linux/arch/x86/kvm/vmx.c
Avi Kivity 019960ae99 KVM: VMX: Don't adjust tsc offset forward
Most Intel hosts have a stable tsc, and playing with the offset only
reduces accuracy.  By limiting tsc offset adjustment only to forward updates,
we effectively disable tsc offset adjustment on these hosts.

Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-04-27 11:53:27 +03:00

2751 lines
69 KiB
C

/*
* Kernel-based Virtual Machine driver for Linux
*
* This module enables machines with Intel VT-x extensions to run virtual
* machines without emulation or binary translation.
*
* Copyright (C) 2006 Qumranet, Inc.
*
* Authors:
* Avi Kivity <avi@qumranet.com>
* Yaniv Kamay <yaniv@qumranet.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#include "irq.h"
#include "vmx.h"
#include "mmu.h"
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/sched.h>
#include <linux/moduleparam.h>
#include <asm/io.h>
#include <asm/desc.h>
MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");
static int bypass_guest_pf = 1;
module_param(bypass_guest_pf, bool, 0);
static int enable_vpid = 1;
module_param(enable_vpid, bool, 0);
struct vmcs {
u32 revision_id;
u32 abort;
char data[0];
};
struct vcpu_vmx {
struct kvm_vcpu vcpu;
int launched;
u8 fail;
u32 idt_vectoring_info;
struct kvm_msr_entry *guest_msrs;
struct kvm_msr_entry *host_msrs;
int nmsrs;
int save_nmsrs;
int msr_offset_efer;
#ifdef CONFIG_X86_64
int msr_offset_kernel_gs_base;
#endif
struct vmcs *vmcs;
struct {
int loaded;
u16 fs_sel, gs_sel, ldt_sel;
int gs_ldt_reload_needed;
int fs_reload_needed;
int guest_efer_loaded;
} host_state;
struct {
struct {
bool pending;
u8 vector;
unsigned rip;
} irq;
} rmode;
int vpid;
};
static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
{
return container_of(vcpu, struct vcpu_vmx, vcpu);
}
static int init_rmode_tss(struct kvm *kvm);
static DEFINE_PER_CPU(struct vmcs *, vmxarea);
static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
static struct page *vmx_io_bitmap_a;
static struct page *vmx_io_bitmap_b;
static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
static DEFINE_SPINLOCK(vmx_vpid_lock);
static struct vmcs_config {
int size;
int order;
u32 revision_id;
u32 pin_based_exec_ctrl;
u32 cpu_based_exec_ctrl;
u32 cpu_based_2nd_exec_ctrl;
u32 vmexit_ctrl;
u32 vmentry_ctrl;
} vmcs_config;
#define VMX_SEGMENT_FIELD(seg) \
[VCPU_SREG_##seg] = { \
.selector = GUEST_##seg##_SELECTOR, \
.base = GUEST_##seg##_BASE, \
.limit = GUEST_##seg##_LIMIT, \
.ar_bytes = GUEST_##seg##_AR_BYTES, \
}
static struct kvm_vmx_segment_field {
unsigned selector;
unsigned base;
unsigned limit;
unsigned ar_bytes;
} kvm_vmx_segment_fields[] = {
VMX_SEGMENT_FIELD(CS),
VMX_SEGMENT_FIELD(DS),
VMX_SEGMENT_FIELD(ES),
VMX_SEGMENT_FIELD(FS),
VMX_SEGMENT_FIELD(GS),
VMX_SEGMENT_FIELD(SS),
VMX_SEGMENT_FIELD(TR),
VMX_SEGMENT_FIELD(LDTR),
};
/*
* Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
* away by decrementing the array size.
*/
static const u32 vmx_msr_index[] = {
#ifdef CONFIG_X86_64
MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
#endif
MSR_EFER, MSR_K6_STAR,
};
#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
static void load_msrs(struct kvm_msr_entry *e, int n)
{
int i;
for (i = 0; i < n; ++i)
wrmsrl(e[i].index, e[i].data);
}
static void save_msrs(struct kvm_msr_entry *e, int n)
{
int i;
for (i = 0; i < n; ++i)
rdmsrl(e[i].index, e[i].data);
}
static inline int is_page_fault(u32 intr_info)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
INTR_INFO_VALID_MASK)) ==
(INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
}
static inline int is_no_device(u32 intr_info)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
INTR_INFO_VALID_MASK)) ==
(INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
}
static inline int is_invalid_opcode(u32 intr_info)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
INTR_INFO_VALID_MASK)) ==
(INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
}
static inline int is_external_interrupt(u32 intr_info)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
== (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
}
static inline int cpu_has_vmx_tpr_shadow(void)
{
return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
}
static inline int vm_need_tpr_shadow(struct kvm *kvm)
{
return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
}
static inline int cpu_has_secondary_exec_ctrls(void)
{
return (vmcs_config.cpu_based_exec_ctrl &
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
}
static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
{
return (vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
}
static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
{
return ((cpu_has_vmx_virtualize_apic_accesses()) &&
(irqchip_in_kernel(kvm)));
}
static inline int cpu_has_vmx_vpid(void)
{
return (vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_ENABLE_VPID);
}
static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
{
int i;
for (i = 0; i < vmx->nmsrs; ++i)
if (vmx->guest_msrs[i].index == msr)
return i;
return -1;
}
static inline void __invvpid(int ext, u16 vpid, gva_t gva)
{
struct {
u64 vpid : 16;
u64 rsvd : 48;
u64 gva;
} operand = { vpid, 0, gva };
asm volatile (ASM_VMX_INVVPID
/* CF==1 or ZF==1 --> rc = -1 */
"; ja 1f ; ud2 ; 1:"
: : "a"(&operand), "c"(ext) : "cc", "memory");
}
static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
{
int i;
i = __find_msr_index(vmx, msr);
if (i >= 0)
return &vmx->guest_msrs[i];
return NULL;
}
static void vmcs_clear(struct vmcs *vmcs)
{
u64 phys_addr = __pa(vmcs);
u8 error;
asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
: "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
: "cc", "memory");
if (error)
printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
vmcs, phys_addr);
}
static void __vcpu_clear(void *arg)
{
struct vcpu_vmx *vmx = arg;
int cpu = raw_smp_processor_id();
if (vmx->vcpu.cpu == cpu)
vmcs_clear(vmx->vmcs);
if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
per_cpu(current_vmcs, cpu) = NULL;
rdtscll(vmx->vcpu.arch.host_tsc);
}
static void vcpu_clear(struct vcpu_vmx *vmx)
{
if (vmx->vcpu.cpu == -1)
return;
smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
vmx->launched = 0;
}
static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
{
if (vmx->vpid == 0)
return;
__invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
}
static unsigned long vmcs_readl(unsigned long field)
{
unsigned long value;
asm volatile (ASM_VMX_VMREAD_RDX_RAX
: "=a"(value) : "d"(field) : "cc");
return value;
}
static u16 vmcs_read16(unsigned long field)
{
return vmcs_readl(field);
}
static u32 vmcs_read32(unsigned long field)
{
return vmcs_readl(field);
}
static u64 vmcs_read64(unsigned long field)
{
#ifdef CONFIG_X86_64
return vmcs_readl(field);
#else
return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
#endif
}
static noinline void vmwrite_error(unsigned long field, unsigned long value)
{
printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
dump_stack();
}
static void vmcs_writel(unsigned long field, unsigned long value)
{
u8 error;
asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
: "=q"(error) : "a"(value), "d"(field) : "cc");
if (unlikely(error))
vmwrite_error(field, value);
}
static void vmcs_write16(unsigned long field, u16 value)
{
vmcs_writel(field, value);
}
static void vmcs_write32(unsigned long field, u32 value)
{
vmcs_writel(field, value);
}
static void vmcs_write64(unsigned long field, u64 value)
{
#ifdef CONFIG_X86_64
vmcs_writel(field, value);
#else
vmcs_writel(field, value);
asm volatile ("");
vmcs_writel(field+1, value >> 32);
#endif
}
static void vmcs_clear_bits(unsigned long field, u32 mask)
{
vmcs_writel(field, vmcs_readl(field) & ~mask);
}
static void vmcs_set_bits(unsigned long field, u32 mask)
{
vmcs_writel(field, vmcs_readl(field) | mask);
}
static void update_exception_bitmap(struct kvm_vcpu *vcpu)
{
u32 eb;
eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
if (!vcpu->fpu_active)
eb |= 1u << NM_VECTOR;
if (vcpu->guest_debug.enabled)
eb |= 1u << 1;
if (vcpu->arch.rmode.active)
eb = ~0;
vmcs_write32(EXCEPTION_BITMAP, eb);
}
static void reload_tss(void)
{
/*
* VT restores TR but not its size. Useless.
