|
|
end_disk_offset += geo->stride;
|
|
atomic_inc(&first_r10bio->remaining);
|
|
raid_end_discard_bio(r10_bio);
|
|
wait_barrier(conf, false);
|
|
goto retry_discard;
|
|
}
|
|
|
|
raid_end_discard_bio(r10_bio);
|
|
|
|
return 0;
|
|
out:
|
|
allow_barrier(conf);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
|
|
{
|
|
struct r10conf *conf = mddev->private;
|
|
sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
|
|
int chunk_sects = chunk_mask + 1;
|
|
int sectors = bio_sectors(bio);
|
|
|
|
if (unlikely(bio->bi_opf & REQ_PREFLUSH)
|
|
&& md_flush_request(mddev, bio))
|
|
return true;
|
|
|
|
if (!md_write_start(mddev, bio))
|
|
return false;
|
|
|
|
if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
|
|
if (!raid10_handle_discard(mddev, bio))
|
|
return true;
|
|
|
|
/*
|
|
* If this request crosses a chunk boundary, we need to split
|
|
* it.
|
|
*/
|
|
if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
|
|
sectors > chunk_sects
|
|
&& (conf->geo.near_copies < conf->geo.raid_disks
|
|
|| conf->prev.near_copies <
|
|
conf->prev.raid_disks)))
|
|
sectors = chunk_sects -
|
|
(bio->bi_iter.bi_sector &
|
|
(chunk_sects - 1));
|
|
__make_request(mddev, bio, sectors);
|
|
|
|
/* In case raid10d snuck in to freeze_array */
|
|
wake_up(&conf->wait_barrier);
|
|
return true;
|
|
}
|
|
|
|
static void raid10_status(struct seq_file *seq, struct mddev *mddev)
|
|
{
|
|
struct r10conf *conf = mddev->private;
|
|
int i;
|
|
|
|
if (conf->geo.near_copies < conf->geo.raid_disks)
|
|
seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
|
|
if (conf->geo.near_copies > 1)
|
|
seq_printf(seq, " %d near-copies", conf->geo.near_copies);
|
|
if (conf->geo.far_copies > 1) {
|
|
if (conf->geo.far_offset)
|
|
seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
|
|
else
|
|
seq_printf(seq, " %d far-copies", conf->geo.far_copies);
|
|
if (conf->geo.far_set_size != conf->geo.raid_disks)
|
|
seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
|
|
}
|
|
seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
|
|
conf->geo.raid_disks - mddev->degraded);
|
|
rcu_read_lock();
|
|
for (i = 0; i < conf->geo.raid_disks; i++) {
|
|
struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
|
|
seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
|
|
}
|
|
rcu_read_unlock();
|
|
seq_printf(seq, "]");
|
|
}
|
|
|
|
/* check if there are enough drives for
|
|
* every block to appear on atleast one.
|
|
* Don't consider the device numbered 'ignore'
|
|
* as we might be about to remove it.
|
|
*/
|
|
static int _enough(struct r10conf *conf, int previous, int ignore)
|
|
{
|
|
int first = 0;
|
|
int has_enough = 0;
|
|
int disks, ncopies;
|
|
if (previous) {
|
|
disks = conf->prev.raid_disks;
|
|
ncopies = conf->prev.near_copies;
|
|
} else {
|
|
disks = conf->geo.raid_disks;
|
|
ncopies = conf->geo.near_copies;
|
|
}
|
|
|
|
rcu_read_lock();
|
|
do {
|
|
int n = conf->copies;
|
|
int cnt = 0;
|
|
int this = first;
|
|
while (n--) {
|
|
struct md_rdev *rdev;
|
|
if (this != ignore &&
|
|
(rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
|
|
test_bit(In_sync, &rdev->flags))
|
|
cnt++;
|
|
this = (this+1) % disks;
|
|
}
|
|
if (cnt == 0)
|
|
goto out;
|
|
first = (first + ncopies) % disks;
|
|
} while (first != 0);
|
|
has_enough = 1;
|
|
out:
|
|
rcu_read_unlock();
|
|
return has_enough;
|
|
}
|
|
|
|
static int enough(struct r10conf *conf, int ignore)
|
|
{
|
|
/* when calling 'enough', both 'prev' and 'geo' must
|
|
* be stable.
|
|
* This is ensured if ->reconfig_mutex or ->device_lock
|
|
* is held.
|
|
*/
|
|
return _enough(conf, 0, ignore) &&
|
|
_enough(conf, 1, ignore);
|
|
}
|
|
|
|
/**
|
|
* raid10_error() - RAID10 error handler.
|
|
* @mddev: affected md device.
|
|
* @rdev: member device to fail.
|
|
*
|
|
* The routine acknowledges &rdev failure and determines new @mddev state.
|
|
* If it failed, then:
|
|
* - &MD_BROKEN flag is set in &mddev->flags.
|
|
* Otherwise, it must be degraded:
|
|
* - recovery is interrupted.
|
|
* - &mddev->degraded is bumped.
|
|
|
|
* @rdev is marked as &Faulty excluding case when array is failed and
|
|
* &mddev->fail_last_dev is off.
|
|
*/
|
|
static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
|
|
{
|
|
struct r10conf *conf = mddev->private;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&conf->device_lock, flags);
|
|
|
|
if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
|
|
set_bit(MD_BROKEN, &mddev->flags);
|
|
|
|
if (!mddev->fail_last_dev) {
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
return;
|
|
}
|
|
}
|
|
if (test_and_clear_bit(In_sync, &rdev->flags))
|
|
mddev->degraded++;
|
|
|
|
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
|
|
set_bit(Blocked, &rdev->flags);
|
|
set_bit(Faulty, &rdev->flags);
|
|
set_mask_bits(&mddev->sb_flags, 0,
|
|
BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
|
|
"md/raid10:%s: Operation continuing on %d devices.\n",
|
|
mdname(mddev), rdev->bdev,
|
|
mdname(mddev), conf->geo.raid_disks - mddev->degraded);
|
|
}
|
|
|
|
static void print_conf(struct r10conf *conf)
|
|
{
|
|
int i;
|
|
struct md_rdev *rdev;
|
|
|
|
pr_debug("RAID10 conf printout:\n");
|
|
if (!conf) {
|
|
pr_debug("(!conf)\n");
|
|
return;
|
|
}
|
|
pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
|
|
conf->geo.raid_disks);
|
|
|
|
/* This is only called with ->reconfix_mutex held, so
|
|
* rcu protection of rdev is not needed */
|
|
for (i = 0; i < conf->geo.raid_disks; i++) {
|
|
rdev = conf->mirrors[i].rdev;
|
|
if (rdev)
|
|
pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
|
|
i, !test_bit(In_sync, &rdev->flags),
|
|
!test_bit(Faulty, &rdev->flags),
|
|
rdev->bdev);
|
|
}
|
|
}
|
|
|
|
static void close_sync(struct r10conf *conf)
|
|
{
|
|
wait_barrier(conf, false);
|
|
allow_barrier(conf);
|
|
|
|
mempool_exit(&conf->r10buf_pool);
|
|
}
|
|
|
|
static int raid10_spare_active(struct mddev *mddev)
|
|
{
|
|
int i;
|
|
struct r10conf *conf = mddev->private;
|
|
struct raid10_info *tmp;
|
|
int count = 0;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Find all non-in_sync disks within the RAID10 configuration
|
|
* and mark them in_sync
|
|
*/
|
|
for (i = 0; i < conf->geo.raid_disks; i++) {
|
|
tmp = conf->mirrors + i;
|
|
if (tmp->replacement
|
|
&& tmp->replacement->recovery_offset == MaxSector
|
|
&& !test_bit(Faulty, &tmp->replacement->flags)
|
|
&& !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
|
|
/* Replacement has just become active */
|
|
if (!tmp->rdev
|
|
|| !test_and_clear_bit(In_sync, &tmp->rdev->flags))
|
|
count++;
|
|
if (tmp->rdev) {
|
|
/* Replaced device not technically faulty,
|
|
* but we need to be sure it gets removed
|
|
* and never re-added.
|
|
*/
|
|
set_bit(Faulty, &tmp->rdev->flags);
|
|
sysfs_notify_dirent_safe(
|
|
tmp->rdev->sysfs_state);
|
|
}
|
|
sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
|
|
} else if (tmp->rdev
|
|
&& tmp->rdev->recovery_offset == MaxSector
|
|
&& !test_bit(Faulty, &tmp->rdev->flags)
|
|
&& !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
|
|
count++;
|
|
sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
|
|
}
|
|
}
|
|
spin_lock_irqsave(&conf->device_lock, flags);
|
|
mddev->degraded -= count;
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
|
|
print_conf(conf);
|
|
return count;
|
|
}
|
|
|
|
static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
|
|
{
|
|
struct r10conf *conf = mddev->private;
|
|
int err = -EEXIST;
|
|
int mirror;
|
|
int first = 0;
|
|
int last = conf->geo.raid_disks - 1;
|
|
|
|
if (mddev->recovery_cp < MaxSector)
|
|
/* only hot-add to in-sync arrays, as recovery is
|
|
* very different from resync
|
|
*/
|
|
return -EBUSY;
|
|
if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
|
|
return -EINVAL;
|
|
|
|
if (md_integrity_add_rdev(rdev, mddev))
|
|
return -ENXIO;
|
|
|
|
if (rdev->raid_disk >= 0)
|
|
first = last = rdev->raid_disk;
|
|
|
|
if (rdev->saved_raid_disk >= first &&
|
|
rdev->saved_raid_disk < conf->geo.raid_disks &&
|
|
conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
|
|
mirror = rdev->saved_raid_disk;
|
|
else
|
|
mirror = first;
|
|
for ( ; mirror <= last ; mirror++) {
|
|
struct raid10_info *p = &conf->mirrors[mirror];
|
|
if (p->recovery_disabled == mddev->recovery_disabled)
|
|
continue;
|
|
if (p->rdev) {
|
|
if (!test_bit(WantReplacement, &p->rdev->flags) ||
|
|
p->replacement != NULL)
|
|
continue;
|
|
clear_bit(In_sync, &rdev->flags);
|
|
set_bit(Replacement, &rdev->flags);
|
|
rdev->raid_disk = mirror;
|
|
err = 0;
|
|
if (mddev->gendisk)
|
|
disk_stack_limits(mddev->gendisk, rdev->bdev,
|
|
rdev->data_offset << 9);
|
|
conf->fullsync = 1;
|
|
rcu_assign_pointer(p->replacement, rdev);
|
|
break;
|
|
}
|
|
|
|
if (mddev->gendisk)
|
|
disk_stack_limits(mddev->gendisk, rdev->bdev,
|
|
rdev->data_offset << 9);
|
|
|
|
p->head_position = 0;
|
|
p->recovery_disabled = mddev->recovery_disabled - 1;
|
|
rdev->raid_disk = mirror;
|
|
err = 0;
|
|
if (rdev->saved_raid_disk != mirror)
|
|
conf->fullsync = 1;
|
|
rcu_assign_pointer(p->rdev, rdev);
|
|
break;
|
|
}
|
|
|
|
print_conf(conf);
|
|
return err;
|
|
}
|
|
|
|
static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
|
|
{
|
|
struct r10conf *conf = mddev->private;
|
|
int err = 0;
|
|
int number = rdev->raid_disk;
|
|
struct md_rdev **rdevp;
|
|
struct raid10_info *p = conf->mirrors + number;
|
|
|
|
print_conf(conf);
|
|
if (rdev == p->rdev)
|
|
rdevp = &p->rdev;
|
|
else if (rdev == p->replacement)
|
|
rdevp = &p->replacement;
|
|
else
|
|
return 0;
|
|
|
|
if (test_bit(In_sync, &rdev->flags) ||
|
|
atomic_read(&rdev->nr_pending)) {
|
|
err = -EBUSY;
|
|
goto abort;
|
|
}
|
|
/* Only remove non-faulty devices if recovery
|
|
* is not possible.
|
|
*/
|
|
if (!test_bit(Faulty, &rdev->flags) &&
|
|
mddev->recovery_disabled != p->recovery_disabled &&
|
|
(!p->replacement || p->replacement == rdev) &&
|
|
number < conf->geo.raid_disks &&
|
|
enough(conf, -1)) {
|
|
err = -EBUSY;
|
|
goto abort;
|
|
}
|
|
*rdevp = NULL;
|
|
if (!test_bit(RemoveSynchronized, &rdev->flags)) {
|
|
synchronize_rcu();
|
|
if (atomic_read(&rdev->nr_pending)) {
|
|
/* lost the race, try later */
|
|
err = -EBUSY;
|
|
*rdevp = rdev;
|
|
goto abort;
|
|
}
|
|
}
|
|
if (p->replacement) {
|
|
/* We must have just cleared 'rdev' */
|
|
p->rdev = p->replacement;
|
|
clear_bit(Replacement, &p->replacement->flags);
|
|
smp_mb(); /* Make sure other CPUs may see both as identical
|
|
* but will never see neither -- if they are careful.
|
|
*/
|
|
p->replacement = NULL;
|
|
}
|
|
|
|
clear_bit(WantReplacement, &rdev->flags);
|
|
err = md_integrity_register(mddev);
|
|
|
|
abort:
|
|
|
|
print_conf(conf);
|
|
return err;
|
|
}
|
|
|
|
static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
|
|
{
|
|
struct r10conf *conf = r10_bio->mddev->private;
|
|
|
|
if (!bio->bi_status)
|
|
set_bit(R10BIO_Uptodate, &r10_bio->state);
|
|
else
|
|
/* The write handler will notice the lack of
|
|
* R10BIO_Uptodate and record any errors etc
|
|
*/
|
|
atomic_add(r10_bio->sectors,
|
|
&conf->mirrors[d].rdev->corrected_errors);
|
|
|
|
/* for reconstruct, we always reschedule after a read.
|
|
* for resync, only after all reads
|
|
*/
|
|
rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
|
|
if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
|
|
atomic_dec_and_test(&r10_bio->remaining)) {
|
|
/* we have read all the blocks,
|
|
* do the comparison in process context in raid10d
|
|
*/
|
|
reschedule_retry(r10_bio);
|
|
}
|
|
}
|
|
|
|
static void end_sync_read(struct bio *bio)
|
|
{
|
|
struct r10bio *r10_bio = get_resync_r10bio(bio);
|
|
struct r10conf *conf = r10_bio->mddev->private;
|
|
int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
|
|
|
|
__end_sync_read(r10_bio, bio, d);
|
|
}
|
|
|
|
static void end_reshape_read(struct bio *bio)
|
|
{
|
|
/* reshape read bio isn't allocated from r10buf_pool */
|
|
struct r10bio *r10_bio = bio->bi_private;
|
|
|
|
__end_sync_read(r10_bio, bio, r10_bio->read_slot);
|
|
}
|
|
|
|
static void end_sync_request(struct r10bio *r10_bio)
|
|
{
|
|
struct mddev *mddev = r10_bio->mddev;
|
|
|
|
while (atomic_dec_and_test(&r10_bio->remaining)) {
|
|
if (r10_bio->master_bio == NULL) {
|
|
/* the primary of several recovery bios */
|
|
sector_t s = r10_bio->sectors;
|
|
if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
|
|
test_bit(R10BIO_WriteError, &r10_bio->state))
|
|
reschedule_retry(r10_bio);
|
|
else
|
|
put_buf(r10_bio);
|
|
md_done_sync(mddev, s, 1);
|
|
break;
|
|
} else {
|
|
struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
|
|
if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
|
|
test_bit(R10BIO_WriteError, &r10_bio->state))
|
|
reschedule_retry(r10_bio);
|
|
else
|
|
put_buf(r10_bio);
|
|
r10_bio = r10_bio2;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void end_sync_write(struct bio *bio)
|
|
{
|
|
struct r10bio *r10_bio = get_resync_r10bio(bio);
|
|
struct mddev *mddev = r10_bio->mddev;
|
|
struct r10conf *conf = mddev->private;
|
|
int d;
|
|
sector_t first_bad;
|
|
int bad_sectors;
|
|
int slot;
|
|
int repl;
|
|
struct md_rdev *rdev = NULL;
|
|
|
|
d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
|
|
if (repl)
|
|
rdev = conf->mirrors[d].replacement;
|
|
else
|
|
rdev = conf->mirrors[d].rdev;
|
|
|
|
if (bio->bi_status) {
|
|
if (repl)
|
|
md_error(mddev, rdev);
|
|
else {
|
|
set_bit(WriteErrorSeen, &rdev->flags);
|
|
if (!test_and_set_bit(WantReplacement, &rdev->flags))
|
|
set_bit(MD_RECOVERY_NEEDED,
|
|
&rdev->mddev->recovery);
|
|
set_bit(R10BIO_WriteError, &r10_bio->state);
|
|
}
|
|
} else if (is_badblock(rdev,
|
|
r10_bio->devs[slot].addr,
|
|
r10_bio->sectors,
|
|
&first_bad, &bad_sectors))
|
|
set_bit(R10BIO_MadeGood, &r10_bio->state);
|
|
|
|
rdev_dec_pending(rdev, mddev);
|
|
|
|
end_sync_request(r10_bio);
|
|
}
|
|
|
|
/*
|
|
* Note: sync and recover and handled very differently for raid10
|
|
* This code is for resync.
