mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-11 21:38:32 +08:00
9050ba3a61
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmJwBoQACgkQxWXV+ddt WDu/FQ/+L2LpN5Zu1NkjOAh2Lcvz5RYZjcVext4bbPUW2yhXYH3e6836R/feLOCG RxRICOAQhJ7I6ct/N1aToI2AbjWnMSJK+IgageA1UdIS8McbcSP/qJOYwJ/+2Xhl AvK5psoj+qwGbTI9e0luNe6b+UWTGIMyYRjmN0SlkBOdg9/xqQpBMQxfKJumMvEc 3ZwLpcNjhUUwdFKHvHZNCOQhZiZwloKFeq9MLaEL5LO30wKSY6ShiCA3pafFoVN0 mvEEVtIGgZUsgeQTzSzD8UhGDvZtZ1+aaX0dcNMRzwI2h2pkBmPkd5QtFM9Qs0xP hGibSN9bC/SzQyE9v4cKohwS+g4dE4r+dUWFNpdZLIOpBt5PJBDA0tjcjxquFtMr 6JX77coAl9kt0jspBmHVPb3qmIc1Xo3Iw2PrVgTK14QUo46XwF5Rga68wKOfNt0u LbD9+KCLnwxoOhvXh/LJX6nvPT8tuMrT/5AOXULI2oMCnpCY6Vl+kX8zFlAfbDk1 d4/jy42bgHCso60j2vAcdQmZB+/snpboOhKJwkE2FqOTs+hBR8PBln6BqEt5xkHZ q2mBfYDujnmZWaiAU6+ETjOcCooWQioi3335tp/C9TdOrIkFDij1ztYRxhgP0g0X w6d6wlbkcol1Zubb/zEiBiwe+6GR/KtNYc4PBEfVe5Vw0npFreU= =7k9f -----END PGP SIGNATURE----- Merge tag 'for-5.18-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "A few more fixes mostly around how some file attributes could be set. - fix handling of compression property: - don't allow setting it on anything else than regular file or directory - do not allow setting it on nodatacow files via properties - improved error handling when setting xattr - make sure symlinks are always properly logged" * tag 'for-5.18-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: skip compression property for anything other than files and dirs btrfs: do not BUG_ON() on failure to update inode when setting xattr btrfs: always log symlinks in full mode btrfs: do not allow compression on nodatacow files btrfs: export a helper for compression hard check
11409 lines
320 KiB
C
11409 lines
320 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*/
|
|
|
|
#include <crypto/hash.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/blk-cgroup.h>
|
|
#include <linux/file.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/time.h>
|
|
#include <linux/init.h>
|
|
#include <linux/string.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/xattr.h>
|
|
#include <linux/posix_acl.h>
|
|
#include <linux/falloc.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/btrfs.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/posix_acl_xattr.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/magic.h>
|
|
#include <linux/iversion.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/iomap.h>
|
|
#include <asm/unaligned.h>
|
|
#include <linux/fsverity.h>
|
|
#include "misc.h"
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "transaction.h"
|
|
#include "btrfs_inode.h"
|
|
#include "print-tree.h"
|
|
#include "ordered-data.h"
|
|
#include "xattr.h"
|
|
#include "tree-log.h"
|
|
#include "volumes.h"
|
|
#include "compression.h"
|
|
#include "locking.h"
|
|
#include "free-space-cache.h"
|
|
#include "props.h"
|
|
#include "qgroup.h"
|
|
#include "delalloc-space.h"
|
|
#include "block-group.h"
|
|
#include "space-info.h"
|
|
#include "zoned.h"
|
|
#include "subpage.h"
|
|
#include "inode-item.h"
|
|
|
|
struct btrfs_iget_args {
|
|
u64 ino;
|
|
struct btrfs_root *root;
|
|
};
|
|
|
|
struct btrfs_dio_data {
|
|
ssize_t submitted;
|
|
struct extent_changeset *data_reserved;
|
|
};
|
|
|
|
struct btrfs_rename_ctx {
|
|
/* Output field. Stores the index number of the old directory entry. */
|
|
u64 index;
|
|
};
|
|
|
|
static const struct inode_operations btrfs_dir_inode_operations;
|
|
static const struct inode_operations btrfs_symlink_inode_operations;
|
|
static const struct inode_operations btrfs_special_inode_operations;
|
|
static const struct inode_operations btrfs_file_inode_operations;
|
|
static const struct address_space_operations btrfs_aops;
|
|
static const struct file_operations btrfs_dir_file_operations;
|
|
|
|
static struct kmem_cache *btrfs_inode_cachep;
|
|
struct kmem_cache *btrfs_trans_handle_cachep;
|
|
struct kmem_cache *btrfs_path_cachep;
|
|
struct kmem_cache *btrfs_free_space_cachep;
|
|
struct kmem_cache *btrfs_free_space_bitmap_cachep;
|
|
|
|
static int btrfs_setsize(struct inode *inode, struct iattr *attr);
|
|
static int btrfs_truncate(struct inode *inode, bool skip_writeback);
|
|
static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
|
|
static noinline int cow_file_range(struct btrfs_inode *inode,
|
|
struct page *locked_page,
|
|
u64 start, u64 end, int *page_started,
|
|
unsigned long *nr_written, int unlock);
|
|
static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
|
|
u64 len, u64 orig_start, u64 block_start,
|
|
u64 block_len, u64 orig_block_len,
|
|
u64 ram_bytes, int compress_type,
|
|
int type);
|
|
|
|
static void __endio_write_update_ordered(struct btrfs_inode *inode,
|
|
const u64 offset, const u64 bytes,
|
|
const bool uptodate);
|
|
|
|
/*
|
|
* btrfs_inode_lock - lock inode i_rwsem based on arguments passed
|
|
*
|
|
* ilock_flags can have the following bit set:
|
|
*
|
|
* BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
|
|
* BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
|
|
* return -EAGAIN
|
|
* BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
|
|
*/
|
|
int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags)
|
|
{
|
|
if (ilock_flags & BTRFS_ILOCK_SHARED) {
|
|
if (ilock_flags & BTRFS_ILOCK_TRY) {
|
|
if (!inode_trylock_shared(inode))
|
|
return -EAGAIN;
|
|
else
|
|
return 0;
|
|
}
|
|
inode_lock_shared(inode);
|
|
} else {
|
|
if (ilock_flags & BTRFS_ILOCK_TRY) {
|
|
if (!inode_trylock(inode))
|
|
return -EAGAIN;
|
|
else
|
|
return 0;
|
|
}
|
|
inode_lock(inode);
|
|
}
|
|
if (ilock_flags & BTRFS_ILOCK_MMAP)
|
|
down_write(&BTRFS_I(inode)->i_mmap_lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* btrfs_inode_unlock - unock inode i_rwsem
|
|
*
|
|
* ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
|
|
* to decide whether the lock acquired is shared or exclusive.
|
|
*/
|
|
void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags)
|
|
{
|
|
if (ilock_flags & BTRFS_ILOCK_MMAP)
|
|
up_write(&BTRFS_I(inode)->i_mmap_lock);
|
|
if (ilock_flags & BTRFS_ILOCK_SHARED)
|
|
inode_unlock_shared(inode);
|
|
else
|
|
inode_unlock(inode);
|
|
}
|
|
|
|
/*
|
|
* Cleanup all submitted ordered extents in specified range to handle errors
|
|
* from the btrfs_run_delalloc_range() callback.
|
|
*
|
|
* NOTE: caller must ensure that when an error happens, it can not call
|
|
* extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
|
|
* and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
|
|
* to be released, which we want to happen only when finishing the ordered
|
|
* extent (btrfs_finish_ordered_io()).
|
|
*/
|
|
static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
|
|
struct page *locked_page,
|
|
u64 offset, u64 bytes)
|
|
{
|
|
unsigned long index = offset >> PAGE_SHIFT;
|
|
unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
|
|
u64 page_start = page_offset(locked_page);
|
|
u64 page_end = page_start + PAGE_SIZE - 1;
|
|
|
|
struct page *page;
|
|
|
|
while (index <= end_index) {
|
|
/*
|
|
* For locked page, we will call end_extent_writepage() on it
|
|
* in run_delalloc_range() for the error handling. That
|
|
* end_extent_writepage() function will call
|
|
* btrfs_mark_ordered_io_finished() to clear page Ordered and
|
|
* run the ordered extent accounting.
|
|
*
|
|
* Here we can't just clear the Ordered bit, or
|
|
* btrfs_mark_ordered_io_finished() would skip the accounting
|
|
* for the page range, and the ordered extent will never finish.
|
|
*/
|
|
if (index == (page_offset(locked_page) >> PAGE_SHIFT)) {
|
|
index++;
|
|
continue;
|
|
}
|
|
page = find_get_page(inode->vfs_inode.i_mapping, index);
|
|
index++;
|
|
if (!page)
|
|
continue;
|
|
|
|
/*
|
|
* Here we just clear all Ordered bits for every page in the
|
|
* range, then __endio_write_update_ordered() will handle
|
|
* the ordered extent accounting for the range.
|
|
*/
|
|
btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
|
|
offset, bytes);
|
|
put_page(page);
|
|
}
|
|
|
|
/* The locked page covers the full range, nothing needs to be done */
|
|
if (bytes + offset <= page_offset(locked_page) + PAGE_SIZE)
|
|
return;
|
|
/*
|
|
* In case this page belongs to the delalloc range being instantiated
|
|
* then skip it, since the first page of a range is going to be
|
|
* properly cleaned up by the caller of run_delalloc_range
|
|
*/
|
|
if (page_start >= offset && page_end <= (offset + bytes - 1)) {
|
|
bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
|
|
offset = page_offset(locked_page) + PAGE_SIZE;
|
|
}
|
|
|
|
return __endio_write_update_ordered(inode, offset, bytes, false);
|
|
}
|
|
|
|
static int btrfs_dirty_inode(struct inode *inode);
|
|
|
|
static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
|
|
struct inode *inode, struct inode *dir,
|
|
const struct qstr *qstr)
|
|
{
|
|
int err;
|
|
|
|
err = btrfs_init_acl(trans, inode, dir);
|
|
if (!err)
|
|
err = btrfs_xattr_security_init(trans, inode, dir, qstr);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* this does all the hard work for inserting an inline extent into
|
|
* the btree. The caller should have done a btrfs_drop_extents so that
|
|
* no overlapping inline items exist in the btree
|
|
*/
|
|
static int insert_inline_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_path *path,
|
|
struct btrfs_inode *inode, bool extent_inserted,
|
|
size_t size, size_t compressed_size,
|
|
int compress_type,
|
|
struct page **compressed_pages,
|
|
bool update_i_size)
|
|
{
|
|
struct btrfs_root *root = inode->root;
|
|
struct extent_buffer *leaf;
|
|
struct page *page = NULL;
|
|
char *kaddr;
|
|
unsigned long ptr;
|
|
struct btrfs_file_extent_item *ei;
|
|
int ret;
|
|
size_t cur_size = size;
|
|
u64 i_size;
|
|
|
|
ASSERT((compressed_size > 0 && compressed_pages) ||
|
|
(compressed_size == 0 && !compressed_pages));
|
|
|
|
if (compressed_size && compressed_pages)
|
|
cur_size = compressed_size;
|
|
|
|
if (!extent_inserted) {
|
|
struct btrfs_key key;
|
|
size_t datasize;
|
|
|
|
key.objectid = btrfs_ino(inode);
|
|
key.offset = 0;
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
|
|
datasize = btrfs_file_extent_calc_inline_size(cur_size);
|
|
ret = btrfs_insert_empty_item(trans, root, path, &key,
|
|
datasize);
|
|
if (ret)
|
|
goto fail;
|
|
}
|
|
leaf = path->nodes[0];
|
|
ei = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
btrfs_set_file_extent_generation(leaf, ei, trans->transid);
|
|
btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
|
|
btrfs_set_file_extent_encryption(leaf, ei, 0);
|
|
btrfs_set_file_extent_other_encoding(leaf, ei, 0);
|
|
btrfs_set_file_extent_ram_bytes(leaf, ei, size);
|
|
ptr = btrfs_file_extent_inline_start(ei);
|
|
|
|
if (compress_type != BTRFS_COMPRESS_NONE) {
|
|
struct page *cpage;
|
|
int i = 0;
|
|
while (compressed_size > 0) {
|
|
cpage = compressed_pages[i];
|
|
cur_size = min_t(unsigned long, compressed_size,
|
|
PAGE_SIZE);
|
|
|
|
kaddr = kmap_atomic(cpage);
|
|
write_extent_buffer(leaf, kaddr, ptr, cur_size);
|
|
kunmap_atomic(kaddr);
|
|
|
|
i++;
|
|
ptr += cur_size;
|
|
compressed_size -= cur_size;
|
|
}
|
|
btrfs_set_file_extent_compression(leaf, ei,
|
|
compress_type);
|
|
} else {
|
|
page = find_get_page(inode->vfs_inode.i_mapping, 0);
|
|
btrfs_set_file_extent_compression(leaf, ei, 0);
|
|
kaddr = kmap_atomic(page);
|
|
write_extent_buffer(leaf, kaddr, ptr, size);
|
|
kunmap_atomic(kaddr);
|
|
put_page(page);
|
|
}
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* We align size to sectorsize for inline extents just for simplicity
|
|
* sake.
|
|
*/
|
|
ret = btrfs_inode_set_file_extent_range(inode, 0,
|
|
ALIGN(size, root->fs_info->sectorsize));
|
|
if (ret)
|
|
goto fail;
|
|
|
|
/*
|
|
* We're an inline extent, so nobody can extend the file past i_size
|
|
* without locking a page we already have locked.
|
|
*
|
|
* We must do any i_size and inode updates before we unlock the pages.
|
|
* Otherwise we could end up racing with unlink.
|
|
*/
|
|
i_size = i_size_read(&inode->vfs_inode);
|
|
if (update_i_size && size > i_size) {
|
|
i_size_write(&inode->vfs_inode, size);
|
|
i_size = size;
|
|
}
|
|
inode->disk_i_size = i_size;
|
|
|
|
fail:
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* conditionally insert an inline extent into the file. This
|
|
* does the checks required to make sure the data is small enough
|
|
* to fit as an inline extent.
|
|
*/
|
|
static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
|
|
size_t compressed_size,
|
|
int compress_type,
|
|
struct page **compressed_pages,
|
|
bool update_i_size)
|
|
{
|
|
struct btrfs_drop_extents_args drop_args = { 0 };
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_trans_handle *trans;
|
|
u64 data_len = (compressed_size ?: size);
|
|
int ret;
|
|
struct btrfs_path *path;
|
|
|
|
/*
|
|
* We can create an inline extent if it ends at or beyond the current
|
|
* i_size, is no larger than a sector (decompressed), and the (possibly
|
|
* compressed) data fits in a leaf and the configured maximum inline
|
|
* size.
|
|
*/
|
|
if (size < i_size_read(&inode->vfs_inode) ||
|
|
size > fs_info->sectorsize ||
|
|
data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
|
|
data_len > fs_info->max_inline)
|
|
return 1;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans)) {
|
|
btrfs_free_path(path);
|
|
return PTR_ERR(trans);
|
|
}
|
|
trans->block_rsv = &inode->block_rsv;
|
|
|
|
drop_args.path = path;
|
|
drop_args.start = 0;
|
|
drop_args.end = fs_info->sectorsize;
|
|
drop_args.drop_cache = true;
|
|
drop_args.replace_extent = true;
|
|
drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
|
|
ret = btrfs_drop_extents(trans, root, inode, &drop_args);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
|
|
size, compressed_size, compress_type,
|
|
compressed_pages, update_i_size);
|
|
if (ret && ret != -ENOSPC) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
} else if (ret == -ENOSPC) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
if (ret && ret != -ENOSPC) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
} else if (ret == -ENOSPC) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
btrfs_set_inode_full_sync(inode);
|
|
out:
|
|
/*
|
|
* Don't forget to free the reserved space, as for inlined extent
|
|
* it won't count as data extent, free them directly here.
|
|
* And at reserve time, it's always aligned to page size, so
|
|
* just free one page here.
|
|
*/
|
|
btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
|
|
btrfs_free_path(path);
|
|
btrfs_end_transaction(trans);
|
|
return ret;
|
|
}
|
|
|
|
struct async_extent {
|
|
u64 start;
|
|
u64 ram_size;
|
|
u64 compressed_size;
|
|
struct page **pages;
|
|
unsigned long nr_pages;
|
|
int compress_type;
|
|
struct list_head list;
|
|
};
|
|
|
|
struct async_chunk {
|
|
struct inode *inode;
|
|
struct page *locked_page;
|
|
u64 start;
|
|
u64 end;
|
|
unsigned int write_flags;
|
|
struct list_head extents;
|
|
struct cgroup_subsys_state *blkcg_css;
|
|
struct btrfs_work work;
|
|
struct async_cow *async_cow;
|
|
};
|
|
|
|
struct async_cow {
|
|
atomic_t num_chunks;
|
|
struct async_chunk chunks[];
|
|
};
|
|
|
|
static noinline int add_async_extent(struct async_chunk *cow,
|
|
u64 start, u64 ram_size,
|
|
u64 compressed_size,
|
|
struct page **pages,
|
|
unsigned long nr_pages,
|
|
int compress_type)
|
|
{
|
|
struct async_extent *async_extent;
|
|
|
|
async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
|
|
BUG_ON(!async_extent); /* -ENOMEM */
|
|
async_extent->start = start;
|
|
async_extent->ram_size = ram_size;
|
|
async_extent->compressed_size = compressed_size;
|
|
async_extent->pages = pages;
|
|
async_extent->nr_pages = nr_pages;
|
|
async_extent->compress_type = compress_type;
|
|
list_add_tail(&async_extent->list, &cow->extents);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check if the inode needs to be submitted to compression, based on mount
|
|
* options, defragmentation, properties or heuristics.
|
|
*/
|
|
static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
|
|
u64 end)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
|
|
if (!btrfs_inode_can_compress(inode)) {
|
|
WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
|
|
KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
|
|
btrfs_ino(inode));
|
|
return 0;
|
|
}
|
|
/*
|
|
* Special check for subpage.
|
|
*
|
|
* We lock the full page then run each delalloc range in the page, thus
|
|
* for the following case, we will hit some subpage specific corner case:
|
|
*
|
|
* 0 32K 64K
|
|
* | |///////| |///////|
|
|
* \- A \- B
|
|
*
|
|
* In above case, both range A and range B will try to unlock the full
|
|
* page [0, 64K), causing the one finished later will have page
|
|
* unlocked already, triggering various page lock requirement BUG_ON()s.
|
|
*
|
|
* So here we add an artificial limit that subpage compression can only
|
|
* if the range is fully page aligned.
|
|
*
|
|
* In theory we only need to ensure the first page is fully covered, but
|
|
* the tailing partial page will be locked until the full compression
|
|
* finishes, delaying the write of other range.
|
|
*
|
|
* TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
|
|
* first to prevent any submitted async extent to unlock the full page.
|
|
* By this, we can ensure for subpage case that only the last async_cow
|
|
* will unlock the full page.