*/
struct descriptor_table gdt;
struct desc_struct *descs;
get_gdt(&gdt);
descs = (void *)gdt.base;
descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
load_TR_desc();
}
static void load_transition_efer(struct vcpu_vmx *vmx)
{
int efer_offset = vmx->msr_offset_efer;
u64 host_efer = vmx->host_msrs[efer_offset].data;
u64 guest_efer = vmx->guest_msrs[efer_offset].data;
u64 ignore_bits;
if (efer_offset < 0)
return;
/*
* NX is emulated; LMA and LME handled by hardware; SCE meaninless
* outside long mode
*/
ignore_bits = EFER_NX | EFER_SCE;
#ifdef CONFIG_X86_64
ignore_bits |= EFER_LMA | EFER_LME;
/* SCE is meaningful only in long mode on Intel */
if (guest_efer & EFER_LMA)
ignore_bits &= ~(u64)EFER_SCE;
#endif
if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
return;
vmx->host_state.guest_efer_loaded = 1;
guest_efer &= ~ignore_bits;
guest_efer |= host_efer & ignore_bits;
wrmsrl(MSR_EFER, guest_efer);
vmx->vcpu.stat.efer_reload++;
}
static void reload_host_efer(struct vcpu_vmx *vmx)
{
if (vmx->host_state.guest_efer_loaded) {
vmx->host_state.guest_efer_loaded = 0;
load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
}
}
static void vmx_save_host_state(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (vmx->host_state.loaded)
return;
vmx->host_state.loaded = 1;
/*
* Set host fs and gs selectors. Unfortunately, 22.2.3 does not
* allow segment selectors with cpl > 0 or ti == 1.
*/
vmx->host_state.ldt_sel = read_ldt();
vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
vmx->host_state.fs_sel = read_fs();
if (!(vmx->host_state.fs_sel & 7)) {
vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
vmx->host_state.fs_reload_needed = 0;
} else {
vmcs_write16(HOST_FS_SELECTOR, 0);
vmx->host_state.fs_reload_needed = 1;
}
vmx->host_state.gs_sel = read_gs();
if (!(vmx->host_state.gs_sel & 7))
vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
else {
vmcs_write16(HOST_GS_SELECTOR, 0);
vmx->host_state.gs_ldt_reload_needed = 1;
}
#ifdef CONFIG_X86_64
vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
#else
vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
#endif
#ifdef CONFIG_X86_64
if (is_long_mode(&vmx->vcpu))
save_msrs(vmx->host_msrs +
vmx->msr_offset_kernel_gs_base, 1);
#endif
load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
load_transition_efer(vmx);
}
static void vmx_load_host_state(struct vcpu_vmx *vmx)
{
unsigned long flags;
if (!vmx->host_state.loaded)
return;
++vmx->vcpu.stat.host_state_reload;
vmx->host_state.loaded = 0;
if (vmx->host_state.fs_reload_needed)
load_fs(vmx->host_state.fs_sel);
if (vmx->host_state.gs_ldt_reload_needed) {
load_ldt(vmx->host_state.ldt_sel);
/*
* If we have to reload gs, we must take care to
* preserve our gs base.
*/
local_irq_save(flags);
load_gs(vmx->host_state.gs_sel);
#ifdef CONFIG_X86_64
wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
#endif
local_irq_restore(flags);
}
reload_tss();
save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
load_msrs(vmx->host_msrs, vmx->save_nmsrs);
reload_host_efer(vmx);
}
/*
* Switches to specified vcpu, until a matching vcpu_put(), but assumes
* vcpu mutex is already taken.
*/
static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u64 phys_addr = __pa(vmx->vmcs);
u64 tsc_this, delta, new_offset;
if (vcpu->cpu != cpu) {
vcpu_clear(vmx);
kvm_migrate_apic_timer(vcpu);
vpid_sync_vcpu_all(vmx);
}
if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
u8 error;
per_cpu(current_vmcs, cpu) = vmx->vmcs;
asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
: "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
: "cc");
if (error)
printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
vmx->vmcs, phys_addr);
}
if (vcpu->cpu != cpu) {
struct descriptor_table dt;
unsigned long sysenter_esp;
vcpu->cpu = cpu;
/*
* Linux uses per-cpu TSS and GDT, so set these when switching
* processors.
*/
vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
get_gdt(&dt);
vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
/*
* Make sure the time stamp counter is monotonous.
*/
rdtscll(tsc_this);
if (tsc_this < vcpu->arch.host_tsc) {
delta = vcpu->arch.host_tsc - tsc_this;
new_offset = vmcs_read64(TSC_OFFSET) + delta;
vmcs_write64(TSC_OFFSET, new_offset);
}
}
}
static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
{
vmx_load_host_state(to_vmx(vcpu));
}
static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
{
if (vcpu->fpu_active)
return;
vcpu->fpu_active = 1;
vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
if (vcpu->arch.cr0 & X86_CR0_TS)
vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
update_exception_bitmap(vcpu);
}
static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
{
if (!vcpu->fpu_active)
return;
vcpu->fpu_active = 0;
vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
update_exception_bitmap(vcpu);
}
static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
{
vcpu_clear(to_vmx(vcpu));
}
static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
{
return vmcs_readl(GUEST_RFLAGS);
}
static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
if (vcpu->arch.rmode.active)
rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
vmcs_writel(GUEST_RFLAGS, rflags);
}
static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
{
unsigned long rip;
u32 interruptibility;
rip = vmcs_readl(GUEST_RIP);
rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
vmcs_writel(GUEST_RIP, rip);
/*
* We emulated an instruction, so temporary interrupt blocking
* should be removed, if set.
*/
interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
if (interruptibility & 3)
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
interruptibility & ~3);
vcpu->arch.interrupt_window_open = 1;
}
static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
bool has_error_code, u32 error_code)
{
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
nr | INTR_TYPE_EXCEPTION
| (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
| INTR_INFO_VALID_MASK);
if (has_error_code)
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
}
static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
}
/*
* Swap MSR entry in host/guest MSR entry array.
*/
#ifdef CONFIG_X86_64
static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
{
struct kvm_msr_entry tmp;
tmp = vmx->guest_msrs[to];
vmx->guest_msrs[to] = vmx->guest_msrs[from];
vmx->guest_msrs[from] = tmp;
tmp = vmx->host_msrs[to];
vmx->host_msrs[to] = vmx->host_msrs[from];
vmx->host_msrs[from] = tmp;
}
#endif
/*
* Set up the vmcs to automatically save and restore system
* msrs. Don't touch the 64-bit msrs if the guest is in legacy
* mode, as fiddling with msrs is very expensive.
*/
static void setup_msrs(struct vcpu_vmx *vmx)
{
int save_nmsrs;
vmx_load_host_state(vmx);
save_nmsrs = 0;
#ifdef CONFIG_X86_64
if (is_long_mode(&vmx->vcpu)) {
int index;
index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
if (index >= 0)
move_msr_up(vmx, index, save_nmsrs++);
index = __find_msr_index(vmx, MSR_LSTAR);
if (index >= 0)
move_msr_up(vmx, index, save_nmsrs++);
index = __find_msr_index(vmx, MSR_CSTAR);
if (index >= 0)
move_msr_up(vmx, index, save_nmsrs++);
index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
if (index >= 0)
move_msr_up(vmx, index, save_nmsrs++);
/*
* MSR_K6_STAR is only needed on long mode guests, and only
* if efer.sce is enabled.