|
|
* For resync, we read through virtual addresses and read all blocks.
|
|
* If there is any error, we schedule a write. The lowest numbered
|
|
* drive is authoritative.
|
|
* However requests come for physical address, so we need to map.
|
|
* For every physical address there are raid_disks/copies virtual addresses,
|
|
* which is always are least one, but is not necessarly an integer.
|
|
* This means that a physical address can span multiple chunks, so we may
|
|
* have to submit multiple io requests for a single sync request.
|
|
*/
|
|
/*
|
|
* We check if all blocks are in-sync and only write to blocks that
|
|
* aren't in sync
|
|
*/
|
|
static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
|
|
{
|
|
struct r10conf *conf = mddev->private;
|
|
int i, first;
|
|
struct bio *tbio, *fbio;
|
|
int vcnt;
|
|
struct page **tpages, **fpages;
|
|
|
|
atomic_set(&r10_bio->remaining, 1);
|
|
|
|
/* find the first device with a block */
|
|
for (i=0; i<conf->copies; i++)
|
|
if (!r10_bio->devs[i].bio->bi_status)
|
|
break;
|
|
|
|
if (i == conf->copies)
|
|
goto done;
|
|
|
|
first = i;
|
|
fbio = r10_bio->devs[i].bio;
|
|
fbio->bi_iter.bi_size = r10_bio->sectors << 9;
|
|
fbio->bi_iter.bi_idx = 0;
|
|
fpages = get_resync_pages(fbio)->pages;
|
|
|
|
vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
|
|
/* now find blocks with errors */
|
|
for (i=0 ; i < conf->copies ; i++) {
|
|
int j, d;
|
|
struct md_rdev *rdev;
|
|
struct resync_pages *rp;
|
|
|
|
tbio = r10_bio->devs[i].bio;
|
|
|
|
if (tbio->bi_end_io != end_sync_read)
|
|
continue;
|
|
if (i == first)
|
|
continue;
|
|
|
|
tpages = get_resync_pages(tbio)->pages;
|
|
d = r10_bio->devs[i].devnum;
|
|
rdev = conf->mirrors[d].rdev;
|
|
if (!r10_bio->devs[i].bio->bi_status) {
|
|
/* We know that the bi_io_vec layout is the same for
|
|
* both 'first' and 'i', so we just compare them.
|
|
* All vec entries are PAGE_SIZE;
|
|
*/
|
|
int sectors = r10_bio->sectors;
|
|
for (j = 0; j < vcnt; j++) {
|
|
int len = PAGE_SIZE;
|
|
if (sectors < (len / 512))
|
|
len = sectors * 512;
|
|
if (memcmp(page_address(fpages[j]),
|
|
page_address(tpages[j]),
|
|
len))
|
|
break;
|
|
sectors -= len/512;
|
|
}
|
|
if (j == vcnt)
|
|
continue;
|
|
atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
|
|
if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
|
|
/* Don't fix anything. */
|
|
continue;
|
|
} else if (test_bit(FailFast, &rdev->flags)) {
|
|
/* Just give up on this device */
|
|
md_error(rdev->mddev, rdev);
|
|
continue;
|
|
}
|
|
/* Ok, we need to write this bio, either to correct an
|
|
* inconsistency or to correct an unreadable block.
|
|
* First we need to fixup bv_offset, bv_len and
|
|
* bi_vecs, as the read request might have corrupted these
|
|
*/
|
|
rp = get_resync_pages(tbio);
|
|
bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
|
|
|
|
md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
|
|
|
|
rp->raid_bio = r10_bio;
|
|
tbio->bi_private = rp;
|
|
tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
|
|
tbio->bi_end_io = end_sync_write;
|
|
|
|
bio_copy_data(tbio, fbio);
|
|
|
|
atomic_inc(&conf->mirrors[d].rdev->nr_pending);
|
|
atomic_inc(&r10_bio->remaining);
|
|
md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
|
|
|
|
if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
|
|
tbio->bi_opf |= MD_FAILFAST;
|
|
tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
|
|
submit_bio_noacct(tbio);
|
|
}
|
|
|
|
/* Now write out to any replacement devices
|
|
* that are active
|
|
*/
|
|
for (i = 0; i < conf->copies; i++) {
|
|
int d;
|
|
|
|
tbio = r10_bio->devs[i].repl_bio;
|
|
if (!tbio || !tbio->bi_end_io)
|
|
continue;
|
|
if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
|
|
&& r10_bio->devs[i].bio != fbio)
|
|
bio_copy_data(tbio, fbio);
|
|
d = r10_bio->devs[i].devnum;
|
|
atomic_inc(&r10_bio->remaining);
|
|
md_sync_acct(conf->mirrors[d].replacement->bdev,
|
|
bio_sectors(tbio));
|
|
submit_bio_noacct(tbio);
|
|
}
|
|
|
|
done:
|
|
if (atomic_dec_and_test(&r10_bio->remaining)) {
|
|
md_done_sync(mddev, r10_bio->sectors, 1);
|
|
put_buf(r10_bio);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now for the recovery code.
|
|
* Recovery happens across physical sectors.
|
|
* We recover all non-is_sync drives by finding the virtual address of
|
|
* each, and then choose a working drive that also has that virt address.
|
|
* There is a separate r10_bio for each non-in_sync drive.
|
|
* Only the first two slots are in use. The first for reading,
|
|
* The second for writing.
|
|
*
|
|
*/
|
|
static void fix_recovery_read_error(struct r10bio *r10_bio)
|
|
{
|
|
/* We got a read error during recovery.
|
|
* We repeat the read in smaller page-sized sections.
|
|
* If a read succeeds, write it to the new device or record
|
|
* a bad block if we cannot.
|
|
* If a read fails, record a bad block on both old and
|
|
* new devices.
|
|
*/
|
|
struct mddev *mddev = r10_bio->mddev;
|
|
struct r10conf *conf = mddev->private;
|
|
struct bio *bio = r10_bio->devs[0].bio;
|
|
sector_t sect = 0;
|
|
int sectors = r10_bio->sectors;
|
|
int idx = 0;
|
|
int dr = r10_bio->devs[0].devnum;
|
|
int dw = r10_bio->devs[1].devnum;
|
|
struct page **pages = get_resync_pages(bio)->pages;
|
|
|
|
while (sectors) {
|
|
int s = sectors;
|
|
struct md_rdev *rdev;
|
|
sector_t addr;
|
|
int ok;
|
|
|
|
if (s > (PAGE_SIZE>>9))
|
|
s = PAGE_SIZE >> 9;
|
|
|
|
rdev = conf->mirrors[dr].rdev;
|
|
addr = r10_bio->devs[0].addr + sect,
|
|
ok = sync_page_io(rdev,
|
|
addr,
|
|
s << 9,
|
|
pages[idx],
|
|
REQ_OP_READ, 0, false);
|
|
if (ok) {
|
|
rdev = conf->mirrors[dw].rdev;
|
|
addr = r10_bio->devs[1].addr + sect;
|
|
ok = sync_page_io(rdev,
|
|
addr,
|
|
s << 9,
|
|
pages[idx],
|
|
REQ_OP_WRITE, 0, false);
|
|
if (!ok) {
|
|
set_bit(WriteErrorSeen, &rdev->flags);
|
|
if (!test_and_set_bit(WantReplacement,
|
|
&rdev->flags))
|
|
set_bit(MD_RECOVERY_NEEDED,
|
|
&rdev->mddev->recovery);
|
|
}
|
|
}
|
|
if (!ok) {
|
|
/* We don't worry if we cannot set a bad block -
|
|
* it really is bad so there is no loss in not
|
|
* recording it yet
|
|
*/
|
|
rdev_set_badblocks(rdev, addr, s, 0);
|
|
|
|
if (rdev != conf->mirrors[dw].rdev) {
|
|
/* need bad block on destination too */
|
|
struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
|
|
addr = r10_bio->devs[1].addr + sect;
|
|
ok = rdev_set_badblocks(rdev2, addr, s, 0);
|
|
if (!ok) {
|
|
/* just abort the recovery */
|
|
pr_notice("md/raid10:%s: recovery aborted due to read error\n",
|
|
mdname(mddev));
|
|
|
|
conf->mirrors[dw].recovery_disabled
|
|
= mddev->recovery_disabled;
|
|
set_bit(MD_RECOVERY_INTR,
|
|
&mddev->recovery);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
sectors -= s;
|
|
sect += s;
|
|
idx++;
|
|
}
|
|
}
|
|
|
|
static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
|
|
{
|
|
struct r10conf *conf = mddev->private;
|
|
int d;
|
|
struct bio *wbio, *wbio2;
|
|
|
|
if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
|
|
fix_recovery_read_error(r10_bio);
|
|
end_sync_request(r10_bio);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* share the pages with the first bio
|
|
* and submit the write request
|
|
*/
|
|
d = r10_bio->devs[1].devnum;
|
|
wbio = r10_bio->devs[1].bio;
|
|
wbio2 = r10_bio->devs[1].repl_bio;
|
|
/* Need to test wbio2->bi_end_io before we call
|
|
* submit_bio_noacct as if the former is NULL,
|
|
* the latter is free to free wbio2.
|
|
*/
|
|
if (wbio2 && !wbio2->bi_end_io)
|
|
wbio2 = NULL;
|
|
if (wbio->bi_end_io) {
|
|
atomic_inc(&conf->mirrors[d].rdev->nr_pending);
|
|
md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
|
|
submit_bio_noacct(wbio);
|
|
}
|
|
if (wbio2) {
|
|
atomic_inc(&conf->mirrors[d].replacement->nr_pending);
|
|
md_sync_acct(conf->mirrors[d].replacement->bdev,
|
|
bio_sectors(wbio2));
|
|
submit_bio_noacct(wbio2);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Used by fix_read_error() to decay the per rdev read_errors.
|
|
* We halve the read error count for every hour that has elapsed
|
|
* since the last recorded read error.
|
|
*
|
|
*/
|
|
static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
|
|
{
|
|
long cur_time_mon;
|
|
unsigned long hours_since_last;
|
|
unsigned int read_errors = atomic_read(&rdev->read_errors);
|
|
|
|
cur_time_mon = ktime_get_seconds();
|
|
|
|
if (rdev->last_read_error == 0) {
|
|
/* first time we've seen a read error */
|
|
rdev->last_read_error = cur_time_mon;
|
|
return;
|
|
}
|
|
|
|
hours_since_last = (long)(cur_time_mon -
|
|
rdev->last_read_error) / 3600;
|
|
|
|
rdev->last_read_error = cur_time_mon;
|
|
|
|
/*
|
|
* if hours_since_last is > the number of bits in read_errors
|
|
* just set read errors to 0. We do this to avoid
|
|
* overflowing the shift of read_errors by hours_since_last.
|
|
*/
|
|
if (hours_since_last >= 8 * sizeof(read_errors))
|
|
atomic_set(&rdev->read_errors, 0);
|
|
else
|
|
atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
|
|
}
|
|
|
|
static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
|
|
int sectors, struct page *page, int rw)
|
|
{
|
|
sector_t first_bad;
|
|
int bad_sectors;
|
|
|
|
if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
|
|
&& (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
|
|
return -1;
|
|
if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
|
|
/* success */
|
|
return 1;
|
|
if (rw == WRITE) {
|
|
set_bit(WriteErrorSeen, &rdev->flags);
|
|
if (!test_and_set_bit(WantReplacement, &rdev->flags))
|
|
set_bit(MD_RECOVERY_NEEDED,
|
|
&rdev->mddev->recovery);
|
|
}
|
|
/* need to record an error - either for the block or the device */
|
|
if (!rdev_set_badblocks(rdev, sector, sectors, 0))
|
|
md_error(rdev->mddev, rdev);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is a kernel thread which:
|
|
*
|
|
* 1. Retries failed read operations on working mirrors.
|
|
* 2. Updates the raid superblock when problems encounter.
|
|
* 3. Performs writes following reads for array synchronising.
|
|
*/
|
|
|
|
static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
|
|
{
|
|
int sect = 0; /* Offset from r10_bio->sector */
|
|
int sectors = r10_bio->sectors;
|
|
struct md_rdev *rdev;
|
|
int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
|
|
int d = r10_bio->devs[r10_bio->read_slot].devnum;
|
|
|
|
/* still own a reference to this rdev, so it cannot
|
|
* have been cleared recently.
|
|
*/
|
|
rdev = conf->mirrors[d].rdev;
|
|
|
|
if (test_bit(Faulty, &rdev->flags))
|
|
/* drive has already been failed, just ignore any
|
|
more fix_read_error() attempts */
|
|
return;
|
|
|
|
check_decay_read_errors(mddev, rdev);
|
|
atomic_inc(&rdev->read_errors);
|
|
if (atomic_read(&rdev->read_errors) > max_read_errors) {
|
|
pr_notice("md/raid10:%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n",
|
|
mdname(mddev), rdev->bdev,
|
|
atomic_read(&rdev->read_errors), max_read_errors);
|
|
pr_notice("md/raid10:%s: %pg: Failing raid device\n",
|
|
mdname(mddev), rdev->bdev);
|
|
md_error(mddev, rdev);
|
|
r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
|
|
return;
|
|
}
|
|
|
|
while(sectors) {
|
|
int s = sectors;
|
|
int sl = r10_bio->read_slot;
|
|
int success = 0;
|
|
int start;
|
|
|
|
if (s > (PAGE_SIZE>>9))
|
|
s = PAGE_SIZE >> 9;
|
|
|
|
rcu_read_lock();
|
|
do {
|
|
sector_t first_bad;
|
|
int bad_sectors;
|
|
|
|
d = r10_bio->devs[sl].devnum;
|
|
rdev = rcu_dereference(conf->mirrors[d].rdev);
|
|
if (rdev &&
|
|
test_bit(In_sync, &rdev->flags) &&
|
|
!test_bit(Faulty, &rdev->flags) &&
|
|
is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
|
|
&first_bad, &bad_sectors) == 0) {
|
|
atomic_inc(&rdev->nr_pending);
|
|
rcu_read_unlock();
|
|
success = sync_page_io(rdev,
|
|
r10_bio->devs[sl].addr +
|
|
sect,
|
|
s<<9,
|
|
conf->tmppage,
|
|
REQ_OP_READ, 0, false);
|
|
rdev_dec_pending(rdev, mddev);
|
|
rcu_read_lock();
|
|
if (success)
|
|
break;
|
|
}
|
|
sl++;
|
|
if (sl == conf->copies)
|
|
sl = 0;
|
|
} while (!success && sl != r10_bio->read_slot);
|
|
rcu_read_unlock();
|
|
|
|
if (!success) {
|
|
/* Cannot read from anywhere, just mark the block
|
|
* as bad on the first device to discourage future
|
|
* reads.
