mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-18 09:44:18 +08:00
657e12fd38
When SPARSEMEM_EXTREME is enabled, memory_present() wants to use bootmem to allocate data structures. However, we call memory_present() after declaring memory to bootmem, but before we've reserved areas. This leads to sparsemem data structures being overwritten later in the kernel's initialization (when slab initializes.) Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
668 lines
16 KiB
C
668 lines
16 KiB
C
/*
|
|
* linux/arch/arm/mm/init.c
|
|
*
|
|
* Copyright (C) 1995-2005 Russell King
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/highmem.h>
|
|
|
|
#include <asm/mach-types.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/sizes.h>
|
|
#include <asm/tlb.h>
|
|
|
|
#include <asm/mach/arch.h>
|
|
#include <asm/mach/map.h>
|
|
|
|
#include "mm.h"
|
|
|
|
static unsigned long phys_initrd_start __initdata = 0;
|
|
static unsigned long phys_initrd_size __initdata = 0;
|
|
|
|
static void __init early_initrd(char **p)
|
|
{
|
|
unsigned long start, size;
|
|
|
|
start = memparse(*p, p);
|
|
if (**p == ',') {
|
|
size = memparse((*p) + 1, p);
|
|
|
|
phys_initrd_start = start;
|
|
phys_initrd_size = size;
|
|
}
|
|
}
|
|
__early_param("initrd=", early_initrd);
|
|
|
|
static int __init parse_tag_initrd(const struct tag *tag)
|
|
{
|
|
printk(KERN_WARNING "ATAG_INITRD is deprecated; "
|
|
"please update your bootloader.\n");
|
|
phys_initrd_start = __virt_to_phys(tag->u.initrd.start);
|
|
phys_initrd_size = tag->u.initrd.size;
|
|
return 0;
|
|
}
|
|
|
|
__tagtable(ATAG_INITRD, parse_tag_initrd);
|
|
|
|
static int __init parse_tag_initrd2(const struct tag *tag)
|
|
{
|
|
phys_initrd_start = tag->u.initrd.start;
|
|
phys_initrd_size = tag->u.initrd.size;
|
|
return 0;
|
|
}
|
|
|
|
__tagtable(ATAG_INITRD2, parse_tag_initrd2);
|
|
|
|
/*
|
|
* This keeps memory configuration data used by a couple memory
|
|
* initialization functions, as well as show_mem() for the skipping
|
|
* of holes in the memory map. It is populated by arm_add_memory().
|
|
*/
|
|
struct meminfo meminfo;
|
|
|
|
void show_mem(void)
|
|
{
|
|
int free = 0, total = 0, reserved = 0;
|
|
int shared = 0, cached = 0, slab = 0, node, i;
|
|
struct meminfo * mi = &meminfo;
|
|
|
|
printk("Mem-info:\n");
|
|
show_free_areas();
|
|
for_each_online_node(node) {
|
|
pg_data_t *n = NODE_DATA(node);
|
|
struct page *map = pgdat_page_nr(n, 0) - n->node_start_pfn;
|
|
|
|
for_each_nodebank (i,mi,node) {
|
|
struct membank *bank = &mi->bank[i];
|
|
unsigned int pfn1, pfn2;
|
|
struct page *page, *end;
|
|
|
|
pfn1 = bank_pfn_start(bank);
|
|
pfn2 = bank_pfn_end(bank);
|
|
|
|
page = map + pfn1;
|
|
end = map + pfn2;
|
|
|
|
do {
|
|
total++;
|
|
if (PageReserved(page))
|
|
reserved++;
|
|
else if (PageSwapCache(page))
|
|
cached++;
|
|
else if (PageSlab(page))
|
|
slab++;
|
|
else if (!page_count(page))
|
|
free++;
|
|
else
|
|
shared += page_count(page) - 1;
|
|
page++;
|
|
} while (page < end);
|
|
}
|
|
}
|
|
|
|
printk("%d pages of RAM\n", total);
|
|
printk("%d free pages\n", free);
|
|
printk("%d reserved pages\n", reserved);
|
|