*/
index = __find_msr_index(vmx, MSR_K6_STAR);
if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
move_msr_up(vmx, index, save_nmsrs++);
}
#endif
vmx->save_nmsrs = save_nmsrs;
#ifdef CONFIG_X86_64
vmx->msr_offset_kernel_gs_base =
__find_msr_index(vmx, MSR_KERNEL_GS_BASE);
#endif
vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
}
/*
* reads and returns guest's timestamp counter "register"
* guest_tsc = host_tsc + tsc_offset -- 21.3
*/
static u64 guest_read_tsc(void)
{
u64 host_tsc, tsc_offset;
rdtscll(host_tsc);
tsc_offset = vmcs_read64(TSC_OFFSET);
return host_tsc + tsc_offset;
}
/*
* writes 'guest_tsc' into guest's timestamp counter "register"
* guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
*/
static void guest_write_tsc(u64 guest_tsc)
{
u64 host_tsc;
rdtscll(host_tsc);
vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
}
/*
* Reads an msr value (of 'msr_index') into 'pdata'.
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
{
u64 data;
struct kvm_msr_entry *msr;
if (!pdata) {
printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
return -EINVAL;
}
switch (msr_index) {
#ifdef CONFIG_X86_64
case MSR_FS_BASE:
data = vmcs_readl(GUEST_FS_BASE);
break;
case MSR_GS_BASE:
data = vmcs_readl(GUEST_GS_BASE);
break;
case MSR_EFER:
return kvm_get_msr_common(vcpu, msr_index, pdata);
#endif
case MSR_IA32_TIME_STAMP_COUNTER:
data = guest_read_tsc();
break;
case MSR_IA32_SYSENTER_CS:
data = vmcs_read32(GUEST_SYSENTER_CS);
break;
case MSR_IA32_SYSENTER_EIP:
data = vmcs_readl(GUEST_SYSENTER_EIP);
break;
case MSR_IA32_SYSENTER_ESP:
data = vmcs_readl(GUEST_SYSENTER_ESP);
break;
default:
msr = find_msr_entry(to_vmx(vcpu), msr_index);
if (msr) {
data = msr->data;
break;
}
return kvm_get_msr_common(vcpu, msr_index, pdata);
}
*pdata = data;
return 0;
}
/*
* Writes msr value into into the appropriate "register".
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct kvm_msr_entry *msr;
int ret = 0;
switch (msr_index) {
#ifdef CONFIG_X86_64
case MSR_EFER:
ret = kvm_set_msr_common(vcpu, msr_index, data);
if (vmx->host_state.loaded) {
reload_host_efer(vmx);
load_transition_efer(vmx);
}
break;
case MSR_FS_BASE:
vmcs_writel(GUEST_FS_BASE, data);
break;
case MSR_GS_BASE:
vmcs_writel(GUEST_GS_BASE, data);
break;
#endif
case MSR_IA32_SYSENTER_CS:
vmcs_write32(GUEST_SYSENTER_CS, data);
break;
case MSR_IA32_SYSENTER_EIP:
vmcs_writel(GUEST_SYSENTER_EIP, data);
break;
case MSR_IA32_SYSENTER_ESP:
vmcs_writel(GUEST_SYSENTER_ESP, data);
break;
case MSR_IA32_TIME_STAMP_COUNTER:
guest_write_tsc(data);
break;
default:
msr = find_msr_entry(vmx, msr_index);
if (msr) {
msr->data = data;
if (vmx->host_state.loaded)
load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
break;
}
ret = kvm_set_msr_common(vcpu, msr_index, data);
}
return ret;
}
/*
* Sync the rsp and rip registers into the vcpu structure. This allows
* registers to be accessed by indexing vcpu->arch.regs.
*/
static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
{
vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
vcpu->arch.rip = vmcs_readl(GUEST_RIP);
}
/*
* Syncs rsp and rip back into the vmcs. Should be called after possible
* modification.
*/
static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
{
vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
vmcs_writel(GUEST_RIP, vcpu->arch.rip);
}
static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
{
unsigned long dr7 = 0x400;
int old_singlestep;
old_singlestep = vcpu->guest_debug.singlestep;
vcpu->guest_debug.enabled = dbg->enabled;
if (vcpu->guest_debug.enabled) {
int i;
dr7 |= 0x200; /* exact */
for (i = 0; i < 4; ++i) {
if (!dbg->breakpoints[i].enabled)
continue;
vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
dr7 |= 2 << (i*2); /* global enable */
dr7 |= 0 << (i*4+16); /* execution breakpoint */
}
vcpu->guest_debug.singlestep = dbg->singlestep;
} else
vcpu->guest_debug.singlestep = 0;
if (old_singlestep && !vcpu->guest_debug.singlestep) {
unsigned long flags;
flags = vmcs_readl(GUEST_RFLAGS);
flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
vmcs_writel(GUEST_RFLAGS, flags);
}
update_exception_bitmap(vcpu);
vmcs_writel(GUEST_DR7, dr7);
return 0;
}
static int vmx_get_irq(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 idtv_info_field;
idtv_info_field = vmx->idt_vectoring_info;
if (idtv_info_field & INTR_INFO_VALID_MASK) {
if (is_external_interrupt(idtv_info_field))
return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
else
printk(KERN_DEBUG "pending exception: not handled yet\n");
}
return -1;
}
static __init int cpu_has_kvm_support(void)
{
unsigned long ecx = cpuid_ecx(1);
return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
}
static __init int vmx_disabled_by_bios(void)
{
u64 msr;
rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
== MSR_IA32_FEATURE_CONTROL_LOCKED;
/* locked but not enabled */
}
static void hardware_enable(void *garbage)
{
int cpu = raw_smp_processor_id();
u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
u64 old;
rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
!= (MSR_IA32_FEATURE_CONTROL_LOCKED |
MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
/* enable and lock */
wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
MSR_IA32_FEATURE_CONTROL_LOCKED |
MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
: "memory", "cc");
}
static void hardware_disable(void *garbage)
{
asm volatile (ASM_VMX_VMXOFF : : : "cc");
}
static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
u32 msr, u32 *result)
{
u32 vmx_msr_low, vmx_msr_high;
u32 ctl = ctl_min | ctl_opt;
rdmsr(msr, vmx_msr_low, vmx_msr_high);
ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
/* Ensure minimum (required) set of control bits are supported. */
if (ctl_min & ~ctl)
return -EIO;
*result = ctl;
return 0;
}
static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
{
u32 vmx_msr_low, vmx_msr_high;
u32 min, opt;
u32 _pin_based_exec_control = 0;
u32 _cpu_based_exec_control = 0;
u32 _cpu_based_2nd_exec_control = 0;
u32 _vmexit_control = 0;
u32 _vmentry_control = 0;
min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
opt = 0;
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
&_pin_based_exec_control) < 0)
return -EIO;
min = CPU_BASED_HLT_EXITING |
#ifdef CONFIG_X86_64
CPU_BASED_CR8_LOAD_EXITING |
CPU_BASED_CR8_STORE_EXITING |
#endif
CPU_BASED_USE_IO_BITMAPS |
CPU_BASED_MOV_DR_EXITING |
CPU_BASED_USE_TSC_OFFSETING;
opt = CPU_BASED_TPR_SHADOW |
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
&_cpu_based_exec_control) < 0)
return -EIO;
#ifdef CONFIG_X86_64
if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
~CPU_BASED_CR8_STORE_EXITING;
#endif
if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
min = 0;
opt = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
SECONDARY_EXEC_WBINVD_EXITING |
SECONDARY_EXEC_ENABLE_VPID;
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS2,
&_cpu_based_2nd_exec_control) < 0)
return -EIO;
}
#ifndef CONFIG_X86_64
if (!(_cpu_based_2nd_exec_control &
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
#endif
min = 0;
#ifdef CONFIG_X86_64
min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
#endif
opt = 0;
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
&_vmexit_control) < 0)
return -EIO;
min = opt = 0;
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
&_vmentry_control) < 0)
return -EIO;
rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
return -EIO;
#ifdef CONFIG_X86_64
/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
if (vmx_msr_high & (1u<<16))
return -EIO;
#endif
/* Require Write-Back (WB) memory type for VMCS accesses. */