|
|
*/
|
|
int dn = r10_bio->devs[r10_bio->read_slot].devnum;
|
|
rdev = conf->mirrors[dn].rdev;
|
|
|
|
if (!rdev_set_badblocks(
|
|
rdev,
|
|
r10_bio->devs[r10_bio->read_slot].addr
|
|
+ sect,
|
|
s, 0)) {
|
|
md_error(mddev, rdev);
|
|
r10_bio->devs[r10_bio->read_slot].bio
|
|
= IO_BLOCKED;
|
|
}
|
|
break;
|
|
}
|
|
|
|
start = sl;
|
|
/* write it back and re-read */
|
|
rcu_read_lock();
|
|
while (sl != r10_bio->read_slot) {
|
|
if (sl==0)
|
|
sl = conf->copies;
|
|
sl--;
|
|
d = r10_bio->devs[sl].devnum;
|
|
rdev = rcu_dereference(conf->mirrors[d].rdev);
|
|
if (!rdev ||
|
|
test_bit(Faulty, &rdev->flags) ||
|
|
!test_bit(In_sync, &rdev->flags))
|
|
continue;
|
|
|
|
atomic_inc(&rdev->nr_pending);
|
|
rcu_read_unlock();
|
|
if (r10_sync_page_io(rdev,
|
|
r10_bio->devs[sl].addr +
|
|
sect,
|
|
s, conf->tmppage, WRITE)
|
|
== 0) {
|
|
/* Well, this device is dead */
|
|
pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
|
|
mdname(mddev), s,
|
|
(unsigned long long)(
|
|
sect +
|
|
choose_data_offset(r10_bio,
|
|
rdev)),
|
|
rdev->bdev);
|
|
pr_notice("md/raid10:%s: %pg: failing drive\n",
|
|
mdname(mddev),
|
|
rdev->bdev);
|
|
}
|
|
rdev_dec_pending(rdev, mddev);
|
|
rcu_read_lock();
|
|
}
|
|
sl = start;
|
|
while (sl != r10_bio->read_slot) {
|
|
if (sl==0)
|
|
sl = conf->copies;
|
|
sl--;
|
|
d = r10_bio->devs[sl].devnum;
|
|
rdev = rcu_dereference(conf->mirrors[d].rdev);
|
|
if (!rdev ||
|
|
test_bit(Faulty, &rdev->flags) ||
|
|
!test_bit(In_sync, &rdev->flags))
|
|
continue;
|
|
|
|
atomic_inc(&rdev->nr_pending);
|
|
rcu_read_unlock();
|
|
switch (r10_sync_page_io(rdev,
|
|
r10_bio->devs[sl].addr +
|
|
sect,
|
|
s, conf->tmppage,
|
|
READ)) {
|
|
case 0:
|
|
/* Well, this device is dead */
|
|
pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
|
|
mdname(mddev), s,
|
|
(unsigned long long)(
|
|
sect +
|
|
choose_data_offset(r10_bio, rdev)),
|
|
rdev->bdev);
|
|
pr_notice("md/raid10:%s: %pg: failing drive\n",
|
|
mdname(mddev),
|
|
rdev->bdev);
|
|
break;
|
|
case 1:
|
|
pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
|
|
mdname(mddev), s,
|
|
(unsigned long long)(
|
|
sect +
|
|
choose_data_offset(r10_bio, rdev)),
|
|
rdev->bdev);
|
|
atomic_add(s, &rdev->corrected_errors);
|
|
}
|
|
|
|
rdev_dec_pending(rdev, mddev);
|
|
rcu_read_lock();
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
sectors -= s;
|
|
sect += s;
|
|
}
|
|
}
|
|
|
|
static int narrow_write_error(struct r10bio *r10_bio, int i)
|
|
{
|
|
struct bio *bio = r10_bio->master_bio;
|
|
struct mddev *mddev = r10_bio->mddev;
|
|
struct r10conf *conf = mddev->private;
|
|
struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
|
|
/* bio has the data to be written to slot 'i' where
|
|
* we just recently had a write error.
|
|
* We repeatedly clone the bio and trim down to one block,
|
|
* then try the write. Where the write fails we record
|
|
* a bad block.
|
|
* It is conceivable that the bio doesn't exactly align with
|
|
* blocks. We must handle this.
|
|
*
|
|
* We currently own a reference to the rdev.
|
|
*/
|
|
|
|
int block_sectors;
|
|
sector_t sector;
|
|
int sectors;
|
|
int sect_to_write = r10_bio->sectors;
|
|
int ok = 1;
|
|
|
|
if (rdev->badblocks.shift < 0)
|
|
return 0;
|
|
|
|
block_sectors = roundup(1 << rdev->badblocks.shift,
|
|
bdev_logical_block_size(rdev->bdev) >> 9);
|
|
sector = r10_bio->sector;
|
|
sectors = ((r10_bio->sector + block_sectors)
|
|
& ~(sector_t)(block_sectors - 1))
|
|
- sector;
|
|
|
|
while (sect_to_write) {
|
|
struct bio *wbio;
|
|
sector_t wsector;
|
|
if (sectors > sect_to_write)
|
|
sectors = sect_to_write;
|
|
/* Write at 'sector' for 'sectors' */
|
|
wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
|
|
&mddev->bio_set);
|
|
bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
|
|
wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
|
|
wbio->bi_iter.bi_sector = wsector +
|
|
choose_data_offset(r10_bio, rdev);
|
|
bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
|
|
|
|
if (submit_bio_wait(wbio) < 0)
|
|
/* Failure! */
|
|
ok = rdev_set_badblocks(rdev, wsector,
|
|
sectors, 0)
|
|
&& ok;
|
|
|
|
bio_put(wbio);
|
|
sect_to_write -= sectors;
|
|
sector += sectors;
|
|
sectors = block_sectors;
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
|
|
{
|
|
int slot = r10_bio->read_slot;
|
|
struct bio *bio;
|
|
struct r10conf *conf = mddev->private;
|
|
struct md_rdev *rdev = r10_bio->devs[slot].rdev;
|
|
|
|
/* we got a read error. Maybe the drive is bad. Maybe just
|
|
* the block and we can fix it.
|
|
* We freeze all other IO, and try reading the block from
|
|
* other devices. When we find one, we re-write
|
|
* and check it that fixes the read error.
|
|
* This is all done synchronously while the array is
|
|
* frozen.
|
|
*/
|
|
bio = r10_bio->devs[slot].bio;
|
|
bio_put(bio);
|
|
r10_bio->devs[slot].bio = NULL;
|
|
|
|
if (mddev->ro)
|
|
r10_bio->devs[slot].bio = IO_BLOCKED;
|
|
else if (!test_bit(FailFast, &rdev->flags)) {
|
|
freeze_array(conf, 1);
|
|
fix_read_error(conf, mddev, r10_bio);
|
|
unfreeze_array(conf);
|
|
} else
|
|
md_error(mddev, rdev);
|
|
|
|
rdev_dec_pending(rdev, mddev);
|
|
allow_barrier(conf);
|
|
r10_bio->state = 0;
|
|
raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
|
|
}
|
|
|
|
static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
|
|
{
|
|
/* Some sort of write request has finished and it
|
|
* succeeded in writing where we thought there was a
|
|
* bad block. So forget the bad block.
|
|
* Or possibly if failed and we need to record
|
|
* a bad block.
|
|
*/
|
|
int m;
|
|
struct md_rdev *rdev;
|
|
|
|
if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
|
|
test_bit(R10BIO_IsRecover, &r10_bio->state)) {
|
|
for (m = 0; m < conf->copies; m++) {
|
|
int dev = r10_bio->devs[m].devnum;
|
|
rdev = conf->mirrors[dev].rdev;
|
|
if (r10_bio->devs[m].bio == NULL ||
|
|
r10_bio->devs[m].bio->bi_end_io == NULL)
|
|
continue;
|
|
if (!r10_bio->devs[m].bio->bi_status) {
|
|
rdev_clear_badblocks(
|
|
rdev,
|
|
r10_bio->devs[m].addr,
|
|
r10_bio->sectors, 0);
|
|
} else {
|
|
if (!rdev_set_badblocks(
|
|
rdev,
|
|
r10_bio->devs[m].addr,
|
|
r10_bio->sectors, 0))
|
|
md_error(conf->mddev, rdev);
|
|
}
|
|
rdev = conf->mirrors[dev].replacement;
|
|
if (r10_bio->devs[m].repl_bio == NULL ||
|
|
r10_bio->devs[m].repl_bio->bi_end_io == NULL)
|
|
continue;
|
|
|
|
if (!r10_bio->devs[m].repl_bio->bi_status) {
|
|
rdev_clear_badblocks(
|
|
rdev,
|
|
r10_bio->devs[m].addr,
|
|
r10_bio->sectors, 0);
|
|
} else {
|
|
if (!rdev_set_badblocks(
|
|
rdev,
|
|
r10_bio->devs[m].addr,
|
|
r10_bio->sectors, 0))
|
|
md_error(conf->mddev, rdev);
|
|
}
|
|
}
|
|
put_buf(r10_bio);
|
|
} else {
|
|
bool fail = false;
|
|
for (m = 0; m < conf->copies; m++) {
|
|
int dev = r10_bio->devs[m].devnum;
|
|
struct bio *bio = r10_bio->devs[m].bio;
|
|
rdev = conf->mirrors[dev].rdev;
|
|
if (bio == IO_MADE_GOOD) {
|
|
rdev_clear_badblocks(
|
|
rdev,
|
|
r10_bio->devs[m].addr,
|
|
r10_bio->sectors, 0);
|
|
rdev_dec_pending(rdev, conf->mddev);
|
|
} else if (bio != NULL && bio->bi_status) {
|
|
fail = true;
|
|
if (!narrow_write_error(r10_bio, m)) {
|
|
md_error(conf->mddev, rdev);
|
|
set_bit(R10BIO_Degraded,
|
|
&r10_bio->state);
|
|
}
|
|
rdev_dec_pending(rdev, conf->mddev);
|
|
}
|
|
bio = r10_bio->devs[m].repl_bio;
|
|
rdev = conf->mirrors[dev].replacement;
|
|
if (rdev && bio == IO_MADE_GOOD) {
|
|
rdev_clear_badblocks(
|
|
rdev,
|
|
r10_bio->devs[m].addr,
|
|
r10_bio->sectors, 0);
|
|
rdev_dec_pending(rdev, conf->mddev);
|
|
}
|
|
}
|
|
if (fail) {
|
|
spin_lock_irq(&conf->device_lock);
|
|
list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
|
|
conf->nr_queued++;
|
|
spin_unlock_irq(&conf->device_lock);
|
|
/*
|
|
* In case freeze_array() is waiting for condition
|
|
* nr_pending == nr_queued + extra to be true.
|
|
*/
|
|
wake_up(&conf->wait_barrier);
|
|
md_wakeup_thread(conf->mddev->thread);
|
|
} else {
|
|
if (test_bit(R10BIO_WriteError,
|
|
&r10_bio->state))
|
|
close_write(r10_bio);
|
|
raid_end_bio_io(r10_bio);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void raid10d(struct md_thread *thread)
|
|
{
|
|
struct mddev *mddev = thread->mddev;
|
|
struct r10bio *r10_bio;
|
|
unsigned long flags;
|
|
struct r10conf *conf = mddev->private;
|
|
struct list_head *head = &conf->retry_list;
|
|
struct blk_plug plug;
|
|
|
|
md_check_recovery(mddev);
|
|
|
|
if (!list_empty_careful(&conf->bio_end_io_list) &&
|
|
!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
|
|
LIST_HEAD(tmp);
|
|
spin_lock_irqsave(&conf->device_lock, flags);
|
|
if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
|
|
while (!list_empty(&conf->bio_end_io_list)) {
|
|
list_move(conf->bio_end_io_list.prev, &tmp);
|
|
conf->nr_queued--;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
while (!list_empty(&tmp)) {
|
|
r10_bio = list_first_entry(&tmp, struct r10bio,
|
|
retry_list);
|
|
list_del(&r10_bio->retry_list);
|
|
if (mddev->degraded)
|
|
set_bit(R10BIO_Degraded, &r10_bio->state);
|
|
|
|
if (test_bit(R10BIO_WriteError,
|
|
&r10_bio->state))
|
|
close_write(r10_bio);
|
|
raid_end_bio_io(r10_bio);
|
|
}
|
|
}
|
|
|
|
blk_start_plug(&plug);
|
|
for (;;) {
|
|
|
|
flush_pending_writes(conf);
|
|
|
|
spin_lock_irqsave(&conf->device_lock, flags);
|
|
if (list_empty(head)) {
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
break;
|
|
}
|
|
r10_bio = list_entry(head->prev, struct r10bio, retry_list);
|
|
list_del(head->prev);
|
|
conf->nr_queued--;
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
|
|
mddev = r10_bio->mddev;
|
|
conf = mddev->private;
|
|
if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
|
|
test_bit(R10BIO_WriteError, &r10_bio->state))
|
|
handle_write_completed(conf, r10_bio);
|
|
else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
|
|
reshape_request_write(mddev, r10_bio);
|
|
else if (test_bit(R10BIO_IsSync, &r10_bio->state))
|
|
sync_request_write(mddev, r10_bio);
|
|
else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
|
|
recovery_request_write(mddev, r10_bio);
|
|
else if (test_bit(R10BIO_ReadError, &r10_bio->state))
|
|
handle_read_error(mddev, r10_bio);
|
|
else
|
|
WARN_ON_ONCE(1);
|
|
|
|
cond_resched();
|
|
if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
|
|
md_check_recovery(mddev);
|
|
}
|
|
blk_finish_plug(&plug);
|
|
}
|
|
|
|
static int init_resync(struct r10conf *conf)
|
|
{
|
|
int ret, buffs, i;
|
|
|
|
buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
|
|
BUG_ON(mempool_initialized(&conf->r10buf_pool));
|
|
conf->have_replacement = 0;
|
|
for (i = 0; i < conf->geo.raid_disks; i++)
|
|
if (conf->mirrors[i].replacement)
|
|
conf->have_replacement = 1;
|
|
ret = mempool_init(&conf->r10buf_pool, buffs,
|
|
r10buf_pool_alloc, r10buf_pool_free, conf);
|
|
if (ret)
|
|
return ret;
|
|
conf->next_resync = 0;
|
|
return 0;
|
|
}
|
|
|
|
static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
|
|
{
|
|
struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
|
|
struct rsync_pages *rp;
|
|
struct bio *bio;
|
|
int nalloc;
|
|
int i;
|
|
|
|
if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
|
|
test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
|
|
nalloc = conf->copies; /* resync */
|
|
else
|
|
nalloc = 2; /* recovery */
|
|
|
|
for (i = 0; i < nalloc; i++) {
|
|
bio = r10bio->devs[i].bio;
|
|
rp = bio->bi_private;
|
|
bio_reset(bio, NULL, 0);
|
|
bio->bi_private = rp;
|
|
bio = r10bio->devs[i].repl_bio;
|
|
if (bio) {
|
|
rp = bio->bi_private;
|
|
bio_reset(bio, NULL, 0);
|
|
bio->bi_private = rp;
|
|
}
|
|
}
|
|
return r10bio;
|
|
}
|
|
|
|
/*
|
|
* Set cluster_sync_high since we need other nodes to add the
|
|
* range [cluster_sync_low, cluster_sync_high] to suspend list.