printk("%d slab pages\n", slab);
|
|
printk("%d pages shared\n", shared);
|
|
printk("%d pages swap cached\n", cached);
|
|
}
|
|
|
|
static void __init find_node_limits(int node, struct meminfo *mi,
|
|
unsigned long *min, unsigned long *max_low, unsigned long *max_high)
|
|
{
|
|
int i;
|
|
|
|
*min = -1UL;
|
|
*max_low = *max_high = 0;
|
|
|
|
for_each_nodebank(i, mi, node) {
|
|
struct membank *bank = &mi->bank[i];
|
|
unsigned long start, end;
|
|
|
|
start = bank_pfn_start(bank);
|
|
end = bank_pfn_end(bank);
|
|
|
|
if (*min > start)
|
|
*min = start;
|
|
if (*max_high < end)
|
|
*max_high = end;
|
|
if (bank->highmem)
|
|
continue;
|
|
if (*max_low < end)
|
|
*max_low = end;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* FIXME: We really want to avoid allocating the bootmap bitmap
|
|
* over the top of the initrd. Hopefully, this is located towards
|
|
* the start of a bank, so if we allocate the bootmap bitmap at
|
|
* the end, we won't clash.
|
|
*/
|
|
static unsigned int __init
|
|
find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages)
|
|
{
|
|
unsigned int start_pfn, i, bootmap_pfn;
|
|
|
|
start_pfn = PAGE_ALIGN(__pa(_end)) >> PAGE_SHIFT;
|
|
bootmap_pfn = 0;
|
|
|
|
for_each_nodebank(i, mi, node) {
|
|
struct membank *bank = &mi->bank[i];
|
|
unsigned int start, end;
|
|
|
|
start = bank_pfn_start(bank);
|
|
end = bank_pfn_end(bank);
|
|
|
|
if (end < start_pfn)
|
|
continue;
|
|
|
|
if (start < start_pfn)
|
|
start = start_pfn;
|
|
|
|
if (end <= start)
|
|
continue;
|
|
|
|
if (end - start >= bootmap_pages) {
|
|
bootmap_pfn = start;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (bootmap_pfn == 0)
|
|
BUG();
|
|
|
|
return bootmap_pfn;
|
|
}
|
|
|
|
static int __init check_initrd(struct meminfo *mi)
|
|
{
|
|
int initrd_node = -2;
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
unsigned long end = phys_initrd_start + phys_initrd_size;
|
|
|
|
/*
|
|
* Make sure that the initrd is within a valid area of
|
|
* memory.
|
|
*/
|
|
if (phys_initrd_size) {
|
|
unsigned int i;
|
|
|
|
initrd_node = -1;
|
|
|
|
for (i = 0; i < mi->nr_banks; i++) {
|
|
struct membank *bank = &mi->bank[i];
|
|
if (bank_phys_start(bank) <= phys_initrd_start &&
|
|
end <= bank_phys_end(bank))
|
|
initrd_node = bank->node;
|
|
}
|
|
}
|
|
|
|
if (initrd_node == -1) {
|
|
printk(KERN_ERR "INITRD: 0x%08lx+0x%08lx extends beyond "
|
|
"physical memory - disabling initrd\n",
|
|
phys_initrd_start, phys_initrd_size);
|
|
phys_initrd_start = phys_initrd_size = 0;
|
|
}
|
|
#endif
|
|
|
|
return initrd_node;
|
|
}
|
|
|
|
static inline void map_memory_bank(struct membank *bank)
|
|
{
|
|
#ifdef CONFIG_MMU
|
|
struct map_desc map;
|
|
|
|
map.pfn = bank_pfn_start(bank);
|
|
map.virtual = __phys_to_virt(bank_phys_start(bank));
|
|
map.length = bank_phys_size(bank);
|
|
map.type = MT_MEMORY;
|
|
|
|
create_mapping(&map);
|
|
#endif
|
|
}
|
|
|
|
static void __init bootmem_init_node(int node, struct meminfo *mi,
|
|
unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
unsigned long boot_pfn;
|
|
unsigned int boot_pages;
|
|
pg_data_t *pgdat;
|
|
int i;
|
|
|
|
/*
|
|
* Map the memory banks for this node.