|
|
*/
|
|
if (fs_info->sectorsize < PAGE_SIZE) {
|
|
if (!IS_ALIGNED(start, PAGE_SIZE) ||
|
|
!IS_ALIGNED(end + 1, PAGE_SIZE))
|
|
return 0;
|
|
}
|
|
|
|
/* force compress */
|
|
if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
|
|
return 1;
|
|
/* defrag ioctl */
|
|
if (inode->defrag_compress)
|
|
return 1;
|
|
/* bad compression ratios */
|
|
if (inode->flags & BTRFS_INODE_NOCOMPRESS)
|
|
return 0;
|
|
if (btrfs_test_opt(fs_info, COMPRESS) ||
|
|
inode->flags & BTRFS_INODE_COMPRESS ||
|
|
inode->prop_compress)
|
|
return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
|
|
return 0;
|
|
}
|
|
|
|
static inline void inode_should_defrag(struct btrfs_inode *inode,
|
|
u64 start, u64 end, u64 num_bytes, u32 small_write)
|
|
{
|
|
/* If this is a small write inside eof, kick off a defrag */
|
|
if (num_bytes < small_write &&
|
|
(start > 0 || end + 1 < inode->disk_i_size))
|
|
btrfs_add_inode_defrag(NULL, inode, small_write);
|
|
}
|
|
|
|
/*
|
|
* we create compressed extents in two phases. The first
|
|
* phase compresses a range of pages that have already been
|
|
* locked (both pages and state bits are locked).
|
|
*
|
|
* This is done inside an ordered work queue, and the compression
|
|
* is spread across many cpus. The actual IO submission is step
|
|
* two, and the ordered work queue takes care of making sure that
|
|
* happens in the same order things were put onto the queue by
|
|
* writepages and friends.
|
|
*
|
|
* If this code finds it can't get good compression, it puts an
|
|
* entry onto the work queue to write the uncompressed bytes. This
|
|
* makes sure that both compressed inodes and uncompressed inodes
|
|
* are written in the same order that the flusher thread sent them
|
|
* down.
|
|
*/
|
|
static noinline int compress_file_range(struct async_chunk *async_chunk)
|
|
{
|
|
struct inode *inode = async_chunk->inode;
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
u64 blocksize = fs_info->sectorsize;
|
|
u64 start = async_chunk->start;
|
|
u64 end = async_chunk->end;
|
|
u64 actual_end;
|
|
u64 i_size;
|
|
int ret = 0;
|
|
struct page **pages = NULL;
|
|
unsigned long nr_pages;
|
|
unsigned long total_compressed = 0;
|
|
unsigned long total_in = 0;
|
|
int i;
|
|
int will_compress;
|
|
int compress_type = fs_info->compress_type;
|
|
int compressed_extents = 0;
|
|
int redirty = 0;
|
|
|
|
inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
|
|
SZ_16K);
|
|
|
|
/*
|
|
* We need to save i_size before now because it could change in between
|
|
* us evaluating the size and assigning it. This is because we lock and
|
|
* unlock the page in truncate and fallocate, and then modify the i_size
|
|
* later on.
|
|
*
|
|
* The barriers are to emulate READ_ONCE, remove that once i_size_read
|
|
* does that for us.
|
|
*/
|
|
barrier();
|
|
i_size = i_size_read(inode);
|
|
barrier();
|
|
actual_end = min_t(u64, i_size, end + 1);
|
|
again:
|
|
will_compress = 0;
|
|
nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
|
|
nr_pages = min_t(unsigned long, nr_pages,
|
|
BTRFS_MAX_COMPRESSED / PAGE_SIZE);
|
|
|
|
/*
|
|
* we don't want to send crud past the end of i_size through
|
|
* compression, that's just a waste of CPU time. So, if the
|
|
* end of the file is before the start of our current
|
|
* requested range of bytes, we bail out to the uncompressed
|
|
* cleanup code that can deal with all of this.
|
|
*
|
|
* It isn't really the fastest way to fix things, but this is a
|
|
* very uncommon corner.
|
|
*/
|
|
if (actual_end <= start)
|
|
goto cleanup_and_bail_uncompressed;
|
|
|
|
total_compressed = actual_end - start;
|
|
|
|
/*
|
|
* Skip compression for a small file range(<=blocksize) that
|
|
* isn't an inline extent, since it doesn't save disk space at all.
|
|
*/
|
|
if (total_compressed <= blocksize &&
|
|
(start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
|
|
goto cleanup_and_bail_uncompressed;
|
|
|
|
/*
|
|
* For subpage case, we require full page alignment for the sector
|
|
* aligned range.
|
|
* Thus we must also check against @actual_end, not just @end.
|
|
*/
|
|
if (blocksize < PAGE_SIZE) {
|
|
if (!IS_ALIGNED(start, PAGE_SIZE) ||
|
|
!IS_ALIGNED(round_up(actual_end, blocksize), PAGE_SIZE))
|
|
goto cleanup_and_bail_uncompressed;
|
|
}
|
|
|
|
total_compressed = min_t(unsigned long, total_compressed,
|
|
BTRFS_MAX_UNCOMPRESSED);
|
|
total_in = 0;
|
|
ret = 0;
|
|
|
|
/*
|
|
* we do compression for mount -o compress and when the
|
|
* inode has not been flagged as nocompress. This flag can
|
|
* change at any time if we discover bad compression ratios.
|
|
*/
|
|
if (inode_need_compress(BTRFS_I(inode), start, end)) {
|
|
WARN_ON(pages);
|
|
pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
|
|
if (!pages) {
|
|
/* just bail out to the uncompressed code */
|
|
nr_pages = 0;
|
|
goto cont;
|
|
}
|
|
|
|
if (BTRFS_I(inode)->defrag_compress)
|
|
compress_type = BTRFS_I(inode)->defrag_compress;
|
|
else if (BTRFS_I(inode)->prop_compress)
|
|
compress_type = BTRFS_I(inode)->prop_compress;
|
|
|
|
/*
|
|
* we need to call clear_page_dirty_for_io on each
|
|
* page in the range. Otherwise applications with the file
|
|
* mmap'd can wander in and change the page contents while
|
|
* we are compressing them.
|
|
*
|
|
* If the compression fails for any reason, we set the pages
|
|
* dirty again later on.
|
|
*
|
|
* Note that the remaining part is redirtied, the start pointer
|
|
* has moved, the end is the original one.
|
|
*/
|
|
if (!redirty) {
|
|
extent_range_clear_dirty_for_io(inode, start, end);
|
|
redirty = 1;
|
|
}
|
|
|
|
/* Compression level is applied here and only here */
|
|
ret = btrfs_compress_pages(
|
|
compress_type | (fs_info->compress_level << 4),
|
|
inode->i_mapping, start,
|
|
pages,
|
|
&nr_pages,
|
|
&total_in,
|
|
&total_compressed);
|
|
|
|
if (!ret) {
|
|
unsigned long offset = offset_in_page(total_compressed);
|
|
struct page *page = pages[nr_pages - 1];
|
|
|
|
/* zero the tail end of the last page, we might be
|
|
* sending it down to disk
|
|
*/
|
|
if (offset)
|
|
memzero_page(page, offset, PAGE_SIZE - offset);
|
|
will_compress = 1;
|
|
}
|
|
}
|
|
cont:
|
|
/*
|
|
* Check cow_file_range() for why we don't even try to create inline
|
|
* extent for subpage case.
|
|
*/
|
|
if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
|
|
/* lets try to make an inline extent */
|
|
if (ret || total_in < actual_end) {
|
|
/* we didn't compress the entire range, try
|
|
* to make an uncompressed inline extent.
|
|
*/
|
|
ret = cow_file_range_inline(BTRFS_I(inode), actual_end,
|
|
0, BTRFS_COMPRESS_NONE,
|
|
NULL, false);
|
|
} else {
|
|
/* try making a compressed inline extent */
|
|
ret = cow_file_range_inline(BTRFS_I(inode), actual_end,
|
|
total_compressed,
|
|
compress_type, pages,
|
|
false);
|
|
}
|
|
if (ret <= 0) {
|
|
unsigned long clear_flags = EXTENT_DELALLOC |
|
|
EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
|
|
EXTENT_DO_ACCOUNTING;
|
|
unsigned long page_error_op;
|
|
|
|
page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
|
|
|
|
/*
|
|
* inline extent creation worked or returned error,
|
|
* we don't need to create any more async work items.
|
|
* Unlock and free up our temp pages.
|
|
*
|
|
* We use DO_ACCOUNTING here because we need the
|
|
* delalloc_release_metadata to be done _after_ we drop
|
|
* our outstanding extent for clearing delalloc for this
|
|
* range.
|
|
*/
|
|
extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
|
|
NULL,
|
|
clear_flags,
|
|
PAGE_UNLOCK |
|
|
PAGE_START_WRITEBACK |
|
|
page_error_op |
|
|
PAGE_END_WRITEBACK);
|
|
|
|
/*
|
|
* Ensure we only free the compressed pages if we have
|
|
* them allocated, as we can still reach here with
|
|
* inode_need_compress() == false.
|
|
*/
|
|
if (pages) {
|
|
for (i = 0; i < nr_pages; i++) {
|
|
WARN_ON(pages[i]->mapping);
|
|
put_page(pages[i]);
|
|
}
|
|
kfree(pages);
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (will_compress) {
|
|
/*
|
|
* we aren't doing an inline extent round the compressed size
|
|
* up to a block size boundary so the allocator does sane
|
|
* things
|
|
*/
|
|
total_compressed = ALIGN(total_compressed, blocksize);
|
|
|
|
/*
|
|
* one last check to make sure the compression is really a
|
|
* win, compare the page count read with the blocks on disk,
|
|
* compression must free at least one sector size
|
|
*/
|
|
total_in = round_up(total_in, fs_info->sectorsize);
|
|
if (total_compressed + blocksize <= total_in) {
|
|
compressed_extents++;
|
|
|
|
/*
|
|
* The async work queues will take care of doing actual
|
|
* allocation on disk for these compressed pages, and
|
|
* will submit them to the elevator.
|
|
*/
|
|
add_async_extent(async_chunk, start, total_in,
|
|
total_compressed, pages, nr_pages,
|
|
compress_type);
|
|
|
|
if (start + total_in < end) {
|
|
start += total_in;
|
|
pages = NULL;
|
|
cond_resched();
|
|
goto again;
|
|
}
|
|
return compressed_extents;
|
|
}
|
|
}
|
|
if (pages) {
|
|
/*
|
|
* the compression code ran but failed to make things smaller,
|
|
* free any pages it allocated and our page pointer array
|
|
*/
|
|
for (i = 0; i < nr_pages; i++) {
|
|
WARN_ON(pages[i]->mapping);
|
|
put_page(pages[i]);
|
|
}
|
|
kfree(pages);
|
|
pages = NULL;
|
|
total_compressed = 0;
|
|
nr_pages = 0;
|
|
|
|
/* flag the file so we don't compress in the future */
|
|
if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
|
|
!(BTRFS_I(inode)->prop_compress)) {
|
|
BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
|
|
}
|
|
}
|
|
cleanup_and_bail_uncompressed:
|
|
/*
|
|
* No compression, but we still need to write the pages in the file
|
|
* we've been given so far. redirty the locked page if it corresponds
|
|
* to our extent and set things up for the async work queue to run
|
|
* cow_file_range to do the normal delalloc dance.
|
|
*/
|
|
if (async_chunk->locked_page &&
|
|
(page_offset(async_chunk->locked_page) >= start &&
|
|
page_offset(async_chunk->locked_page)) <= end) {
|
|
__set_page_dirty_nobuffers(async_chunk->locked_page);
|
|
/* unlocked later on in the async handlers */
|
|
}
|
|
|
|
if (redirty)
|
|
extent_range_redirty_for_io(inode, start, end);
|
|
add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
|
|
BTRFS_COMPRESS_NONE);
|
|
compressed_extents++;
|
|
|
|
return compressed_extents;
|
|
}
|
|
|
|
static void free_async_extent_pages(struct async_extent *async_extent)
|
|
{
|
|
int i;
|
|
|
|
if (!async_extent->pages)
|
|
return;
|
|
|
|
for (i = 0; i < async_extent->nr_pages; i++) {
|
|
WARN_ON(async_extent->pages[i]->mapping);
|
|
put_page(async_extent->pages[i]);
|
|
}
|
|
kfree(async_extent->pages);
|
|
async_extent->nr_pages = 0;
|
|
async_extent->pages = NULL;
|
|
}
|
|
|
|
static int submit_uncompressed_range(struct btrfs_inode *inode,
|
|
struct async_extent *async_extent,
|
|
struct page *locked_page)
|
|
{
|
|
u64 start = async_extent->start;
|
|
u64 end = async_extent->start + async_extent->ram_size - 1;
|
|
unsigned long nr_written = 0;
|
|
int page_started = 0;
|
|
int ret;
|
|
|
|
/*
|
|
* Call cow_file_range() to run the delalloc range directly, since we
|
|
* won't go to NOCOW or async path again.
|
|
*
|
|
* Also we call cow_file_range() with @unlock_page == 0, so that we
|
|
* can directly submit them without interruption.
|
|
*/
|
|
ret = cow_file_range(inode, locked_page, start, end, &page_started,
|
|
&nr_written, 0);
|
|
/* Inline extent inserted, page gets unlocked and everything is done */
|
|
if (page_started) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
if (ret < 0) {
|
|
if (locked_page)
|
|
unlock_page(locked_page);
|
|
goto out;
|
|
}
|
|
|
|
ret = extent_write_locked_range(&inode->vfs_inode, start, end);
|
|
/* All pages will be unlocked, including @locked_page */
|
|
out:
|
|
kfree(async_extent);
|
|
return ret;
|
|
}
|
|
|
|
static int submit_one_async_extent(struct btrfs_inode *inode,
|
|
struct async_chunk *async_chunk,
|
|
struct async_extent *async_extent,
|
|
u64 *alloc_hint)
|
|
{
|
|
struct extent_io_tree *io_tree = &inode->io_tree;
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_key ins;
|
|
struct page *locked_page = NULL;
|
|
struct extent_map *em;
|
|
int ret = 0;
|
|
u64 start = async_extent->start;
|
|
u64 end = async_extent->start + async_extent->ram_size - 1;
|
|
|
|
/*
|
|
* If async_chunk->locked_page is in the async_extent range, we need to
|
|
* handle it.
|
|
*/
|
|
if (async_chunk->locked_page) {
|
|
u64 locked_page_start = page_offset(async_chunk->locked_page);
|
|
u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
|
|
|
|
if (!(start >= locked_page_end || end <= locked_page_start))
|
|
locked_page = async_chunk->locked_page;
|
|
}
|
|
lock_extent(io_tree, start, end);
|
|
|
|
/* We have fall back to uncompressed write */
|
|
if (!async_extent->pages)
|
|
return submit_uncompressed_range(inode, async_extent, locked_page);
|
|
|
|
ret = btrfs_reserve_extent(root, async_extent->ram_size,
|
|
async_extent->compressed_size,
|
|
async_extent->compressed_size,
|
|
0, *alloc_hint, &ins, 1, 1);
|
|
if (ret) {
|
|
free_async_extent_pages(async_extent);
|
|
/*
|
|
* Here we used to try again by going back to non-compressed
|
|
* path for ENOSPC. But we can't reserve space even for
|
|
* compressed size, how could it work for uncompressed size
|
|
* which requires larger size? So here we directly go error
|
|
* path.
|
|
*/
|
|
goto out_free;
|
|
}
|
|
|
|
/* Here we're doing allocation and writeback of the compressed pages */
|
|
em = create_io_em(inode, start,
|
|
async_extent->ram_size, /* len */
|
|
start, /* orig_start */
|
|
ins.objectid, /* block_start */
|
|
ins.offset, /* block_len */
|
|
ins.offset, /* orig_block_len */
|
|
async_extent->ram_size, /* ram_bytes */
|
|
async_extent->compress_type,
|
|
BTRFS_ORDERED_COMPRESSED);
|
|
if (IS_ERR(em)) {
|
|
ret = PTR_ERR(em);
|
|
goto out_free_reserve;
|
|
}
|
|
free_extent_map(em);
|
|
|
|
ret = btrfs_add_ordered_extent(inode, start, /* file_offset */
|
|
async_extent->ram_size, /* num_bytes */
|
|
async_extent->ram_size, /* ram_bytes */
|
|
ins.objectid, /* disk_bytenr */
|
|
ins.offset, /* disk_num_bytes */
|
|
0, /* offset */
|
|
1 << BTRFS_ORDERED_COMPRESSED,
|
|
async_extent->compress_type);
|
|
if (ret) {
|
|
btrfs_drop_extent_cache(inode, start, end, 0);
|
|
goto out_free_reserve;
|
|
}
|
|
btrfs_dec_block_group_reservations(fs_info, ins.objectid);
|
|
|
|
/* Clear dirty, set writeback and unlock the pages. */
|
|
extent_clear_unlock_delalloc(inode, start, end,
|
|
NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
|
|
PAGE_UNLOCK | PAGE_START_WRITEBACK);
|
|
if (btrfs_submit_compressed_write(inode, start, /* file_offset */
|
|
async_extent->ram_size, /* num_bytes */
|
|
ins.objectid, /* disk_bytenr */
|
|
ins.offset, /* compressed_len */
|
|
async_extent->pages, /* compressed_pages */
|
|
async_extent->nr_pages,
|
|
async_chunk->write_flags,
|
|
async_chunk->blkcg_css, true)) {
|
|
const u64 start = async_extent->start;
|
|
const u64 end = start + async_extent->ram_size - 1;
|
|
|
|
btrfs_writepage_endio_finish_ordered(inode, NULL, start, end, 0);
|
|
|
|
extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
|
|
PAGE_END_WRITEBACK | PAGE_SET_ERROR);
|
|
free_async_extent_pages(async_extent);
|
|
}
|
|
*alloc_hint = ins.objectid + ins.offset;
|
|
kfree(async_extent);
|
|
return ret;
|
|
|
|
out_free_reserve:
|
|
btrfs_dec_block_group_reservations(fs_info, ins.objectid);
|
|
btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
|
|
out_free:
|
|
extent_clear_unlock_delalloc(inode, start, end,
|
|
NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
|
|
EXTENT_DELALLOC_NEW |
|
|
EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
|
|
PAGE_UNLOCK | PAGE_START_WRITEBACK |
|
|
PAGE_END_WRITEBACK | PAGE_SET_ERROR);
|
|
free_async_extent_pages(async_extent);
|
|
kfree(async_extent);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Phase two of compressed writeback. This is the ordered portion of the code,
|
|
* which only gets called in the order the work was queued. We walk all the
|
|
* async extents created by compress_file_range and send them down to the disk.
|
|
*/
|
|
static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
|
|
{
|
|
struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct async_extent *async_extent;
|
|
u64 alloc_hint = 0;
|
|
int ret = 0;
|
|
|
|
while (!list_empty(&async_chunk->extents)) {
|
|
u64 extent_start;
|
|
u64 ram_size;
|
|
|
|
async_extent = list_entry(async_chunk->extents.next,
|
|
struct async_extent, list);
|
|
list_del(&async_extent->list);
|
|
extent_start = async_extent->start;
|
|
ram_size = async_extent->ram_size;
|
|
|
|
ret = submit_one_async_extent(inode, async_chunk, async_extent,
|
|
&alloc_hint);
|
|
btrfs_debug(fs_info,
|
|
"async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
|
|
inode->root->root_key.objectid,
|
|
btrfs_ino(inode), extent_start, ram_size, ret);
|
|
}
|
|
}
|
|
|
|
static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
|
|
u64 num_bytes)
|
|
{
|
|
struct extent_map_tree *em_tree = &inode->extent_tree;
|
|
struct extent_map *em;
|
|
u64 alloc_hint = 0;
|
|
|
|
read_lock(&em_tree->lock);
|
|
em = search_extent_mapping(em_tree, start, num_bytes);
|
|
if (em) {
|
|
/*
|
|
* if block start isn't an actual block number then find the
|
|
* first block in this inode and use that as a hint. If that
|
|
* block is also bogus then just don't worry about it.