|
|
*/
|
|
static void raid10_set_cluster_sync_high(struct r10conf *conf)
|
|
{
|
|
sector_t window_size;
|
|
int extra_chunk, chunks;
|
|
|
|
/*
|
|
* First, here we define "stripe" as a unit which across
|
|
* all member devices one time, so we get chunks by use
|
|
* raid_disks / near_copies. Otherwise, if near_copies is
|
|
* close to raid_disks, then resync window could increases
|
|
* linearly with the increase of raid_disks, which means
|
|
* we will suspend a really large IO window while it is not
|
|
* necessary. If raid_disks is not divisible by near_copies,
|
|
* an extra chunk is needed to ensure the whole "stripe" is
|
|
* covered.
|
|
*/
|
|
|
|
chunks = conf->geo.raid_disks / conf->geo.near_copies;
|
|
if (conf->geo.raid_disks % conf->geo.near_copies == 0)
|
|
extra_chunk = 0;
|
|
else
|
|
extra_chunk = 1;
|
|
window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
|
|
|
|
/*
|
|
* At least use a 32M window to align with raid1's resync window
|
|
*/
|
|
window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
|
|
CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
|
|
|
|
conf->cluster_sync_high = conf->cluster_sync_low + window_size;
|
|
}
|
|
|
|
/*
|
|
* perform a "sync" on one "block"
|
|
*
|
|
* We need to make sure that no normal I/O request - particularly write
|
|
* requests - conflict with active sync requests.
|
|
*
|
|
* This is achieved by tracking pending requests and a 'barrier' concept
|
|
* that can be installed to exclude normal IO requests.
|
|
*
|
|
* Resync and recovery are handled very differently.
|
|
* We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
|
|
*
|
|
* For resync, we iterate over virtual addresses, read all copies,
|
|
* and update if there are differences. If only one copy is live,
|
|
* skip it.
|
|
* For recovery, we iterate over physical addresses, read a good
|
|
* value for each non-in_sync drive, and over-write.
|
|
*
|
|
* So, for recovery we may have several outstanding complex requests for a
|
|
* given address, one for each out-of-sync device. We model this by allocating
|
|
* a number of r10_bio structures, one for each out-of-sync device.
|
|
* As we setup these structures, we collect all bio's together into a list
|
|
* which we then process collectively to add pages, and then process again
|
|
* to pass to submit_bio_noacct.
|
|
*
|
|
* The r10_bio structures are linked using a borrowed master_bio pointer.
|
|
* This link is counted in ->remaining. When the r10_bio that points to NULL
|
|
* has its remaining count decremented to 0, the whole complex operation
|
|
* is complete.
|
|
*
|
|
*/
|
|
|
|
static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
|
|
int *skipped)
|
|
{
|
|
struct r10conf *conf = mddev->private;
|
|
struct r10bio *r10_bio;
|
|
struct bio *biolist = NULL, *bio;
|
|
sector_t max_sector, nr_sectors;
|
|
int i;
|
|
int max_sync;
|
|
sector_t sync_blocks;
|
|
sector_t sectors_skipped = 0;
|
|
int chunks_skipped = 0;
|
|
sector_t chunk_mask = conf->geo.chunk_mask;
|
|
int page_idx = 0;
|
|
|
|
if (!mempool_initialized(&conf->r10buf_pool))
|
|
if (init_resync(conf))
|
|
return 0;
|
|
|
|
/*
|
|
* Allow skipping a full rebuild for incremental assembly
|
|
* of a clean array, like RAID1 does.
|
|
*/
|
|
if (mddev->bitmap == NULL &&
|
|
mddev->recovery_cp == MaxSector &&
|
|
mddev->reshape_position == MaxSector &&
|
|
!test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
|
|
!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
|
|
!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
|
|
conf->fullsync == 0) {
|
|
*skipped = 1;
|
|
return mddev->dev_sectors - sector_nr;
|
|
}
|
|
|
|
skipped:
|
|
max_sector = mddev->dev_sectors;
|
|
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
|
|
test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
|
|
max_sector = mddev->resync_max_sectors;
|
|
if (sector_nr >= max_sector) {
|
|
conf->cluster_sync_low = 0;
|
|
conf->cluster_sync_high = 0;
|
|
|
|
/* If we aborted, we need to abort the
|
|
* sync on the 'current' bitmap chucks (there can
|
|
* be several when recovering multiple devices).
|
|
* as we may have started syncing it but not finished.
|
|
* We can find the current address in
|
|
* mddev->curr_resync, but for recovery,
|
|
* we need to convert that to several
|
|
* virtual addresses.
|
|
*/
|
|
if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
|
|
end_reshape(conf);
|
|
close_sync(conf);
|
|
return 0;
|
|
}
|
|
|
|
if (mddev->curr_resync < max_sector) { /* aborted */
|
|
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
|
|
md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
|
|
&sync_blocks, 1);
|
|
else for (i = 0; i < conf->geo.raid_disks; i++) {
|
|
sector_t sect =
|
|
raid10_find_virt(conf, mddev->curr_resync, i);
|
|
md_bitmap_end_sync(mddev->bitmap, sect,
|
|
&sync_blocks, 1);
|
|
}
|
|
} else {
|
|
/* completed sync */
|
|
if ((!mddev->bitmap || conf->fullsync)
|
|
&& conf->have_replacement
|
|
&& test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
|
|
/* Completed a full sync so the replacements
|
|
* are now fully recovered.
|
|
*/
|
|
rcu_read_lock();
|
|
for (i = 0; i < conf->geo.raid_disks; i++) {
|
|
struct md_rdev *rdev =
|
|
rcu_dereference(conf->mirrors[i].replacement);
|
|
if (rdev)
|
|
rdev->recovery_offset = MaxSector;
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
conf->fullsync = 0;
|
|
}
|
|
md_bitmap_close_sync(mddev->bitmap);
|
|
close_sync(conf);
|
|
*skipped = 1;
|
|
return sectors_skipped;
|
|
}
|
|
|
|
if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
|
|
return reshape_request(mddev, sector_nr, skipped);
|
|
|
|
if (chunks_skipped >= conf->geo.raid_disks) {
|
|
/* if there has been nothing to do on any drive,
|
|
* then there is nothing to do at all..
|
|
*/
|
|
*skipped = 1;
|
|
return (max_sector - sector_nr) + sectors_skipped;
|
|
}
|
|
|
|
if (max_sector > mddev->resync_max)
|
|
max_sector = mddev->resync_max; /* Don't do IO beyond here */
|
|
|
|
/* make sure whole request will fit in a chunk - if chunks
|
|
* are meaningful
|
|
*/
|
|
if (conf->geo.near_copies < conf->geo.raid_disks &&
|
|
max_sector > (sector_nr | chunk_mask))
|
|
max_sector = (sector_nr | chunk_mask) + 1;
|
|
|
|
/*
|
|
* If there is non-resync activity waiting for a turn, then let it
|
|
* though before starting on this new sync request.
|
|
*/
|
|
if (conf->nr_waiting)
|
|
schedule_timeout_uninterruptible(1);
|
|
|
|
/* Again, very different code for resync and recovery.
|
|
* Both must result in an r10bio with a list of bios that
|
|
* have bi_end_io, bi_sector, bi_bdev set,
|
|
* and bi_private set to the r10bio.
|
|
* For recovery, we may actually create several r10bios
|
|
* with 2 bios in each, that correspond to the bios in the main one.
|
|
* In this case, the subordinate r10bios link back through a
|
|
* borrowed master_bio pointer, and the counter in the master
|
|
* includes a ref from each subordinate.
|
|
*/
|
|
/* First, we decide what to do and set ->bi_end_io
|
|
* To end_sync_read if we want to read, and
|
|
* end_sync_write if we will want to write.
|
|
*/
|
|
|
|
max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
|
|
if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
|
|
/* recovery... the complicated one */
|
|
int j;
|
|
r10_bio = NULL;
|
|
|
|
for (i = 0 ; i < conf->geo.raid_disks; i++) {
|
|
int still_degraded;
|
|
struct r10bio *rb2;
|
|
sector_t sect;
|
|
int must_sync;
|
|
int any_working;
|
|
int need_recover = 0;
|
|
int need_replace = 0;
|
|
struct raid10_info *mirror = &conf->mirrors[i];
|
|
struct md_rdev *mrdev, *mreplace;
|
|
|
|
rcu_read_lock();
|
|
mrdev = rcu_dereference(mirror->rdev);
|
|
mreplace = rcu_dereference(mirror->replacement);
|
|
|
|
if (mrdev != NULL &&
|
|
!test_bit(Faulty, &mrdev->flags) &&
|
|
!test_bit(In_sync, &mrdev->flags))
|
|
need_recover = 1;
|
|
if (mreplace != NULL &&
|
|
!test_bit(Faulty, &mreplace->flags))
|
|
need_replace = 1;
|
|
|
|
if (!need_recover && !need_replace) {
|
|
rcu_read_unlock();
|
|
continue;
|
|
}
|
|
|
|
still_degraded = 0;
|
|
/* want to reconstruct this device */
|
|
rb2 = r10_bio;
|
|
sect = raid10_find_virt(conf, sector_nr, i);
|
|
if (sect >= mddev->resync_max_sectors) {
|
|
/* last stripe is not complete - don't
|
|
* try to recover this sector.
|
|
*/
|
|
rcu_read_unlock();
|
|
continue;
|
|
}
|
|
if (mreplace && test_bit(Faulty, &mreplace->flags))
|
|
mreplace = NULL;
|
|
/* Unless we are doing a full sync, or a replacement
|
|
* we only need to recover the block if it is set in
|
|
* the bitmap
|
|
*/
|
|
must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
|
|
&sync_blocks, 1);
|
|
if (sync_blocks < max_sync)
|
|
max_sync = sync_blocks;
|
|
if (!must_sync &&
|
|
mreplace == NULL &&
|
|
!conf->fullsync) {
|
|
/* yep, skip the sync_blocks here, but don't assume
|
|
* that there will never be anything to do here
|
|
*/
|
|
chunks_skipped = -1;
|
|
rcu_read_unlock();
|
|
continue;
|
|
}
|
|
atomic_inc(&mrdev->nr_pending);
|
|
if (mreplace)
|
|
atomic_inc(&mreplace->nr_pending);
|
|
rcu_read_unlock();
|
|
|
|
r10_bio = raid10_alloc_init_r10buf(conf);
|
|
r10_bio->state = 0;
|
|
raise_barrier(conf, rb2 != NULL);
|
|
atomic_set(&r10_bio->remaining, 0);
|
|
|
|
r10_bio->master_bio = (struct bio*)rb2;
|
|
if (rb2)
|
|
atomic_inc(&rb2->remaining);
|
|
r10_bio->mddev = mddev;
|
|
set_bit(R10BIO_IsRecover, &r10_bio->state);
|
|
r10_bio->sector = sect;
|
|
|
|
raid10_find_phys(conf, r10_bio);
|
|
|
|
/* Need to check if the array will still be
|
|
* degraded
|
|
*/
|
|
rcu_read_lock();
|
|
for (j = 0; j < conf->geo.raid_disks; j++) {
|
|
struct md_rdev *rdev = rcu_dereference(
|
|
conf->mirrors[j].rdev);
|
|
if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
|
|
still_degraded = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
|
|
&sync_blocks, still_degraded);
|
|
|
|
any_working = 0;
|
|
for (j=0; j<conf->copies;j++) {
|
|
int k;
|
|
int d = r10_bio->devs[j].devnum;
|
|
sector_t from_addr, to_addr;
|
|
struct md_rdev *rdev =
|
|
rcu_dereference(conf->mirrors[d].rdev);
|
|
sector_t sector, first_bad;
|
|
int bad_sectors;
|
|
if (!rdev ||
|
|
!test_bit(In_sync, &rdev->flags))
|
|
continue;
|
|
/* This is where we read from */
|
|
any_working = 1;
|
|
sector = r10_bio->devs[j].addr;
|
|
|
|
if (is_badblock(rdev, sector, max_sync,
|
|
&first_bad, &bad_sectors)) {
|
|
if (first_bad > sector)
|
|
max_sync = first_bad - sector;
|
|
else {
|
|
bad_sectors -= (sector
|
|
- first_bad);
|
|
if (max_sync > bad_sectors)
|
|
max_sync = bad_sectors;
|
|
continue;
|
|
}
|
|
}
|
|
bio = r10_bio->devs[0].bio;
|
|
bio->bi_next = biolist;
|
|
biolist = bio;
|
|
bio->bi_end_io = end_sync_read;
|
|
bio_set_op_attrs(bio, REQ_OP_READ, 0);
|
|
if (test_bit(FailFast, &rdev->flags))
|
|
bio->bi_opf |= MD_FAILFAST;
|
|
from_addr = r10_bio->devs[j].addr;
|
|
bio->bi_iter.bi_sector = from_addr +
|
|
rdev->data_offset;
|
|
bio_set_dev(bio, rdev->bdev);
|
|
atomic_inc(&rdev->nr_pending);
|
|
/* and we write to 'i' (if not in_sync) */
|
|
|
|
for (k=0; k<conf->copies; k++)
|
|
if (r10_bio->devs[k].devnum == i)
|
|
break;
|
|
BUG_ON(k == conf->copies);
|
|
to_addr = r10_bio->devs[k].addr;
|
|
r10_bio->devs[0].devnum = d;
|
|
r10_bio->devs[0].addr = from_addr;
|
|
r10_bio->devs[1].devnum = i;
|
|
r10_bio->devs[1].addr = to_addr;
|
|
|
|
if (need_recover) {
|
|
bio = r10_bio->devs[1].bio;
|
|
bio->bi_next = biolist;
|
|
biolist = bio;
|
|
bio->bi_end_io = end_sync_write;
|
|
bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
|
|
bio->bi_iter.bi_sector = to_addr
|
|
+ mrdev->data_offset;
|
|
bio_set_dev(bio, mrdev->bdev);
|
|
atomic_inc(&r10_bio->remaining);
|
|
} else
|
|
r10_bio->devs[1].bio->bi_end_io = NULL;
|
|
|
|
/* and maybe write to replacement */
|
|
bio = r10_bio->devs[1].repl_bio;
|
|
if (bio)
|
|
bio->bi_end_io = NULL;
|
|
/* Note: if need_replace, then bio
|
|
* cannot be NULL as r10buf_pool_alloc will
|
|
* have allocated it.