if (((vmx_msr_high >> 18) & 15) != 6)
return -EIO;
vmcs_conf->size = vmx_msr_high & 0x1fff;
vmcs_conf->order = get_order(vmcs_config.size);
vmcs_conf->revision_id = vmx_msr_low;
vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
vmcs_conf->vmexit_ctrl = _vmexit_control;
vmcs_conf->vmentry_ctrl = _vmentry_control;
return 0;
}
static struct vmcs *alloc_vmcs_cpu(int cpu)
{
int node = cpu_to_node(cpu);
struct page *pages;
struct vmcs *vmcs;
pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
if (!pages)
return NULL;
vmcs = page_address(pages);
memset(vmcs, 0, vmcs_config.size);
vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
return vmcs;
}
static struct vmcs *alloc_vmcs(void)
{
return alloc_vmcs_cpu(raw_smp_processor_id());
}
static void free_vmcs(struct vmcs *vmcs)
{
free_pages((unsigned long)vmcs, vmcs_config.order);
}
static void free_kvm_area(void)
{
int cpu;
for_each_online_cpu(cpu)
free_vmcs(per_cpu(vmxarea, cpu));
}
static __init int alloc_kvm_area(void)
{
int cpu;
for_each_online_cpu(cpu) {
struct vmcs *vmcs;
vmcs = alloc_vmcs_cpu(cpu);
if (!vmcs) {
free_kvm_area();
return -ENOMEM;
}
per_cpu(vmxarea, cpu) = vmcs;
}
return 0;
}
static __init int hardware_setup(void)
{
if (setup_vmcs_config(&vmcs_config) < 0)
return -EIO;
if (boot_cpu_has(X86_FEATURE_NX))
kvm_enable_efer_bits(EFER_NX);
return alloc_kvm_area();
}
static __exit void hardware_unsetup(void)
{
free_kvm_area();
}
static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
{
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
vmcs_write16(sf->selector, save->selector);
vmcs_writel(sf->base, save->base);
vmcs_write32(sf->limit, save->limit);
vmcs_write32(sf->ar_bytes, save->ar);
} else {
u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
<< AR_DPL_SHIFT;
vmcs_write32(sf->ar_bytes, 0x93 | dpl);
}
}
static void enter_pmode(struct kvm_vcpu *vcpu)
{
unsigned long flags;
vcpu->arch.rmode.active = 0;
vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
flags = vmcs_readl(GUEST_RFLAGS);
flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
vmcs_writel(GUEST_RFLAGS, flags);
vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
update_exception_bitmap(vcpu);
fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
vmcs_write16(GUEST_SS_SELECTOR, 0);
vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
vmcs_write16(GUEST_CS_SELECTOR,
vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
}
static gva_t rmode_tss_base(struct kvm *kvm)
{
if (!kvm->arch.tss_addr) {
gfn_t base_gfn = kvm->memslots[0].base_gfn +
kvm->memslots[0].npages - 3;
return base_gfn << PAGE_SHIFT;
}
return kvm->arch.tss_addr;
}
static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
{
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
save->selector = vmcs_read16(sf->selector);
save->base = vmcs_readl(sf->base);
save->limit = vmcs_read32(sf->limit);
save->ar = vmcs_read32(sf->ar_bytes);
vmcs_write16(sf->selector, save->base >> 4);
vmcs_write32(sf->base, save->base & 0xfffff);
vmcs_write32(sf->limit, 0xffff);
vmcs_write32(sf->ar_bytes, 0xf3);
}
static void enter_rmode(struct kvm_vcpu *vcpu)
{
unsigned long flags;
vcpu->arch.rmode.active = 1;
vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
flags = vmcs_readl(GUEST_RFLAGS);
vcpu->arch.rmode.save_iopl
= (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
vmcs_writel(GUEST_RFLAGS, flags);
vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
update_exception_bitmap(vcpu);
vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
vmcs_write32(GUEST_SS_LIMIT, 0xffff);
vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
vmcs_write32(GUEST_CS_LIMIT, 0xffff);
if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
vmcs_writel(GUEST_CS_BASE, 0xf0000);
vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
kvm_mmu_reset_context(vcpu);
init_rmode_tss(vcpu->kvm);
}
#ifdef CONFIG_X86_64
static void enter_lmode(struct kvm_vcpu *vcpu)
{
u32 guest_tr_ar;
guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
__func__);
vmcs_write32(GUEST_TR_AR_BYTES,
(guest_tr_ar & ~AR_TYPE_MASK)
| AR_TYPE_BUSY_64_TSS);
}
vcpu->arch.shadow_efer |= EFER_LMA;
find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
vmcs_write32(VM_ENTRY_CONTROLS,
vmcs_read32(VM_ENTRY_CONTROLS)
| VM_ENTRY_IA32E_MODE);
}
static void exit_lmode(struct kvm_vcpu *vcpu)
{
vcpu->arch.shadow_efer &= ~EFER_LMA;
vmcs_write32(VM_ENTRY_CONTROLS,
vmcs_read32(VM_ENTRY_CONTROLS)
& ~VM_ENTRY_IA32E_MODE);
}
#endif
static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
{
vpid_sync_vcpu_all(to_vmx(vcpu));
}
static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
{
vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
}
static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
vmx_fpu_deactivate(vcpu);
if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
enter_pmode(vcpu);
if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
enter_rmode(vcpu);
#ifdef CONFIG_X86_64
if (vcpu->arch.shadow_efer & EFER_LME) {
if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
enter_lmode(vcpu);
if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
exit_lmode(vcpu);
}
#endif
vmcs_writel(CR0_READ_SHADOW, cr0);
vmcs_writel(GUEST_CR0,
(cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
vcpu->arch.cr0 = cr0;
if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
vmx_fpu_activate(vcpu);
}
static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
{
vmx_flush_tlb(vcpu);
vmcs_writel(GUEST_CR3, cr3);
if (vcpu->arch.cr0 & X86_CR0_PE)
vmx_fpu_deactivate(vcpu);
}
static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
vmcs_writel(CR4_READ_SHADOW, cr4);
vmcs_writel(GUEST_CR4, cr4 | (vcpu->arch.rmode.active ?
KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
vcpu->arch.cr4 = cr4;
}
static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
vcpu->arch.shadow_efer = efer;
if (!msr)
return;
if (efer & EFER_LMA) {
vmcs_write32(VM_ENTRY_CONTROLS,
vmcs_read32(VM_ENTRY_CONTROLS) |
VM_ENTRY_IA32E_MODE);
msr->data = efer;
} else {
vmcs_write32(VM_ENTRY_CONTROLS,
vmcs_read32(VM_ENTRY_CONTROLS) &
~VM_ENTRY_IA32E_MODE);
msr->data = efer & ~EFER_LME;
}
setup_msrs(vmx);
}
static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
return vmcs_readl(sf->base);
}
static void vmx_get_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
u32 ar;
var->base = vmcs_readl(sf->base);
var->limit = vmcs_read32(sf->limit);
var->selector = vmcs_read16(sf->selector);
ar = vmcs_read32(sf->ar_bytes);
if (ar & AR_UNUSABLE_MASK)
ar = 0;
var->type = ar & 15;
var->s = (ar >> 4) & 1;
var->dpl = (ar >> 5) & 3;
var->present = (ar >> 7) & 1;
var->avl = (ar >> 12) & 1;
var->l = (ar >> 13) & 1;
var->db = (ar >> 14) & 1;
var->g = (ar >> 15) & 1;
var->unusable = (ar >> 16) & 1;
}
static u32 vmx_segment_access_rights(struct kvm_segment *var)
{
u32 ar;
if (var->unusable)
ar = 1 << 16;
else {
ar = var->type & 15;
ar |= (var->s & 1) << 4;
ar |= (var->dpl & 3) << 5;
ar |= (var->present & 1) << 7;
ar |= (var->avl & 1) << 12;
ar |= (var->l & 1) << 13;
ar |= (var->db & 1) << 14;
ar |= (var->g & 1) << 15;
}
if (ar == 0) /* a 0 value means unusable */
ar = AR_UNUSABLE_MASK;
return ar;
}
static void vmx_set_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
u32 ar;
if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
vcpu->arch.rmode.tr.selector = var->selector;
vcpu->arch.rmode.tr.base = var->base;
vcpu->arch.rmode.tr.limit = var->limit;
vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
return;
}
vmcs_writel(sf->base, var->base);
vmcs_write32(sf->limit, var->limit);
vmcs_write16(sf->selector, var->selector);
if (vcpu->arch.rmode.active && var->s) {
/*
* Hack real-mode segments into vm86 compatibility.