|
|
*/
|
|
if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
|
|
free_extent_map(em);
|
|
em = search_extent_mapping(em_tree, 0, 0);
|
|
if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
|
|
alloc_hint = em->block_start;
|
|
if (em)
|
|
free_extent_map(em);
|
|
} else {
|
|
alloc_hint = em->block_start;
|
|
free_extent_map(em);
|
|
}
|
|
}
|
|
read_unlock(&em_tree->lock);
|
|
|
|
return alloc_hint;
|
|
}
|
|
|
|
/*
|
|
* when extent_io.c finds a delayed allocation range in the file,
|
|
* the call backs end up in this code. The basic idea is to
|
|
* allocate extents on disk for the range, and create ordered data structs
|
|
* in ram to track those extents.
|
|
*
|
|
* locked_page is the page that writepage had locked already. We use
|
|
* it to make sure we don't do extra locks or unlocks.
|
|
*
|
|
* *page_started is set to one if we unlock locked_page and do everything
|
|
* required to start IO on it. It may be clean and already done with
|
|
* IO when we return.
|
|
*/
|
|
static noinline int cow_file_range(struct btrfs_inode *inode,
|
|
struct page *locked_page,
|
|
u64 start, u64 end, int *page_started,
|
|
unsigned long *nr_written, int unlock)
|
|
{
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
u64 alloc_hint = 0;
|
|
u64 num_bytes;
|
|
unsigned long ram_size;
|
|
u64 cur_alloc_size = 0;
|
|
u64 min_alloc_size;
|
|
u64 blocksize = fs_info->sectorsize;
|
|
struct btrfs_key ins;
|
|
struct extent_map *em;
|
|
unsigned clear_bits;
|
|
unsigned long page_ops;
|
|
bool extent_reserved = false;
|
|
int ret = 0;
|
|
|
|
if (btrfs_is_free_space_inode(inode)) {
|
|
ret = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
num_bytes = ALIGN(end - start + 1, blocksize);
|
|
num_bytes = max(blocksize, num_bytes);
|
|
ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
|
|
|
|
inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
|
|
|
|
/*
|
|
* Due to the page size limit, for subpage we can only trigger the
|
|
* writeback for the dirty sectors of page, that means data writeback
|
|
* is doing more writeback than what we want.
|
|
*
|
|
* This is especially unexpected for some call sites like fallocate,
|
|
* where we only increase i_size after everything is done.
|
|
* This means we can trigger inline extent even if we didn't want to.
|
|
* So here we skip inline extent creation completely.
|
|
*/
|
|
if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
|
|
u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
|
|
end + 1);
|
|
|
|
/* lets try to make an inline extent */
|
|
ret = cow_file_range_inline(inode, actual_end, 0,
|
|
BTRFS_COMPRESS_NONE, NULL, false);
|
|
if (ret == 0) {
|
|
/*
|
|
* We use DO_ACCOUNTING here because we need the
|
|
* delalloc_release_metadata to be run _after_ we drop
|
|
* our outstanding extent for clearing delalloc for this
|
|
* range.
|
|
*/
|
|
extent_clear_unlock_delalloc(inode, start, end,
|
|
locked_page,
|
|
EXTENT_LOCKED | EXTENT_DELALLOC |
|
|
EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
|
|
EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
|
|
PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
|
|
*nr_written = *nr_written +
|
|
(end - start + PAGE_SIZE) / PAGE_SIZE;
|
|
*page_started = 1;
|
|
/*
|
|
* locked_page is locked by the caller of
|
|
* writepage_delalloc(), not locked by
|
|
* __process_pages_contig().
|
|
*
|
|
* We can't let __process_pages_contig() to unlock it,
|
|
* as it doesn't have any subpage::writers recorded.
|
|
*
|
|
* Here we manually unlock the page, since the caller
|
|
* can't use page_started to determine if it's an
|
|
* inline extent or a compressed extent.
|
|
*/
|
|
unlock_page(locked_page);
|
|
goto out;
|
|
} else if (ret < 0) {
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
|
|
btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
|
|
|
|
/*
|
|
* Relocation relies on the relocated extents to have exactly the same
|
|
* size as the original extents. Normally writeback for relocation data
|
|
* extents follows a NOCOW path because relocation preallocates the
|
|
* extents. However, due to an operation such as scrub turning a block
|
|
* group to RO mode, it may fallback to COW mode, so we must make sure
|
|
* an extent allocated during COW has exactly the requested size and can
|
|
* not be split into smaller extents, otherwise relocation breaks and
|
|
* fails during the stage where it updates the bytenr of file extent
|
|
* items.
|
|
*/
|
|
if (btrfs_is_data_reloc_root(root))
|
|
min_alloc_size = num_bytes;
|
|
else
|
|
min_alloc_size = fs_info->sectorsize;
|
|
|
|
while (num_bytes > 0) {
|
|
cur_alloc_size = num_bytes;
|
|
ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
|
|
min_alloc_size, 0, alloc_hint,
|
|
&ins, 1, 1);
|
|
if (ret < 0)
|
|
goto out_unlock;
|
|
cur_alloc_size = ins.offset;
|
|
extent_reserved = true;
|
|
|
|
ram_size = ins.offset;
|
|
em = create_io_em(inode, start, ins.offset, /* len */
|
|
start, /* orig_start */
|
|
ins.objectid, /* block_start */
|
|
ins.offset, /* block_len */
|
|
ins.offset, /* orig_block_len */
|
|
ram_size, /* ram_bytes */
|
|
BTRFS_COMPRESS_NONE, /* compress_type */
|
|
BTRFS_ORDERED_REGULAR /* type */);
|
|
if (IS_ERR(em)) {
|
|
ret = PTR_ERR(em);
|
|
goto out_reserve;
|
|
}
|
|
free_extent_map(em);
|
|
|
|
ret = btrfs_add_ordered_extent(inode, start, ram_size, ram_size,
|
|
ins.objectid, cur_alloc_size, 0,
|
|
1 << BTRFS_ORDERED_REGULAR,
|
|
BTRFS_COMPRESS_NONE);
|
|
if (ret)
|
|
goto out_drop_extent_cache;
|
|
|
|
if (btrfs_is_data_reloc_root(root)) {
|
|
ret = btrfs_reloc_clone_csums(inode, start,
|
|
cur_alloc_size);
|
|
/*
|
|
* Only drop cache here, and process as normal.
|
|
*
|
|
* We must not allow extent_clear_unlock_delalloc()
|
|
* at out_unlock label to free meta of this ordered
|
|
* extent, as its meta should be freed by
|
|
* btrfs_finish_ordered_io().
|
|
*
|
|
* So we must continue until @start is increased to
|
|
* skip current ordered extent.
|
|
*/
|
|
if (ret)
|
|
btrfs_drop_extent_cache(inode, start,
|
|
start + ram_size - 1, 0);
|
|
}
|
|
|
|
btrfs_dec_block_group_reservations(fs_info, ins.objectid);
|
|
|
|
/*
|
|
* We're not doing compressed IO, don't unlock the first page
|
|
* (which the caller expects to stay locked), don't clear any
|
|
* dirty bits and don't set any writeback bits
|
|
*
|
|
* Do set the Ordered (Private2) bit so we know this page was
|
|
* properly setup for writepage.
|
|
*/
|
|
page_ops = unlock ? PAGE_UNLOCK : 0;
|
|
page_ops |= PAGE_SET_ORDERED;
|
|
|
|
extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
|
|
locked_page,
|
|
EXTENT_LOCKED | EXTENT_DELALLOC,
|
|
page_ops);
|
|
if (num_bytes < cur_alloc_size)
|
|
num_bytes = 0;
|
|
else
|
|
num_bytes -= cur_alloc_size;
|
|
alloc_hint = ins.objectid + ins.offset;
|
|
start += cur_alloc_size;
|
|
extent_reserved = false;
|
|
|
|
/*
|
|
* btrfs_reloc_clone_csums() error, since start is increased
|
|
* extent_clear_unlock_delalloc() at out_unlock label won't
|
|
* free metadata of current ordered extent, we're OK to exit.
|
|
*/
|
|
if (ret)
|
|
goto out_unlock;
|
|
}
|
|
out:
|
|
return ret;
|
|
|
|
out_drop_extent_cache:
|
|
btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
|
|
out_reserve:
|
|
btrfs_dec_block_group_reservations(fs_info, ins.objectid);
|
|
btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
|
|
out_unlock:
|
|
clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
|
|
EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
|
|
page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
|
|
/*
|
|
* If we reserved an extent for our delalloc range (or a subrange) and
|
|
* failed to create the respective ordered extent, then it means that
|
|
* when we reserved the extent we decremented the extent's size from
|
|
* the data space_info's bytes_may_use counter and incremented the
|
|
* space_info's bytes_reserved counter by the same amount. We must make
|
|
* sure extent_clear_unlock_delalloc() does not try to decrement again
|
|
* the data space_info's bytes_may_use counter, therefore we do not pass
|
|
* it the flag EXTENT_CLEAR_DATA_RESV.
|
|
*/
|
|
if (extent_reserved) {
|
|
extent_clear_unlock_delalloc(inode, start,
|
|
start + cur_alloc_size - 1,
|
|
locked_page,
|
|
clear_bits,
|
|
page_ops);
|
|
start += cur_alloc_size;
|
|
if (start >= end)
|
|
goto out;
|
|
}
|
|
extent_clear_unlock_delalloc(inode, start, end, locked_page,
|
|
clear_bits | EXTENT_CLEAR_DATA_RESV,
|
|
page_ops);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* work queue call back to started compression on a file and pages
|
|
*/
|
|
static noinline void async_cow_start(struct btrfs_work *work)
|
|
{
|
|
struct async_chunk *async_chunk;
|
|
int compressed_extents;
|
|
|
|
async_chunk = container_of(work, struct async_chunk, work);
|
|
|
|
compressed_extents = compress_file_range(async_chunk);
|
|
if (compressed_extents == 0) {
|
|
btrfs_add_delayed_iput(async_chunk->inode);
|
|
async_chunk->inode = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* work queue call back to submit previously compressed pages
|
|
*/
|
|
static noinline void async_cow_submit(struct btrfs_work *work)
|
|
{
|
|
struct async_chunk *async_chunk = container_of(work, struct async_chunk,
|
|
work);
|
|
struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
|
|
unsigned long nr_pages;
|
|
|
|
nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
|
|
PAGE_SHIFT;
|
|
|
|
/*
|
|
* ->inode could be NULL if async_chunk_start has failed to compress,
|
|
* in which case we don't have anything to submit, yet we need to
|
|
* always adjust ->async_delalloc_pages as its paired with the init
|
|
* happening in cow_file_range_async
|
|
*/
|
|
if (async_chunk->inode)
|
|
submit_compressed_extents(async_chunk);
|
|
|
|
/* atomic_sub_return implies a barrier */
|
|
if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
|
|
5 * SZ_1M)
|
|
cond_wake_up_nomb(&fs_info->async_submit_wait);
|
|
}
|
|
|
|
static noinline void async_cow_free(struct btrfs_work *work)
|
|
{
|
|
struct async_chunk *async_chunk;
|
|
struct async_cow *async_cow;
|
|
|
|
async_chunk = container_of(work, struct async_chunk, work);
|
|
if (async_chunk->inode)
|
|
btrfs_add_delayed_iput(async_chunk->inode);
|
|
if (async_chunk->blkcg_css)
|
|
css_put(async_chunk->blkcg_css);
|
|
|
|
async_cow = async_chunk->async_cow;
|
|
if (atomic_dec_and_test(&async_cow->num_chunks))
|
|
kvfree(async_cow);
|
|
}
|
|
|
|
static int cow_file_range_async(struct btrfs_inode *inode,
|
|
struct writeback_control *wbc,
|
|
struct page *locked_page,
|
|
u64 start, u64 end, int *page_started,
|
|
unsigned long *nr_written)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
|
|
struct async_cow *ctx;
|
|
struct async_chunk *async_chunk;
|
|
unsigned long nr_pages;
|
|
u64 cur_end;
|
|
u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
|
|
int i;
|
|
bool should_compress;
|
|
unsigned nofs_flag;
|
|
const unsigned int write_flags = wbc_to_write_flags(wbc);
|
|
|
|
unlock_extent(&inode->io_tree, start, end);
|
|
|
|
if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
|
|
!btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
|
|
num_chunks = 1;
|
|
should_compress = false;
|
|
} else {
|
|
should_compress = true;
|
|
}
|
|
|
|
nofs_flag = memalloc_nofs_save();
|
|
ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
|
|
memalloc_nofs_restore(nofs_flag);
|
|
|
|
if (!ctx) {
|
|
unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
|
|
EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
|
|
EXTENT_DO_ACCOUNTING;
|
|
unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK |
|
|
PAGE_END_WRITEBACK | PAGE_SET_ERROR;
|
|
|
|
extent_clear_unlock_delalloc(inode, start, end, locked_page,
|
|
clear_bits, page_ops);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
async_chunk = ctx->chunks;
|
|
atomic_set(&ctx->num_chunks, num_chunks);
|
|
|
|
for (i = 0; i < num_chunks; i++) {
|
|
if (should_compress)
|
|
cur_end = min(end, start + SZ_512K - 1);
|
|
else
|
|
cur_end = end;
|
|
|
|
/*
|
|
* igrab is called higher up in the call chain, take only the
|
|
* lightweight reference for the callback lifetime
|
|
*/
|
|
ihold(&inode->vfs_inode);
|
|
async_chunk[i].async_cow = ctx;
|
|
async_chunk[i].inode = &inode->vfs_inode;
|
|
async_chunk[i].start = start;
|
|
async_chunk[i].end = cur_end;
|
|
async_chunk[i].write_flags = write_flags;
|
|
INIT_LIST_HEAD(&async_chunk[i].extents);
|
|
|
|
/*
|
|
* The locked_page comes all the way from writepage and its
|
|
* the original page we were actually given. As we spread
|
|
* this large delalloc region across multiple async_chunk
|
|
* structs, only the first struct needs a pointer to locked_page
|
|
*
|
|
* This way we don't need racey decisions about who is supposed
|
|
* to unlock it.
|
|
*/
|
|
if (locked_page) {
|
|
/*
|
|
* Depending on the compressibility, the pages might or
|
|
* might not go through async. We want all of them to
|
|
* be accounted against wbc once. Let's do it here
|
|
* before the paths diverge. wbc accounting is used
|
|
* only for foreign writeback detection and doesn't
|
|
* need full accuracy. Just account the whole thing
|
|
* against the first page.
|
|
*/
|
|
wbc_account_cgroup_owner(wbc, locked_page,
|
|
cur_end - start);
|
|
async_chunk[i].locked_page = locked_page;
|
|
locked_page = NULL;
|
|
} else {
|
|
async_chunk[i].locked_page = NULL;
|
|
}
|
|
|
|
if (blkcg_css != blkcg_root_css) {
|
|
css_get(blkcg_css);
|
|
async_chunk[i].blkcg_css = blkcg_css;
|
|
} else {
|
|
async_chunk[i].blkcg_css = NULL;
|
|
}
|
|
|
|
btrfs_init_work(&async_chunk[i].work, async_cow_start,
|
|
async_cow_submit, async_cow_free);
|
|
|
|
nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
|
|
atomic_add(nr_pages, &fs_info->async_delalloc_pages);
|
|
|
|
btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
|
|
|
|
*nr_written += nr_pages;
|
|
start = cur_end + 1;
|
|
}
|
|
*page_started = 1;
|
|
return 0;
|
|
}
|
|
|
|
static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
|
|
struct page *locked_page, u64 start,
|
|
u64 end, int *page_started,
|
|
unsigned long *nr_written)
|
|
{
|
|
int ret;
|
|
|
|
ret = cow_file_range(inode, locked_page, start, end, page_started,
|
|
nr_written, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (*page_started)
|
|
return 0;
|
|
|
|
__set_page_dirty_nobuffers(locked_page);
|
|
account_page_redirty(locked_page);
|
|
extent_write_locked_range(&inode->vfs_inode, start, end);
|
|
*page_started = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
|
|
u64 bytenr, u64 num_bytes)
|
|
{
|
|
struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
|
|
struct btrfs_ordered_sum *sums;
|
|
int ret;
|
|
LIST_HEAD(list);
|
|
|
|
ret = btrfs_lookup_csums_range(csum_root, bytenr,
|
|
bytenr + num_bytes - 1, &list, 0);
|
|
if (ret == 0 && list_empty(&list))
|
|
return 0;
|
|
|
|
while (!list_empty(&list)) {
|
|
sums = list_entry(list.next, struct btrfs_ordered_sum, list);
|
|
list_del(&sums->list);
|
|
kfree(sums);
|
|
}
|
|
if (ret < 0)
|
|
return ret;
|
|
return 1;
|
|
}
|
|
|
|
static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
|
|
const u64 start, const u64 end,
|
|
int *page_started, unsigned long *nr_written)
|
|
{
|
|
const bool is_space_ino = btrfs_is_free_space_inode(inode);
|
|
const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
|
|
const u64 range_bytes = end + 1 - start;
|
|
struct extent_io_tree *io_tree = &inode->io_tree;
|
|
u64 range_start = start;
|
|
u64 count;
|
|
|
|
/*
|
|
* If EXTENT_NORESERVE is set it means that when the buffered write was
|
|
* made we had not enough available data space and therefore we did not
|
|
* reserve data space for it, since we though we could do NOCOW for the
|
|
* respective file range (either there is prealloc extent or the inode
|
|
* has the NOCOW bit set).
|
|
*
|
|
* However when we need to fallback to COW mode (because for example the
|
|
* block group for the corresponding extent was turned to RO mode by a
|
|
* scrub or relocation) we need to do the following:
|
|
*
|
|
* 1) We increment the bytes_may_use counter of the data space info.
|
|
* If COW succeeds, it allocates a new data extent and after doing
|
|
* that it decrements the space info's bytes_may_use counter and
|
|
* increments its bytes_reserved counter by the same amount (we do
|
|
* this at btrfs_add_reserved_bytes()). So we need to increment the
|
|
* bytes_may_use counter to compensate (when space is reserved at
|
|
* buffered write time, the bytes_may_use counter is incremented);
|
|
*
|
|
* 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
|
|
* that if the COW path fails for any reason, it decrements (through
|
|
* extent_clear_unlock_delalloc()) the bytes_may_use counter of the
|
|
* data space info, which we incremented in the step above.
|
|
*
|
|
* If we need to fallback to cow and the inode corresponds to a free
|
|
* space cache inode or an inode of the data relocation tree, we must
|
|
* also increment bytes_may_use of the data space_info for the same
|
|
* reason. Space caches and relocated data extents always get a prealloc
|
|
* extent for them, however scrub or balance may have set the block
|
|
* group that contains that extent to RO mode and therefore force COW
|
|
* when starting writeback.