|
|
*/
|
|
for_each_nodebank(i, mi, node) {
|
|
struct membank *bank = &mi->bank[i];
|
|
|
|
if (!bank->highmem)
|
|
map_memory_bank(bank);
|
|
}
|
|
|
|
/*
|
|
* Allocate the bootmem bitmap page.
|
|
*/
|
|
boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
|
|
boot_pfn = find_bootmap_pfn(node, mi, boot_pages);
|
|
|
|
/*
|
|
* Initialise the bootmem allocator for this node, handing the
|
|
* memory banks over to bootmem.
|
|
*/
|
|
node_set_online(node);
|
|
pgdat = NODE_DATA(node);
|
|
init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn);
|
|
|
|
for_each_nodebank(i, mi, node) {
|
|
struct membank *bank = &mi->bank[i];
|
|
if (!bank->highmem)
|
|
free_bootmem_node(pgdat, bank_phys_start(bank), bank_phys_size(bank));
|
|
}
|
|
|
|
/*
|
|
* Reserve the bootmem bitmap for this node.
|
|
*/
|
|
reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT,
|
|
boot_pages << PAGE_SHIFT, BOOTMEM_DEFAULT);
|
|
}
|
|
|
|
static void __init bootmem_reserve_initrd(int node)
|
|
{
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
pg_data_t *pgdat = NODE_DATA(node);
|
|
int res;
|
|
|
|
res = reserve_bootmem_node(pgdat, phys_initrd_start,
|
|
phys_initrd_size, BOOTMEM_EXCLUSIVE);
|
|
|
|
if (res == 0) {
|
|
initrd_start = __phys_to_virt(phys_initrd_start);
|
|
initrd_end = initrd_start + phys_initrd_size;
|
|
} else {
|
|
printk(KERN_ERR
|
|
"INITRD: 0x%08lx+0x%08lx overlaps in-use "
|
|
"memory region - disabling initrd\n",
|
|
phys_initrd_start, phys_initrd_size);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void __init bootmem_free_node(int node, struct meminfo *mi)
|
|
{
|
|
unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
|
|
unsigned long min, max_low, max_high;
|
|
int i;
|
|
|
|
find_node_limits(node, mi, &min, &max_low, &max_high);
|
|
|
|
/*
|
|
* initialise the zones within this node.
|
|
*/
|
|
memset(zone_size, 0, sizeof(zone_size));
|
|
|
|
/*
|
|
* The size of this node has already been determined. If we need
|
|
* to do anything fancy with the allocation of this memory to the
|
|
* zones, now is the time to do it.
|
|
*/
|
|
zone_size[0] = max_low - min;
|
|
#ifdef CONFIG_HIGHMEM
|
|
zone_size[ZONE_HIGHMEM] = max_high - max_low;
|
|
#endif
|
|
|
|
/*
|
|
* For each bank in this node, calculate the size of the holes.
|
|
* holes = node_size - sum(bank_sizes_in_node)
|
|
*/
|
|
memcpy(zhole_size, zone_size, sizeof(zhole_size));
|
|
for_each_nodebank(i, mi, node) {
|
|
int idx = 0;
|
|
#ifdef CONFIG_HIGHMEM
|
|
if (mi->bank[i].highmem)
|
|
idx = ZONE_HIGHMEM;
|
|
#endif
|
|
zhole_size[idx] -= bank_pfn_size(&mi->bank[i]);
|
|
}
|
|
|
|
/*
|
|
* Adjust the sizes according to any special requirements for
|
|
* this machine type.
