linux/mm/pagewalk.c
David Hildenbrand 7c18d48110 mm/pagewalk: fix usage of pmd_leaf()/pud_leaf() without present check
pmd_leaf()/pud_leaf() only implies a pmd_present()/pud_present() check on
some architectures.  We really should check for
pmd_present()/pud_present() first.

This should explain the report we got on ppc64 (which has
CONFIG_PGTABLE_HAS_HUGE_LEAVES set in the config) that triggered:
	VM_WARN_ON_ONCE(pmd_leaf(pmdp_get_lockless(pmdp)));

Likely we had a PMD migration entry for which pmd_leaf() did not trigger. 
We raced with restoring the PMD migration entry, and suddenly saw a
pmd_leaf().  In this case, pte_offset_map_lock() saved us from more
trouble, because it rechecks the PMD value, but we would not have
processed the migration entry -- which is not too bad because the only
user of FW_MIGRATION is KSM for unsharing, and KSM only applies to small
folios.

Further, we shouldn't re-read the PMD/PUD value for our warning, the
primary purpose of the VM_WARN_ON_ONCE() is to find spurious use of
pmd_leaf()/pud_leaf() without CONFIG_PGTABLE_HAS_HUGE_LEAVES.

As a side note, we are currently not implementing FW_MIGRATION support for
PUD migration entries, which likely should exist due to hugetlb.  Add a
TODO so this won't fall through the cracks if more FW_MIGRATION users get
added.

Was able to write a quick reproducer and verify that the issue no longer triggers with this fix.

https://gitlab.com/davidhildenbrand/scratchspace/-/blob/main/reproducers/move-pages-pmd-leaf.c

Without this fix after a couple of seconds in a VM with 2 NUMA nodes:

[   54.333753] ------------[ cut here ]------------
[   54.334901] WARNING: CPU: 20 PID: 1704 at mm/pagewalk.c:815 folio_walk_start+0x48f/0x6e0
[   54.336455] Modules linked in: ...
[   54.345009] CPU: 20 UID: 0 PID: 1704 Comm: move-pages-pmd- Not tainted 6.12.0-rc2+ #81
[   54.346529] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014
[   54.348191] RIP: 0010:folio_walk_start+0x48f/0x6e0
[   54.349134] Code: b5 ad 48 8d 35 00 00 00 00 e8 6d 59 d7 ff e8 08 74 da ff e9 9c fe ff ff 4c 8b 7c 24 08 4c 89 ff e8 26 2b be 00 e9 8a fe ff ff <0f> 0b e9 ec fe ff ff f7 c2 ff 0f 00 00 0f 85 81 fe ff ff 48 8b 02
[   54.352660] RSP: 0018:ffffb7e4c430bc78 EFLAGS: 00010282
[   54.353679] RAX: 80000002a3e008e7 RBX: ffff9946039aa580 RCX: ffff994380000000
[   54.355056] RDX: ffff994606aec000 RSI: 00007f004b000000 RDI: 0000000000000000
[   54.356440] RBP: 00007f004b000000 R08: 0000000000000591 R09: 0000000000000001
[   54.357820] R10: 0000000000000200 R11: 0000000000000001 R12: ffffb7e4c430bd10
[   54.359198] R13: ffff994606aec2c0 R14: 0000000000000002 R15: ffff994604a89b00
[   54.360564] FS:  00007f004ae006c0(0000) GS:ffff9947f7400000(0000) knlGS:0000000000000000
[   54.362111] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[   54.363242] CR2: 00007f004adffe58 CR3: 0000000281e12005 CR4: 0000000000770ef0
[   54.364615] PKRU: 55555554
[   54.365153] Call Trace:
[   54.365646]  <TASK>
[   54.366073]  ? __warn.cold+0xb7/0x14d
[   54.366796]  ? folio_walk_start+0x48f/0x6e0
[   54.367628]  ? report_bug+0xff/0x140
[   54.368324]  ? handle_bug+0x58/0x90
[   54.369019]  ? exc_invalid_op+0x17/0x70
[   54.369771]  ? asm_exc_invalid_op+0x1a/0x20
[   54.370606]  ? folio_walk_start+0x48f/0x6e0
[   54.371415]  ? folio_walk_start+0x9e/0x6e0
[   54.372227]  do_pages_move+0x1c5/0x680
[   54.372972]  kernel_move_pages+0x1a1/0x2b0
[   54.373804]  __x64_sys_move_pages+0x25/0x30

Link: https://lkml.kernel.org/r/20241015111236.1290921-1-david@redhat.com
Fixes: aa39ca6940 ("mm/pagewalk: introduce folio_walk_start() + folio_walk_end()")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: syzbot+7d917f67c05066cec295@syzkaller.appspotmail.com
Closes: https://lkml.kernel.org/r/670d3248.050a0220.3e960.0064.GAE@google.com
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-10-28 21:40:38 -07:00

865 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/pagewalk.h>
#include <linux/highmem.h>
#include <linux/sched.h>
#include <linux/hugetlb.h>
#include <linux/swap.h>
#include <linux/swapops.h>
/*
* We want to know the real level where a entry is located ignoring any
* folding of levels which may be happening. For example if p4d is folded then
* a missing entry found at level 1 (p4d) is actually at level 0 (pgd).