|
|
*/
|
|
count = count_range_bits(io_tree, &range_start, end, range_bytes,
|
|
EXTENT_NORESERVE, 0);
|
|
if (count > 0 || is_space_ino || is_reloc_ino) {
|
|
u64 bytes = count;
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct btrfs_space_info *sinfo = fs_info->data_sinfo;
|
|
|
|
if (is_space_ino || is_reloc_ino)
|
|
bytes = range_bytes;
|
|
|
|
spin_lock(&sinfo->lock);
|
|
btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
|
|
spin_unlock(&sinfo->lock);
|
|
|
|
if (count > 0)
|
|
clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
|
|
0, 0, NULL);
|
|
}
|
|
|
|
return cow_file_range(inode, locked_page, start, end, page_started,
|
|
nr_written, 1);
|
|
}
|
|
|
|
/*
|
|
* when nowcow writeback call back. This checks for snapshots or COW copies
|
|
* of the extents that exist in the file, and COWs the file as required.
|
|
*
|
|
* If no cow copies or snapshots exist, we write directly to the existing
|
|
* blocks on disk
|
|
*/
|
|
static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
|
|
struct page *locked_page,
|
|
const u64 start, const u64 end,
|
|
int *page_started,
|
|
unsigned long *nr_written)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_path *path;
|
|
u64 cow_start = (u64)-1;
|
|
u64 cur_offset = start;
|
|
int ret;
|
|
bool check_prev = true;
|
|
const bool freespace_inode = btrfs_is_free_space_inode(inode);
|
|
u64 ino = btrfs_ino(inode);
|
|
bool nocow = false;
|
|
u64 disk_bytenr = 0;
|
|
const bool force = inode->flags & BTRFS_INODE_NODATACOW;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
extent_clear_unlock_delalloc(inode, start, end, locked_page,
|
|
EXTENT_LOCKED | EXTENT_DELALLOC |
|
|
EXTENT_DO_ACCOUNTING |
|
|
EXTENT_DEFRAG, PAGE_UNLOCK |
|
|
PAGE_START_WRITEBACK |
|
|
PAGE_END_WRITEBACK);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
while (1) {
|
|
struct btrfs_key found_key;
|
|
struct btrfs_file_extent_item *fi;
|
|
struct extent_buffer *leaf;
|
|
u64 extent_end;
|
|
u64 extent_offset;
|
|
u64 num_bytes = 0;
|
|
u64 disk_num_bytes;
|
|
u64 ram_bytes;
|
|
int extent_type;
|
|
|
|
nocow = false;
|
|
|
|
ret = btrfs_lookup_file_extent(NULL, root, path, ino,
|
|
cur_offset, 0);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
/*
|
|
* If there is no extent for our range when doing the initial
|
|
* search, then go back to the previous slot as it will be the
|
|
* one containing the search offset
|
|
*/
|
|
if (ret > 0 && path->slots[0] > 0 && check_prev) {
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &found_key,
|
|
path->slots[0] - 1);
|
|
if (found_key.objectid == ino &&
|
|
found_key.type == BTRFS_EXTENT_DATA_KEY)
|
|
path->slots[0]--;
|
|
}
|
|
check_prev = false;
|
|
next_slot:
|
|
/* Go to next leaf if we have exhausted the current one */
|
|
leaf = path->nodes[0];
|
|
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0) {
|
|
if (cow_start != (u64)-1)
|
|
cur_offset = cow_start;
|
|
goto error;
|
|
}
|
|
if (ret > 0)
|
|
break;
|
|
leaf = path->nodes[0];
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
|
|
/* Didn't find anything for our INO */
|
|
if (found_key.objectid > ino)
|
|
break;
|
|
/*
|
|
* Keep searching until we find an EXTENT_ITEM or there are no
|
|
* more extents for this inode
|
|
*/
|
|
if (WARN_ON_ONCE(found_key.objectid < ino) ||
|
|
found_key.type < BTRFS_EXTENT_DATA_KEY) {
|
|
path->slots[0]++;
|
|
goto next_slot;
|
|
}
|
|
|
|
/* Found key is not EXTENT_DATA_KEY or starts after req range */
|
|
if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
|
|
found_key.offset > end)
|
|
break;
|
|
|
|
/*
|
|
* If the found extent starts after requested offset, then
|
|
* adjust extent_end to be right before this extent begins
|
|
*/
|
|
if (found_key.offset > cur_offset) {
|
|
extent_end = found_key.offset;
|
|
extent_type = 0;
|
|
goto out_check;
|
|
}
|
|
|
|
/*
|
|
* Found extent which begins before our range and potentially
|
|
* intersect it
|
|
*/
|
|
fi = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
extent_type = btrfs_file_extent_type(leaf, fi);
|
|
|
|
ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
|
|
if (extent_type == BTRFS_FILE_EXTENT_REG ||
|
|
extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
|
|
disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
|
|
extent_offset = btrfs_file_extent_offset(leaf, fi);
|
|
extent_end = found_key.offset +
|
|
btrfs_file_extent_num_bytes(leaf, fi);
|
|
disk_num_bytes =
|
|
btrfs_file_extent_disk_num_bytes(leaf, fi);
|
|
/*
|
|
* If the extent we got ends before our current offset,
|
|
* skip to the next extent.
|
|
*/
|
|
if (extent_end <= cur_offset) {
|
|
path->slots[0]++;
|
|
goto next_slot;
|
|
}
|
|
/* Skip holes */
|
|
if (disk_bytenr == 0)
|
|
goto out_check;
|
|
/* Skip compressed/encrypted/encoded extents */
|
|
if (btrfs_file_extent_compression(leaf, fi) ||
|
|
btrfs_file_extent_encryption(leaf, fi) ||
|
|
btrfs_file_extent_other_encoding(leaf, fi))
|
|
goto out_check;
|
|
/*
|
|
* If extent is created before the last volume's snapshot
|
|
* this implies the extent is shared, hence we can't do
|
|
* nocow. This is the same check as in
|
|
* btrfs_cross_ref_exist but without calling
|
|
* btrfs_search_slot.
|
|
*/
|
|
if (!freespace_inode &&
|
|
btrfs_file_extent_generation(leaf, fi) <=
|
|
btrfs_root_last_snapshot(&root->root_item))
|
|
goto out_check;
|
|
if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
|
|
goto out_check;
|
|
|
|
/*
|
|
* The following checks can be expensive, as they need to
|
|
* take other locks and do btree or rbtree searches, so
|
|
* release the path to avoid blocking other tasks for too
|
|
* long.
|
|
*/
|
|
btrfs_release_path(path);
|
|
|
|
ret = btrfs_cross_ref_exist(root, ino,
|
|
found_key.offset -
|
|
extent_offset, disk_bytenr, false);
|
|
if (ret) {
|
|
/*
|
|
* ret could be -EIO if the above fails to read
|
|
* metadata.
|
|
*/
|
|
if (ret < 0) {
|
|
if (cow_start != (u64)-1)
|
|
cur_offset = cow_start;
|
|
goto error;
|
|
}
|
|
|
|
WARN_ON_ONCE(freespace_inode);
|
|
goto out_check;
|
|
}
|
|
disk_bytenr += extent_offset;
|
|
disk_bytenr += cur_offset - found_key.offset;
|
|
num_bytes = min(end + 1, extent_end) - cur_offset;
|
|
/*
|
|
* If there are pending snapshots for this root, we
|
|
* fall into common COW way
|
|
*/
|
|
if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
|
|
goto out_check;
|
|
/*
|
|
* force cow if csum exists in the range.
|
|
* this ensure that csum for a given extent are
|
|
* either valid or do not exist.
|
|
*/
|
|
ret = csum_exist_in_range(fs_info, disk_bytenr,
|
|
num_bytes);
|
|
if (ret) {
|
|
/*
|
|
* ret could be -EIO if the above fails to read
|
|
* metadata.
|
|
*/
|
|
if (ret < 0) {
|
|
if (cow_start != (u64)-1)
|
|
cur_offset = cow_start;
|
|
goto error;
|
|
}
|
|
WARN_ON_ONCE(freespace_inode);
|
|
goto out_check;
|
|
}
|
|
/* If the extent's block group is RO, we must COW */
|
|
if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
|
|
goto out_check;
|
|
nocow = true;
|
|
} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
|
|
extent_end = found_key.offset + ram_bytes;
|
|
extent_end = ALIGN(extent_end, fs_info->sectorsize);
|
|
/* Skip extents outside of our requested range */
|
|
if (extent_end <= start) {
|
|
path->slots[0]++;
|
|
goto next_slot;
|
|
}
|
|
} else {
|
|
/* If this triggers then we have a memory corruption */
|
|
BUG();
|
|
}
|
|
out_check:
|
|
/*
|
|
* If nocow is false then record the beginning of the range
|
|
* that needs to be COWed
|
|
*/
|
|
if (!nocow) {
|
|
if (cow_start == (u64)-1)
|
|
cow_start = cur_offset;
|
|
cur_offset = extent_end;
|
|
if (cur_offset > end)
|
|
break;
|
|
if (!path->nodes[0])
|
|
continue;
|
|
path->slots[0]++;
|
|
goto next_slot;
|
|
}
|
|
|
|
/*
|
|
* COW range from cow_start to found_key.offset - 1. As the key
|
|
* will contain the beginning of the first extent that can be
|
|
* NOCOW, following one which needs to be COW'ed
|
|
*/
|
|
if (cow_start != (u64)-1) {
|
|
ret = fallback_to_cow(inode, locked_page,
|
|
cow_start, found_key.offset - 1,
|
|
page_started, nr_written);
|
|
if (ret)
|
|
goto error;
|
|
cow_start = (u64)-1;
|
|
}
|
|
|
|
if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
|
|
u64 orig_start = found_key.offset - extent_offset;
|
|
struct extent_map *em;
|
|
|
|
em = create_io_em(inode, cur_offset, num_bytes,
|
|
orig_start,
|
|
disk_bytenr, /* block_start */
|
|
num_bytes, /* block_len */
|
|
disk_num_bytes, /* orig_block_len */
|
|
ram_bytes, BTRFS_COMPRESS_NONE,
|
|
BTRFS_ORDERED_PREALLOC);
|
|
if (IS_ERR(em)) {
|
|
ret = PTR_ERR(em);
|
|
goto error;
|
|
}
|
|
free_extent_map(em);
|
|
ret = btrfs_add_ordered_extent(inode,
|
|
cur_offset, num_bytes, num_bytes,
|
|
disk_bytenr, num_bytes, 0,
|
|
1 << BTRFS_ORDERED_PREALLOC,
|
|
BTRFS_COMPRESS_NONE);
|
|
if (ret) {
|
|
btrfs_drop_extent_cache(inode, cur_offset,
|
|
cur_offset + num_bytes - 1,
|
|
0);
|
|
goto error;
|
|
}
|
|
} else {
|
|
ret = btrfs_add_ordered_extent(inode, cur_offset,
|
|
num_bytes, num_bytes,
|
|
disk_bytenr, num_bytes,
|
|
0,
|
|
1 << BTRFS_ORDERED_NOCOW,
|
|
BTRFS_COMPRESS_NONE);
|
|
if (ret)
|
|
goto error;
|
|
}
|
|
|
|
if (nocow)
|
|
btrfs_dec_nocow_writers(fs_info, disk_bytenr);
|
|
nocow = false;
|
|
|
|
if (btrfs_is_data_reloc_root(root))
|
|
/*
|
|
* Error handled later, as we must prevent
|
|
* extent_clear_unlock_delalloc() in error handler
|
|
* from freeing metadata of created ordered extent.
|
|
*/
|
|
ret = btrfs_reloc_clone_csums(inode, cur_offset,
|
|
num_bytes);
|
|
|
|
extent_clear_unlock_delalloc(inode, cur_offset,
|
|
cur_offset + num_bytes - 1,
|
|
locked_page, EXTENT_LOCKED |
|
|
EXTENT_DELALLOC |
|
|
EXTENT_CLEAR_DATA_RESV,
|
|
PAGE_UNLOCK | PAGE_SET_ORDERED);
|
|
|
|
cur_offset = extent_end;
|
|
|
|
/*
|
|
* btrfs_reloc_clone_csums() error, now we're OK to call error
|
|
* handler, as metadata for created ordered extent will only
|
|
* be freed by btrfs_finish_ordered_io().
|
|
*/
|
|
if (ret)
|
|
goto error;
|
|
if (cur_offset > end)
|
|
break;
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
if (cur_offset <= end && cow_start == (u64)-1)
|
|
cow_start = cur_offset;
|
|
|
|
if (cow_start != (u64)-1) {
|
|
cur_offset = end;
|
|
ret = fallback_to_cow(inode, locked_page, cow_start, end,
|
|
page_started, nr_written);
|
|
if (ret)
|
|
goto error;
|
|
}
|
|
|
|
error:
|
|
if (nocow)
|
|
btrfs_dec_nocow_writers(fs_info, disk_bytenr);
|
|
|
|
if (ret && cur_offset < end)
|
|
extent_clear_unlock_delalloc(inode, cur_offset, end,
|
|
locked_page, EXTENT_LOCKED |
|
|
EXTENT_DELALLOC | EXTENT_DEFRAG |
|
|
EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
|
|
PAGE_START_WRITEBACK |
|
|
PAGE_END_WRITEBACK);
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
|
|
{
|
|
if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
|
|
if (inode->defrag_bytes &&
|
|
test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
|
|
0, NULL))
|
|
return false;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Function to process delayed allocation (create CoW) for ranges which are
|
|
* being touched for the first time.
|
|
*/
|
|
int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
|
|
u64 start, u64 end, int *page_started, unsigned long *nr_written,
|
|
struct writeback_control *wbc)
|
|
{
|
|
int ret;
|
|
const bool zoned = btrfs_is_zoned(inode->root->fs_info);
|
|
|
|
/*
|
|
* The range must cover part of the @locked_page, or the returned
|
|
* @page_started can confuse the caller.
|
|
*/
|
|
ASSERT(!(end <= page_offset(locked_page) ||
|
|
start >= page_offset(locked_page) + PAGE_SIZE));
|
|
|
|
if (should_nocow(inode, start, end)) {
|
|
/*
|
|
* Normally on a zoned device we're only doing COW writes, but
|
|
* in case of relocation on a zoned filesystem we have taken
|
|
* precaution, that we're only writing sequentially. It's safe
|
|
* to use run_delalloc_nocow() here, like for regular
|
|
* preallocated inodes.
|
|
*/
|
|
ASSERT(!zoned || btrfs_is_data_reloc_root(inode->root));
|
|
ret = run_delalloc_nocow(inode, locked_page, start, end,
|
|
page_started, nr_written);
|
|
} else if (!btrfs_inode_can_compress(inode) ||
|
|
!inode_need_compress(inode, start, end)) {
|
|
if (zoned)
|
|
ret = run_delalloc_zoned(inode, locked_page, start, end,
|
|
page_started, nr_written);
|
|
else
|
|
ret = cow_file_range(inode, locked_page, start, end,
|
|
page_started, nr_written, 1);
|
|
} else {
|
|
set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
|
|
ret = cow_file_range_async(inode, wbc, locked_page, start, end,
|
|
page_started, nr_written);
|
|
}
|
|
ASSERT(ret <= 0);
|
|
if (ret)
|
|
btrfs_cleanup_ordered_extents(inode, locked_page, start,
|
|
end - start + 1);
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_split_delalloc_extent(struct inode *inode,
|
|
struct extent_state *orig, u64 split)
|
|
{
|
|
u64 size;
|
|
|
|
/* not delalloc, ignore it */
|
|
if (!(orig->state & EXTENT_DELALLOC))
|
|
return;
|
|
|
|
size = orig->end - orig->start + 1;
|
|
if (size > BTRFS_MAX_EXTENT_SIZE) {
|
|
u32 num_extents;
|
|
u64 new_size;
|
|
|
|
/*
|
|
* See the explanation in btrfs_merge_delalloc_extent, the same
|
|
* applies here, just in reverse.
|
|
*/
|
|
new_size = orig->end - split + 1;
|
|
num_extents = count_max_extents(new_size);
|
|
new_size = split - orig->start;
|
|
num_extents += count_max_extents(new_size);
|
|
if (count_max_extents(size) >= num_extents)
|
|
return;
|
|
}
|
|
|
|
spin_lock(&BTRFS_I(inode)->lock);
|
|
btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
|
|
spin_unlock(&BTRFS_I(inode)->lock);
|
|
}
|
|
|
|
/*
|
|
* Handle merged delayed allocation extents so we can keep track of new extents
|
|
* that are just merged onto old extents, such as when we are doing sequential
|
|
* writes, so we can properly account for the metadata space we'll need.
|
|
*/
|
|
void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
|
|
struct extent_state *other)
|
|
{
|
|
u64 new_size, old_size;
|
|
u32 num_extents;
|
|
|
|
/* not delalloc, ignore it */
|
|
if (!(other->state & EXTENT_DELALLOC))
|
|
return;
|
|
|
|
if (new->start > other->start)
|
|
new_size = new->end - other->start + 1;
|
|
else
|
|
new_size = other->end - new->start + 1;
|
|
|
|
/* we're not bigger than the max, unreserve the space and go */
|
|
if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
|
|
spin_lock(&BTRFS_I(inode)->lock);
|
|
btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
|
|
spin_unlock(&BTRFS_I(inode)->lock);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We have to add up either side to figure out how many extents were
|
|
* accounted for before we merged into one big extent. If the number of
|
|
* extents we accounted for is <= the amount we need for the new range
|
|
* then we can return, otherwise drop. Think of it like this
|
|
*
|
|
* [ 4k][MAX_SIZE]
|
|
*
|
|
* So we've grown the extent by a MAX_SIZE extent, this would mean we
|
|
* need 2 outstanding extents, on one side we have 1 and the other side
|
|
* we have 1 so they are == and we can return. But in this case
|
|
*
|
|
* [MAX_SIZE+4k][MAX_SIZE+4k]
|
|
*
|
|
* Each range on their own accounts for 2 extents, but merged together
|
|
* they are only 3 extents worth of accounting, so we need to drop in
|
|
* this case.