|
|
*/
|
|
arch_adjust_zones(node, zone_size, zhole_size);
|
|
|
|
free_area_init_node(node, zone_size, min, zhole_size);
|
|
}
|
|
|
|
#ifndef CONFIG_SPARSEMEM
|
|
int pfn_valid(unsigned long pfn)
|
|
{
|
|
struct meminfo *mi = &meminfo;
|
|
unsigned int left = 0, right = mi->nr_banks;
|
|
|
|
do {
|
|
unsigned int mid = (right + left) / 2;
|
|
struct membank *bank = &mi->bank[mid];
|
|
|
|
if (pfn < bank_pfn_start(bank))
|
|
right = mid;
|
|
else if (pfn >= bank_pfn_end(bank))
|
|
left = mid + 1;
|
|
else
|
|
return 1;
|
|
} while (left < right);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(pfn_valid);
|
|
|
|
static void arm_memory_present(struct meminfo *mi, int node)
|
|
{
|
|
}
|
|
#else
|
|
static void arm_memory_present(struct meminfo *mi, int node)
|
|
{
|
|
int i;
|
|
for_each_nodebank(i, mi, node) {
|
|
struct membank *bank = &mi->bank[i];
|
|
memory_present(node, bank_pfn_start(bank), bank_pfn_end(bank));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static int __init meminfo_cmp(const void *_a, const void *_b)
|
|
{
|
|
const struct membank *a = _a, *b = _b;
|
|
long cmp = bank_pfn_start(a) - bank_pfn_start(b);
|
|
return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
|
|
}
|
|
|
|
void __init bootmem_init(void)
|
|
{
|
|
struct meminfo *mi = &meminfo;
|
|
unsigned long min, max_low, max_high;
|
|
int node, initrd_node;
|
|
|
|
sort(&mi->bank, mi->nr_banks, sizeof(mi->bank[0]), meminfo_cmp, NULL);
|
|
|
|
/*
|
|
* Locate which node contains the ramdisk image, if any.
|
|
*/
|
|
initrd_node = check_initrd(mi);
|
|
|
|
max_low = max_high = 0;
|
|
|
|
/*
|
|
* Run through each node initialising the bootmem allocator.
|
|
*/
|
|
for_each_node(node) {
|
|
unsigned long node_low, node_high;
|
|
|
|
find_node_limits(node, mi, &min, &node_low, &node_high);
|
|
|
|
if (node_low > max_low)
|
|
max_low = node_low;
|
|
if (node_high > max_high)
|
|
max_high = node_high;
|
|
|
|
/*
|
|
* If there is no memory in this node, ignore it.
|
|
* (We can't have nodes which have no lowmem)
|
|
*/
|
|
if (node_low == 0)
|
|
continue;
|
|
|
|
bootmem_init_node(node, mi, min, node_low);
|
|
|
|
/*
|
|
* Reserve any special node zero regions.
|
|
*/
|
|
if (node == 0)
|
|
reserve_node_zero(NODE_DATA(node));
|
|
|
|
/*
|
|
* If the initrd is in this node, reserve its memory.
|
|
*/
|
|
if (node == initrd_node)
|
|
bootmem_reserve_initrd(node);
|
|
|
|
/*
|
|
* Sparsemem tries to allocate bootmem in memory_present(),
|
|
* so must be done after the fixed reservations
|
|
*/
|
|
arm_memory_present(mi, node);
|
|
}
|
|
|
|
/*
|
|
* sparse_init() needs the bootmem allocator up and running.
|
|
*/
|
|
sparse_init();
|
|
|
|
/*
|
|
* Now free memory in each node - free_area_init_node needs
|
|
* the sparse mem_map arrays initialized by sparse_init()
|
|
* for memmap_init_zone(), otherwise all PFNs are invalid.