*/
static int real_depth(int depth)
{
if (depth == 3 && PTRS_PER_PMD == 1)
depth = 2;
if (depth == 2 && PTRS_PER_PUD == 1)
depth = 1;
if (depth == 1 && PTRS_PER_P4D == 1)
depth = 0;
return depth;
}
static int walk_pte_range_inner(pte_t *pte, unsigned long addr,
unsigned long end, struct mm_walk *walk)
{
const struct mm_walk_ops *ops = walk->ops;
int err = 0;
for (;;) {
err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
if (err)
break;
if (addr >= end - PAGE_SIZE)
break;
addr += PAGE_SIZE;
pte++;
}
return err;
}
static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
pte_t *pte;
int err = 0;
spinlock_t *ptl;
if (walk->no_vma) {
/*
* pte_offset_map() might apply user-specific validation.
* Indeed, on x86_64 the pmd entries set up by init_espfix_ap()
* fit its pmd_bad() check (_PAGE_NX set and _PAGE_RW clear),
* and CONFIG_EFI_PGT_DUMP efi_mm goes so far as to walk them.
*/
if (walk->mm == &init_mm || addr >= TASK_SIZE)
pte = pte_offset_kernel(pmd, addr);
else
pte = pte_offset_map(pmd, addr);
if (pte) {
err = walk_pte_range_inner(pte, addr, end, walk);
if (walk->mm != &init_mm && addr < TASK_SIZE)
pte_unmap(pte);
}
} else {
pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
if (pte) {
err = walk_pte_range_inner(pte, addr, end, walk);
pte_unmap_unlock(pte, ptl);
}
}
if (!pte)
walk->action = ACTION_AGAIN;
return err;
}
static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
pmd_t *pmd;
unsigned long next;
const struct mm_walk_ops *ops = walk->ops;
int err = 0;
int depth = real_depth(3);
pmd = pmd_offset(pud, addr);
do {
again:
next = pmd_addr_end(addr, end);
if (pmd_none(*pmd)) {
if (ops->pte_hole)
err = ops->pte_hole(addr, next, depth, walk);
if (err)
break;
continue;
}
walk->action = ACTION_SUBTREE;
/*
* This implies that each ->pmd_entry() handler
* needs to know about pmd_trans_huge() pmds
*/
if (ops->pmd_entry)
err = ops->pmd_entry(pmd, addr, next, walk);
if (err)
break;
if (walk->action == ACTION_AGAIN)
goto again;
/*
* Check this here so we only break down trans_huge
* pages when we _need_ to
*/
if ((!walk->vma && (pmd_leaf(*pmd) || !pmd_present(*pmd))) ||
walk->action == ACTION_CONTINUE ||
!(ops->pte_entry))
continue;
if (walk->vma)
split_huge_pmd(walk->vma, pmd, addr);
err = walk_pte_range(pmd, addr, next, walk);
if (err)
break;
if (walk->action == ACTION_AGAIN)
goto again;
} while (pmd++, addr = next, addr != end);
return err;
}
static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
pud_t *pud;
unsigned long next;
const struct mm_walk_ops *ops = walk->ops;
int err = 0;
int depth = real_depth(2);
pud = pud_offset(p4d, addr);
do {
again:
next = pud_addr_end(addr, end);
if (pud_none(*pud)) {
if (ops->pte_hole)
err = ops->pte_hole(addr, next, depth, walk);
if (err)
break;
continue;
}
walk->action = ACTION_SUBTREE;
if (ops->pud_entry)
err = ops->pud_entry(pud, addr, next, walk);
if (err)
break;
if (walk->action == ACTION_AGAIN)
goto again;
if ((!walk->vma && (pud_leaf(*pud) || !pud_present(*pud))) ||
walk->action == ACTION_CONTINUE ||
!(ops->pmd_entry || ops->pte_entry))
continue;
if (walk->vma)
split_huge_pud(walk->vma, pud, addr);
if (pud_none(*pud))
goto again;
err = walk_pmd_range(pud, addr, next, walk);
if (err)
break;
} while (pud++, addr = next, addr != end);