*/
if (var->base == 0xffff0000 && var->selector == 0xf000)
vmcs_writel(sf->base, 0xf0000);
ar = 0xf3;
} else
ar = vmx_segment_access_rights(var);
vmcs_write32(sf->ar_bytes, ar);
}
static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
*db = (ar >> 14) & 1;
*l = (ar >> 13) & 1;
}
static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
dt->base = vmcs_readl(GUEST_IDTR_BASE);
}
static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
vmcs_writel(GUEST_IDTR_BASE, dt->base);
}
static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
dt->base = vmcs_readl(GUEST_GDTR_BASE);
}
static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
vmcs_writel(GUEST_GDTR_BASE, dt->base);
}
static int init_rmode_tss(struct kvm *kvm)
{
gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
u16 data = 0;
int ret = 0;
int r;
down_read(&kvm->slots_lock);
r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
if (r < 0)
goto out;
data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
if (r < 0)
goto out;
r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
if (r < 0)
goto out;
r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
if (r < 0)
goto out;
data = ~0;
r = kvm_write_guest_page(kvm, fn, &data,
RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
sizeof(u8));
if (r < 0)
goto out;
ret = 1;
out:
up_read(&kvm->slots_lock);
return ret;
}
static void seg_setup(int seg)
{
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
vmcs_write16(sf->selector, 0);
vmcs_writel(sf->base, 0);
vmcs_write32(sf->limit, 0xffff);
vmcs_write32(sf->ar_bytes, 0x93);
}
static int alloc_apic_access_page(struct kvm *kvm)
{
struct kvm_userspace_memory_region kvm_userspace_mem;
int r = 0;
down_write(&kvm->slots_lock);
if (kvm->arch.apic_access_page)
goto out;
kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
kvm_userspace_mem.flags = 0;
kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
kvm_userspace_mem.memory_size = PAGE_SIZE;
r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
if (r)
goto out;
down_read(&current->mm->mmap_sem);
kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
up_read(&current->mm->mmap_sem);
out:
up_write(&kvm->slots_lock);
return r;
}
static void allocate_vpid(struct vcpu_vmx *vmx)
{
int vpid;
vmx->vpid = 0;
if (!enable_vpid || !cpu_has_vmx_vpid())
return;
spin_lock(&vmx_vpid_lock);
vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
if (vpid < VMX_NR_VPIDS) {
vmx->vpid = vpid;
__set_bit(vpid, vmx_vpid_bitmap);
}
spin_unlock(&vmx_vpid_lock);
}
/*
* Sets up the vmcs for emulated real mode.
*/
static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
{
u32 host_sysenter_cs;
u32 junk;
unsigned long a;
struct descriptor_table dt;
int i;
unsigned long kvm_vmx_return;
u32 exec_control;
/* I/O */
vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
/* Control */
vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
vmcs_config.pin_based_exec_ctrl);
exec_control = vmcs_config.cpu_based_exec_ctrl;
if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
exec_control &= ~CPU_BASED_TPR_SHADOW;
#ifdef CONFIG_X86_64
exec_control |= CPU_BASED_CR8_STORE_EXITING |
CPU_BASED_CR8_LOAD_EXITING;
#endif
}
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
if (cpu_has_secondary_exec_ctrls()) {
exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
exec_control &=
~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
if (vmx->vpid == 0)
exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
}
vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
#ifdef CONFIG_X86_64
rdmsrl(MSR_FS_BASE, a);
vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
rdmsrl(MSR_GS_BASE, a);
vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
#else
vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
#endif
vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
get_idt(&dt);
vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
rdmsrl(MSR_IA32_SYSENTER_ESP, a);
vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
rdmsrl(MSR_IA32_SYSENTER_EIP, a);
vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
for (i = 0; i < NR_VMX_MSR; ++i) {
u32 index = vmx_msr_index[i];
u32 data_low, data_high;
u64 data;
int j = vmx->nmsrs;
if (rdmsr_safe(index, &data_low, &data_high) < 0)
continue;
if (wrmsr_safe(index, data_low, data_high) < 0)
continue;
data = data_low | ((u64)data_high << 32);
vmx->host_msrs[j].index = index;
vmx->host_msrs[j].reserved = 0;
vmx->host_msrs[j].data = data;
vmx->guest_msrs[j] = vmx->host_msrs[j];
++vmx->nmsrs;
}
vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
/* 22.2.1, 20.8.1 */
vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
return 0;
}
static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u64 msr;
int ret;
if (!init_rmode_tss(vmx->vcpu.kvm)) {
ret = -ENOMEM;
goto out;
}
vmx->vcpu.arch.rmode.active = 0;
vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
kvm_set_cr8(&vmx->vcpu, 0);
msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
if (vmx->vcpu.vcpu_id == 0)
msr |= MSR_IA32_APICBASE_BSP;
kvm_set_apic_base(&vmx->vcpu, msr);
fx_init(&vmx->vcpu);
/*
* GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
* insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
*/
if (vmx->vcpu.vcpu_id == 0) {
vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
vmcs_writel(GUEST_CS_BASE, 0x000f0000);
} else {
vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
}
vmcs_write32(GUEST_CS_LIMIT, 0xffff);
vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
seg_setup(VCPU_SREG_DS);
seg_setup(VCPU_SREG_ES);
seg_setup(VCPU_SREG_FS);
seg_setup(VCPU_SREG_GS);
seg_setup(VCPU_SREG_SS);
vmcs_write16(GUEST_TR_SELECTOR, 0);
vmcs_writel(GUEST_TR_BASE, 0);
vmcs_write32(GUEST_TR_LIMIT, 0xffff);
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
vmcs_write16(GUEST_LDTR_SELECTOR, 0);
vmcs_writel(GUEST_LDTR_BASE, 0);
vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
vmcs_write32(GUEST_SYSENTER_CS, 0);
vmcs_writel(GUEST_SYSENTER_ESP, 0);
vmcs_writel(GUEST_SYSENTER_EIP, 0);
vmcs_writel(GUEST_RFLAGS, 0x02);
if (vmx->vcpu.vcpu_id == 0)
vmcs_writel(GUEST_RIP, 0xfff0);
else
vmcs_writel(GUEST_RIP, 0);
vmcs_writel(GUEST_RSP, 0);
/* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
vmcs_writel(GUEST_DR7, 0x400);
vmcs_writel(GUEST_GDTR_BASE, 0);
vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
vmcs_writel(GUEST_IDTR_BASE, 0);
vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
vmcs_write32(GUEST_ACTIVITY_STATE, 0);
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
guest_write_tsc(0);
/* Special registers */
vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
setup_msrs(vmx);
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
if (cpu_has_vmx_tpr_shadow()) {
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
if (vm_need_tpr_shadow(vmx->vcpu.kvm))
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
page_to_phys(vmx->vcpu.arch.apic->regs_page));
vmcs_write32(TPR_THRESHOLD, 0);
}
if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
vmcs_write64(APIC_ACCESS_ADDR,
page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
if (vmx->vpid != 0)
vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
vmx->vcpu.arch.cr0 = 0x60000010;
vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
vmx_set_cr4(&vmx->vcpu, 0);
vmx_set_efer(&vmx->vcpu, 0);
vmx_fpu_activate(&vmx->vcpu);
update_exception_bitmap(&vmx->vcpu);
vpid_sync_vcpu_all(vmx);
return 0;
out:
return ret;
}
static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (vcpu->arch.rmode.active) {
vmx->rmode.irq.pending = true;
vmx->rmode.irq.vector = irq;
vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
return;
}
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
}
static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
{
int word_index = __ffs(vcpu->arch.irq_summary);
int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
int irq = word_index * BITS_PER_LONG + bit_index;
clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
if (!vcpu->arch.irq_pending[word_index])
clear_bit(word_index, &vcpu->arch.irq_summary);
vmx_inject_irq(vcpu, irq);
}
static void do_interrupt_requests(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run)
{
u32 cpu_based_vm_exec_control;
vcpu->arch.interrupt_window_open =
((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
if (vcpu->arch.interrupt_window_open &&
vcpu->arch.irq_summary &&
!(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
/*
* If interrupts enabled, and not blocked by sti or mov ss. Good.