|
|
*/
|
|
for_each_node(node)
|
|
bootmem_free_node(node, mi);
|
|
|
|
high_memory = __va((max_low << PAGE_SHIFT) - 1) + 1;
|
|
|
|
/*
|
|
* This doesn't seem to be used by the Linux memory manager any
|
|
* more, but is used by ll_rw_block. If we can get rid of it, we
|
|
* also get rid of some of the stuff above as well.
|
|
*
|
|
* Note: max_low_pfn and max_pfn reflect the number of _pages_ in
|
|
* the system, not the maximum PFN.
|
|
*/
|
|
max_low_pfn = max_low - PHYS_PFN_OFFSET;
|
|
max_pfn = max_high - PHYS_PFN_OFFSET;
|
|
}
|
|
|
|
static inline int free_area(unsigned long pfn, unsigned long end, char *s)
|
|
{
|
|
unsigned int pages = 0, size = (end - pfn) << (PAGE_SHIFT - 10);
|
|
|
|
for (; pfn < end; pfn++) {
|
|
struct page *page = pfn_to_page(pfn);
|
|
ClearPageReserved(page);
|
|
init_page_count(page);
|
|
__free_page(page);
|
|
pages++;
|
|
}
|
|
|
|
if (size && s)
|
|
printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
|
|
|
|
return pages;
|
|
}
|
|
|
|
static inline void
|
|
free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
struct page *start_pg, *end_pg;
|
|
unsigned long pg, pgend;
|
|
|
|
/*
|
|
* Convert start_pfn/end_pfn to a struct page pointer.
|
|
*/
|
|
start_pg = pfn_to_page(start_pfn - 1) + 1;
|
|
end_pg = pfn_to_page(end_pfn);
|
|
|
|
/*
|
|
* Convert to physical addresses, and
|
|
* round start upwards and end downwards.
|
|
*/
|
|
pg = PAGE_ALIGN(__pa(start_pg));
|
|
pgend = __pa(end_pg) & PAGE_MASK;
|
|
|
|
/*
|
|
* If there are free pages between these,
|
|
* free the section of the memmap array.
|
|
*/
|
|
if (pg < pgend)
|
|
free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
|
|
}
|
|
|
|
/*
|
|
* The mem_map array can get very big. Free the unused area of the memory map.
|
|
*/
|
|
static void __init free_unused_memmap_node(int node, struct meminfo *mi)
|
|
{
|
|
unsigned long bank_start, prev_bank_end = 0;
|
|
unsigned int i;
|
|
|
|
/*
|
|
* [FIXME] This relies on each bank being in address order. This
|
|
* may not be the case, especially if the user has provided the
|
|
* information on the command line.
|
|
*/
|
|
for_each_nodebank(i, mi, node) {
|
|
struct membank *bank = &mi->bank[i];
|
|
|
|
bank_start = bank_pfn_start(bank);
|
|
if (bank_start < prev_bank_end) {
|
|
printk(KERN_ERR "MEM: unordered memory banks. "
|
|
"Not freeing memmap.\n");
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we had a previous bank, and there is a space
|
|
* between the current bank and the previous, free it.
|
|
*/
|
|
if (prev_bank_end && prev_bank_end != bank_start)
|
|
free_memmap(node, prev_bank_end, bank_start);
|
|
|
|
prev_bank_end = bank_pfn_end(bank);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* mem_init() marks the free areas in the mem_map and tells us how much
|
|
* memory is free. This is done after various parts of the system have
|
|
* claimed their memory after the kernel image.