|
|
*/
|
|
old_size = other->end - other->start + 1;
|
|
num_extents = count_max_extents(old_size);
|
|
old_size = new->end - new->start + 1;
|
|
num_extents += count_max_extents(old_size);
|
|
if (count_max_extents(new_size) >= num_extents)
|
|
return;
|
|
|
|
spin_lock(&BTRFS_I(inode)->lock);
|
|
btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
|
|
spin_unlock(&BTRFS_I(inode)->lock);
|
|
}
|
|
|
|
static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
|
|
struct inode *inode)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
|
|
spin_lock(&root->delalloc_lock);
|
|
if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
|
|
list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
|
|
&root->delalloc_inodes);
|
|
set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
|
|
&BTRFS_I(inode)->runtime_flags);
|
|
root->nr_delalloc_inodes++;
|
|
if (root->nr_delalloc_inodes == 1) {
|
|
spin_lock(&fs_info->delalloc_root_lock);
|
|
BUG_ON(!list_empty(&root->delalloc_root));
|
|
list_add_tail(&root->delalloc_root,
|
|
&fs_info->delalloc_roots);
|
|
spin_unlock(&fs_info->delalloc_root_lock);
|
|
}
|
|
}
|
|
spin_unlock(&root->delalloc_lock);
|
|
}
|
|
|
|
|
|
void __btrfs_del_delalloc_inode(struct btrfs_root *root,
|
|
struct btrfs_inode *inode)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
|
|
if (!list_empty(&inode->delalloc_inodes)) {
|
|
list_del_init(&inode->delalloc_inodes);
|
|
clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
|
|
&inode->runtime_flags);
|
|
root->nr_delalloc_inodes--;
|
|
if (!root->nr_delalloc_inodes) {
|
|
ASSERT(list_empty(&root->delalloc_inodes));
|
|
spin_lock(&fs_info->delalloc_root_lock);
|
|
BUG_ON(list_empty(&root->delalloc_root));
|
|
list_del_init(&root->delalloc_root);
|
|
spin_unlock(&fs_info->delalloc_root_lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void btrfs_del_delalloc_inode(struct btrfs_root *root,
|
|
struct btrfs_inode *inode)
|
|
{
|
|
spin_lock(&root->delalloc_lock);
|
|
__btrfs_del_delalloc_inode(root, inode);
|
|
spin_unlock(&root->delalloc_lock);
|
|
}
|
|
|
|
/*
|
|
* Properly track delayed allocation bytes in the inode and to maintain the
|
|
* list of inodes that have pending delalloc work to be done.
|
|
*/
|
|
void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
|
|
unsigned *bits)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
|
|
if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
|
|
WARN_ON(1);
|
|
/*
|
|
* set_bit and clear bit hooks normally require _irqsave/restore
|
|
* but in this case, we are only testing for the DELALLOC
|
|
* bit, which is only set or cleared with irqs on
|
|
*/
|
|
if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
u64 len = state->end + 1 - state->start;
|
|
u32 num_extents = count_max_extents(len);
|
|
bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
|
|
|
|
spin_lock(&BTRFS_I(inode)->lock);
|
|
btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
|
|
spin_unlock(&BTRFS_I(inode)->lock);
|
|
|
|
/* For sanity tests */
|
|
if (btrfs_is_testing(fs_info))
|
|
return;
|
|
|
|
percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
|
|
fs_info->delalloc_batch);
|
|
spin_lock(&BTRFS_I(inode)->lock);
|
|
BTRFS_I(inode)->delalloc_bytes += len;
|
|
if (*bits & EXTENT_DEFRAG)
|
|
BTRFS_I(inode)->defrag_bytes += len;
|
|
if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
|
|
&BTRFS_I(inode)->runtime_flags))
|
|
btrfs_add_delalloc_inodes(root, inode);
|
|
spin_unlock(&BTRFS_I(inode)->lock);
|
|
}
|
|
|
|
if (!(state->state & EXTENT_DELALLOC_NEW) &&
|
|
(*bits & EXTENT_DELALLOC_NEW)) {
|
|
spin_lock(&BTRFS_I(inode)->lock);
|
|
BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
|
|
state->start;
|
|
spin_unlock(&BTRFS_I(inode)->lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Once a range is no longer delalloc this function ensures that proper
|
|
* accounting happens.
|
|
*/
|
|
void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
|
|
struct extent_state *state, unsigned *bits)
|
|
{
|
|
struct btrfs_inode *inode = BTRFS_I(vfs_inode);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
|
|
u64 len = state->end + 1 - state->start;
|
|
u32 num_extents = count_max_extents(len);
|
|
|
|
if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
|
|
spin_lock(&inode->lock);
|
|
inode->defrag_bytes -= len;
|
|
spin_unlock(&inode->lock);
|
|
}
|
|
|
|
/*
|
|
* set_bit and clear bit hooks normally require _irqsave/restore
|
|
* but in this case, we are only testing for the DELALLOC
|
|
* bit, which is only set or cleared with irqs on
|
|
*/
|
|
if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
|
|
struct btrfs_root *root = inode->root;
|
|
bool do_list = !btrfs_is_free_space_inode(inode);
|
|
|
|
spin_lock(&inode->lock);
|
|
btrfs_mod_outstanding_extents(inode, -num_extents);
|
|
spin_unlock(&inode->lock);
|
|
|
|
/*
|
|
* We don't reserve metadata space for space cache inodes so we
|
|
* don't need to call delalloc_release_metadata if there is an
|
|
* error.
|
|
*/
|
|
if (*bits & EXTENT_CLEAR_META_RESV &&
|
|
root != fs_info->tree_root)
|
|
btrfs_delalloc_release_metadata(inode, len, false);
|
|
|
|
/* For sanity tests. */
|
|
if (btrfs_is_testing(fs_info))
|
|
return;
|
|
|
|
if (!btrfs_is_data_reloc_root(root) &&
|
|
do_list && !(state->state & EXTENT_NORESERVE) &&
|
|
(*bits & EXTENT_CLEAR_DATA_RESV))
|
|
btrfs_free_reserved_data_space_noquota(fs_info, len);
|
|
|
|
percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
|
|
fs_info->delalloc_batch);
|
|
spin_lock(&inode->lock);
|
|
inode->delalloc_bytes -= len;
|
|
if (do_list && inode->delalloc_bytes == 0 &&
|
|
test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
|
|
&inode->runtime_flags))
|
|
btrfs_del_delalloc_inode(root, inode);
|
|
spin_unlock(&inode->lock);
|
|
}
|
|
|
|
if ((state->state & EXTENT_DELALLOC_NEW) &&
|
|
(*bits & EXTENT_DELALLOC_NEW)) {
|
|
spin_lock(&inode->lock);
|
|
ASSERT(inode->new_delalloc_bytes >= len);
|
|
inode->new_delalloc_bytes -= len;
|
|
if (*bits & EXTENT_ADD_INODE_BYTES)
|
|
inode_add_bytes(&inode->vfs_inode, len);
|
|
spin_unlock(&inode->lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* in order to insert checksums into the metadata in large chunks,
|
|
* we wait until bio submission time. All the pages in the bio are
|
|
* checksummed and sums are attached onto the ordered extent record.
|
|
*
|
|
* At IO completion time the cums attached on the ordered extent record
|
|
* are inserted into the btree
|
|
*/
|
|
static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
|
|
u64 dio_file_offset)
|
|
{
|
|
return btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false);
|
|
}
|
|
|
|
/*
|
|
* Split an extent_map at [start, start + len]
|
|
*
|
|
* This function is intended to be used only for extract_ordered_extent().
|
|
*/
|
|
static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len,
|
|
u64 pre, u64 post)
|
|
{
|
|
struct extent_map_tree *em_tree = &inode->extent_tree;
|
|
struct extent_map *em;
|
|
struct extent_map *split_pre = NULL;
|
|
struct extent_map *split_mid = NULL;
|
|
struct extent_map *split_post = NULL;
|
|
int ret = 0;
|
|
unsigned long flags;
|
|
|
|
/* Sanity check */
|
|
if (pre == 0 && post == 0)
|
|
return 0;
|
|
|
|
split_pre = alloc_extent_map();
|
|
if (pre)
|
|
split_mid = alloc_extent_map();
|
|
if (post)
|
|
split_post = alloc_extent_map();
|
|
if (!split_pre || (pre && !split_mid) || (post && !split_post)) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
ASSERT(pre + post < len);
|
|
|
|
lock_extent(&inode->io_tree, start, start + len - 1);
|
|
write_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, start, len);
|
|
if (!em) {
|
|
ret = -EIO;
|
|
goto out_unlock;
|
|
}
|
|
|
|
ASSERT(em->len == len);
|
|
ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
|
|
ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE);
|
|
ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags));
|
|
ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags));
|
|
ASSERT(!list_empty(&em->list));
|
|
|
|
flags = em->flags;
|
|
clear_bit(EXTENT_FLAG_PINNED, &em->flags);
|
|
|
|
/* First, replace the em with a new extent_map starting from * em->start */
|
|
split_pre->start = em->start;
|
|
split_pre->len = (pre ? pre : em->len - post);
|
|
split_pre->orig_start = split_pre->start;
|
|
split_pre->block_start = em->block_start;
|
|
split_pre->block_len = split_pre->len;
|
|
split_pre->orig_block_len = split_pre->block_len;
|
|
split_pre->ram_bytes = split_pre->len;
|
|
split_pre->flags = flags;
|
|
split_pre->compress_type = em->compress_type;
|
|
split_pre->generation = em->generation;
|
|
|
|
replace_extent_mapping(em_tree, em, split_pre, 1);
|
|
|
|
/*
|
|
* Now we only have an extent_map at:
|
|
* [em->start, em->start + pre] if pre != 0
|
|
* [em->start, em->start + em->len - post] if pre == 0
|
|
*/
|
|
|
|
if (pre) {
|
|
/* Insert the middle extent_map */
|
|
split_mid->start = em->start + pre;
|
|
split_mid->len = em->len - pre - post;
|
|
split_mid->orig_start = split_mid->start;
|
|
split_mid->block_start = em->block_start + pre;
|
|
split_mid->block_len = split_mid->len;
|
|
split_mid->orig_block_len = split_mid->block_len;
|
|
split_mid->ram_bytes = split_mid->len;
|
|
split_mid->flags = flags;
|
|
split_mid->compress_type = em->compress_type;
|
|
split_mid->generation = em->generation;
|
|
add_extent_mapping(em_tree, split_mid, 1);
|
|
}
|
|
|
|
if (post) {
|
|
split_post->start = em->start + em->len - post;
|
|
split_post->len = post;
|
|
split_post->orig_start = split_post->start;
|
|
split_post->block_start = em->block_start + em->len - post;
|
|
split_post->block_len = split_post->len;
|
|
split_post->orig_block_len = split_post->block_len;
|
|
split_post->ram_bytes = split_post->len;
|
|
split_post->flags = flags;
|
|
split_post->compress_type = em->compress_type;
|
|
split_post->generation = em->generation;
|
|
add_extent_mapping(em_tree, split_post, 1);
|
|
}
|
|
|
|
/* Once for us */
|
|
free_extent_map(em);
|
|
/* Once for the tree */
|
|
free_extent_map(em);
|
|
|
|
out_unlock:
|
|
write_unlock(&em_tree->lock);
|
|
unlock_extent(&inode->io_tree, start, start + len - 1);
|
|
out:
|
|
free_extent_map(split_pre);
|
|
free_extent_map(split_mid);
|
|
free_extent_map(split_post);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static blk_status_t extract_ordered_extent(struct btrfs_inode *inode,
|
|
struct bio *bio, loff_t file_offset)
|
|
{
|
|
struct btrfs_ordered_extent *ordered;
|
|
u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT;
|
|
u64 file_len;
|
|
u64 len = bio->bi_iter.bi_size;
|
|
u64 end = start + len;
|
|
u64 ordered_end;
|
|
u64 pre, post;
|
|
int ret = 0;
|
|
|
|
ordered = btrfs_lookup_ordered_extent(inode, file_offset);
|
|
if (WARN_ON_ONCE(!ordered))
|
|
return BLK_STS_IOERR;
|
|
|
|
/* No need to split */
|
|
if (ordered->disk_num_bytes == len)
|
|
goto out;
|
|
|
|
/* We cannot split once end_bio'd ordered extent */
|
|
if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* We cannot split a compressed ordered extent */
|
|
if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes;
|
|
/* bio must be in one ordered extent */
|
|
if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* Checksum list should be empty */
|
|
if (WARN_ON_ONCE(!list_empty(&ordered->list))) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
file_len = ordered->num_bytes;
|
|
pre = start - ordered->disk_bytenr;
|
|
post = ordered_end - end;
|
|
|
|
ret = btrfs_split_ordered_extent(ordered, pre, post);
|
|
if (ret)
|
|
goto out;
|
|
ret = split_zoned_em(inode, file_offset, file_len, pre, post);
|
|
|
|
out:
|
|
btrfs_put_ordered_extent(ordered);
|
|
|
|
return errno_to_blk_status(ret);
|
|
}
|
|
|
|
/*
|
|
* extent_io.c submission hook. This does the right thing for csum calculation
|
|
* on write, or reading the csums from the tree before a read.
|
|
*
|
|
* Rules about async/sync submit,
|
|
* a) read: sync submit
|
|
*
|
|
* b) write without checksum: sync submit
|
|
*
|
|
* c) write with checksum:
|
|
* c-1) if bio is issued by fsync: sync submit
|
|
* (sync_writers != 0)
|
|
*
|
|
* c-2) if root is reloc root: sync submit
|
|
* (only in case of buffered IO)
|
|
*
|
|
* c-3) otherwise: async submit
|
|
*/
|
|
blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
|
|
int mirror_num, unsigned long bio_flags)
|
|
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
|
|
blk_status_t ret = 0;
|
|
int skip_sum;
|
|
int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
|
|
|
|
skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
|
|
test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
|
|
|
|
if (btrfs_is_free_space_inode(BTRFS_I(inode)))
|
|
metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
|
|
|
|
if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
|
|
struct page *page = bio_first_bvec_all(bio)->bv_page;
|
|
loff_t file_offset = page_offset(page);
|
|
|
|
ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
|
|
ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (bio_flags & EXTENT_BIO_COMPRESSED) {
|
|
/*
|
|
* btrfs_submit_compressed_read will handle completing
|
|
* the bio if there were any errors, so just return
|
|
* here.
|
|
*/
|
|
ret = btrfs_submit_compressed_read(inode, bio,
|
|
mirror_num,
|
|
bio_flags);
|
|
goto out_no_endio;
|
|
} else {
|
|
/*
|
|
* Lookup bio sums does extra checks around whether we
|
|
* need to csum or not, which is why we ignore skip_sum
|
|
* here.
|
|
*/
|
|
ret = btrfs_lookup_bio_sums(inode, bio, NULL);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
goto mapit;
|
|
} else if (async && !skip_sum) {
|
|
/* csum items have already been cloned */
|
|
if (btrfs_is_data_reloc_root(root))
|
|
goto mapit;
|
|
/* we're doing a write, do the async checksumming */
|
|
ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags,
|
|
0, btrfs_submit_bio_start);
|
|
goto out;
|
|
} else if (!skip_sum) {
|
|
ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
mapit:
|
|
ret = btrfs_map_bio(fs_info, bio, mirror_num);
|
|
|
|
out:
|
|
if (ret) {
|
|
bio->bi_status = ret;
|
|
bio_endio(bio);
|
|
}
|
|
out_no_endio:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* given a list of ordered sums record them in the inode. This happens
|
|
* at IO completion time based on sums calculated at bio submission time.
|
|
*/
|
|
static int add_pending_csums(struct btrfs_trans_handle *trans,
|
|
struct list_head *list)
|
|
{
|
|
struct btrfs_ordered_sum *sum;
|
|
struct btrfs_root *csum_root = NULL;
|
|
int ret;
|
|
|
|
list_for_each_entry(sum, list, list) {
|
|
trans->adding_csums = true;
|
|
if (!csum_root)
|
|
csum_root = btrfs_csum_root(trans->fs_info,
|
|
sum->bytenr);
|
|
ret = btrfs_csum_file_blocks(trans, csum_root, sum);
|
|
trans->adding_csums = false;
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
|
|
const u64 start,
|
|
const u64 len,
|
|
struct extent_state **cached_state)
|
|
{
|
|
u64 search_start = start;
|
|
const u64 end = start + len - 1;
|
|
|
|
while (search_start < end) {
|
|
const u64 search_len = end - search_start + 1;
|
|
struct extent_map *em;
|
|
u64 em_len;
|
|
int ret = 0;
|
|
|
|
em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
|
|
if (IS_ERR(em))
|
|
return PTR_ERR(em);
|
|
|
|
if (em->block_start != EXTENT_MAP_HOLE)
|
|
goto next;
|
|
|
|
em_len = em->len;
|
|
if (em->start < search_start)
|
|
em_len -= search_start - em->start;
|
|
if (em_len > search_len)
|
|
em_len = search_len;
|
|
|
|
ret = set_extent_bit(&inode->io_tree, search_start,
|
|
search_start + em_len - 1,
|
|
EXTENT_DELALLOC_NEW, 0, NULL, cached_state,
|
|
GFP_NOFS, NULL);
|
|
next:
|
|
search_start = extent_map_end(em);
|
|
free_extent_map(em);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
|
|
unsigned int extra_bits,
|
|
struct extent_state **cached_state)
|
|
{
|
|
WARN_ON(PAGE_ALIGNED(end));
|
|
|
|
if (start >= i_size_read(&inode->vfs_inode) &&
|
|
!(inode->flags & BTRFS_INODE_PREALLOC)) {
|
|
/*
|
|
* There can't be any extents following eof in this case so just
|
|
* set the delalloc new bit for the range directly.
|
|
*/
|
|
extra_bits |= EXTENT_DELALLOC_NEW;
|
|
} else {
|
|
int ret;
|
|
|
|
ret = btrfs_find_new_delalloc_bytes(inode, start,
|
|
end + 1 - start,
|
|
cached_state);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
|
|
cached_state);
|
|
}
|
|
|
|
/* see btrfs_writepage_start_hook for details on why this is required */
|
|
struct btrfs_writepage_fixup {
|
|
struct page *page;
|
|
struct inode *inode;
|
|
struct btrfs_work work;
|
|
};
|
|
|
|
static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
|
|
{
|
|
struct btrfs_writepage_fixup *fixup;
|
|
struct btrfs_ordered_extent *ordered;
|
|
struct extent_state *cached_state = NULL;
|
|
struct extent_changeset *data_reserved = NULL;
|
|
struct page *page;
|
|
struct btrfs_inode *inode;
|
|
u64 page_start;
|
|
u64 page_end;
|
|
int ret = 0;
|
|
bool free_delalloc_space = true;
|
|
|
|
fixup = container_of(work, struct btrfs_writepage_fixup, work);
|
|
page = fixup->page;
|
|
inode = BTRFS_I(fixup->inode);
|
|
page_start = page_offset(page);
|
|
page_end = page_offset(page) + PAGE_SIZE - 1;
|
|
|
|
/*
|
|
* This is similar to page_mkwrite, we need to reserve the space before
|
|
* we take the page lock.
|
|
*/
|
|
ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
|
|
PAGE_SIZE);
|
|
again:
|
|
lock_page(page);
|
|
|
|
/*
|
|
* Before we queued this fixup, we took a reference on the page.
|
|
* page->mapping may go NULL, but it shouldn't be moved to a different
|
|
* address space.
|
|
*/
|
|
if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
|
|
/*
|
|
* Unfortunately this is a little tricky, either
|
|
*
|
|
* 1) We got here and our page had already been dealt with and
|
|
* we reserved our space, thus ret == 0, so we need to just
|
|
* drop our space reservation and bail. This can happen the
|
|
* first time we come into the fixup worker, or could happen
|
|
* while waiting for the ordered extent.
|
|
* 2) Our page was already dealt with, but we happened to get an
|
|
* ENOSPC above from the btrfs_delalloc_reserve_space. In
|
|
* this case we obviously don't have anything to release, but
|
|
* because the page was already dealt with we don't want to
|
|
* mark the page with an error, so make sure we're resetting
|
|
* ret to 0. This is why we have this check _before_ the ret
|
|
* check, because we do not want to have a surprise ENOSPC
|
|
* when the page was already properly dealt with.