*/
kvm_do_inject_irq(vcpu);
cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
if (!vcpu->arch.interrupt_window_open &&
(vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
/*
* Interrupts blocked. Wait for unblock.
*/
cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
else
cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
}
static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
{
int ret;
struct kvm_userspace_memory_region tss_mem = {
.slot = 8,
.guest_phys_addr = addr,
.memory_size = PAGE_SIZE * 3,
.flags = 0,
};
ret = kvm_set_memory_region(kvm, &tss_mem, 0);
if (ret)
return ret;
kvm->arch.tss_addr = addr;
return 0;
}
static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
{
struct kvm_guest_debug *dbg = &vcpu->guest_debug;
set_debugreg(dbg->bp[0], 0);
set_debugreg(dbg->bp[1], 1);
set_debugreg(dbg->bp[2], 2);
set_debugreg(dbg->bp[3], 3);
if (dbg->singlestep) {
unsigned long flags;
flags = vmcs_readl(GUEST_RFLAGS);
flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
vmcs_writel(GUEST_RFLAGS, flags);
}
}
static int handle_rmode_exception(struct kvm_vcpu *vcpu,
int vec, u32 err_code)
{
if (!vcpu->arch.rmode.active)
return 0;
/*
* Instruction with address size override prefix opcode 0x67
* Cause the #SS fault with 0 error code in VM86 mode.
*/
if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
return 1;
return 0;
}
static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 intr_info, error_code;
unsigned long cr2, rip;
u32 vect_info;
enum emulation_result er;
vect_info = vmx->idt_vectoring_info;
intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
if ((vect_info & VECTORING_INFO_VALID_MASK) &&
!is_page_fault(intr_info))
printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
"intr info 0x%x\n", __func__, vect_info, intr_info);
if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
set_bit(irq, vcpu->arch.irq_pending);
set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
}
if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
return 1; /* already handled by vmx_vcpu_run() */
if (is_no_device(intr_info)) {
vmx_fpu_activate(vcpu);
return 1;
}
if (is_invalid_opcode(intr_info)) {
er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
if (er != EMULATE_DONE)
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
error_code = 0;
rip = vmcs_readl(GUEST_RIP);
if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
if (is_page_fault(intr_info)) {
cr2 = vmcs_readl(EXIT_QUALIFICATION);
return kvm_mmu_page_fault(vcpu, cr2, error_code);
}
if (vcpu->arch.rmode.active &&
handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
error_code)) {
if (vcpu->arch.halt_request) {
vcpu->arch.halt_request = 0;
return kvm_emulate_halt(vcpu);
}
return 1;
}
if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
(INTR_TYPE_EXCEPTION | 1)) {
kvm_run->exit_reason = KVM_EXIT_DEBUG;
return 0;
}
kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
kvm_run->ex.error_code = error_code;
return 0;
}
static int handle_external_interrupt(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run)
{
++vcpu->stat.irq_exits;
return 1;
}
static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
return 0;
}
static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
unsigned long exit_qualification;
int size, down, in, string, rep;
unsigned port;
++vcpu->stat.io_exits;
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
string = (exit_qualification & 16) != 0;
if (string) {
if (emulate_instruction(vcpu,
kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
return 0;
return 1;
}
size = (exit_qualification & 7) + 1;
in = (exit_qualification & 8) != 0;
down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
rep = (exit_qualification & 32) != 0;
port = exit_qualification >> 16;
return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
}
static void
vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
{
/*
* Patch in the VMCALL instruction:
*/
hypercall[0] = 0x0f;
hypercall[1] = 0x01;
hypercall[2] = 0xc1;
}
static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
unsigned long exit_qualification;
int cr;
int reg;
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
cr = exit_qualification & 15;
reg = (exit_qualification >> 8) & 15;
switch ((exit_qualification >> 4) & 3) {
case 0: /* mov to cr */
switch (cr) {
case 0:
vcpu_load_rsp_rip(vcpu);
kvm_set_cr0(vcpu, vcpu->arch.regs[reg]);
skip_emulated_instruction(vcpu);
return 1;
case 3:
vcpu_load_rsp_rip(vcpu);
kvm_set_cr3(vcpu, vcpu->arch.regs[reg]);
skip_emulated_instruction(vcpu);
return 1;
case 4:
vcpu_load_rsp_rip(vcpu);
kvm_set_cr4(vcpu, vcpu->arch.regs[reg]);
skip_emulated_instruction(vcpu);
return 1;
case 8:
vcpu_load_rsp_rip(vcpu);
kvm_set_cr8(vcpu, vcpu->arch.regs[reg]);
skip_emulated_instruction(vcpu);
if (irqchip_in_kernel(vcpu->kvm))
return 1;
kvm_run->exit_reason = KVM_EXIT_SET_TPR;
return 0;
};
break;
case 2: /* clts */
vcpu_load_rsp_rip(vcpu);
vmx_fpu_deactivate(vcpu);
vcpu->arch.cr0 &= ~X86_CR0_TS;
vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
vmx_fpu_activate(vcpu);
skip_emulated_instruction(vcpu);
return 1;
case 1: /*mov from cr*/
switch (cr) {
case 3:
vcpu_load_rsp_rip(vcpu);
vcpu->arch.regs[reg] = vcpu->arch.cr3;
vcpu_put_rsp_rip(vcpu);
skip_emulated_instruction(vcpu);
return 1;
case 8:
vcpu_load_rsp_rip(vcpu);
vcpu->arch.regs[reg] = kvm_get_cr8(vcpu);
vcpu_put_rsp_rip(vcpu);
skip_emulated_instruction(vcpu);
return 1;
}
break;
case 3: /* lmsw */
kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
skip_emulated_instruction(vcpu);
return 1;
default:
break;
}
kvm_run->exit_reason = 0;
pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
(int)(exit_qualification >> 4) & 3, cr);
return 0;
}
static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
unsigned long exit_qualification;
unsigned long val;
int dr, reg;
/*
* FIXME: this code assumes the host is debugging the guest.
* need to deal with guest debugging itself too.