|
|
*/
|
|
if (!need_replace)
|
|
break;
|
|
bio->bi_next = biolist;
|
|
biolist = bio;
|
|
bio->bi_end_io = end_sync_write;
|
|
bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
|
|
bio->bi_iter.bi_sector = to_addr +
|
|
mreplace->data_offset;
|
|
bio_set_dev(bio, mreplace->bdev);
|
|
atomic_inc(&r10_bio->remaining);
|
|
break;
|
|
}
|
|
rcu_read_unlock();
|
|
if (j == conf->copies) {
|
|
/* Cannot recover, so abort the recovery or
|
|
* record a bad block */
|
|
if (any_working) {
|
|
/* problem is that there are bad blocks
|
|
* on other device(s)
|
|
*/
|
|
int k;
|
|
for (k = 0; k < conf->copies; k++)
|
|
if (r10_bio->devs[k].devnum == i)
|
|
break;
|
|
if (!test_bit(In_sync,
|
|
&mrdev->flags)
|
|
&& !rdev_set_badblocks(
|
|
mrdev,
|
|
r10_bio->devs[k].addr,
|
|
max_sync, 0))
|
|
any_working = 0;
|
|
if (mreplace &&
|
|
!rdev_set_badblocks(
|
|
mreplace,
|
|
r10_bio->devs[k].addr,
|
|
max_sync, 0))
|
|
any_working = 0;
|
|
}
|
|
if (!any_working) {
|
|
if (!test_and_set_bit(MD_RECOVERY_INTR,
|
|
&mddev->recovery))
|
|
pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
|
|
mdname(mddev));
|
|
mirror->recovery_disabled
|
|
= mddev->recovery_disabled;
|
|
}
|
|
put_buf(r10_bio);
|
|
if (rb2)
|
|
atomic_dec(&rb2->remaining);
|
|
r10_bio = rb2;
|
|
rdev_dec_pending(mrdev, mddev);
|
|
if (mreplace)
|
|
rdev_dec_pending(mreplace, mddev);
|
|
break;
|
|
}
|
|
rdev_dec_pending(mrdev, mddev);
|
|
if (mreplace)
|
|
rdev_dec_pending(mreplace, mddev);
|
|
if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
|
|
/* Only want this if there is elsewhere to
|
|
* read from. 'j' is currently the first
|
|
* readable copy.
|
|
*/
|
|
int targets = 1;
|
|
for (; j < conf->copies; j++) {
|
|
int d = r10_bio->devs[j].devnum;
|
|
if (conf->mirrors[d].rdev &&
|
|
test_bit(In_sync,
|
|
&conf->mirrors[d].rdev->flags))
|
|
targets++;
|
|
}
|
|
if (targets == 1)
|
|
r10_bio->devs[0].bio->bi_opf
|
|
&= ~MD_FAILFAST;
|
|
}
|
|
}
|
|
if (biolist == NULL) {
|
|
while (r10_bio) {
|
|
struct r10bio *rb2 = r10_bio;
|
|
r10_bio = (struct r10bio*) rb2->master_bio;
|
|
rb2->master_bio = NULL;
|
|
put_buf(rb2);
|
|
}
|
|
goto giveup;
|
|
}
|
|
} else {
|
|
/* resync. Schedule a read for every block at this virt offset */
|
|
int count = 0;
|
|
|
|
/*
|
|
* Since curr_resync_completed could probably not update in
|
|
* time, and we will set cluster_sync_low based on it.
|
|
* Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
|
|
* safety reason, which ensures curr_resync_completed is
|
|
* updated in bitmap_cond_end_sync.
|
|
*/
|
|
md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
|
|
mddev_is_clustered(mddev) &&
|
|
(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
|
|
|
|
if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
|
|
&sync_blocks, mddev->degraded) &&
|
|
!conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
|
|
&mddev->recovery)) {
|
|
/* We can skip this block */
|
|
*skipped = 1;
|
|
return sync_blocks + sectors_skipped;
|
|
}
|
|
if (sync_blocks < max_sync)
|
|
max_sync = sync_blocks;
|
|
r10_bio = raid10_alloc_init_r10buf(conf);
|
|
r10_bio->state = 0;
|
|
|
|
r10_bio->mddev = mddev;
|
|
atomic_set(&r10_bio->remaining, 0);
|
|
raise_barrier(conf, 0);
|
|
conf->next_resync = sector_nr;
|
|
|
|
r10_bio->master_bio = NULL;
|
|
r10_bio->sector = sector_nr;
|
|
set_bit(R10BIO_IsSync, &r10_bio->state);
|
|
raid10_find_phys(conf, r10_bio);
|
|
r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
|
|
|
|
for (i = 0; i < conf->copies; i++) {
|
|
int d = r10_bio->devs[i].devnum;
|
|
sector_t first_bad, sector;
|
|
int bad_sectors;
|
|
struct md_rdev *rdev;
|
|
|
|
if (r10_bio->devs[i].repl_bio)
|
|
r10_bio->devs[i].repl_bio->bi_end_io = NULL;
|
|
|
|
bio = r10_bio->devs[i].bio;
|
|
bio->bi_status = BLK_STS_IOERR;
|
|
rcu_read_lock();
|
|
rdev = rcu_dereference(conf->mirrors[d].rdev);
|
|
if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
|
|
rcu_read_unlock();
|
|
continue;
|
|
}
|
|
sector = r10_bio->devs[i].addr;
|
|
if (is_badblock(rdev, sector, max_sync,
|
|
&first_bad, &bad_sectors)) {
|
|
if (first_bad > sector)
|
|
max_sync = first_bad - sector;
|
|
else {
|
|
bad_sectors -= (sector - first_bad);
|
|
if (max_sync > bad_sectors)
|
|
max_sync = bad_sectors;
|
|
rcu_read_unlock();
|
|
continue;
|
|
}
|
|
}
|
|
atomic_inc(&rdev->nr_pending);
|
|
atomic_inc(&r10_bio->remaining);
|
|
bio->bi_next = biolist;
|
|
biolist = bio;
|
|
bio->bi_end_io = end_sync_read;
|
|
bio_set_op_attrs(bio, REQ_OP_READ, 0);
|
|
if (test_bit(FailFast, &rdev->flags))
|
|
bio->bi_opf |= MD_FAILFAST;
|
|
bio->bi_iter.bi_sector = sector + rdev->data_offset;
|
|
bio_set_dev(bio, rdev->bdev);
|
|
count++;
|
|
|
|
rdev = rcu_dereference(conf->mirrors[d].replacement);
|
|
if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
|
|
rcu_read_unlock();
|
|
continue;
|
|
}
|
|
atomic_inc(&rdev->nr_pending);
|
|
|
|
/* Need to set up for writing to the replacement */
|
|
bio = r10_bio->devs[i].repl_bio;
|
|
bio->bi_status = BLK_STS_IOERR;
|
|
|
|
sector = r10_bio->devs[i].addr;
|
|
bio->bi_next = biolist;
|
|
biolist = bio;
|
|
bio->bi_end_io = end_sync_write;
|
|
bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
|
|
if (test_bit(FailFast, &rdev->flags))
|
|
bio->bi_opf |= MD_FAILFAST;
|
|
bio->bi_iter.bi_sector = sector + rdev->data_offset;
|
|
bio_set_dev(bio, rdev->bdev);
|
|
count++;
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
if (count < 2) {
|
|
for (i=0; i<conf->copies; i++) {
|
|
int d = r10_bio->devs[i].devnum;
|
|
if (r10_bio->devs[i].bio->bi_end_io)
|
|
rdev_dec_pending(conf->mirrors[d].rdev,
|
|
mddev);
|
|
if (r10_bio->devs[i].repl_bio &&
|
|
r10_bio->devs[i].repl_bio->bi_end_io)
|
|
rdev_dec_pending(
|
|
conf->mirrors[d].replacement,
|
|
mddev);
|
|
}
|
|
put_buf(r10_bio);
|
|
biolist = NULL;
|
|
goto giveup;
|
|
}
|
|
}
|
|
|
|
nr_sectors = 0;
|
|
if (sector_nr + max_sync < max_sector)
|
|
max_sector = sector_nr + max_sync;
|
|
do {
|
|
struct page *page;
|
|
int len = PAGE_SIZE;
|
|
if (sector_nr + (len>>9) > max_sector)
|
|
len = (max_sector - sector_nr) << 9;
|
|
if (len == 0)
|
|
break;
|
|
for (bio= biolist ; bio ; bio=bio->bi_next) {
|
|
struct resync_pages *rp = get_resync_pages(bio);
|
|
page = resync_fetch_page(rp, page_idx);
|
|
/*
|
|
* won't fail because the vec table is big enough
|
|
* to hold all these pages
|
|
*/
|
|
bio_add_page(bio, page, len, 0);
|
|
}
|
|
nr_sectors += len>>9;
|
|
sector_nr += len>>9;
|
|
} while (++page_idx < RESYNC_PAGES);
|
|
r10_bio->sectors = nr_sectors;
|
|
|
|
if (mddev_is_clustered(mddev) &&
|
|
test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
|
|
/* It is resync not recovery */
|
|
if (conf->cluster_sync_high < sector_nr + nr_sectors) {
|
|
conf->cluster_sync_low = mddev->curr_resync_completed;
|
|
raid10_set_cluster_sync_high(conf);
|
|
/* Send resync message */
|
|
md_cluster_ops->resync_info_update(mddev,
|
|
conf->cluster_sync_low,
|
|
conf->cluster_sync_high);
|
|
}
|
|
} else if (mddev_is_clustered(mddev)) {
|
|
/* This is recovery not resync */
|
|
sector_t sect_va1, sect_va2;
|
|
bool broadcast_msg = false;
|
|
|
|
for (i = 0; i < conf->geo.raid_disks; i++) {
|
|
/*
|
|
* sector_nr is a device address for recovery, so we
|
|
* need translate it to array address before compare
|
|
* with cluster_sync_high.
|
|
*/
|
|
sect_va1 = raid10_find_virt(conf, sector_nr, i);
|
|
|
|
if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
|
|
broadcast_msg = true;
|
|
/*
|
|
* curr_resync_completed is similar as
|
|
* sector_nr, so make the translation too.
|
|
*/
|
|
sect_va2 = raid10_find_virt(conf,
|
|
mddev->curr_resync_completed, i);
|
|
|
|
if (conf->cluster_sync_low == 0 ||
|
|
conf->cluster_sync_low > sect_va2)
|
|
conf->cluster_sync_low = sect_va2;
|
|
}
|
|
}
|
|
if (broadcast_msg) {
|
|
raid10_set_cluster_sync_high(conf);
|
|
md_cluster_ops->resync_info_update(mddev,
|
|
conf->cluster_sync_low,
|
|
conf->cluster_sync_high);
|
|
}
|
|
}
|
|
|
|
while (biolist) {
|
|
bio = biolist;
|
|
biolist = biolist->bi_next;
|
|
|
|
bio->bi_next = NULL;
|
|
r10_bio = get_resync_r10bio(bio);
|
|
r10_bio->sectors = nr_sectors;
|
|
|
|
if (bio->bi_end_io == end_sync_read) {
|
|
md_sync_acct_bio(bio, nr_sectors);
|
|
bio->bi_status = 0;
|
|
submit_bio_noacct(bio);
|
|
}
|
|
}
|
|
|
|
if (sectors_skipped)
|
|
/* pretend they weren't skipped, it makes
|
|
* no important difference in this case
|
|
*/
|
|
md_done_sync(mddev, sectors_skipped, 1);
|
|
|
|
return sectors_skipped + nr_sectors;
|
|
giveup:
|
|
/* There is nowhere to write, so all non-sync
|
|
* drives must be failed or in resync, all drives
|
|
* have a bad block, so try the next chunk...
|
|
*/
|
|
if (sector_nr + max_sync < max_sector)
|
|
max_sector = sector_nr + max_sync;
|
|
|
|
sectors_skipped += (max_sector - sector_nr);
|
|
chunks_skipped ++;
|
|
sector_nr = max_sector;
|
|
goto skipped;
|
|
}
|
|
|
|
static sector_t
|
|
raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
|
|
{
|
|
sector_t size;
|
|
struct r10conf *conf = mddev->private;
|
|
|
|
if (!raid_disks)
|
|
raid_disks = min(conf->geo.raid_disks,
|
|
conf->prev.raid_disks);
|
|
if (!sectors)
|
|
sectors = conf->dev_sectors;
|
|
|
|
size = sectors >> conf->geo.chunk_shift;
|
|
sector_div(size, conf->geo.far_copies);
|
|
size = size * raid_disks;
|
|
sector_div(size, conf->geo.near_copies);
|
|
|
|
return size << conf->geo.chunk_shift;
|
|
}
|
|
|
|
static void calc_sectors(struct r10conf *conf, sector_t size)
|
|
{
|
|
/* Calculate the number of sectors-per-device that will
|
|
* actually be used, and set conf->dev_sectors and
|
|
* conf->stride
|
|
*/
|
|
|
|
size = size >> conf->geo.chunk_shift;
|
|
sector_div(size, conf->geo.far_copies);
|
|
size = size * conf->geo.raid_disks;
|
|
sector_div(size, conf->geo.near_copies);
|
|
/* 'size' is now the number of chunks in the array */
|
|
/* calculate "used chunks per device" */
|
|
size = size * conf->copies;
|
|
|
|
/* We need to round up when dividing by raid_disks to
|
|
* get the stride size.