|
|
*/
|
|
if (!ret) {
|
|
btrfs_delalloc_release_extents(inode, PAGE_SIZE);
|
|
btrfs_delalloc_release_space(inode, data_reserved,
|
|
page_start, PAGE_SIZE,
|
|
true);
|
|
}
|
|
ret = 0;
|
|
goto out_page;
|
|
}
|
|
|
|
/*
|
|
* We can't mess with the page state unless it is locked, so now that
|
|
* it is locked bail if we failed to make our space reservation.
|
|
*/
|
|
if (ret)
|
|
goto out_page;
|
|
|
|
lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
|
|
|
|
/* already ordered? We're done */
|
|
if (PageOrdered(page))
|
|
goto out_reserved;
|
|
|
|
ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
|
|
if (ordered) {
|
|
unlock_extent_cached(&inode->io_tree, page_start, page_end,
|
|
&cached_state);
|
|
unlock_page(page);
|
|
btrfs_start_ordered_extent(ordered, 1);
|
|
btrfs_put_ordered_extent(ordered);
|
|
goto again;
|
|
}
|
|
|
|
ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
|
|
&cached_state);
|
|
if (ret)
|
|
goto out_reserved;
|
|
|
|
/*
|
|
* Everything went as planned, we're now the owner of a dirty page with
|
|
* delayed allocation bits set and space reserved for our COW
|
|
* destination.
|
|
*
|
|
* The page was dirty when we started, nothing should have cleaned it.
|
|
*/
|
|
BUG_ON(!PageDirty(page));
|
|
free_delalloc_space = false;
|
|
out_reserved:
|
|
btrfs_delalloc_release_extents(inode, PAGE_SIZE);
|
|
if (free_delalloc_space)
|
|
btrfs_delalloc_release_space(inode, data_reserved, page_start,
|
|
PAGE_SIZE, true);
|
|
unlock_extent_cached(&inode->io_tree, page_start, page_end,
|
|
&cached_state);
|
|
out_page:
|
|
if (ret) {
|
|
/*
|
|
* We hit ENOSPC or other errors. Update the mapping and page
|
|
* to reflect the errors and clean the page.
|
|
*/
|
|
mapping_set_error(page->mapping, ret);
|
|
end_extent_writepage(page, ret, page_start, page_end);
|
|
clear_page_dirty_for_io(page);
|
|
SetPageError(page);
|
|
}
|
|
btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE);
|
|
unlock_page(page);
|
|
put_page(page);
|
|
kfree(fixup);
|
|
extent_changeset_free(data_reserved);
|
|
/*
|
|
* As a precaution, do a delayed iput in case it would be the last iput
|
|
* that could need flushing space. Recursing back to fixup worker would
|
|
* deadlock.
|
|
*/
|
|
btrfs_add_delayed_iput(&inode->vfs_inode);
|
|
}
|
|
|
|
/*
|
|
* There are a few paths in the higher layers of the kernel that directly
|
|
* set the page dirty bit without asking the filesystem if it is a
|
|
* good idea. This causes problems because we want to make sure COW
|
|
* properly happens and the data=ordered rules are followed.
|
|
*
|
|
* In our case any range that doesn't have the ORDERED bit set
|
|
* hasn't been properly setup for IO. We kick off an async process
|
|
* to fix it up. The async helper will wait for ordered extents, set
|
|
* the delalloc bit and make it safe to write the page.
|
|
*/
|
|
int btrfs_writepage_cow_fixup(struct page *page)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_writepage_fixup *fixup;
|
|
|
|
/* This page has ordered extent covering it already */
|
|
if (PageOrdered(page))
|
|
return 0;
|
|
|
|
/*
|
|
* PageChecked is set below when we create a fixup worker for this page,
|
|
* don't try to create another one if we're already PageChecked()
|
|
*
|
|
* The extent_io writepage code will redirty the page if we send back
|
|
* EAGAIN.
|
|
*/
|
|
if (PageChecked(page))
|
|
return -EAGAIN;
|
|
|
|
fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
|
|
if (!fixup)
|
|
return -EAGAIN;
|
|
|
|
/*
|
|
* We are already holding a reference to this inode from
|
|
* write_cache_pages. We need to hold it because the space reservation
|
|
* takes place outside of the page lock, and we can't trust
|
|
* page->mapping outside of the page lock.
|
|
*/
|
|
ihold(inode);
|
|
btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
|
|
get_page(page);
|
|
btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
|
|
fixup->page = page;
|
|
fixup->inode = inode;
|
|
btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
|
|
|
|
return -EAGAIN;
|
|
}
|
|
|
|
static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_inode *inode, u64 file_pos,
|
|
struct btrfs_file_extent_item *stack_fi,
|
|
const bool update_inode_bytes,
|
|
u64 qgroup_reserved)
|
|
{
|
|
struct btrfs_root *root = inode->root;
|
|
const u64 sectorsize = root->fs_info->sectorsize;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key ins;
|
|
u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
|
|
u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
|
|
u64 offset = btrfs_stack_file_extent_offset(stack_fi);
|
|
u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
|
|
u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
|
|
struct btrfs_drop_extents_args drop_args = { 0 };
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* we may be replacing one extent in the tree with another.
|
|
* The new extent is pinned in the extent map, and we don't want
|
|
* to drop it from the cache until it is completely in the btree.
|
|
*
|
|
* So, tell btrfs_drop_extents to leave this extent in the cache.
|
|
* the caller is expected to unpin it and allow it to be merged
|
|
* with the others.
|
|
*/
|
|
drop_args.path = path;
|
|
drop_args.start = file_pos;
|
|
drop_args.end = file_pos + num_bytes;
|
|
drop_args.replace_extent = true;
|
|
drop_args.extent_item_size = sizeof(*stack_fi);
|
|
ret = btrfs_drop_extents(trans, root, inode, &drop_args);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (!drop_args.extent_inserted) {
|
|
ins.objectid = btrfs_ino(inode);
|
|
ins.offset = file_pos;
|
|
ins.type = BTRFS_EXTENT_DATA_KEY;
|
|
|
|
ret = btrfs_insert_empty_item(trans, root, path, &ins,
|
|
sizeof(*stack_fi));
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
leaf = path->nodes[0];
|
|
btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
|
|
write_extent_buffer(leaf, stack_fi,
|
|
btrfs_item_ptr_offset(leaf, path->slots[0]),
|
|
sizeof(struct btrfs_file_extent_item));
|
|
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* If we dropped an inline extent here, we know the range where it is
|
|
* was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
|
|
* number of bytes only for that range containing the inline extent.
|
|
* The remaining of the range will be processed when clearning the
|
|
* EXTENT_DELALLOC_BIT bit through the ordered extent completion.
|
|
*/
|
|
if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
|
|
u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
|
|
|
|
inline_size = drop_args.bytes_found - inline_size;
|
|
btrfs_update_inode_bytes(inode, sectorsize, inline_size);
|
|
drop_args.bytes_found -= inline_size;
|
|
num_bytes -= sectorsize;
|
|
}
|
|
|
|
if (update_inode_bytes)
|
|
btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
|
|
|
|
ins.objectid = disk_bytenr;
|
|
ins.offset = disk_num_bytes;
|
|
ins.type = BTRFS_EXTENT_ITEM_KEY;
|
|
|
|
ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
|
|
file_pos - offset,
|
|
qgroup_reserved, &ins);
|
|
out:
|
|
btrfs_free_path(path);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
|
|
u64 start, u64 len)
|
|
{
|
|
struct btrfs_block_group *cache;
|
|
|
|
cache = btrfs_lookup_block_group(fs_info, start);
|
|
ASSERT(cache);
|
|
|
|
spin_lock(&cache->lock);
|
|
cache->delalloc_bytes -= len;
|
|
spin_unlock(&cache->lock);
|
|
|
|
btrfs_put_block_group(cache);
|
|
}
|
|
|
|
static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_ordered_extent *oe)
|
|
{
|
|
struct btrfs_file_extent_item stack_fi;
|
|
bool update_inode_bytes;
|
|
u64 num_bytes = oe->num_bytes;
|
|
u64 ram_bytes = oe->ram_bytes;
|
|
|
|
memset(&stack_fi, 0, sizeof(stack_fi));
|
|
btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
|
|
btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
|
|
btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
|
|
oe->disk_num_bytes);
|
|
btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
|
|
if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
|
|
num_bytes = ram_bytes = oe->truncated_len;
|
|
btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
|
|
btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
|
|
btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
|
|
/* Encryption and other encoding is reserved and all 0 */
|
|
|
|
/*
|
|
* For delalloc, when completing an ordered extent we update the inode's
|
|
* bytes when clearing the range in the inode's io tree, so pass false
|
|
* as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
|
|
* except if the ordered extent was truncated.
|
|
*/
|
|
update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
|
|
test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
|
|
test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
|
|
|
|
return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
|
|
oe->file_offset, &stack_fi,
|
|
update_inode_bytes, oe->qgroup_rsv);
|
|
}
|
|
|
|
/*
|
|
* As ordered data IO finishes, this gets called so we can finish
|
|
* an ordered extent if the range of bytes in the file it covers are
|
|
* fully written.
|
|
*/
|
|
static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
|
|
{
|
|
struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_trans_handle *trans = NULL;
|
|
struct extent_io_tree *io_tree = &inode->io_tree;
|
|
struct extent_state *cached_state = NULL;
|
|
u64 start, end;
|
|
int compress_type = 0;
|
|
int ret = 0;
|
|
u64 logical_len = ordered_extent->num_bytes;
|
|
bool freespace_inode;
|
|
bool truncated = false;
|
|
bool clear_reserved_extent = true;
|
|
unsigned int clear_bits = EXTENT_DEFRAG;
|
|
|
|
start = ordered_extent->file_offset;
|
|
end = start + ordered_extent->num_bytes - 1;
|
|
|
|
if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
|
|
!test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
|
|
!test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
|
|
!test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
|
|
clear_bits |= EXTENT_DELALLOC_NEW;
|
|
|
|
freespace_inode = btrfs_is_free_space_inode(inode);
|
|
|
|
if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
/* A valid bdev implies a write on a sequential zone */
|
|
if (ordered_extent->bdev) {
|
|
btrfs_rewrite_logical_zoned(ordered_extent);
|
|
btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
|
|
ordered_extent->disk_num_bytes);
|
|
}
|
|
|
|
btrfs_free_io_failure_record(inode, start, end);
|
|
|
|
if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
|
|
truncated = true;
|
|
logical_len = ordered_extent->truncated_len;
|
|
/* Truncated the entire extent, don't bother adding */
|
|
if (!logical_len)
|
|
goto out;
|
|
}
|
|
|
|
if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
|
|
BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
|
|
|
|
btrfs_inode_safe_disk_i_size_write(inode, 0);
|
|
if (freespace_inode)
|
|
trans = btrfs_join_transaction_spacecache(root);
|
|
else
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
trans = NULL;
|
|
goto out;
|
|
}
|
|
trans->block_rsv = &inode->block_rsv;
|
|
ret = btrfs_update_inode_fallback(trans, root, inode);
|
|
if (ret) /* -ENOMEM or corruption */
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
clear_bits |= EXTENT_LOCKED;
|
|
lock_extent_bits(io_tree, start, end, &cached_state);
|
|
|
|
if (freespace_inode)
|
|
trans = btrfs_join_transaction_spacecache(root);
|
|
else
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
trans = NULL;
|
|
goto out;
|
|
}
|
|
|
|
trans->block_rsv = &inode->block_rsv;
|
|
|
|
if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
|
|
compress_type = ordered_extent->compress_type;
|
|
if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
|
|
BUG_ON(compress_type);
|
|
ret = btrfs_mark_extent_written(trans, inode,
|
|
ordered_extent->file_offset,
|
|
ordered_extent->file_offset +
|
|
logical_len);
|
|
} else {
|
|
BUG_ON(root == fs_info->tree_root);
|
|
ret = insert_ordered_extent_file_extent(trans, ordered_extent);
|
|
if (!ret) {
|
|
clear_reserved_extent = false;
|
|
btrfs_release_delalloc_bytes(fs_info,
|
|
ordered_extent->disk_bytenr,
|
|
ordered_extent->disk_num_bytes);
|
|
}
|
|
}
|
|
unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
|
|
ordered_extent->num_bytes, trans->transid);
|
|
if (ret < 0) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = add_pending_csums(trans, &ordered_extent->list);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If this is a new delalloc range, clear its new delalloc flag to
|
|
* update the inode's number of bytes. This needs to be done first
|
|
* before updating the inode item.
|
|
*/
|
|
if ((clear_bits & EXTENT_DELALLOC_NEW) &&
|
|
!test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
|
|
clear_extent_bit(&inode->io_tree, start, end,
|
|
EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
|
|
0, 0, &cached_state);
|
|
|
|
btrfs_inode_safe_disk_i_size_write(inode, 0);
|
|
ret = btrfs_update_inode_fallback(trans, root, inode);
|
|
if (ret) { /* -ENOMEM or corruption */
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
ret = 0;
|
|
out:
|
|
clear_extent_bit(&inode->io_tree, start, end, clear_bits,
|
|
(clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
|
|
&cached_state);
|
|
|
|
if (trans)
|
|
btrfs_end_transaction(trans);
|
|
|
|
if (ret || truncated) {
|
|
u64 unwritten_start = start;
|
|
|
|
/*
|
|
* If we failed to finish this ordered extent for any reason we
|
|
* need to make sure BTRFS_ORDERED_IOERR is set on the ordered
|
|
* extent, and mark the inode with the error if it wasn't
|
|
* already set. Any error during writeback would have already
|
|
* set the mapping error, so we need to set it if we're the ones
|
|
* marking this ordered extent as failed.
|
|
*/
|
|
if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
|
|
&ordered_extent->flags))
|
|
mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
|
|
|
|
if (truncated)
|
|
unwritten_start += logical_len;
|
|
clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
|
|
|
|
/* Drop the cache for the part of the extent we didn't write. */
|
|
btrfs_drop_extent_cache(inode, unwritten_start, end, 0);
|
|
|
|
/*
|
|
* If the ordered extent had an IOERR or something else went
|
|
* wrong we need to return the space for this ordered extent
|
|
* back to the allocator. We only free the extent in the
|
|
* truncated case if we didn't write out the extent at all.
|
|
*
|
|
* If we made it past insert_reserved_file_extent before we
|
|
* errored out then we don't need to do this as the accounting
|
|
* has already been done.
|
|
*/
|
|
if ((ret || !logical_len) &&
|
|
clear_reserved_extent &&
|
|
!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
|
|
!test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
|
|
/*
|
|
* Discard the range before returning it back to the
|
|
* free space pool
|
|
*/
|
|
if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
|
|
btrfs_discard_extent(fs_info,
|
|
ordered_extent->disk_bytenr,
|
|
ordered_extent->disk_num_bytes,
|
|
NULL);
|
|
btrfs_free_reserved_extent(fs_info,
|
|
ordered_extent->disk_bytenr,
|
|
ordered_extent->disk_num_bytes, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This needs to be done to make sure anybody waiting knows we are done
|
|
* updating everything for this ordered extent.
|
|
*/
|
|
btrfs_remove_ordered_extent(inode, ordered_extent);
|
|
|
|
/* once for us */
|
|
btrfs_put_ordered_extent(ordered_extent);
|
|
/* once for the tree */
|
|
btrfs_put_ordered_extent(ordered_extent);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void finish_ordered_fn(struct btrfs_work *work)
|
|
{
|
|
struct btrfs_ordered_extent *ordered_extent;
|
|
ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
|
|
btrfs_finish_ordered_io(ordered_extent);
|
|
}
|
|
|
|
void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
|
|
struct page *page, u64 start,
|
|
u64 end, bool uptodate)
|
|
{
|
|
trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate);
|
|
|
|
btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start,
|
|
finish_ordered_fn, uptodate);
|
|
}
|
|
|
|
/*
|
|
* check_data_csum - verify checksum of one sector of uncompressed data
|
|
* @inode: inode
|
|
* @io_bio: btrfs_io_bio which contains the csum
|
|
* @bio_offset: offset to the beginning of the bio (in bytes)
|
|
* @page: page where is the data to be verified
|
|
* @pgoff: offset inside the page
|
|
* @start: logical offset in the file
|
|
*
|
|
* The length of such check is always one sector size.
|
|
*/
|
|
static int check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
|
|
u32 bio_offset, struct page *page, u32 pgoff,
|
|
u64 start)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
|
|
char *kaddr;
|
|
u32 len = fs_info->sectorsize;
|
|
const u32 csum_size = fs_info->csum_size;
|
|
unsigned int offset_sectors;
|
|
u8 *csum_expected;
|
|
u8 csum[BTRFS_CSUM_SIZE];
|
|
|
|
ASSERT(pgoff + len <= PAGE_SIZE);
|
|
|
|
offset_sectors = bio_offset >> fs_info->sectorsize_bits;
|
|
csum_expected = ((u8 *)bbio->csum) + offset_sectors * csum_size;
|
|
|
|
kaddr = kmap_atomic(page);
|
|
shash->tfm = fs_info->csum_shash;
|
|
|
|
crypto_shash_digest(shash, kaddr + pgoff, len, csum);
|
|
|
|
if (memcmp(csum, csum_expected, csum_size))
|
|
goto zeroit;
|
|
|
|
kunmap_atomic(kaddr);
|
|
return 0;
|
|
zeroit:
|
|
btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
|
|
bbio->mirror_num);
|
|
if (bbio->device)
|
|
btrfs_dev_stat_inc_and_print(bbio->device,
|
|
BTRFS_DEV_STAT_CORRUPTION_ERRS);
|
|
memset(kaddr + pgoff, 1, len);
|
|
flush_dcache_page(page);
|
|
kunmap_atomic(kaddr);
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* When reads are done, we need to check csums to verify the data is correct.
|
|
* if there's a match, we allow the bio to finish. If not, the code in
|
|
* extent_io.c will try to find good copies for us.
|
|
*
|
|
* @bio_offset: offset to the beginning of the bio (in bytes)
|
|
* @start: file offset of the range start
|
|
* @end: file offset of the range end (inclusive)
|
|
*
|
|
* Return a bitmap where bit set means a csum mismatch, and bit not set means
|
|
* csum match.
|
|
*/
|
|
unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
|
|
u32 bio_offset, struct page *page,
|
|
u64 start, u64 end)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
const u32 sectorsize = root->fs_info->sectorsize;
|
|
u32 pg_off;
|
|
unsigned int result = 0;
|
|
|
|
if (btrfs_page_test_checked(fs_info, page, start, end + 1 - start)) {
|
|
btrfs_page_clear_checked(fs_info, page, start, end + 1 - start);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This only happens for NODATASUM or compressed read.
|
|
* Normally this should be covered by above check for compressed read
|
|
* or the next check for NODATASUM. Just do a quicker exit here.