return err;
}
static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
p4d_t *p4d;
unsigned long next;
const struct mm_walk_ops *ops = walk->ops;
int err = 0;
int depth = real_depth(1);
p4d = p4d_offset(pgd, addr);
do {
next = p4d_addr_end(addr, end);
if (p4d_none_or_clear_bad(p4d)) {
if (ops->pte_hole)
err = ops->pte_hole(addr, next, depth, walk);
if (err)
break;
continue;
}
if (ops->p4d_entry) {
err = ops->p4d_entry(p4d, addr, next, walk);
if (err)
break;
}
if (ops->pud_entry || ops->pmd_entry || ops->pte_entry)
err = walk_pud_range(p4d, addr, next, walk);
if (err)
break;
} while (p4d++, addr = next, addr != end);
return err;
}
static int walk_pgd_range(unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
pgd_t *pgd;
unsigned long next;
const struct mm_walk_ops *ops = walk->ops;
int err = 0;
if (walk->pgd)
pgd = walk->pgd + pgd_index(addr);
else
pgd = pgd_offset(walk->mm, addr);
do {
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(pgd)) {
if (ops->pte_hole)
err = ops->pte_hole(addr, next, 0, walk);
if (err)
break;
continue;
}
if (ops->pgd_entry) {
err = ops->pgd_entry(pgd, addr, next, walk);
if (err)
break;
}
if (ops->p4d_entry || ops->pud_entry || ops->pmd_entry || ops->pte_entry)
err = walk_p4d_range(pgd, addr, next, walk);
if (err)
break;
} while (pgd++, addr = next, addr != end);
return err;
}
#ifdef CONFIG_HUGETLB_PAGE
static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
unsigned long end)
{
unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
return boundary < end ? boundary : end;
}
static int walk_hugetlb_range(unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
struct vm_area_struct *vma = walk->vma;
struct hstate *h = hstate_vma(vma);
unsigned long next;
unsigned long hmask = huge_page_mask(h);
unsigned long sz = huge_page_size(h);
pte_t *pte;
const struct mm_walk_ops *ops = walk->ops;
int err = 0;
hugetlb_vma_lock_read(vma);
do {
next = hugetlb_entry_end(h, addr, end);
pte = hugetlb_walk(vma, addr & hmask, sz);
if (pte)
err = ops->hugetlb_entry(pte, hmask, addr, next, walk);
else if (ops->pte_hole)
err = ops->pte_hole(addr, next, -1, walk);
if (err)
break;
} while (addr = next, addr != end);
hugetlb_vma_unlock_read(vma);
return err;
}
#else /* CONFIG_HUGETLB_PAGE */
static int walk_hugetlb_range(unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
return 0;
}
#endif /* CONFIG_HUGETLB_PAGE */
/*
* Decide whether we really walk over the current vma on [@start, @end)
* or skip it via the returned value. Return 0 if we do walk over the
* current vma, and return 1 if we skip the vma. Negative values means
* error, where we abort the current walk.
*/
static int walk_page_test(unsigned long start, unsigned long end,
struct mm_walk *walk)
{
struct vm_area_struct *vma = walk->vma;
const struct mm_walk_ops *ops = walk->ops;
if (ops->test_walk)
return ops->test_walk(start, end, walk);
/*
* vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP
* range, so we don't walk over it as we do for normal vmas. However,
* Some callers are interested in handling hole range and they don't
* want to just ignore any single address range. Such users certainly
* define their ->pte_hole() callbacks, so let's delegate them to handle
* vma(VM_PFNMAP).