|
|
*/
|
|
void __init mem_init(void)
|
|
{
|
|
unsigned int codesize, datasize, initsize;
|
|
int i, node;
|
|
|
|
#ifndef CONFIG_DISCONTIGMEM
|
|
max_mapnr = pfn_to_page(max_pfn + PHYS_PFN_OFFSET) - mem_map;
|
|
#endif
|
|
|
|
/* this will put all unused low memory onto the freelists */
|
|
for_each_online_node(node) {
|
|
pg_data_t *pgdat = NODE_DATA(node);
|
|
|
|
free_unused_memmap_node(node, &meminfo);
|
|
|
|
if (pgdat->node_spanned_pages != 0)
|
|
totalram_pages += free_all_bootmem_node(pgdat);
|
|
}
|
|
|
|
#ifdef CONFIG_SA1111
|
|
/* now that our DMA memory is actually so designated, we can free it */
|
|
totalram_pages += free_area(PHYS_PFN_OFFSET,
|
|
__phys_to_pfn(__pa(swapper_pg_dir)), NULL);
|
|
#endif
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
/* set highmem page free */
|
|
for_each_online_node(node) {
|
|
for_each_nodebank (i, &meminfo, node) {
|
|
unsigned long start = bank_pfn_start(&meminfo.bank[i]);
|
|
unsigned long end = bank_pfn_end(&meminfo.bank[i]);
|
|
if (start >= max_low_pfn + PHYS_PFN_OFFSET)
|
|
totalhigh_pages += free_area(start, end, NULL);
|
|
}
|
|
}
|
|
totalram_pages += totalhigh_pages;
|
|
#endif
|
|
|
|
/*
|
|
* Since our memory may not be contiguous, calculate the
|
|
* real number of pages we have in this system
|
|
*/
|
|
printk(KERN_INFO "Memory:");
|
|
num_physpages = 0;
|
|
for (i = 0; i < meminfo.nr_banks; i++) {
|
|
num_physpages += bank_pfn_size(&meminfo.bank[i]);
|
|
printk(" %ldMB", bank_phys_size(&meminfo.bank[i]) >> 20);
|
|
}
|
|
printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
|
|
|
|
codesize = _etext - _text;
|
|
datasize = _end - _data;
|
|
initsize = __init_end - __init_begin;
|
|
|
|
printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
|
|
"%dK data, %dK init, %luK highmem)\n",
|
|
nr_free_pages() << (PAGE_SHIFT-10), codesize >> 10,
|
|
datasize >> 10, initsize >> 10,
|
|
(unsigned long) (totalhigh_pages << (PAGE_SHIFT-10)));
|
|
|
|
if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
|
|
extern int sysctl_overcommit_memory;
|
|
/*
|
|
* On a machine this small we won't get
|
|
* anywhere without overcommit, so turn
|
|
* it on by default.
|
|
*/
|
|
sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
|
|
}
|
|
}
|
|
|
|
void free_initmem(void)
|
|
{
|
|
#ifdef CONFIG_HAVE_TCM
|
|
extern char *__tcm_start, *__tcm_end;
|
|
|
|
totalram_pages += free_area(__phys_to_pfn(__pa(__tcm_start)),
|
|
__phys_to_pfn(__pa(__tcm_end)),
|
|
"TCM link");
|
|
#endif
|
|
|
|
if (!machine_is_integrator() && !machine_is_cintegrator())
|
|
totalram_pages += free_area(__phys_to_pfn(__pa(__init_begin)),
|
|
__phys_to_pfn(__pa(__init_end)),
|
|
"init");
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
|
|
static int keep_initrd;
|
|
|
|
void free_initrd_mem(unsigned long start, unsigned long end)
|
|
{
|
|
if (!keep_initrd)
|
|
totalram_pages += free_area(__phys_to_pfn(__pa(start)),
|
|
__phys_to_pfn(__pa(end)),
|
|
"initrd");
|
|
}
|
|
|
|
static int __init keepinitrd_setup(char *__unused)
|
|
{
|
|
keep_initrd = 1;
|
|
return 1;
|
|
}
|
|
|
|
__setup("keepinitrd", keepinitrd_setup);
|
|
#endif
|