|
|
*/
|
|
if (bbio->csum == NULL)
|
|
return 0;
|
|
|
|
if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
|
|
return 0;
|
|
|
|
if (unlikely(test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)))
|
|
return 0;
|
|
|
|
ASSERT(page_offset(page) <= start &&
|
|
end <= page_offset(page) + PAGE_SIZE - 1);
|
|
for (pg_off = offset_in_page(start);
|
|
pg_off < offset_in_page(end);
|
|
pg_off += sectorsize, bio_offset += sectorsize) {
|
|
u64 file_offset = pg_off + page_offset(page);
|
|
int ret;
|
|
|
|
if (btrfs_is_data_reloc_root(root) &&
|
|
test_range_bit(io_tree, file_offset,
|
|
file_offset + sectorsize - 1,
|
|
EXTENT_NODATASUM, 1, NULL)) {
|
|
/* Skip the range without csum for data reloc inode */
|
|
clear_extent_bits(io_tree, file_offset,
|
|
file_offset + sectorsize - 1,
|
|
EXTENT_NODATASUM);
|
|
continue;
|
|
}
|
|
ret = check_data_csum(inode, bbio, bio_offset, page, pg_off,
|
|
page_offset(page) + pg_off);
|
|
if (ret < 0) {
|
|
const int nr_bit = (pg_off - offset_in_page(start)) >>
|
|
root->fs_info->sectorsize_bits;
|
|
|
|
result |= (1U << nr_bit);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* btrfs_add_delayed_iput - perform a delayed iput on @inode
|
|
*
|
|
* @inode: The inode we want to perform iput on
|
|
*
|
|
* This function uses the generic vfs_inode::i_count to track whether we should
|
|
* just decrement it (in case it's > 1) or if this is the last iput then link
|
|
* the inode to the delayed iput machinery. Delayed iputs are processed at
|
|
* transaction commit time/superblock commit/cleaner kthread.
|
|
*/
|
|
void btrfs_add_delayed_iput(struct inode *inode)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_inode *binode = BTRFS_I(inode);
|
|
|
|
if (atomic_add_unless(&inode->i_count, -1, 1))
|
|
return;
|
|
|
|
atomic_inc(&fs_info->nr_delayed_iputs);
|
|
spin_lock(&fs_info->delayed_iput_lock);
|
|
ASSERT(list_empty(&binode->delayed_iput));
|
|
list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
|
|
spin_unlock(&fs_info->delayed_iput_lock);
|
|
if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
|
|
wake_up_process(fs_info->cleaner_kthread);
|
|
}
|
|
|
|
static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_inode *inode)
|
|
{
|
|
list_del_init(&inode->delayed_iput);
|
|
spin_unlock(&fs_info->delayed_iput_lock);
|
|
iput(&inode->vfs_inode);
|
|
if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
|
|
wake_up(&fs_info->delayed_iputs_wait);
|
|
spin_lock(&fs_info->delayed_iput_lock);
|
|
}
|
|
|
|
static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_inode *inode)
|
|
{
|
|
if (!list_empty(&inode->delayed_iput)) {
|
|
spin_lock(&fs_info->delayed_iput_lock);
|
|
if (!list_empty(&inode->delayed_iput))
|
|
run_delayed_iput_locked(fs_info, inode);
|
|
spin_unlock(&fs_info->delayed_iput_lock);
|
|
}
|
|
}
|
|
|
|
void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
|
|
{
|
|
|
|
spin_lock(&fs_info->delayed_iput_lock);
|
|
while (!list_empty(&fs_info->delayed_iputs)) {
|
|
struct btrfs_inode *inode;
|
|
|
|
inode = list_first_entry(&fs_info->delayed_iputs,
|
|
struct btrfs_inode, delayed_iput);
|
|
run_delayed_iput_locked(fs_info, inode);
|
|
cond_resched_lock(&fs_info->delayed_iput_lock);
|
|
}
|
|
spin_unlock(&fs_info->delayed_iput_lock);
|
|
}
|
|
|
|
/**
|
|
* Wait for flushing all delayed iputs
|
|
*
|
|
* @fs_info: the filesystem
|
|
*
|
|
* This will wait on any delayed iputs that are currently running with KILLABLE
|
|
* set. Once they are all done running we will return, unless we are killed in
|
|
* which case we return EINTR. This helps in user operations like fallocate etc
|
|
* that might get blocked on the iputs.
|
|
*
|
|
* Return EINTR if we were killed, 0 if nothing's pending
|
|
*/
|
|
int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
|
|
{
|
|
int ret = wait_event_killable(fs_info->delayed_iputs_wait,
|
|
atomic_read(&fs_info->nr_delayed_iputs) == 0);
|
|
if (ret)
|
|
return -EINTR;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This creates an orphan entry for the given inode in case something goes wrong
|
|
* in the middle of an unlink.
|
|
*/
|
|
int btrfs_orphan_add(struct btrfs_trans_handle *trans,
|
|
struct btrfs_inode *inode)
|
|
{
|
|
int ret;
|
|
|
|
ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
|
|
if (ret && ret != -EEXIST) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We have done the delete so we can go ahead and remove the orphan item for
|
|
* this particular inode.
|
|
*/
|
|
static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
|
|
struct btrfs_inode *inode)
|
|
{
|
|
return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
|
|
}
|
|
|
|
/*
|
|
* this cleans up any orphans that may be left on the list from the last use
|
|
* of this root.
|
|
*/
|
|
int btrfs_orphan_cleanup(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key, found_key;
|
|
struct btrfs_trans_handle *trans;
|
|
struct inode *inode;
|
|
u64 last_objectid = 0;
|
|
int ret = 0, nr_unlink = 0;
|
|
|
|
if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
|
|
return 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
path->reada = READA_BACK;
|
|
|
|
key.objectid = BTRFS_ORPHAN_OBJECTID;
|
|
key.type = BTRFS_ORPHAN_ITEM_KEY;
|
|
key.offset = (u64)-1;
|
|
|
|
while (1) {
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
/*
|
|
* if ret == 0 means we found what we were searching for, which
|
|
* is weird, but possible, so only screw with path if we didn't
|
|
* find the key and see if we have stuff that matches
|
|
*/
|
|
if (ret > 0) {
|
|
ret = 0;
|
|
if (path->slots[0] == 0)
|
|
break;
|
|
path->slots[0]--;
|
|
}
|
|
|
|
/* pull out the item */
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
|
|
/* make sure the item matches what we want */
|
|
if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
|
|
break;
|
|
if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
|
|
break;
|
|
|
|
/* release the path since we're done with it */
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* this is where we are basically btrfs_lookup, without the
|
|
* crossing root thing. we store the inode number in the
|
|
* offset of the orphan item.
|
|
*/
|
|
|
|
if (found_key.offset == last_objectid) {
|
|
btrfs_err(fs_info,
|
|
"Error removing orphan entry, stopping orphan cleanup");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
last_objectid = found_key.offset;
|
|
|
|
found_key.objectid = found_key.offset;
|
|
found_key.type = BTRFS_INODE_ITEM_KEY;
|
|
found_key.offset = 0;
|
|
inode = btrfs_iget(fs_info->sb, last_objectid, root);
|
|
ret = PTR_ERR_OR_ZERO(inode);
|
|
if (ret && ret != -ENOENT)
|
|
goto out;
|
|
|
|
if (ret == -ENOENT && root == fs_info->tree_root) {
|
|
struct btrfs_root *dead_root;
|
|
int is_dead_root = 0;
|
|
|
|
/*
|
|
* This is an orphan in the tree root. Currently these
|
|
* could come from 2 sources:
|
|
* a) a root (snapshot/subvolume) deletion in progress
|
|
* b) a free space cache inode
|
|
* We need to distinguish those two, as the orphan item
|
|
* for a root must not get deleted before the deletion
|
|
* of the snapshot/subvolume's tree completes.
|
|
*
|
|
* btrfs_find_orphan_roots() ran before us, which has
|
|
* found all deleted roots and loaded them into
|
|
* fs_info->fs_roots_radix. So here we can find if an
|
|
* orphan item corresponds to a deleted root by looking
|
|
* up the root from that radix tree.
|
|
*/
|
|
|
|
spin_lock(&fs_info->fs_roots_radix_lock);
|
|
dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
|
|
(unsigned long)found_key.objectid);
|
|
if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
|
|
is_dead_root = 1;
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
|
|
if (is_dead_root) {
|
|
/* prevent this orphan from being found again */
|
|
key.offset = found_key.objectid - 1;
|
|
continue;
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* If we have an inode with links, there are a couple of
|
|
* possibilities:
|
|
*
|
|
* 1. We were halfway through creating fsverity metadata for the
|
|
* file. In that case, the orphan item represents incomplete
|
|
* fsverity metadata which must be cleaned up with
|
|
* btrfs_drop_verity_items and deleting the orphan item.
|
|
|
|
* 2. Old kernels (before v3.12) used to create an
|
|
* orphan item for truncate indicating that there were possibly
|
|
* extent items past i_size that needed to be deleted. In v3.12,
|
|
* truncate was changed to update i_size in sync with the extent
|
|
* items, but the (useless) orphan item was still created. Since
|
|
* v4.18, we don't create the orphan item for truncate at all.
|
|
*
|
|
* So, this item could mean that we need to do a truncate, but
|
|
* only if this filesystem was last used on a pre-v3.12 kernel
|
|
* and was not cleanly unmounted. The odds of that are quite
|
|
* slim, and it's a pain to do the truncate now, so just delete
|
|
* the orphan item.
|
|
*
|
|
* It's also possible that this orphan item was supposed to be
|
|
* deleted but wasn't. The inode number may have been reused,
|
|
* but either way, we can delete the orphan item.
|
|
*/
|
|
if (ret == -ENOENT || inode->i_nlink) {
|
|
if (!ret) {
|
|
ret = btrfs_drop_verity_items(BTRFS_I(inode));
|
|
iput(inode);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out;
|
|
}
|
|
btrfs_debug(fs_info, "auto deleting %Lu",
|
|
found_key.objectid);
|
|
ret = btrfs_del_orphan_item(trans, root,
|
|
found_key.objectid);
|
|
btrfs_end_transaction(trans);
|
|
if (ret)
|
|
goto out;
|
|
continue;
|
|
}
|
|
|
|
nr_unlink++;
|
|
|
|
/* this will do delete_inode and everything for us */
|
|
iput(inode);
|
|
}
|
|
/* release the path since we're done with it */
|
|
btrfs_release_path(path);
|
|
|
|
if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
|
|
trans = btrfs_join_transaction(root);
|
|
if (!IS_ERR(trans))
|
|
btrfs_end_transaction(trans);
|
|
}
|
|
|
|
if (nr_unlink)
|
|
btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
|
|
|
|
out:
|
|
if (ret)
|
|
btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* very simple check to peek ahead in the leaf looking for xattrs. If we
|
|
* don't find any xattrs, we know there can't be any acls.
|
|
*
|
|
* slot is the slot the inode is in, objectid is the objectid of the inode
|
|
*/
|
|
static noinline int acls_after_inode_item(struct extent_buffer *leaf,
|
|
int slot, u64 objectid,
|
|
int *first_xattr_slot)
|
|
{
|
|
u32 nritems = btrfs_header_nritems(leaf);
|
|
struct btrfs_key found_key;
|
|
static u64 xattr_access = 0;
|
|
static u64 xattr_default = 0;
|
|
int scanned = 0;
|
|
|
|
if (!xattr_access) {
|
|
xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
|
|
strlen(XATTR_NAME_POSIX_ACL_ACCESS));
|
|
xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
|
|
strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
|
|
}
|
|
|
|
slot++;
|
|
*first_xattr_slot = -1;
|
|
while (slot < nritems) {
|
|
btrfs_item_key_to_cpu(leaf, &found_key, slot);
|
|
|
|
/* we found a different objectid, there must not be acls */
|
|
if (found_key.objectid != objectid)
|
|
return 0;
|
|
|
|
/* we found an xattr, assume we've got an acl */
|
|
if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
|
|
if (*first_xattr_slot == -1)
|
|
*first_xattr_slot = slot;
|
|
if (found_key.offset == xattr_access ||
|
|
found_key.offset == xattr_default)
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* we found a key greater than an xattr key, there can't
|
|
* be any acls later on
|
|
*/
|
|
if (found_key.type > BTRFS_XATTR_ITEM_KEY)
|
|
return 0;
|
|
|
|
slot++;
|
|
scanned++;
|
|
|
|
/*
|
|
* it goes inode, inode backrefs, xattrs, extents,
|
|
* so if there are a ton of hard links to an inode there can
|
|
* be a lot of backrefs. Don't waste time searching too hard,
|
|
* this is just an optimization
|
|
*/
|
|
if (scanned >= 8)
|
|
break;
|
|
}
|
|
/* we hit the end of the leaf before we found an xattr or
|
|
* something larger than an xattr. We have to assume the inode
|
|
* has acls
|
|
*/
|
|
if (*first_xattr_slot == -1)
|
|
*first_xattr_slot = slot;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* read an inode from the btree into the in-memory inode
|
|
*/
|
|
static int btrfs_read_locked_inode(struct inode *inode,
|
|
struct btrfs_path *in_path)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_path *path = in_path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_inode_item *inode_item;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_key location;
|
|
unsigned long ptr;
|
|
int maybe_acls;
|
|
u32 rdev;
|
|
int ret;
|
|
bool filled = false;
|
|
int first_xattr_slot;
|
|
|
|
ret = btrfs_fill_inode(inode, &rdev);
|
|
if (!ret)
|
|
filled = true;
|
|
|
|
if (!path) {
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
|
|
|
|
ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
|
|
if (ret) {
|
|
if (path != in_path)
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
|
|
if (filled)
|
|
goto cache_index;
|
|
|
|
inode_item = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_inode_item);
|
|
inode->i_mode = btrfs_inode_mode(leaf, inode_item);
|
|
set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
|
|
i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
|
|
i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
|
|
btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
|
|
btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
|
|
round_up(i_size_read(inode), fs_info->sectorsize));
|
|
|
|
inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
|
|
inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
|
|
|
|
inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
|
|
inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
|
|
|
|
inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
|
|
inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
|
|
|
|
BTRFS_I(inode)->i_otime.tv_sec =
|
|
btrfs_timespec_sec(leaf, &inode_item->otime);
|
|
BTRFS_I(inode)->i_otime.tv_nsec =
|
|
btrfs_timespec_nsec(leaf, &inode_item->otime);
|
|
|
|
inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
|
|
BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
|
|
BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
|
|
|
|
inode_set_iversion_queried(inode,
|
|
btrfs_inode_sequence(leaf, inode_item));
|
|
inode->i_generation = BTRFS_I(inode)->generation;
|
|
inode->i_rdev = 0;
|
|
rdev = btrfs_inode_rdev(leaf, inode_item);
|
|
|
|
BTRFS_I(inode)->index_cnt = (u64)-1;
|
|
btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
|
|
&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
|
|
|
|
cache_index:
|
|
/*
|
|
* If we were modified in the current generation and evicted from memory
|
|
* and then re-read we need to do a full sync since we don't have any
|
|
* idea about which extents were modified before we were evicted from
|
|
* cache.
|
|
*
|
|
* This is required for both inode re-read from disk and delayed inode
|
|
* in delayed_nodes_tree.
|
|
*/
|
|
if (BTRFS_I(inode)->last_trans == fs_info->generation)
|
|
set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
|
|
&BTRFS_I(inode)->runtime_flags);
|
|
|
|
/*
|
|
* We don't persist the id of the transaction where an unlink operation
|
|
* against the inode was last made. So here we assume the inode might
|
|
* have been evicted, and therefore the exact value of last_unlink_trans
|
|
* lost, and set it to last_trans to avoid metadata inconsistencies
|
|
* between the inode and its parent if the inode is fsync'ed and the log
|
|
* replayed. For example, in the scenario:
|
|
*
|
|
* touch mydir/foo
|
|
* ln mydir/foo mydir/bar
|
|
* sync
|
|
* unlink mydir/bar
|
|
* echo 2 > /proc/sys/vm/drop_caches # evicts inode
|
|
* xfs_io -c fsync mydir/foo
|
|
* <power failure>
|
|
* mount fs, triggers fsync log replay
|
|
*
|
|
* We must make sure that when we fsync our inode foo we also log its
|
|
* parent inode, otherwise after log replay the parent still has the
|
|
* dentry with the "bar" name but our inode foo has a link count of 1
|
|
* and doesn't have an inode ref with the name "bar" anymore.
|
|
*
|
|
* Setting last_unlink_trans to last_trans is a pessimistic approach,
|
|
* but it guarantees correctness at the expense of occasional full
|
|
* transaction commits on fsync if our inode is a directory, or if our
|
|
* inode is not a directory, logging its parent unnecessarily.
|
|
*/
|
|
BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
|
|
|
|
/*
|
|
* Same logic as for last_unlink_trans. We don't persist the generation
|
|
* of the last transaction where this inode was used for a reflink
|
|
* operation, so after eviction and reloading the inode we must be
|
|
* pessimistic and assume the last transaction that modified the inode.
|
|
*/
|
|
BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
|
|
|
|
path->slots[0]++;
|
|
if (inode->i_nlink != 1 ||
|
|
path->slots[0] >= btrfs_header_nritems(leaf))
|
|
goto cache_acl;
|
|
|
|
btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
|
|
if (location.objectid != btrfs_ino(BTRFS_I(inode)))
|
|
goto cache_acl;
|
|
|
|
ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
|
|
if (location.type == BTRFS_INODE_REF_KEY) {
|
|
struct btrfs_inode_ref *ref;
|
|
|
|
ref = (struct btrfs_inode_ref *)ptr;
|
|
BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
|
|
} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
|
|
struct btrfs_inode_extref *extref;
|
|
|
|
extref = (struct btrfs_inode_extref *)ptr;
|
|
BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
|
|
extref);
|
|
}
|
|
cache_acl:
|
|
/*
|
|
* try to precache a NULL acl entry for files that don't have
|
|
* any xattrs or acls
|
|
*/
|
|
maybe_acls = acls_after_inode_item(leaf, path->slots[0],
|
|
btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
|
|
if (first_xattr_slot != -1) {
|
|
path->slots[0] = first_xattr_slot;
|
|
ret = btrfs_load_inode_props(inode, path);
|
|
if (ret)
|
|
btrfs_err(fs_info,
|
|
"error loading props for ino %llu (root %llu): %d",
|
|
btrfs_ino(BTRFS_I(inode)),
|
|
root->root_key.objectid, ret);
|
|
}
|
|
if (path != in_path)
|
|
btrfs_free_path(path);
|
|
|
|
if (!maybe_acls)
|
|
cache_no_acl(inode);
|
|
|
|
switch (inode->i_mode & S_IFMT) {
|
|
case S_IFREG:
|
|
inode->i_mapping->a_ops = &btrfs_aops;
|
|
inode->i_fop = &btrfs_file_operations;
|
|
inode->i_op = &btrfs_file_inode_operations;
|
|
break;
|
|
case S_IFDIR:
|
|
inode->i_fop = &btrfs_dir_file_operations;
|
|
inode->i_op = &btrfs_dir_inode_operations;
|
|
break;
|
|
case S_IFLNK:
|
|
inode->i_op = &btrfs_symlink_inode_operations;
|
|
inode_nohighmem(inode);
|
|
inode->i_mapping->a_ops = &btrfs_aops;
|
|
break;
|
|
default:
|
|
inode->i_op = &btrfs_special_inode_operations;
|
|
init_special_inode(inode, inode->i_mode, rdev);
|
|
break;
|
|
}
|
|
|
|
btrfs_sync_inode_flags_to_i_flags(inode);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* given a leaf and an inode, copy the inode fields into the leaf
|
|
*/
|
|
static void fill_inode_item(struct btrfs_trans_handle *trans,
|
|
struct extent_buffer *leaf,
|
|
struct btrfs_inode_item *item,
|
|
struct inode *inode)
|
|
{
|
|
struct btrfs_map_token token;
|
|
u64 flags;
|
|
|
|
btrfs_init_map_token(&token, leaf);
|
|
|
|
btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
|
|
btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
|
|
btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
|
|
btrfs_set_token_inode_mode(&token, item, inode->i_mode);
|
|
btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
|
|
|
|
btrfs_set_token_timespec_sec(&token, &item->atime,
|
|
inode->i_atime.tv_sec);
|
|
btrfs_set_token_timespec_nsec(&token, &item->atime,
|
|
inode->i_atime.tv_nsec);
|
|
|
|
btrfs_set_token_timespec_sec(&token, &item->mtime,
|
|
inode->i_mtime.tv_sec);
|
|
btrfs_set_token_timespec_nsec(&token, &item->mtime,
|
|
inode->i_mtime.tv_nsec);
|
|
|
|
btrfs_set_token_timespec_sec(&token, &item->ctime,
|
|
inode->i_ctime.tv_sec);
|
|
btrfs_set_token_timespec_nsec(&token, &item->ctime,
|
|
inode->i_ctime.tv_nsec);
|
|
|
|
btrfs_set_token_timespec_sec(&token, &item->otime,
|
|
BTRFS_I(inode)->i_otime.tv_sec);
|
|
btrfs_set_token_timespec_nsec(&token, &item->otime,
|
|
BTRFS_I(inode)->i_otime.tv_nsec);
|
|
|
|
btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
|
|
btrfs_set_token_inode_generation(&token, item,
|
|
BTRFS_I(inode)->generation);
|
|
btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
|
|
btrfs_set_token_inode_transid(&token, item, trans->transid);
|
|
btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
|
|
flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
|
|
BTRFS_I(inode)->ro_flags);
|
|
btrfs_set_token_inode_flags(&token, item, flags);
|
|
btrfs_set_token_inode_block_group(&token, item, 0);
|
|
}
|
|
|
|
/*
|
|
* copy everything in the in-memory inode into the btree.