|
|
*/
|
|
size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
|
|
|
|
conf->dev_sectors = size << conf->geo.chunk_shift;
|
|
|
|
if (conf->geo.far_offset)
|
|
conf->geo.stride = 1 << conf->geo.chunk_shift;
|
|
else {
|
|
sector_div(size, conf->geo.far_copies);
|
|
conf->geo.stride = size << conf->geo.chunk_shift;
|
|
}
|
|
}
|
|
|
|
enum geo_type {geo_new, geo_old, geo_start};
|
|
static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
|
|
{
|
|
int nc, fc, fo;
|
|
int layout, chunk, disks;
|
|
switch (new) {
|
|
case geo_old:
|
|
layout = mddev->layout;
|
|
chunk = mddev->chunk_sectors;
|
|
disks = mddev->raid_disks - mddev->delta_disks;
|
|
break;
|
|
case geo_new:
|
|
layout = mddev->new_layout;
|
|
chunk = mddev->new_chunk_sectors;
|
|
disks = mddev->raid_disks;
|
|
break;
|
|
default: /* avoid 'may be unused' warnings */
|
|
case geo_start: /* new when starting reshape - raid_disks not
|
|
* updated yet. */
|
|
layout = mddev->new_layout;
|
|
chunk = mddev->new_chunk_sectors;
|
|
disks = mddev->raid_disks + mddev->delta_disks;
|
|
break;
|
|
}
|
|
if (layout >> 19)
|
|
return -1;
|
|
if (chunk < (PAGE_SIZE >> 9) ||
|
|
!is_power_of_2(chunk))
|
|
return -2;
|
|
nc = layout & 255;
|
|
fc = (layout >> 8) & 255;
|
|
fo = layout & (1<<16);
|
|
geo->raid_disks = disks;
|
|
geo->near_copies = nc;
|
|
geo->far_copies = fc;
|
|
geo->far_offset = fo;
|
|
switch (layout >> 17) {
|
|
case 0: /* original layout. simple but not always optimal */
|
|
geo->far_set_size = disks;
|
|
break;
|
|
case 1: /* "improved" layout which was buggy. Hopefully no-one is
|
|
* actually using this, but leave code here just in case.*/
|
|
geo->far_set_size = disks/fc;
|
|
WARN(geo->far_set_size < fc,
|
|
"This RAID10 layout does not provide data safety - please backup and create new array\n");
|
|
break;
|
|
case 2: /* "improved" layout fixed to match documentation */
|
|
geo->far_set_size = fc * nc;
|
|
break;
|
|
default: /* Not a valid layout */
|
|
return -1;
|
|
}
|
|
geo->chunk_mask = chunk - 1;
|
|
geo->chunk_shift = ffz(~chunk);
|
|
return nc*fc;
|
|
}
|
|
|
|
static struct r10conf *setup_conf(struct mddev *mddev)
|
|
{
|
|
struct r10conf *conf = NULL;
|
|
int err = -EINVAL;
|
|
struct geom geo;
|
|
int copies;
|
|
|
|
copies = setup_geo(&geo, mddev, geo_new);
|
|
|
|
if (copies == -2) {
|
|
pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
|
|
mdname(mddev), PAGE_SIZE);
|
|
goto out;
|
|
}
|
|
|
|
if (copies < 2 || copies > mddev->raid_disks) {
|
|
pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
|
|
mdname(mddev), mddev->new_layout);
|
|
goto out;
|
|
}
|
|
|
|
err = -ENOMEM;
|
|
conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
|
|
if (!conf)
|
|
goto out;
|
|
|
|
/* FIXME calc properly */
|
|
conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
|
|
sizeof(struct raid10_info),
|
|
GFP_KERNEL);
|
|
if (!conf->mirrors)
|
|
goto out;
|
|
|
|
conf->tmppage = alloc_page(GFP_KERNEL);
|
|
if (!conf->tmppage)
|
|
goto out;
|
|
|
|
conf->geo = geo;
|
|
conf->copies = copies;
|
|
err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
|
|
rbio_pool_free, conf);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
|
|
if (err)
|
|
goto out;
|
|
|
|
calc_sectors(conf, mddev->dev_sectors);
|
|
if (mddev->reshape_position == MaxSector) {
|
|
conf->prev = conf->geo;
|
|
conf->reshape_progress = MaxSector;
|
|
} else {
|
|
if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
conf->reshape_progress = mddev->reshape_position;
|
|
if (conf->prev.far_offset)
|
|
conf->prev.stride = 1 << conf->prev.chunk_shift;
|
|
else
|
|
/* far_copies must be 1 */
|
|
conf->prev.stride = conf->dev_sectors;
|
|
}
|
|
conf->reshape_safe = conf->reshape_progress;
|
|
spin_lock_init(&conf->device_lock);
|
|
INIT_LIST_HEAD(&conf->retry_list);
|
|
INIT_LIST_HEAD(&conf->bio_end_io_list);
|
|
|
|
spin_lock_init(&conf->resync_lock);
|
|
init_waitqueue_head(&conf->wait_barrier);
|
|
atomic_set(&conf->nr_pending, 0);
|
|
|
|
err = -ENOMEM;
|
|
conf->thread = md_register_thread(raid10d, mddev, "raid10");
|
|
if (!conf->thread)
|
|
goto out;
|
|
|
|
conf->mddev = mddev;
|
|
return conf;
|
|
|
|
out:
|
|
if (conf) {
|
|
mempool_exit(&conf->r10bio_pool);
|
|
kfree(conf->mirrors);
|
|
safe_put_page(conf->tmppage);
|
|
bioset_exit(&conf->bio_split);
|
|
kfree(conf);
|
|
}
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static void raid10_set_io_opt(struct r10conf *conf)
|
|
{
|
|
int raid_disks = conf->geo.raid_disks;
|
|
|
|
if (!(conf->geo.raid_disks % conf->geo.near_copies))
|
|
raid_disks /= conf->geo.near_copies;
|
|
blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
|
|
raid_disks);
|
|
}
|
|
|
|
static int raid10_run(struct mddev *mddev)
|
|
{
|
|
struct r10conf *conf;
|
|
int i, disk_idx;
|
|
struct raid10_info *disk;
|
|
struct md_rdev *rdev;
|
|
sector_t size;
|
|
sector_t min_offset_diff = 0;
|
|
int first = 1;
|
|
|
|
if (mddev_init_writes_pending(mddev) < 0)
|
|
return -ENOMEM;
|
|
|
|
if (mddev->private == NULL) {
|
|
conf = setup_conf(mddev);
|
|
if (IS_ERR(conf))
|
|
return PTR_ERR(conf);
|
|
mddev->private = conf;
|
|
}
|
|
conf = mddev->private;
|
|
if (!conf)
|
|
goto out;
|
|
|
|
if (mddev_is_clustered(conf->mddev)) {
|
|
int fc, fo;
|
|
|
|
fc = (mddev->layout >> 8) & 255;
|
|
fo = mddev->layout & (1<<16);
|
|
if (fc > 1 || fo > 0) {
|
|
pr_err("only near layout is supported by clustered"
|
|
" raid10\n");
|
|
goto out_free_conf;
|
|
}
|
|
}
|
|
|
|
mddev->thread = conf->thread;
|
|
conf->thread = NULL;
|
|
|
|
if (mddev->queue) {
|
|
blk_queue_max_discard_sectors(mddev->queue,
|
|
UINT_MAX);
|
|
blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
|
|
blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
|
|
raid10_set_io_opt(conf);
|
|
}
|
|
|
|
rdev_for_each(rdev, mddev) {
|
|
long long diff;
|
|
|
|
disk_idx = rdev->raid_disk;
|
|
if (disk_idx < 0)
|
|
continue;
|
|
if (disk_idx >= conf->geo.raid_disks &&
|
|
disk_idx >= conf->prev.raid_disks)
|
|
continue;
|
|
disk = conf->mirrors + disk_idx;
|
|
|
|
if (test_bit(Replacement, &rdev->flags)) {
|
|
if (disk->replacement)
|
|
goto out_free_conf;
|
|
disk->replacement = rdev;
|
|
} else {
|
|
if (disk->rdev)
|
|
goto out_free_conf;
|
|
disk->rdev = rdev;
|
|
}
|
|
diff = (rdev->new_data_offset - rdev->data_offset);
|
|
if (!mddev->reshape_backwards)
|
|
diff = -diff;
|
|
if (diff < 0)
|
|
diff = 0;
|
|
if (first || diff < min_offset_diff)
|
|
min_offset_diff = diff;
|
|
|
|
if (mddev->gendisk)
|
|
disk_stack_limits(mddev->gendisk, rdev->bdev,
|
|
rdev->data_offset << 9);
|
|
|
|
disk->head_position = 0;
|
|
first = 0;
|
|
}
|
|
|
|
/* need to check that every block has at least one working mirror */
|
|
if (!enough(conf, -1)) {
|
|
pr_err("md/raid10:%s: not enough operational mirrors.\n",
|
|
mdname(mddev));
|
|
goto out_free_conf;
|
|
}
|
|
|
|
if (conf->reshape_progress != MaxSector) {
|
|
/* must ensure that shape change is supported */
|
|
if (conf->geo.far_copies != 1 &&
|
|
conf->geo.far_offset == 0)
|
|
goto out_free_conf;
|
|
if (conf->prev.far_copies != 1 &&
|
|
conf->prev.far_offset == 0)
|
|
goto out_free_conf;
|
|
}
|
|
|
|
mddev->degraded = 0;
|
|
for (i = 0;
|
|
i < conf->geo.raid_disks
|
|
|| i < conf->prev.raid_disks;
|
|
i++) {
|
|
|
|
disk = conf->mirrors + i;
|
|
|
|
if (!disk->rdev && disk->replacement) {
|
|
/* The replacement is all we have - use it */
|
|
disk->rdev = disk->replacement;
|
|
disk->replacement = NULL;
|
|
clear_bit(Replacement, &disk->rdev->flags);
|
|
}
|
|
|
|
if (!disk->rdev ||
|
|
!test_bit(In_sync, &disk->rdev->flags)) {
|
|
disk->head_position = 0;
|
|
mddev->degraded++;
|
|
if (disk->rdev &&
|
|
disk->rdev->saved_raid_disk < 0)
|
|
conf->fullsync = 1;
|
|
}
|
|
|
|
if (disk->replacement &&
|
|
!test_bit(In_sync, &disk->replacement->flags) &&
|
|
disk->replacement->saved_raid_disk < 0) {
|
|
conf->fullsync = 1;
|
|
}
|
|
|
|
disk->recovery_disabled = mddev->recovery_disabled - 1;
|
|
}
|
|
|
|
if (mddev->recovery_cp != MaxSector)
|
|
pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
|
|
mdname(mddev));
|
|
pr_info("md/raid10:%s: active with %d out of %d devices\n",
|
|
mdname(mddev), conf->geo.raid_disks - mddev->degraded,
|
|
conf->geo.raid_disks);
|
|
/*
|
|
* Ok, everything is just fine now
|
|
*/
|
|
mddev->dev_sectors = conf->dev_sectors;
|
|
size = raid10_size(mddev, 0, 0);
|
|
md_set_array_sectors(mddev, size);
|
|
mddev->resync_max_sectors = size;
|
|
set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
|
|
|
|
if (md_integrity_register(mddev))
|
|
goto out_free_conf;
|
|
|
|
if (conf->reshape_progress != MaxSector) {
|
|
unsigned long before_length, after_length;
|
|
|
|
before_length = ((1 << conf->prev.chunk_shift) *
|
|
conf->prev.far_copies);
|
|
after_length = ((1 << conf->geo.chunk_shift) *
|
|
conf->geo.far_copies);
|
|
|
|
if (max(before_length, after_length) > min_offset_diff) {
|
|
/* This cannot work */
|
|
pr_warn("md/raid10: offset difference not enough to continue reshape\n");
|
|
goto out_free_conf;
|
|
}
|
|
conf->offset_diff = min_offset_diff;
|
|
|
|
clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
|
|
clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
|
|
set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
|
|
set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
|
|
mddev->sync_thread = md_register_thread(md_do_sync, mddev,
|
|
"reshape");
|
|
if (!mddev->sync_thread)
|
|
goto out_free_conf;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_free_conf:
|
|
md_unregister_thread(&mddev->thread);
|
|
mempool_exit(&conf->r10bio_pool);
|
|
safe_put_page(conf->tmppage);
|
|
kfree(conf->mirrors);
|
|
kfree(conf);
|
|
mddev->private = NULL;
|
|
out:
|
|
return -EIO;
|
|
}
|
|
|
|
static void raid10_free(struct mddev *mddev, void *priv)
|
|
{
|
|
struct r10conf *conf = priv;
|
|
|
|
mempool_exit(&conf->r10bio_pool);
|
|
safe_put_page(conf->tmppage);
|
|
kfree(conf->mirrors);
|
|
kfree(conf->mirrors_old);
|
|
kfree(conf->mirrors_new);
|
|
bioset_exit(&conf->bio_split);
|
|
kfree(conf);
|
|
}
|
|
|
|
static void raid10_quiesce(struct mddev *mddev, int quiesce)
|
|
{
|
|
struct r10conf *conf = mddev->private;
|
|
|
|
if (quiesce)
|
|
raise_barrier(conf, 0);
|
|
else
|
|
lower_barrier(conf);
|
|
}
|
|
|
|
static int raid10_resize(struct mddev *mddev, sector_t sectors)
|
|
{
|
|
/* Resize of 'far' arrays is not supported.
|
|
* For 'near' and 'offset' arrays we can set the
|
|
* number of sectors used to be an appropriate multiple
|
|
* of the chunk size.
|
|
* For 'offset', this is far_copies*chunksize.
|
|
* For 'near' the multiplier is the LCM of
|
|
* near_copies and raid_disks.
|
|
* So if far_copies > 1 && !far_offset, fail.
|
|
* Else find LCM(raid_disks, near_copy)*far_copies and
|
|
* multiply by chunk_size. Then round to this number.
|
|
* This is mostly done by raid10_size()
|
|
*/
|
|
struct r10conf *conf = mddev->private;
|
|
sector_t oldsize, size;
|
|
|
|
if (mddev->reshape_position != MaxSector)
|
|
return -EBUSY;
|
|
|
|
if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
|
|
return -EINVAL;
|
|
|
|
oldsize = raid10_size(mddev, 0, 0);
|
|
size = raid10_size(mddev, sectors, 0);
|
|
if (mddev->external_size &&
|
|
mddev->array_sectors > size)
|
|
return -EINVAL;
|
|
if (mddev->bitmap) {
|
|
int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
md_set_array_sectors(mddev, size);
|
|
if (sectors > mddev->dev_sectors &&
|
|
mddev->recovery_cp > oldsize) {
|
|
mddev->recovery_cp = oldsize;
|
|
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
|
|
}
|
|
calc_sectors(conf, sectors);
|
|
mddev->dev_sectors = conf->dev_sectors;
|
|
mddev->resync_max_sectors = size;
|
|
return 0;
|
|
}
|
|
|
|
static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
|
|
{
|
|
struct md_rdev *rdev;
|
|
struct r10conf *conf;
|
|
|
|
if (mddev->degraded > 0) {
|
|
pr_warn("md/raid10:%s: Error: degraded raid0!\n",
|
|
mdname(mddev));
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
sector_div(size, devs);
|
|
|
|
/* Set new parameters */
|
|
mddev->new_level = 10;
|
|
/* new layout: far_copies = 1, near_copies = 2 */
|
|
mddev->new_layout = (1<<8) + 2;
|
|
mddev->new_chunk_sectors = mddev->chunk_sectors;
|
|
mddev->delta_disks = mddev->raid_disks;
|
|
mddev->raid_disks *= 2;
|
|
/* make sure it will be not marked as dirty */
|
|
mddev->recovery_cp = MaxSector;
|
|
mddev->dev_sectors = size;
|
|
|
|
conf = setup_conf(mddev);
|
|
if (!IS_ERR(conf)) {
|
|
rdev_for_each(rdev, mddev)
|
|
if (rdev->raid_disk >= 0) {
|
|
rdev->new_raid_disk = rdev->raid_disk * 2;
|
|
rdev->sectors = size;
|
|
}
|
|
conf->barrier = 1;
|
|
}
|
|
|
|
return conf;
|
|
}
|
|
|
|
static void *raid10_takeover(struct mddev *mddev)
|
|
{
|
|
struct r0conf *raid0_conf;
|
|
|
|
/* raid10 can take over:
|
|
* raid0 - providing it has only two drives
|
|
*/
|
|
if (mddev->level == 0) {
|
|
/* for raid0 takeover only one zone is supported */
|
|
raid0_conf = mddev->private;
|
|
if (raid0_conf->nr_strip_zones > 1) {
|
|
pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
|
|
mdname(mddev));
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
return raid10_takeover_raid0(mddev,
|
|
raid0_conf->strip_zone->zone_end,
|
|
raid0_conf->strip_zone->nb_dev);
|
|
}
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
static int raid10_check_reshape(struct mddev *mddev)
|
|
{
|
|
/* Called when there is a request to change
|
|
* - layout (to ->new_layout)
|
|
* - chunk size (to ->new_chunk_sectors)
|
|
* - raid_disks (by delta_disks)
|
|
* or when trying to restart a reshape that was ongoing.
|
|
*
|
|
* We need to validate the request and possibly allocate
|
|
* space if that might be an issue later.
|
|
*
|
|
* Currently we reject any reshape of a 'far' mode array,
|
|
* allow chunk size to change if new is generally acceptable,
|
|
* allow raid_disks to increase, and allow
|
|
* a switch between 'near' mode and 'offset' mode.