*/
if (vma->vm_flags & VM_PFNMAP) {
int err = 1;
if (ops->pte_hole)
err = ops->pte_hole(start, end, -1, walk);
return err ? err : 1;
}
return 0;
}
static int __walk_page_range(unsigned long start, unsigned long end,
struct mm_walk *walk)
{
int err = 0;
struct vm_area_struct *vma = walk->vma;
const struct mm_walk_ops *ops = walk->ops;
if (ops->pre_vma) {
err = ops->pre_vma(start, end, walk);
if (err)
return err;
}
if (is_vm_hugetlb_page(vma)) {
if (ops->hugetlb_entry)
err = walk_hugetlb_range(start, end, walk);
} else
err = walk_pgd_range(start, end, walk);
if (ops->post_vma)
ops->post_vma(walk);
return err;
}
static inline void process_mm_walk_lock(struct mm_struct *mm,
enum page_walk_lock walk_lock)
{
if (walk_lock == PGWALK_RDLOCK)
mmap_assert_locked(mm);
else
mmap_assert_write_locked(mm);
}
static inline void process_vma_walk_lock(struct vm_area_struct *vma,
enum page_walk_lock walk_lock)
{
#ifdef CONFIG_PER_VMA_LOCK
switch (walk_lock) {
case PGWALK_WRLOCK:
vma_start_write(vma);
break;
case PGWALK_WRLOCK_VERIFY:
vma_assert_write_locked(vma);
break;
case PGWALK_RDLOCK:
/* PGWALK_RDLOCK is handled by process_mm_walk_lock */
break;
}
#endif
}
/**
* walk_page_range - walk page table with caller specific callbacks
* @mm: mm_struct representing the target process of page table walk
* @start: start address of the virtual address range
* @end: end address of the virtual address range
* @ops: operation to call during the walk
* @private: private data for callbacks' usage
*
* Recursively walk the page table tree of the process represented by @mm
* within the virtual address range [@start, @end). During walking, we can do
* some caller-specific works for each entry, by setting up pmd_entry(),
* pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these
* callbacks, the associated entries/pages are just ignored.
* The return values of these callbacks are commonly defined like below:
*
* - 0 : succeeded to handle the current entry, and if you don't reach the
* end address yet, continue to walk.
* - >0 : succeeded to handle the current entry, and return to the caller
* with caller specific value.
* - <0 : failed to handle the current entry, and return to the caller
* with error code.
*
* Before starting to walk page table, some callers want to check whether
* they really want to walk over the current vma, typically by checking
* its vm_flags. walk_page_test() and @ops->test_walk() are used for this
* purpose.
*
* If operations need to be staged before and committed after a vma is walked,
* there are two callbacks, pre_vma() and post_vma(). Note that post_vma(),
* since it is intended to handle commit-type operations, can't return any
* errors.
*
* struct mm_walk keeps current values of some common data like vma and pmd,
* which are useful for the access from callbacks. If you want to pass some
* caller-specific data to callbacks, @private should be helpful.
*
* Locking:
* Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock,
* because these function traverse vma list and/or access to vma's data.
*/
int walk_page_range(struct mm_struct *mm, unsigned long start,
unsigned long end, const struct mm_walk_ops *ops,
void *private)
{
int err = 0;
unsigned long next;
struct vm_area_struct *vma;
struct mm_walk walk = {
.ops = ops,
.mm = mm,
.private = private,
};
if (start >= end)
return -EINVAL;
if (!walk.mm)
return -EINVAL;
process_mm_walk_lock(walk.mm, ops->walk_lock);
vma = find_vma(walk.mm, start);
do {
if (!vma) { /* after the last vma */
walk.vma = NULL;
next = end;
if (ops->pte_hole)
err = ops->pte_hole(start, next, -1, &walk);
} else if (start < vma->vm_start) { /* outside vma */
walk.vma = NULL;
next = min(end, vma->vm_start);
if (ops->pte_hole)
err = ops->pte_hole(start, next, -1, &walk);
} else { /* inside vma */
process_vma_walk_lock(vma, ops->walk_lock);
walk.vma = vma;
next = min(end, vma->vm_end);
vma = find_vma(mm, vma->vm_end);
err = walk_page_test(start, next, &walk);
if (err > 0) {
/*
* positive return values are purely for
* controlling the pagewalk, so should never
* be passed to the callers.