*/
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
dr = exit_qualification & 7;
reg = (exit_qualification >> 8) & 15;
vcpu_load_rsp_rip(vcpu);
if (exit_qualification & 16) {
/* mov from dr */
switch (dr) {
case 6:
val = 0xffff0ff0;
break;
case 7:
val = 0x400;
break;
default:
val = 0;
}
vcpu->arch.regs[reg] = val;
} else {
/* mov to dr */
}
vcpu_put_rsp_rip(vcpu);
skip_emulated_instruction(vcpu);
return 1;
}
static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
kvm_emulate_cpuid(vcpu);
return 1;
}
static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
u64 data;
if (vmx_get_msr(vcpu, ecx, &data)) {
kvm_inject_gp(vcpu, 0);
return 1;
}
/* FIXME: handling of bits 32:63 of rax, rdx */
vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
skip_emulated_instruction(vcpu);
return 1;
}
static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
| ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
if (vmx_set_msr(vcpu, ecx, data) != 0) {
kvm_inject_gp(vcpu, 0);
return 1;
}
skip_emulated_instruction(vcpu);
return 1;
}
static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run)
{
return 1;
}
static int handle_interrupt_window(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run)
{
u32 cpu_based_vm_exec_control;
/* clear pending irq */
cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
/*
* If the user space waits to inject interrupts, exit as soon as
* possible
*/
if (kvm_run->request_interrupt_window &&
!vcpu->arch.irq_summary) {
kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
++vcpu->stat.irq_window_exits;
return 0;
}
return 1;
}
static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
skip_emulated_instruction(vcpu);
return kvm_emulate_halt(vcpu);
}
static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
skip_emulated_instruction(vcpu);
kvm_emulate_hypercall(vcpu);
return 1;
}
static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
skip_emulated_instruction(vcpu);
/* TODO: Add support for VT-d/pass-through device */
return 1;
}
static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u64 exit_qualification;
enum emulation_result er;
unsigned long offset;
exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
offset = exit_qualification & 0xffful;
er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
if (er != EMULATE_DONE) {
printk(KERN_ERR
"Fail to handle apic access vmexit! Offset is 0x%lx\n",
offset);
return -ENOTSUPP;
}
return 1;
}
/*
* The exit handlers return 1 if the exit was handled fully and guest execution
* may resume. Otherwise they set the kvm_run parameter to indicate what needs
* to be done to userspace and return 0.
*/
static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run) = {
[EXIT_REASON_EXCEPTION_NMI] = handle_exception,
[EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
[EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
[EXIT_REASON_IO_INSTRUCTION] = handle_io,
[EXIT_REASON_CR_ACCESS] = handle_cr,
[EXIT_REASON_DR_ACCESS] = handle_dr,
[EXIT_REASON_CPUID] = handle_cpuid,
[EXIT_REASON_MSR_READ] = handle_rdmsr,
[EXIT_REASON_MSR_WRITE] = handle_wrmsr,
[EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
[EXIT_REASON_HLT] = handle_halt,
[EXIT_REASON_VMCALL] = handle_vmcall,
[EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
[EXIT_REASON_APIC_ACCESS] = handle_apic_access,
[EXIT_REASON_WBINVD] = handle_wbinvd,
};
static const int kvm_vmx_max_exit_handlers =
ARRAY_SIZE(kvm_vmx_exit_handlers);
/*
* The guest has exited. See if we can fix it or if we need userspace
* assistance.
*/
static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 vectoring_info = vmx->idt_vectoring_info;
if (unlikely(vmx->fail)) {
kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
kvm_run->fail_entry.hardware_entry_failure_reason
= vmcs_read32(VM_INSTRUCTION_ERROR);
return 0;
}
if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
exit_reason != EXIT_REASON_EXCEPTION_NMI)
printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
"exit reason is 0x%x\n", __func__, exit_reason);
if (exit_reason < kvm_vmx_max_exit_handlers
&& kvm_vmx_exit_handlers[exit_reason])
return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
else {
kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
kvm_run->hw.hardware_exit_reason = exit_reason;
}
return 0;
}
static void update_tpr_threshold(struct kvm_vcpu *vcpu)
{
int max_irr, tpr;
if (!vm_need_tpr_shadow(vcpu->kvm))
return;
if (!kvm_lapic_enabled(vcpu) ||
((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
vmcs_write32(TPR_THRESHOLD, 0);
return;
}
tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
}
static void enable_irq_window(struct kvm_vcpu *vcpu)
{
u32 cpu_based_vm_exec_control;
cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
}
static void vmx_intr_assist(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 idtv_info_field, intr_info_field;
int has_ext_irq, interrupt_window_open;
int vector;
update_tpr_threshold(vcpu);
has_ext_irq = kvm_cpu_has_interrupt(vcpu);
intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
idtv_info_field = vmx->idt_vectoring_info;
if (intr_info_field & INTR_INFO_VALID_MASK) {
if (idtv_info_field & INTR_INFO_VALID_MASK) {
/* TODO: fault when IDT_Vectoring */
if (printk_ratelimit())
printk(KERN_ERR "Fault when IDT_Vectoring\n");
}
if (has_ext_irq)
enable_irq_window(vcpu);
return;
}
if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
== INTR_TYPE_EXT_INTR
&& vcpu->arch.rmode.active) {
u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
vmx_inject_irq(vcpu, vect);
if (unlikely(has_ext_irq))
enable_irq_window(vcpu);
return;
}
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
if (unlikely(idtv_info_field & INTR_INFO_DELIVER_CODE_MASK))
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
vmcs_read32(IDT_VECTORING_ERROR_CODE));
if (unlikely(has_ext_irq))
enable_irq_window(vcpu);
return;
}
if (!has_ext_irq)
return;
interrupt_window_open =
((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
if (interrupt_window_open) {
vector = kvm_cpu_get_interrupt(vcpu);
vmx_inject_irq(vcpu, vector);
kvm_timer_intr_post(vcpu, vector);
} else
enable_irq_window(vcpu);
}
/*
* Failure to inject an interrupt should give us the information
* in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
* when fetching the interrupt redirection bitmap in the real-mode
* tss, this doesn't happen. So we do it ourselves.
*/
static void fixup_rmode_irq(struct vcpu_vmx *vmx)
{
vmx->rmode.irq.pending = 0;
if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
return;
vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
return;
}
vmx->idt_vectoring_info =
VECTORING_INFO_VALID_MASK
| INTR_TYPE_EXT_INTR
| vmx->rmode.irq.vector;
}
static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 intr_info;
/*
* Loading guest fpu may have cleared host cr0.ts
*/
vmcs_writel(HOST_CR0, read_cr0());
asm(
/* Store host registers */
#ifdef CONFIG_X86_64
"push %%rdx; push %%rbp;"
"push %%rcx \n\t"
#else
"push %%edx; push %%ebp;"
"push %%ecx \n\t"
#endif
ASM_VMX_VMWRITE_RSP_RDX "\n\t"
/* Check if vmlaunch of vmresume is needed */
"cmpl $0, %c[launched](%0) \n\t"
/* Load guest registers. Don't clobber flags. */
#ifdef CONFIG_X86_64
"mov %c[cr2](%0), %%rax \n\t"
"mov %%rax, %%cr2 \n\t"
"mov %c[rax](%0), %%rax \n\t"
"mov %c[rbx](%0), %%rbx \n\t"
"mov %c[rdx](%0), %%rdx \n\t"
"mov %c[rsi](%0), %%rsi \n\t"
"mov %c[rdi](%0), %%rdi \n\t"
"mov %c[rbp](%0), %%rbp \n\t"
"mov %c[r8](%0), %%r8 \n\t"
"mov %c[r9](%0), %%r9 \n\t"
"mov %c[r10](%0), %%r10 \n\t"
"mov %c[r11](%0), %%r11 \n\t"
"mov %c[r12](%0), %%r12 \n\t"
"mov %c[r13](%0), %%r13 \n\t"
"mov %c[r14](%0), %%r14 \n\t"