|
|
*/
|
|
struct r10conf *conf = mddev->private;
|
|
struct geom geo;
|
|
|
|
if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
|
|
return -EINVAL;
|
|
|
|
if (setup_geo(&geo, mddev, geo_start) != conf->copies)
|
|
/* mustn't change number of copies */
|
|
return -EINVAL;
|
|
if (geo.far_copies > 1 && !geo.far_offset)
|
|
/* Cannot switch to 'far' mode */
|
|
return -EINVAL;
|
|
|
|
if (mddev->array_sectors & geo.chunk_mask)
|
|
/* not factor of array size */
|
|
return -EINVAL;
|
|
|
|
if (!enough(conf, -1))
|
|
return -EINVAL;
|
|
|
|
kfree(conf->mirrors_new);
|
|
conf->mirrors_new = NULL;
|
|
if (mddev->delta_disks > 0) {
|
|
/* allocate new 'mirrors' list */
|
|
conf->mirrors_new =
|
|
kcalloc(mddev->raid_disks + mddev->delta_disks,
|
|
sizeof(struct raid10_info),
|
|
GFP_KERNEL);
|
|
if (!conf->mirrors_new)
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Need to check if array has failed when deciding whether to:
|
|
* - start an array
|
|
* - remove non-faulty devices
|
|
* - add a spare
|
|
* - allow a reshape
|
|
* This determination is simple when no reshape is happening.
|
|
* However if there is a reshape, we need to carefully check
|
|
* both the before and after sections.
|
|
* This is because some failed devices may only affect one
|
|
* of the two sections, and some non-in_sync devices may
|
|
* be insync in the section most affected by failed devices.
|
|
*/
|
|
static int calc_degraded(struct r10conf *conf)
|
|
{
|
|
int degraded, degraded2;
|
|
int i;
|
|
|
|
rcu_read_lock();
|
|
degraded = 0;
|
|
/* 'prev' section first */
|
|
for (i = 0; i < conf->prev.raid_disks; i++) {
|
|
struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
|
|
if (!rdev || test_bit(Faulty, &rdev->flags))
|
|
degraded++;
|
|
else if (!test_bit(In_sync, &rdev->flags))
|
|
/* When we can reduce the number of devices in
|
|
* an array, this might not contribute to
|
|
* 'degraded'. It does now.
|
|
*/
|
|
degraded++;
|
|
}
|
|
rcu_read_unlock();
|
|
if (conf->geo.raid_disks == conf->prev.raid_disks)
|
|
return degraded;
|
|
rcu_read_lock();
|
|
degraded2 = 0;
|
|
for (i = 0; i < conf->geo.raid_disks; i++) {
|
|
struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
|
|
if (!rdev || test_bit(Faulty, &rdev->flags))
|
|
degraded2++;
|
|
else if (!test_bit(In_sync, &rdev->flags)) {
|
|
/* If reshape is increasing the number of devices,
|
|
* this section has already been recovered, so
|
|
* it doesn't contribute to degraded.
|
|
* else it does.
|
|
*/
|
|
if (conf->geo.raid_disks <= conf->prev.raid_disks)
|
|
degraded2++;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
if (degraded2 > degraded)
|
|
return degraded2;
|
|
return degraded;
|
|
}
|
|
|
|
static int raid10_start_reshape(struct mddev *mddev)
|
|
{
|
|
/* A 'reshape' has been requested. This commits
|
|
* the various 'new' fields and sets MD_RECOVER_RESHAPE
|
|
* This also checks if there are enough spares and adds them
|
|
* to the array.
|
|
* We currently require enough spares to make the final
|
|
* array non-degraded. We also require that the difference
|
|
* between old and new data_offset - on each device - is
|
|
* enough that we never risk over-writing.
|
|
*/
|
|
|
|
unsigned long before_length, after_length;
|
|
sector_t min_offset_diff = 0;
|
|
int first = 1;
|
|
struct geom new;
|
|
struct r10conf *conf = mddev->private;
|
|
struct md_rdev *rdev;
|
|
int spares = 0;
|
|
int ret;
|
|
|
|
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
|
|
return -EBUSY;
|
|
|
|
if (setup_geo(&new, mddev, geo_start) != conf->copies)
|
|
return -EINVAL;
|
|
|
|
before_length = ((1 << conf->prev.chunk_shift) *
|
|
conf->prev.far_copies);
|
|
after_length = ((1 << conf->geo.chunk_shift) *
|
|
conf->geo.far_copies);
|
|
|
|
rdev_for_each(rdev, mddev) {
|
|
if (!test_bit(In_sync, &rdev->flags)
|
|
&& !test_bit(Faulty, &rdev->flags))
|
|
spares++;
|
|
if (rdev->raid_disk >= 0) {
|
|
long long diff = (rdev->new_data_offset
|
|
- rdev->data_offset);
|
|
if (!mddev->reshape_backwards)
|
|
diff = -diff;
|
|
if (diff < 0)
|
|
diff = 0;
|
|
if (first || diff < min_offset_diff)
|
|
min_offset_diff = diff;
|
|
first = 0;
|
|
}
|
|
}
|
|
|
|
if (max(before_length, after_length) > min_offset_diff)
|
|
return -EINVAL;
|
|
|
|
if (spares < mddev->delta_disks)
|
|
return -EINVAL;
|
|
|
|
conf->offset_diff = min_offset_diff;
|
|
spin_lock_irq(&conf->device_lock);
|
|
if (conf->mirrors_new) {
|
|
memcpy(conf->mirrors_new, conf->mirrors,
|
|
sizeof(struct raid10_info)*conf->prev.raid_disks);
|
|
smp_mb();
|
|
kfree(conf->mirrors_old);
|
|
conf->mirrors_old = conf->mirrors;
|
|
conf->mirrors = conf->mirrors_new;
|
|
conf->mirrors_new = NULL;
|
|
}
|
|
setup_geo(&conf->geo, mddev, geo_start);
|
|
smp_mb();
|
|
if (mddev->reshape_backwards) {
|
|
sector_t size = raid10_size(mddev, 0, 0);
|
|
if (size < mddev->array_sectors) {
|
|
spin_unlock_irq(&conf->device_lock);
|
|
pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
|
|
mdname(mddev));
|
|
return -EINVAL;
|
|
}
|
|
mddev->resync_max_sectors = size;
|
|
conf->reshape_progress = size;
|
|
} else
|
|
conf->reshape_progress = 0;
|
|
conf->reshape_safe = conf->reshape_progress;
|
|
spin_unlock_irq(&conf->device_lock);
|
|
|
|
if (mddev->delta_disks && mddev->bitmap) {
|
|
struct mdp_superblock_1 *sb = NULL;
|
|
sector_t oldsize, newsize;
|
|
|
|
oldsize = raid10_size(mddev, 0, 0);
|
|
newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
|
|
|
|
if (!mddev_is_clustered(mddev)) {
|
|
ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
|
|
if (ret)
|
|
goto abort;
|
|
else
|
|
goto out;
|
|
}
|
|
|
|
rdev_for_each(rdev, mddev) {
|
|
if (rdev->raid_disk > -1 &&
|
|
!test_bit(Faulty, &rdev->flags))
|
|
sb = page_address(rdev->sb_page);
|
|
}
|
|
|
|
/*
|
|
* some node is already performing reshape, and no need to
|
|
* call md_bitmap_resize again since it should be called when
|
|
* receiving BITMAP_RESIZE msg
|
|
*/
|
|
if ((sb && (le32_to_cpu(sb->feature_map) &
|
|
MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
|
|
goto out;
|
|
|
|
ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
|
|
if (ret)
|
|
goto abort;
|
|
|
|
ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
|
|
if (ret) {
|
|
md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
|
|
goto abort;
|
|
}
|
|
}
|
|
out:
|
|
if (mddev->delta_disks > 0) {
|
|
rdev_for_each(rdev, mddev)
|
|
if (rdev->raid_disk < 0 &&
|
|
!test_bit(Faulty, &rdev->flags)) {
|
|
if (raid10_add_disk(mddev, rdev) == 0) {
|
|
if (rdev->raid_disk >=
|
|
conf->prev.raid_disks)
|
|
set_bit(In_sync, &rdev->flags);
|
|
else
|
|
rdev->recovery_offset = 0;
|
|
|
|
/* Failure here is OK */
|
|
sysfs_link_rdev(mddev, rdev);
|
|
}
|
|
} else if (rdev->raid_disk >= conf->prev.raid_disks
|
|
&& !test_bit(Faulty, &rdev->flags)) {
|
|
/* This is a spare that was manually added */
|
|
set_bit(In_sync, &rdev->flags);
|
|
}
|
|
}
|
|
/* When a reshape changes the number of devices,
|
|
* ->degraded is measured against the larger of the
|
|
* pre and post numbers.
|
|
*/
|
|
spin_lock_irq(&conf->device_lock);
|
|
mddev->degraded = calc_degraded(conf);
|
|
spin_unlock_irq(&conf->device_lock);
|
|
mddev->raid_disks = conf->geo.raid_disks;
|
|
mddev->reshape_position = conf->reshape_progress;
|
|
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
|
|
|
|
clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
|
|
clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
|
|
clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
|
|
set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
|
|
set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
|
|
|
|
mddev->sync_thread = md_register_thread(md_do_sync, mddev,
|
|
"reshape");
|
|
if (!mddev->sync_thread) {
|
|
ret = -EAGAIN;
|
|
goto abort;
|
|
}
|
|
conf->reshape_checkpoint = jiffies;
|
|
md_wakeup_thread(mddev->sync_thread);
|
|
md_new_event();
|
|
return 0;
|
|
|
|
abort:
|
|
mddev->recovery = 0;
|
|
spin_lock_irq(&conf->device_lock);
|
|
conf->geo = conf->prev;
|
|
mddev->raid_disks = conf->geo.raid_disks;
|
|
rdev_for_each(rdev, mddev)
|
|
rdev->new_data_offset = rdev->data_offset;
|
|
smp_wmb();
|
|
conf->reshape_progress = MaxSector;
|
|
conf->reshape_safe = MaxSector;
|
|
mddev->reshape_position = MaxSector;
|
|
spin_unlock_irq(&conf->device_lock);
|
|
return ret;
|
|
}
|
|
|
|
/* Calculate the last device-address that could contain
|
|
* any block from the chunk that includes the array-address 's'
|
|
* and report the next address.
|
|
* i.e. the address returned will be chunk-aligned and after
|
|
* any data that is in the chunk containing 's'.
|
|
*/
|
|
static sector_t last_dev_address(sector_t s, struct geom *geo)
|
|
{
|
|
s = (s | geo->chunk_mask) + 1;
|
|
s >>= geo->chunk_shift;
|
|
s *= geo->near_copies;
|
|
s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
|
|
s *= geo->far_copies;
|
|
s <<= geo->chunk_shift;
|
|
return s;
|
|
}
|
|
|
|
/* Calculate the first device-address that could contain
|
|
* any block from the chunk that includes the array-address 's'.
|
|
* This too will be the start of a chunk
|
|
*/
|
|
static sector_t first_dev_address(sector_t s, struct geom *geo)
|
|
{
|
|
s >>= geo->chunk_shift;
|
|
s *= geo->near_copies;
|
|
sector_div(s, geo->raid_disks);
|
|
s *= geo->far_copies;
|
|
s <<= geo->chunk_shift;
|
|
return s;
|
|
}
|
|
|
|
static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
|
|
int *skipped)
|
|
{
|
|
/* We simply copy at most one chunk (smallest of old and new)
|
|
* at a time, possibly less if that exceeds RESYNC_PAGES,
|
|
* or we hit a bad block or something.
|
|
* This might mean we pause for normal IO in the middle of
|
|
* a chunk, but that is not a problem as mddev->reshape_position
|
|
* can record any location.
|
|
*
|
|
* If we will want to write to a location that isn't
|
|
* yet recorded as 'safe' (i.e. in metadata on disk) then
|
|
* we need to flush all reshape requests and update the metadata.
|
|
*
|
|
* When reshaping forwards (e.g. to more devices), we interpret
|
|
* 'safe' as the earliest block which might not have been copied
|
|
* down yet. We divide this by previous stripe size and multiply
|
|
* by previous stripe length to get lowest device offset that we
|
|
* cannot write to yet.
|
|
* We interpret 'sector_nr' as an address that we want to write to.
|
|
* From this we use last_device_address() to find where we might
|
|
* write to, and first_device_address on the 'safe' position.
|
|
* If this 'next' write position is after the 'safe' position,
|
|
* we must update the metadata to increase the 'safe' position.
|
|
*
|
|
* When reshaping backwards, we round in the opposite direction
|
|
* and perform the reverse test: next write position must not be
|
|
* less than current safe position.
|
|
*
|
|
* In all this the minimum difference in data offsets
|
|
* (conf->offset_diff - always positive) allows a bit of slack,
|
|
* so next can be after 'safe', but not by more than offset_diff
|
|
*
|
|
* We need to prepare all the bios here before we start any IO
|
|
* to ensure the size we choose is acceptable to all devices.
|
|
* The means one for each copy for write-out and an extra one for
|
|
* read-in.
|
|
* We store the read-in bio in ->master_bio and the others in
|
|
* ->devs[x].bio and ->devs[x].repl_bio.
|
|
*/
|
|
struct r10conf *conf = mddev->private;
|
|
struct r10bio *r10_bio;
|
|
sector_t next, safe, last;
|
|
int max_sectors;
|
|
int nr_sectors;
|
|
int s;
|
|
struct md_rdev *rdev;
|
|
int need_flush = 0;
|
|
struct bio *blist;
|
|
struct bio *bio, *read_bio;
|
|
int sectors_done = 0;
|
|
struct page **pages;
|
|
|
|
if (sector_nr == 0) {
|
|
/* If restarting in the middle, skip the initial sectors */
|
|
if (mddev->reshape_backwards &&
|
|
conf->reshape_progress < raid10_size(mddev, 0, 0)) {
|
|
sector_nr = (raid10_size(mddev, 0, 0)
|
|
- conf->reshape_progress);
|
|
} else if (!mddev->reshape_backwards &&
|
|
conf->reshape_progress > 0)
|
|
sector_nr = conf->reshape_progress;
|
|
if (sector_nr) {
|
|
mddev->curr_resync_completed = sector_nr;
|
|
sysfs_notify_dirent_safe(mddev->sysfs_completed);
|
|
*skipped = 1;
|
|
return sector_nr;
|
|
}
|
|
}
|
|
|
|
/* We don't use sector_nr to track where we are up to
|
|
* as that doesn't work well for ->reshape_backwards.
|
|
* So just use ->reshape_progress.