*/
err = 0;
continue;
}
if (err < 0)
break;
err = __walk_page_range(start, next, &walk);
}
if (err)
break;
} while (start = next, start < end);
return err;
}
/**
* walk_page_range_novma - walk a range of pagetables not backed by a vma
* @mm: mm_struct representing the target process of page table walk
* @start: start address of the virtual address range
* @end: end address of the virtual address range
* @ops: operation to call during the walk
* @pgd: pgd to walk if different from mm->pgd
* @private: private data for callbacks' usage
*
* Similar to walk_page_range() but can walk any page tables even if they are
* not backed by VMAs. Because 'unusual' entries may be walked this function
* will also not lock the PTEs for the pte_entry() callback. This is useful for
* walking the kernel pages tables or page tables for firmware.
*
* Note: Be careful to walk the kernel pages tables, the caller may be need to
* take other effective approache (mmap lock may be insufficient) to prevent
* the intermediate kernel page tables belonging to the specified address range
* from being freed (e.g. memory hot-remove).
*/
int walk_page_range_novma(struct mm_struct *mm, unsigned long start,
unsigned long end, const struct mm_walk_ops *ops,
pgd_t *pgd,
void *private)
{
struct mm_walk walk = {
.ops = ops,
.mm = mm,
.pgd = pgd,
.private = private,
.no_vma = true
};
if (start >= end || !walk.mm)
return -EINVAL;
/*
* 1) For walking the user virtual address space:
*
* The mmap lock protects the page walker from changes to the page
* tables during the walk. However a read lock is insufficient to
* protect those areas which don't have a VMA as munmap() detaches
* the VMAs before downgrading to a read lock and actually tearing
* down PTEs/page tables. In which case, the mmap write lock should
* be hold.
*
* 2) For walking the kernel virtual address space:
*
* The kernel intermediate page tables usually do not be freed, so
* the mmap map read lock is sufficient. But there are some exceptions.
* E.g. memory hot-remove. In which case, the mmap lock is insufficient
* to prevent the intermediate kernel pages tables belonging to the
* specified address range from being freed. The caller should take
* other actions to prevent this race.
*/
if (mm == &init_mm)
mmap_assert_locked(walk.mm);
else
mmap_assert_write_locked(walk.mm);
return walk_pgd_range(start, end, &walk);
}
int walk_page_range_vma(struct vm_area_struct *vma, unsigned long start,
unsigned long end, const struct mm_walk_ops *ops,
void *private)
{
struct mm_walk walk = {
.ops = ops,
.mm = vma->vm_mm,
.vma = vma,
.private = private,
};
if (start >= end || !walk.mm)
return -EINVAL;
if (start < vma->vm_start || end > vma->vm_end)
return -EINVAL;
process_mm_walk_lock(walk.mm, ops->walk_lock);
process_vma_walk_lock(vma, ops->walk_lock);
return __walk_page_range(start, end, &walk);
}
int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops,
void *private)
{
struct mm_walk walk = {
.ops = ops,
.mm = vma->vm_mm,
.vma = vma,
.private = private,
};
if (!walk.mm)
return -EINVAL;
process_mm_walk_lock(walk.mm, ops->walk_lock);
process_vma_walk_lock(vma, ops->walk_lock);
return __walk_page_range(vma->vm_start, vma->vm_end, &walk);
}
/**
* walk_page_mapping - walk all memory areas mapped into a struct address_space.
* @mapping: Pointer to the struct address_space
* @first_index: First page offset in the address_space
* @nr: Number of incremental page offsets to cover
* @ops: operation to call during the walk
* @private: private data for callbacks' usage
*
* This function walks all memory areas mapped into a struct address_space.
* The walk is limited to only the given page-size index range, but if
* the index boundaries cross a huge page-table entry, that entry will be
* included.
*
* Also see walk_page_range() for additional information.
*
* Locking:
* This function can't require that the struct mm_struct::mmap_lock is held,
* since @mapping may be mapped by multiple processes. Instead
* @mapping->i_mmap_rwsem must be held. This might have implications in the
* callbacks, and it's up tho the caller to ensure that the
* struct mm_struct::mmap_lock is not needed.