"mov %c[r15](%0), %%r15 \n\t"
"mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
#else
"mov %c[cr2](%0), %%eax \n\t"
"mov %%eax, %%cr2 \n\t"
"mov %c[rax](%0), %%eax \n\t"
"mov %c[rbx](%0), %%ebx \n\t"
"mov %c[rdx](%0), %%edx \n\t"
"mov %c[rsi](%0), %%esi \n\t"
"mov %c[rdi](%0), %%edi \n\t"
"mov %c[rbp](%0), %%ebp \n\t"
"mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
#endif
/* Enter guest mode */
"jne .Llaunched \n\t"
ASM_VMX_VMLAUNCH "\n\t"
"jmp .Lkvm_vmx_return \n\t"
".Llaunched: " ASM_VMX_VMRESUME "\n\t"
".Lkvm_vmx_return: "
/* Save guest registers, load host registers, keep flags */
#ifdef CONFIG_X86_64
"xchg %0, (%%rsp) \n\t"
"mov %%rax, %c[rax](%0) \n\t"
"mov %%rbx, %c[rbx](%0) \n\t"
"pushq (%%rsp); popq %c[rcx](%0) \n\t"
"mov %%rdx, %c[rdx](%0) \n\t"
"mov %%rsi, %c[rsi](%0) \n\t"
"mov %%rdi, %c[rdi](%0) \n\t"
"mov %%rbp, %c[rbp](%0) \n\t"
"mov %%r8, %c[r8](%0) \n\t"
"mov %%r9, %c[r9](%0) \n\t"
"mov %%r10, %c[r10](%0) \n\t"
"mov %%r11, %c[r11](%0) \n\t"
"mov %%r12, %c[r12](%0) \n\t"
"mov %%r13, %c[r13](%0) \n\t"
"mov %%r14, %c[r14](%0) \n\t"
"mov %%r15, %c[r15](%0) \n\t"
"mov %%cr2, %%rax \n\t"
"mov %%rax, %c[cr2](%0) \n\t"
"pop %%rbp; pop %%rbp; pop %%rdx \n\t"
#else
"xchg %0, (%%esp) \n\t"
"mov %%eax, %c[rax](%0) \n\t"
"mov %%ebx, %c[rbx](%0) \n\t"
"pushl (%%esp); popl %c[rcx](%0) \n\t"
"mov %%edx, %c[rdx](%0) \n\t"
"mov %%esi, %c[rsi](%0) \n\t"
"mov %%edi, %c[rdi](%0) \n\t"
"mov %%ebp, %c[rbp](%0) \n\t"
"mov %%cr2, %%eax \n\t"
"mov %%eax, %c[cr2](%0) \n\t"
"pop %%ebp; pop %%ebp; pop %%edx \n\t"
#endif
"setbe %c[fail](%0) \n\t"
: : "c"(vmx), "d"((unsigned long)HOST_RSP),
[launched]"i"(offsetof(struct vcpu_vmx, launched)),
[fail]"i"(offsetof(struct vcpu_vmx, fail)),
[rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
[rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
[rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
[rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
[rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
[rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
[rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
#ifdef CONFIG_X86_64
[r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
[r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
[r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
[r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
[r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
[r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
[r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
[r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
#endif
[cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
: "cc", "memory"
#ifdef CONFIG_X86_64
, "rbx", "rdi", "rsi"
, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
#else
, "ebx", "edi", "rsi"
#endif
);
vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
if (vmx->rmode.irq.pending)
fixup_rmode_irq(vmx);
vcpu->arch.interrupt_window_open =
(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
vmx->launched = 1;
intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
/* We need to handle NMIs before interrupts are enabled */
if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
asm("int $2");
}
static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (vmx->vmcs) {
on_each_cpu(__vcpu_clear, vmx, 0, 1);
free_vmcs(vmx->vmcs);
vmx->vmcs = NULL;
}
}
static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
spin_lock(&vmx_vpid_lock);
if (vmx->vpid != 0)
__clear_bit(vmx->vpid, vmx_vpid_bitmap);
spin_unlock(&vmx_vpid_lock);
vmx_free_vmcs(vcpu);
kfree(vmx->host_msrs);
kfree(vmx->guest_msrs);
kvm_vcpu_uninit(vcpu);
kmem_cache_free(kvm_vcpu_cache, vmx);
}
static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
{
int err;
struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
int cpu;
if (!vmx)
return ERR_PTR(-ENOMEM);
allocate_vpid(vmx);
err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
if (err)
goto free_vcpu;
vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!vmx->guest_msrs) {
err = -ENOMEM;
goto uninit_vcpu;
}
vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!vmx->host_msrs)
goto free_guest_msrs;
vmx->vmcs = alloc_vmcs();
if (!vmx->vmcs)
goto free_msrs;
vmcs_clear(vmx->vmcs);
cpu = get_cpu();
vmx_vcpu_load(&vmx->vcpu, cpu);
err = vmx_vcpu_setup(vmx);
vmx_vcpu_put(&vmx->vcpu);
put_cpu();
if (err)
goto free_vmcs;
if (vm_need_virtualize_apic_accesses(kvm))
if (alloc_apic_access_page(kvm) != 0)
goto free_vmcs;
return &vmx->vcpu;
free_vmcs:
free_vmcs(vmx->vmcs);
free_msrs:
kfree(vmx->host_msrs);
free_guest_msrs:
kfree(vmx->guest_msrs);
uninit_vcpu:
kvm_vcpu_uninit(&vmx->vcpu);
free_vcpu:
kmem_cache_free(kvm_vcpu_cache, vmx);
return ERR_PTR(err);
}
static void __init vmx_check_processor_compat(void *rtn)
{
struct vmcs_config vmcs_conf;
*(int *)rtn = 0;
if (setup_vmcs_config(&vmcs_conf) < 0)
*(int *)rtn = -EIO;
if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
smp_processor_id());
*(int *)rtn = -EIO;
}
}
static struct kvm_x86_ops vmx_x86_ops = {
.cpu_has_kvm_support = cpu_has_kvm_support,
.disabled_by_bios = vmx_disabled_by_bios,
.hardware_setup = hardware_setup,
.hardware_unsetup = hardware_unsetup,
.check_processor_compatibility = vmx_check_processor_compat,
.hardware_enable = hardware_enable,
.hardware_disable = hardware_disable,
.cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
.vcpu_create = vmx_create_vcpu,
.vcpu_free = vmx_free_vcpu,
.vcpu_reset = vmx_vcpu_reset,
.prepare_guest_switch = vmx_save_host_state,
.vcpu_load = vmx_vcpu_load,
.vcpu_put = vmx_vcpu_put,
.vcpu_decache = vmx_vcpu_decache,
.set_guest_debug = set_guest_debug,
.guest_debug_pre = kvm_guest_debug_pre,
.get_msr = vmx_get_msr,
.set_msr = vmx_set_msr,
.get_segment_base = vmx_get_segment_base,
.get_segment = vmx_get_segment,
.set_segment = vmx_set_segment,
.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
.set_cr0 = vmx_set_cr0,
.set_cr3 = vmx_set_cr3,
.set_cr4 = vmx_set_cr4,
.set_efer = vmx_set_efer,
.get_idt = vmx_get_idt,
.set_idt = vmx_set_idt,
.get_gdt = vmx_get_gdt,
.set_gdt = vmx_set_gdt,
.cache_regs = vcpu_load_rsp_rip,
.decache_regs = vcpu_put_rsp_rip,
.get_rflags = vmx_get_rflags,
.set_rflags = vmx_set_rflags,
.tlb_flush = vmx_flush_tlb,
.run = vmx_vcpu_run,
.handle_exit = kvm_handle_exit,
.skip_emulated_instruction = skip_emulated_instruction,
.patch_hypercall = vmx_patch_hypercall,
.get_irq = vmx_get_irq,
.set_irq = vmx_inject_irq,
.queue_exception = vmx_queue_exception,
.exception_injected = vmx_exception_injected,
.inject_pending_irq = vmx_intr_assist,
.inject_pending_vectors = do_interrupt_requests,
.set_tss_addr = vmx_set_tss_addr,
};
static int __init vmx_init(void)
{
void *iova;
int r;
vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
if (!vmx_io_bitmap_a)
return -ENOMEM;
vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
if (!vmx_io_bitmap_b) {
r = -ENOMEM;
goto out;
}
/*
* Allow direct access to the PC debug port (it is often used for I/O
* delays, but the vmexits simply slow things down).
*/
iova = kmap(vmx_io_bitmap_a);
memset(iova, 0xff, PAGE_SIZE);
clear_bit(0x80, iova);
kunmap(vmx_io_bitmap_a);
iova = kmap(vmx_io_bitmap_b);
memset(iova, 0xff, PAGE_SIZE);
kunmap(vmx_io_bitmap_b);
set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
if (r)
goto out1;
if (bypass_guest_pf)
kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
return 0;
out1:
__free_page(vmx_io_bitmap_b);
out:
__free_page(vmx_io_bitmap_a);
return r;
}
static void __exit vmx_exit(void)
{
__free_page(vmx_io_bitmap_b);
__free_page(vmx_io_bitmap_a);
kvm_exit();
}
module_init(vmx_init)
module_exit(vmx_exit)