|
|
*/
|
|
if (mddev->reshape_backwards) {
|
|
/* 'next' is the earliest device address that we might
|
|
* write to for this chunk in the new layout
|
|
*/
|
|
next = first_dev_address(conf->reshape_progress - 1,
|
|
&conf->geo);
|
|
|
|
/* 'safe' is the last device address that we might read from
|
|
* in the old layout after a restart
|
|
*/
|
|
safe = last_dev_address(conf->reshape_safe - 1,
|
|
&conf->prev);
|
|
|
|
if (next + conf->offset_diff < safe)
|
|
need_flush = 1;
|
|
|
|
last = conf->reshape_progress - 1;
|
|
sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
|
|
& conf->prev.chunk_mask);
|
|
if (sector_nr + RESYNC_SECTORS < last)
|
|
sector_nr = last + 1 - RESYNC_SECTORS;
|
|
} else {
|
|
/* 'next' is after the last device address that we
|
|
* might write to for this chunk in the new layout
|
|
*/
|
|
next = last_dev_address(conf->reshape_progress, &conf->geo);
|
|
|
|
/* 'safe' is the earliest device address that we might
|
|
* read from in the old layout after a restart
|
|
*/
|
|
safe = first_dev_address(conf->reshape_safe, &conf->prev);
|
|
|
|
/* Need to update metadata if 'next' might be beyond 'safe'
|
|
* as that would possibly corrupt data
|
|
*/
|
|
if (next > safe + conf->offset_diff)
|
|
need_flush = 1;
|
|
|
|
sector_nr = conf->reshape_progress;
|
|
last = sector_nr | (conf->geo.chunk_mask
|
|
& conf->prev.chunk_mask);
|
|
|
|
if (sector_nr + RESYNC_SECTORS <= last)
|
|
last = sector_nr + RESYNC_SECTORS - 1;
|
|
}
|
|
|
|
if (need_flush ||
|
|
time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
|
|
/* Need to update reshape_position in metadata */
|
|
wait_barrier(conf, false);
|
|
mddev->reshape_position = conf->reshape_progress;
|
|
if (mddev->reshape_backwards)
|
|
mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
|
|
- conf->reshape_progress;
|
|
else
|
|
mddev->curr_resync_completed = conf->reshape_progress;
|
|
conf->reshape_checkpoint = jiffies;
|
|
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
|
|
md_wakeup_thread(mddev->thread);
|
|
wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
|
|
test_bit(MD_RECOVERY_INTR, &mddev->recovery));
|
|
if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
|
|
allow_barrier(conf);
|
|
return sectors_done;
|
|
}
|
|
conf->reshape_safe = mddev->reshape_position;
|
|
allow_barrier(conf);
|
|
}
|
|
|
|
raise_barrier(conf, 0);
|
|
read_more:
|
|
/* Now schedule reads for blocks from sector_nr to last */
|
|
r10_bio = raid10_alloc_init_r10buf(conf);
|
|
r10_bio->state = 0;
|
|
raise_barrier(conf, 1);
|
|
atomic_set(&r10_bio->remaining, 0);
|
|
r10_bio->mddev = mddev;
|
|
r10_bio->sector = sector_nr;
|
|
set_bit(R10BIO_IsReshape, &r10_bio->state);
|
|
r10_bio->sectors = last - sector_nr + 1;
|
|
rdev = read_balance(conf, r10_bio, &max_sectors);
|
|
BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
|
|
|
|
if (!rdev) {
|
|
/* Cannot read from here, so need to record bad blocks
|
|
* on all the target devices.
|
|
*/
|
|
// FIXME
|
|
mempool_free(r10_bio, &conf->r10buf_pool);
|
|
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
|
|
return sectors_done;
|
|
}
|
|
|
|
read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
|
|
GFP_KERNEL, &mddev->bio_set);
|
|
read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
|
|
+ rdev->data_offset);
|
|
read_bio->bi_private = r10_bio;
|
|
read_bio->bi_end_io = end_reshape_read;
|
|
r10_bio->master_bio = read_bio;
|
|
r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
|
|
|
|
/*
|
|
* Broadcast RESYNC message to other nodes, so all nodes would not
|
|
* write to the region to avoid conflict.
|
|
*/
|
|
if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
|
|
struct mdp_superblock_1 *sb = NULL;
|
|
int sb_reshape_pos = 0;
|
|
|
|
conf->cluster_sync_low = sector_nr;
|
|
conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
|
|
sb = page_address(rdev->sb_page);
|
|
if (sb) {
|
|
sb_reshape_pos = le64_to_cpu(sb->reshape_position);
|
|
/*
|
|
* Set cluster_sync_low again if next address for array
|
|
* reshape is less than cluster_sync_low. Since we can't
|
|
* update cluster_sync_low until it has finished reshape.
|
|
*/
|
|
if (sb_reshape_pos < conf->cluster_sync_low)
|
|
conf->cluster_sync_low = sb_reshape_pos;
|
|
}
|
|
|
|
md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
|
|
conf->cluster_sync_high);
|
|
}
|
|
|
|
/* Now find the locations in the new layout */
|
|
__raid10_find_phys(&conf->geo, r10_bio);
|
|
|
|
blist = read_bio;
|
|
read_bio->bi_next = NULL;
|
|
|
|
rcu_read_lock();
|
|
for (s = 0; s < conf->copies*2; s++) {
|
|
struct bio *b;
|
|
int d = r10_bio->devs[s/2].devnum;
|
|
struct md_rdev *rdev2;
|
|
if (s&1) {
|
|
rdev2 = rcu_dereference(conf->mirrors[d].replacement);
|
|
b = r10_bio->devs[s/2].repl_bio;
|
|
} else {
|
|
rdev2 = rcu_dereference(conf->mirrors[d].rdev);
|
|
b = r10_bio->devs[s/2].bio;
|
|
}
|
|
if (!rdev2 || test_bit(Faulty, &rdev2->flags))
|
|
continue;
|
|
|
|
bio_set_dev(b, rdev2->bdev);
|
|
b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
|
|
rdev2->new_data_offset;
|
|
b->bi_end_io = end_reshape_write;
|
|
bio_set_op_attrs(b, REQ_OP_WRITE, 0);
|
|
b->bi_next = blist;
|
|
blist = b;
|
|
}
|
|
|
|
/* Now add as many pages as possible to all of these bios. */
|
|
|
|
nr_sectors = 0;
|
|
pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
|
|
for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
|
|
struct page *page = pages[s / (PAGE_SIZE >> 9)];
|
|
int len = (max_sectors - s) << 9;
|
|
if (len > PAGE_SIZE)
|
|
len = PAGE_SIZE;
|
|
for (bio = blist; bio ; bio = bio->bi_next) {
|
|
/*
|
|
* won't fail because the vec table is big enough
|
|
* to hold all these pages
|
|
*/
|
|
bio_add_page(bio, page, len, 0);
|
|
}
|
|
sector_nr += len >> 9;
|
|
nr_sectors += len >> 9;
|
|
}
|
|
rcu_read_unlock();
|
|
r10_bio->sectors = nr_sectors;
|
|
|
|
/* Now submit the read */
|
|
md_sync_acct_bio(read_bio, r10_bio->sectors);
|
|
atomic_inc(&r10_bio->remaining);
|
|
read_bio->bi_next = NULL;
|
|
submit_bio_noacct(read_bio);
|
|
sectors_done += nr_sectors;
|
|
if (sector_nr <= last)
|
|
goto read_more;
|
|
|
|
lower_barrier(conf);
|
|
|
|
/* Now that we have done the whole section we can
|
|
* update reshape_progress
|
|
*/
|
|
if (mddev->reshape_backwards)
|
|
conf->reshape_progress -= sectors_done;
|
|
else
|
|
conf->reshape_progress += sectors_done;
|
|
|
|
return sectors_done;
|
|
}
|
|
|
|
static void end_reshape_request(struct r10bio *r10_bio);
|
|
static int handle_reshape_read_error(struct mddev *mddev,
|
|
struct r10bio *r10_bio);
|
|
static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
|
|
{
|
|
/* Reshape read completed. Hopefully we have a block
|
|
* to write out.
|
|
* If we got a read error then we do sync 1-page reads from
|
|
* elsewhere until we find the data - or give up.
|
|
*/
|
|
struct r10conf *conf = mddev->private;
|
|
int s;
|
|
|
|
if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
|
|
if (handle_reshape_read_error(mddev, r10_bio) < 0) {
|
|
/* Reshape has been aborted */
|
|
md_done_sync(mddev, r10_bio->sectors, 0);
|
|
return;
|
|
}
|
|
|
|
/* We definitely have the data in the pages, schedule the
|
|
* writes.
|
|
*/
|
|
atomic_set(&r10_bio->remaining, 1);
|
|
for (s = 0; s < conf->copies*2; s++) {
|
|
struct bio *b;
|
|
int d = r10_bio->devs[s/2].devnum;
|
|
struct md_rdev *rdev;
|
|
rcu_read_lock();
|
|
if (s&1) {
|
|
rdev = rcu_dereference(conf->mirrors[d].replacement);
|
|
b = r10_bio->devs[s/2].repl_bio;
|
|
} else {
|
|
rdev = rcu_dereference(conf->mirrors[d].rdev);
|
|
b = r10_bio->devs[s/2].bio;
|
|
}
|
|
if (!rdev || test_bit(Faulty, &rdev->flags)) {
|
|
rcu_read_unlock();
|
|
continue;
|
|
}
|
|
atomic_inc(&rdev->nr_pending);
|
|
rcu_read_unlock();
|
|
md_sync_acct_bio(b, r10_bio->sectors);
|
|
atomic_inc(&r10_bio->remaining);
|
|
b->bi_next = NULL;
|
|
submit_bio_noacct(b);
|
|
}
|
|
end_reshape_request(r10_bio);
|
|
}
|
|
|
|
static void end_reshape(struct r10conf *conf)
|
|
{
|
|
if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
|
|
return;
|
|
|
|
spin_lock_irq(&conf->device_lock);
|
|
conf->prev = conf->geo;
|
|
md_finish_reshape(conf->mddev);
|
|
smp_wmb();
|
|
conf->reshape_progress = MaxSector;
|
|
conf->reshape_safe = MaxSector;
|
|
spin_unlock_irq(&conf->device_lock);
|
|
|
|
if (conf->mddev->queue)
|
|
raid10_set_io_opt(conf);
|
|
conf->fullsync = 0;
|
|
}
|
|
|
|
static void raid10_update_reshape_pos(struct mddev *mddev)
|
|
{
|
|
struct r10conf *conf = mddev->private;
|
|
sector_t lo, hi;
|
|
|
|
md_cluster_ops->resync_info_get(mddev, &lo, &hi);
|
|
if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
|
|
|| mddev->reshape_position == MaxSector)
|
|
conf->reshape_progress = mddev->reshape_position;
|
|
else
|
|
WARN_ON_ONCE(1);
|
|
}
|
|
|
|
static int handle_reshape_read_error(struct mddev *mddev,
|
|
struct r10bio *r10_bio)
|
|
{
|
|
/* Use sync reads to get the blocks from somewhere else */
|
|
int sectors = r10_bio->sectors;
|
|
struct r10conf *conf = mddev->private;
|
|
struct r10bio *r10b;
|
|
int slot = 0;
|
|
int idx = 0;
|
|
struct page **pages;
|
|
|
|
r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
|
|
if (!r10b) {
|
|
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* reshape IOs share pages from .devs[0].bio */
|
|
pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
|
|
|
|
r10b->sector = r10_bio->sector;
|
|
__raid10_find_phys(&conf->prev, r10b);
|
|
|
|
while (sectors) {
|
|
int s = sectors;
|
|
int success = 0;
|
|
int first_slot = slot;
|
|
|
|
if (s > (PAGE_SIZE >> 9))
|
|
s = PAGE_SIZE >> 9;
|
|
|
|
rcu_read_lock();
|
|
while (!success) {
|
|
int d = r10b->devs[slot].devnum;
|
|
struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
|
|
sector_t addr;
|
|
if (rdev == NULL ||
|
|
test_bit(Faulty, &rdev->flags) ||
|
|
!test_bit(In_sync, &rdev->flags))
|
|
goto failed;
|
|
|
|
addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
|
|
atomic_inc(&rdev->nr_pending);
|
|
rcu_read_unlock();
|
|
success = sync_page_io(rdev,
|
|
addr,
|
|
s << 9,
|
|
pages[idx],
|
|
REQ_OP_READ, 0, false);
|
|
rdev_dec_pending(rdev, mddev);
|
|
rcu_read_lock();
|
|
if (success)
|
|
break;
|
|
failed:
|
|
slot++;
|
|
if (slot >= conf->copies)
|
|
slot = 0;
|
|
if (slot == first_slot)
|
|
break;
|
|
}
|
|
rcu_read_unlock();
|
|
if (!success) {
|
|
/* couldn't read this block, must give up */
|
|
set_bit(MD_RECOVERY_INTR,
|
|
&mddev->recovery);
|
|
kfree(r10b);
|
|
return -EIO;
|
|
}
|
|
sectors -= s;
|
|
idx++;
|
|
}
|
|
kfree(r10b);
|
|
return 0;
|
|
}
|
|
|
|
static void end_reshape_write(struct bio *bio)
|
|
{
|
|
struct r10bio *r10_bio = get_resync_r10bio(bio);
|
|
struct mddev *mddev = r10_bio->mddev;
|
|
struct r10conf *conf = mddev->private;
|
|
int d;
|
|
int slot;
|
|
int repl;
|
|
struct md_rdev *rdev = NULL;
|
|
|
|
d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
|
|
if (repl)
|
|
rdev = conf->mirrors[d].replacement;
|
|
if (!rdev) {
|
|
smp_mb();
|
|
rdev = conf->mirrors[d].rdev;
|
|
}
|
|
|
|
if (bio->bi_status) {
|
|
/* FIXME should record badblock */
|
|
md_error(mddev, rdev);
|
|
}
|
|
|
|
rdev_dec_pending(rdev, mddev);
|
|
end_reshape_request(r10_bio);
|
|
}
|
|
|
|
static void end_reshape_request(struct r10bio *r10_bio)
|
|
{
|
|
if (!atomic_dec_and_test(&r10_bio->remaining))
|
|
return;
|
|
md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
|
|
bio_put(r10_bio->master_bio);
|
|
put_buf(r10_bio);
|
|
}
|
|
|
|
static void raid10_finish_reshape(struct mddev *mddev)
|
|
{
|
|
struct r10conf *conf = mddev->private;
|
|
|
|
if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
|
|
return;
|
|
|
|
if (mddev->delta_disks > 0) {
|
|
if (mddev->recovery_cp > mddev->resync_max_sectors) {
|
|
mddev->recovery_cp = mddev->resync_max_sectors;
|
|
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
|
|
}
|
|
mddev->resync_max_sectors = mddev->array_sectors;
|
|
} else {
|
|
int d;
|
|
rcu_read_lock();
|
|
for (d = conf->geo.raid_disks ;
|
|
d < conf->geo.raid_disks - mddev->delta_disks;
|
|
d++) {
|
|
struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
|
|
if (rdev)
|
|
clear_bit(In_sync, &rdev->flags);
|
|
rdev = rcu_dereference(conf->mirrors[d].replacement);
|
|
if (rdev)
|
|
clear_bit(In_sync, &rdev->flags);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
mddev->layout = mddev->new_layout;
|
|
mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
|
|
mddev->reshape_position = MaxSector;
|
|
mddev->delta_disks = 0;
|
|
mddev->reshape_backwards = 0;
|
|
}
|
|
|
|
static struct md_personality raid10_personality =
|
|
{
|
|
.name = "raid10",
|
|
.level = 10,
|
|
.owner = THIS_MODULE,
|
|
.make_request = raid10_make_request,
|
|
.run = raid10_run,
|
|
.free = raid10_free,
|
|
.status = raid10_status,
|
|
.error_handler = raid10_error,
|
|
.hot_add_disk = raid10_add_disk,
|
|
.hot_remove_disk= raid10_remove_disk,
|
|
.spare_active = raid10_spare_active,
|
|
.sync_request = raid10_sync_request,
|
|
.quiesce = raid10_quiesce,
|
|
.size = raid10_size,
|
|
.resize = raid10_resize,
|
|
.takeover = raid10_takeover,
|
|
.check_reshape = raid10_check_reshape,
|
|
.start_reshape = raid10_start_reshape,
|
|
.finish_reshape = raid10_finish_reshape,
|
|
.update_reshape_pos = raid10_update_reshape_pos,
|
|
};
|
|
|
|
static int __init raid_init(void)
|
|
{
|
|
return register_md_personality(&raid10_personality);
|
|
}
|
|
|
|
static void raid_exit(void)
|
|
{
|
|
unregister_md_personality(&raid10_personality);
|
|
}
|
|
|
|
module_init(raid_init);
|
|
module_exit(raid_exit);
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
|
|
MODULE_ALIAS("md-personality-9"); /* RAID10 */
|
|
MODULE_ALIAS("md-raid10");
|
|
MODULE_ALIAS("md-level-10");
|