*
* Also this means that a caller can't rely on the struct
* vm_area_struct::vm_flags to be constant across a call,
* except for immutable flags. Callers requiring this shouldn't use
* this function.
*
* Return: 0 on success, negative error code on failure, positive number on
* caller defined premature termination.
*/
int walk_page_mapping(struct address_space *mapping, pgoff_t first_index,
pgoff_t nr, const struct mm_walk_ops *ops,
void *private)
{
struct mm_walk walk = {
.ops = ops,
.private = private,
};
struct vm_area_struct *vma;
pgoff_t vba, vea, cba, cea;
unsigned long start_addr, end_addr;
int err = 0;
lockdep_assert_held(&mapping->i_mmap_rwsem);
vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index,
first_index + nr - 1) {
/* Clip to the vma */
vba = vma->vm_pgoff;
vea = vba + vma_pages(vma);
cba = first_index;
cba = max(cba, vba);
cea = first_index + nr;
cea = min(cea, vea);
start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start;
end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start;
if (start_addr >= end_addr)
continue;
walk.vma = vma;
walk.mm = vma->vm_mm;
err = walk_page_test(vma->vm_start, vma->vm_end, &walk);
if (err > 0) {
err = 0;
break;
} else if (err < 0)
break;
err = __walk_page_range(start_addr, end_addr, &walk);
if (err)
break;
}
return err;
}
/**
* folio_walk_start - walk the page tables to a folio
* @fw: filled with information on success.
* @vma: the VMA.
* @addr: the virtual address to use for the page table walk.
* @flags: flags modifying which folios to walk to.
*
* Walk the page tables using @addr in a given @vma to a mapped folio and
* return the folio, making sure that the page table entry referenced by
* @addr cannot change until folio_walk_end() was called.
*
* As default, this function returns only folios that are not special (e.g., not
* the zeropage) and never returns folios that are supposed to be ignored by the
* VM as documented by vm_normal_page(). If requested, zeropages will be
* returned as well.
*
* As default, this function only considers present page table entries.
* If requested, it will also consider migration entries.
*
* If this function returns NULL it might either indicate "there is nothing" or
* "there is nothing suitable".
*
* On success, @fw is filled and the function returns the folio while the PTL
* is still held and folio_walk_end() must be called to clean up,
* releasing any held locks. The returned folio must *not* be used after the
* call to folio_walk_end(), unless a short-term folio reference is taken before
* that call.
*
* @fw->page will correspond to the page that is effectively referenced by
* @addr. However, for migration entries and shared zeropages @fw->page is
* set to NULL. Note that large folios might be mapped by multiple page table
* entries, and this function will always only lookup a single entry as
* specified by @addr, which might or might not cover more than a single page of
* the returned folio.
*
* This function must *not* be used as a naive replacement for
* get_user_pages() / pin_user_pages(), especially not to perform DMA or
* to carelessly modify page content. This function may *only* be used to grab
* short-term folio references, never to grab long-term folio references.
*
* Using the page table entry pointers in @fw for reading or modifying the
* entry should be avoided where possible: however, there might be valid
* use cases.
*
* WARNING: Modifying page table entries in hugetlb VMAs requires a lot of care.
* For example, PMD page table sharing might require prior unsharing. Also,
* logical hugetlb entries might span multiple physical page table entries,
* which *must* be modified in a single operation (set_huge_pte_at(),
* huge_ptep_set_*, ...). Note that the page table entry stored in @fw might
* not correspond to the first physical entry of a logical hugetlb entry.
*
* The mmap lock must be held in read mode.
*
* Return: folio pointer on success, otherwise NULL.
*/
struct folio *folio_walk_start(struct folio_walk *fw,
struct vm_area_struct *vma, unsigned long addr,
folio_walk_flags_t flags)
{
unsigned long entry_size;
bool expose_page = true;
struct page *page;
pud_t *pudp, pud;
pmd_t *pmdp, pmd;
pte_t *ptep, pte;
spinlock_t *ptl;
pgd_t *pgdp;
p4d_t *p4dp;
mmap_assert_locked(vma->vm_mm);
vma_pgtable_walk_begin(vma);
if (WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end))
goto not_found;
pgdp = pgd_offset(vma->vm_mm, addr);
if (pgd_none_or_clear_bad(pgdp))
goto not_found;
p4dp = p4d_offset(pgdp, addr);
if (p4d_none_or_clear_bad(p4dp))
goto not_found;
pudp = pud_offset(p4dp, addr);
pud = pudp_get(pudp);
if (pud_none(pud))
goto not_found;
if (IS_ENABLED(CONFIG_PGTABLE_HAS_HUGE_LEAVES) &&
(!pud_present(pud) || pud_leaf(pud))) {
ptl = pud_lock(vma->vm_mm, pudp);
pud = pudp_get(pudp);
entry_size = PUD_SIZE;
fw->level = FW_LEVEL_PUD;
fw->pudp = pudp;
fw->pud = pud;
/*
* TODO: FW_MIGRATION support for PUD migration entries
* once there are relevant users.
*/
if (!pud_present(pud) || pud_devmap(pud) || pud_special(pud)) {
spin_unlock(ptl);
goto not_found;
} else if (!pud_leaf(pud)) {
spin_unlock(ptl);
goto pmd_table;
}
/*
* TODO: vm_normal_page_pud() will be handy once we want to
* support PUD mappings in VM_PFNMAP|VM_MIXEDMAP VMAs.
*/
page = pud_page(pud);
goto found;
}
pmd_table:
VM_WARN_ON_ONCE(!pud_present(pud) || pud_leaf(pud));
pmdp = pmd_offset(pudp, addr);
pmd = pmdp_get_lockless(pmdp);
if (pmd_none(pmd))
goto not_found;
if (IS_ENABLED(CONFIG_PGTABLE_HAS_HUGE_LEAVES) &&
(!pmd_present(pmd) || pmd_leaf(pmd))) {
ptl = pmd_lock(vma->vm_mm, pmdp);
pmd = pmdp_get(pmdp);
entry_size = PMD_SIZE;
fw->level = FW_LEVEL_PMD;
fw->pmdp = pmdp;
fw->pmd = pmd;
if (pmd_none(pmd)) {
spin_unlock(ptl);
goto not_found;
} else if (pmd_present(pmd) && !pmd_leaf(pmd)) {
spin_unlock(ptl);
goto pte_table;
} else if (pmd_present(pmd)) {
page = vm_normal_page_pmd(vma, addr, pmd);
if (page) {
goto found;
} else if ((flags & FW_ZEROPAGE) &&
is_huge_zero_pmd(pmd)) {
page = pfn_to_page(pmd_pfn(pmd));
expose_page = false;
goto found;
}
} else if ((flags & FW_MIGRATION) &&
is_pmd_migration_entry(pmd)) {
swp_entry_t entry = pmd_to_swp_entry(pmd);
page = pfn_swap_entry_to_page(entry);
expose_page = false;
goto found;
}
spin_unlock(ptl);
goto not_found;
}
pte_table:
VM_WARN_ON_ONCE(!pmd_present(pmd) || pmd_leaf(pmd));
ptep = pte_offset_map_lock(vma->vm_mm, pmdp, addr, &ptl);
if (!ptep)
goto not_found;
pte = ptep_get(ptep);
entry_size = PAGE_SIZE;
fw->level = FW_LEVEL_PTE;
fw->ptep = ptep;
fw->pte = pte;
if (pte_present(pte)) {
page = vm_normal_page(vma, addr, pte);
if (page)
goto found;
if ((flags & FW_ZEROPAGE) &&
is_zero_pfn(pte_pfn(pte))) {
page = pfn_to_page(pte_pfn(pte));
expose_page = false;
goto found;
}
} else if (!pte_none(pte)) {
swp_entry_t entry = pte_to_swp_entry(pte);
if ((flags & FW_MIGRATION) &&
is_migration_entry(entry)) {
page = pfn_swap_entry_to_page(entry);
expose_page = false;
goto found;
}
}
pte_unmap_unlock(ptep, ptl);
not_found:
vma_pgtable_walk_end(vma);
return NULL;
found:
if (expose_page)
/* Note: Offset from the mapped page, not the folio start. */
fw->page = nth_page(page, (addr & (entry_size - 1)) >> PAGE_SHIFT);
else
fw->page = NULL;
fw->ptl = ptl;
return page_folio(page);
}