|
|
*/
|
|
static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_inode *inode)
|
|
{
|
|
struct btrfs_inode_item *inode_item;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
|
|
if (ret) {
|
|
if (ret > 0)
|
|
ret = -ENOENT;
|
|
goto failed;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
inode_item = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_inode_item);
|
|
|
|
fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_set_inode_last_trans(trans, inode);
|
|
ret = 0;
|
|
failed:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* copy everything in the in-memory inode into the btree.
|
|
*/
|
|
noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_inode *inode)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
int ret;
|
|
|
|
/*
|
|
* If the inode is a free space inode, we can deadlock during commit
|
|
* if we put it into the delayed code.
|
|
*
|
|
* The data relocation inode should also be directly updated
|
|
* without delay
|
|
*/
|
|
if (!btrfs_is_free_space_inode(inode)
|
|
&& !btrfs_is_data_reloc_root(root)
|
|
&& !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
|
|
btrfs_update_root_times(trans, root);
|
|
|
|
ret = btrfs_delayed_update_inode(trans, root, inode);
|
|
if (!ret)
|
|
btrfs_set_inode_last_trans(trans, inode);
|
|
return ret;
|
|
}
|
|
|
|
return btrfs_update_inode_item(trans, root, inode);
|
|
}
|
|
|
|
int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, struct btrfs_inode *inode)
|
|
{
|
|
int ret;
|
|
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
if (ret == -ENOSPC)
|
|
return btrfs_update_inode_item(trans, root, inode);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* unlink helper that gets used here in inode.c and in the tree logging
|
|
* recovery code. It remove a link in a directory with a given name, and
|
|
* also drops the back refs in the inode to the directory
|
|
*/
|
|
static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
|
|
struct btrfs_inode *dir,
|
|
struct btrfs_inode *inode,
|
|
const char *name, int name_len,
|
|
struct btrfs_rename_ctx *rename_ctx)
|
|
{
|
|
struct btrfs_root *root = dir->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_path *path;
|
|
int ret = 0;
|
|
struct btrfs_dir_item *di;
|
|
u64 index;
|
|
u64 ino = btrfs_ino(inode);
|
|
u64 dir_ino = btrfs_ino(dir);
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
|
|
name, name_len, -1);
|
|
if (IS_ERR_OR_NULL(di)) {
|
|
ret = di ? PTR_ERR(di) : -ENOENT;
|
|
goto err;
|
|
}
|
|
ret = btrfs_delete_one_dir_name(trans, root, path, di);
|
|
if (ret)
|
|
goto err;
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* If we don't have dir index, we have to get it by looking up
|
|
* the inode ref, since we get the inode ref, remove it directly,
|
|
* it is unnecessary to do delayed deletion.
|
|
*
|
|
* But if we have dir index, needn't search inode ref to get it.
|
|
* Since the inode ref is close to the inode item, it is better
|
|
* that we delay to delete it, and just do this deletion when
|
|
* we update the inode item.
|
|
*/
|
|
if (inode->dir_index) {
|
|
ret = btrfs_delayed_delete_inode_ref(inode);
|
|
if (!ret) {
|
|
index = inode->dir_index;
|
|
goto skip_backref;
|
|
}
|
|
}
|
|
|
|
ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
|
|
dir_ino, &index);
|
|
if (ret) {
|
|
btrfs_info(fs_info,
|
|
"failed to delete reference to %.*s, inode %llu parent %llu",
|
|
name_len, name, ino, dir_ino);
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto err;
|
|
}
|
|
skip_backref:
|
|
if (rename_ctx)
|
|
rename_ctx->index = index;
|
|
|
|
ret = btrfs_delete_delayed_dir_index(trans, dir, index);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* If we are in a rename context, we don't need to update anything in the
|
|
* log. That will be done later during the rename by btrfs_log_new_name().
|
|
* Besides that, doing it here would only cause extra unncessary btree
|
|
* operations on the log tree, increasing latency for applications.
|
|
*/
|
|
if (!rename_ctx) {
|
|
btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
|
|
dir_ino);
|
|
btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
|
|
index);
|
|
}
|
|
|
|
/*
|
|
* If we have a pending delayed iput we could end up with the final iput
|
|
* being run in btrfs-cleaner context. If we have enough of these built
|
|
* up we can end up burning a lot of time in btrfs-cleaner without any
|
|
* way to throttle the unlinks. Since we're currently holding a ref on
|
|
* the inode we can run the delayed iput here without any issues as the
|
|
* final iput won't be done until after we drop the ref we're currently
|
|
* holding.
|
|
*/
|
|
btrfs_run_delayed_iput(fs_info, inode);
|
|
err:
|
|
btrfs_free_path(path);
|
|
if (ret)
|
|
goto out;
|
|
|
|
btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
|
|
inode_inc_iversion(&inode->vfs_inode);
|
|
inode_inc_iversion(&dir->vfs_inode);
|
|
inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
|
|
dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
|
|
ret = btrfs_update_inode(trans, root, dir);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
|
|
struct btrfs_inode *dir, struct btrfs_inode *inode,
|
|
const char *name, int name_len)
|
|
{
|
|
int ret;
|
|
ret = __btrfs_unlink_inode(trans, dir, inode, name, name_len, NULL);
|
|
if (!ret) {
|
|
drop_nlink(&inode->vfs_inode);
|
|
ret = btrfs_update_inode(trans, inode->root, inode);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* helper to start transaction for unlink and rmdir.
|
|
*
|
|
* unlink and rmdir are special in btrfs, they do not always free space, so
|
|
* if we cannot make our reservations the normal way try and see if there is
|
|
* plenty of slack room in the global reserve to migrate, otherwise we cannot
|
|
* allow the unlink to occur.
|
|
*/
|
|
static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
|
|
/*
|
|
* 1 for the possible orphan item
|
|
* 1 for the dir item
|
|
* 1 for the dir index
|
|
* 1 for the inode ref
|
|
* 1 for the inode
|
|
*/
|
|
return btrfs_start_transaction_fallback_global_rsv(root, 5);
|
|
}
|
|
|
|
static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
struct inode *inode = d_inode(dentry);
|
|
int ret;
|
|
|
|
trans = __unlink_start_trans(dir);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
|
|
0);
|
|
|
|
ret = btrfs_unlink_inode(trans, BTRFS_I(dir),
|
|
BTRFS_I(d_inode(dentry)), dentry->d_name.name,
|
|
dentry->d_name.len);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (inode->i_nlink == 0) {
|
|
ret = btrfs_orphan_add(trans, BTRFS_I(inode));
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
btrfs_end_transaction(trans);
|
|
btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
|
|
struct inode *dir, struct dentry *dentry)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_dir_item *di;
|
|
struct btrfs_key key;
|
|
const char *name = dentry->d_name.name;
|
|
int name_len = dentry->d_name.len;
|
|
u64 index;
|
|
int ret;
|
|
u64 objectid;
|
|
u64 dir_ino = btrfs_ino(BTRFS_I(dir));
|
|
|
|
if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
|
|
objectid = inode->root->root_key.objectid;
|
|
} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
|
|
objectid = inode->location.objectid;
|
|
} else {
|
|
WARN_ON(1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
|
|
name, name_len, -1);
|
|
if (IS_ERR_OR_NULL(di)) {
|
|
ret = di ? PTR_ERR(di) : -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
btrfs_dir_item_key_to_cpu(leaf, di, &key);
|
|
WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
|
|
ret = btrfs_delete_one_dir_name(trans, root, path, di);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* This is a placeholder inode for a subvolume we didn't have a
|
|
* reference to at the time of the snapshot creation. In the meantime
|
|
* we could have renamed the real subvol link into our snapshot, so
|
|
* depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
|
|
* Instead simply lookup the dir_index_item for this entry so we can
|
|
* remove it. Otherwise we know we have a ref to the root and we can
|
|
* call btrfs_del_root_ref, and it _shouldn't_ fail.
|
|
*/
|
|
if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
|
|
di = btrfs_search_dir_index_item(root, path, dir_ino,
|
|
name, name_len);
|
|
if (IS_ERR_OR_NULL(di)) {
|
|
if (!di)
|
|
ret = -ENOENT;
|
|
else
|
|
ret = PTR_ERR(di);
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
index = key.offset;
|
|
btrfs_release_path(path);
|
|
} else {
|
|
ret = btrfs_del_root_ref(trans, objectid,
|
|
root->root_key.objectid, dir_ino,
|
|
&index, name, name_len);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
|
|
inode_inc_iversion(dir);
|
|
dir->i_mtime = dir->i_ctime = current_time(dir);
|
|
ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir));
|
|
if (ret)
|
|
btrfs_abort_transaction(trans, ret);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Helper to check if the subvolume references other subvolumes or if it's
|
|
* default.
|
|
*/
|
|
static noinline int may_destroy_subvol(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_path *path;
|
|
struct btrfs_dir_item *di;
|
|
struct btrfs_key key;
|
|
u64 dir_id;
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
/* Make sure this root isn't set as the default subvol */
|
|
dir_id = btrfs_super_root_dir(fs_info->super_copy);
|
|
di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
|
|
dir_id, "default", 7, 0);
|
|
if (di && !IS_ERR(di)) {
|
|
btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
|
|
if (key.objectid == root->root_key.objectid) {
|
|
ret = -EPERM;
|
|
btrfs_err(fs_info,
|
|
"deleting default subvolume %llu is not allowed",
|
|
key.objectid);
|
|
goto out;
|
|
}
|
|
btrfs_release_path(path);
|
|
}
|
|
|
|
key.objectid = root->root_key.objectid;
|
|
key.type = BTRFS_ROOT_REF_KEY;
|
|
key.offset = (u64)-1;
|
|
|
|
ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
BUG_ON(ret == 0);
|
|
|
|
ret = 0;
|
|
if (path->slots[0] > 0) {
|
|
path->slots[0]--;
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
|
|
if (key.objectid == root->root_key.objectid &&
|
|
key.type == BTRFS_ROOT_REF_KEY)
|
|
ret = -ENOTEMPTY;
|
|
}
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/* Delete all dentries for inodes belonging to the root */
|
|
static void btrfs_prune_dentries(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct rb_node *node;
|
|
struct rb_node *prev;
|
|
struct btrfs_inode *entry;
|
|
struct inode *inode;
|
|
u64 objectid = 0;
|
|
|
|
if (!BTRFS_FS_ERROR(fs_info))
|
|
WARN_ON(btrfs_root_refs(&root->root_item) != 0);
|
|
|
|
spin_lock(&root->inode_lock);
|
|
again:
|
|
node = root->inode_tree.rb_node;
|
|
prev = NULL;
|
|
while (node) {
|
|
prev = node;
|
|
entry = rb_entry(node, struct btrfs_inode, rb_node);
|
|
|
|
if (objectid < btrfs_ino(entry))
|
|
node = node->rb_left;
|
|
else if (objectid > btrfs_ino(entry))
|
|
node = node->rb_right;
|
|
else
|
|
break;
|
|
}
|
|
if (!node) {
|
|
while (prev) {
|
|
entry = rb_entry(prev, struct btrfs_inode, rb_node);
|
|
if (objectid <= btrfs_ino(entry)) {
|
|
node = prev;
|
|
break;
|
|
}
|
|
prev = rb_next(prev);
|
|
}
|
|
}
|
|
while (node) {
|
|
entry = rb_entry(node, struct btrfs_inode, rb_node);
|
|
objectid = btrfs_ino(entry) + 1;
|
|
inode = igrab(&entry->vfs_inode);
|
|
if (inode) {
|
|
spin_unlock(&root->inode_lock);
|
|
if (atomic_read(&inode->i_count) > 1)
|
|
d_prune_aliases(inode);
|
|
/*
|
|
* btrfs_drop_inode will have it removed from the inode
|
|
* cache when its usage count hits zero.
|
|
*/
|
|
iput(inode);
|
|
cond_resched();
|
|
spin_lock(&root->inode_lock);
|
|
goto again;
|
|
}
|
|
|
|
if (cond_resched_lock(&root->inode_lock))
|
|
goto again;
|
|
|
|
node = rb_next(node);
|
|
}
|
|
spin_unlock(&root->inode_lock);
|
|
}
|
|
|
|
int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct inode *inode = d_inode(dentry);
|
|
struct btrfs_root *dest = BTRFS_I(inode)->root;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_block_rsv block_rsv;
|
|
u64 root_flags;
|
|
int ret;
|
|
|
|
/*
|
|
* Don't allow to delete a subvolume with send in progress. This is
|
|
* inside the inode lock so the error handling that has to drop the bit
|
|
* again is not run concurrently.
|
|
*/
|
|
spin_lock(&dest->root_item_lock);
|
|
if (dest->send_in_progress) {
|
|
spin_unlock(&dest->root_item_lock);
|
|
btrfs_warn(fs_info,
|
|
"attempt to delete subvolume %llu during send",
|
|
dest->root_key.objectid);
|
|
return -EPERM;
|
|
}
|
|
if (atomic_read(&dest->nr_swapfiles)) {
|
|
spin_unlock(&dest->root_item_lock);
|
|
btrfs_warn(fs_info,
|
|
"attempt to delete subvolume %llu with active swapfile",
|
|
root->root_key.objectid);
|
|
return -EPERM;
|
|
}
|
|
root_flags = btrfs_root_flags(&dest->root_item);
|
|
btrfs_set_root_flags(&dest->root_item,
|
|
root_flags | BTRFS_ROOT_SUBVOL_DEAD);
|
|
spin_unlock(&dest->root_item_lock);
|
|
|
|
down_write(&fs_info->subvol_sem);
|
|
|
|
ret = may_destroy_subvol(dest);
|
|
if (ret)
|
|
goto out_up_write;
|
|
|
|
btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
|
|
/*
|
|
* One for dir inode,
|
|
* two for dir entries,
|
|
* two for root ref/backref.
|
|
*/
|
|
ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
|
|
if (ret)
|
|
goto out_up_write;
|
|
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out_release;
|
|
}
|
|
trans->block_rsv = &block_rsv;
|
|
trans->bytes_reserved = block_rsv.size;
|
|
|
|
btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
|
|
|
|
ret = btrfs_unlink_subvol(trans, dir, dentry);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_end_trans;
|
|
}
|
|
|
|
ret = btrfs_record_root_in_trans(trans, dest);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_end_trans;
|
|
}
|
|
|
|
memset(&dest->root_item.drop_progress, 0,
|
|
sizeof(dest->root_item.drop_progress));
|
|
btrfs_set_root_drop_level(&dest->root_item, 0);
|
|
btrfs_set_root_refs(&dest->root_item, 0);
|
|
|
|
if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
|
|
ret = btrfs_insert_orphan_item(trans,
|
|
fs_info->tree_root,
|
|
dest->root_key.objectid);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_end_trans;
|
|
}
|
|
}
|
|
|
|
ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
|
|
BTRFS_UUID_KEY_SUBVOL,
|
|
dest->root_key.objectid);
|
|
if (ret && ret != -ENOENT) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_end_trans;
|
|
}
|
|
if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
|
|
ret = btrfs_uuid_tree_remove(trans,
|
|
dest->root_item.received_uuid,
|
|
BTRFS_UUID_KEY_RECEIVED_SUBVOL,
|
|
dest->root_key.objectid);
|
|
if (ret && ret != -ENOENT) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_end_trans;
|
|
}
|
|
}
|
|
|
|
free_anon_bdev(dest->anon_dev);
|
|
dest->anon_dev = 0;
|
|
out_end_trans:
|
|
trans->block_rsv = NULL;
|
|
trans->bytes_reserved = 0;
|
|
ret = btrfs_end_transaction(trans);
|
|
inode->i_flags |= S_DEAD;
|
|
out_release:
|
|
btrfs_subvolume_release_metadata(root, &block_rsv);
|
|
out_up_write:
|
|
up_write(&fs_info->subvol_sem);
|
|
if (ret) {
|
|
spin_lock(&dest->root_item_lock);
|
|
root_flags = btrfs_root_flags(&dest->root_item);
|
|
btrfs_set_root_flags(&dest->root_item,
|
|
root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
|
|
spin_unlock(&dest->root_item_lock);
|
|
} else {
|
|
d_invalidate(dentry);
|
|
btrfs_prune_dentries(dest);
|
|
ASSERT(dest->send_in_progress == 0);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
|
|
{
|
|
struct inode *inode = d_inode(dentry);
|
|
struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
|
|
int err = 0;
|
|
struct btrfs_trans_handle *trans;
|
|
u64 last_unlink_trans;
|
|
|
|
if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
|
|
return -ENOTEMPTY;
|
|
if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
|
|
if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
|
|
btrfs_err(fs_info,
|
|
"extent tree v2 doesn't support snapshot deletion yet");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
return btrfs_delete_subvolume(dir, dentry);
|
|
}
|
|
|
|
trans = __unlink_start_trans(dir);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
|
|
err = btrfs_unlink_subvol(trans, dir, dentry);
|
|
goto out;
|
|
}
|
|
|
|
err = btrfs_orphan_add(trans, BTRFS_I(inode));
|
|
if (err)
|
|
goto out;
|
|
|
|
last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
|
|
|
|
/* now the directory is empty */
|
|
err = btrfs_unlink_inode(trans, BTRFS_I(dir),
|
|
BTRFS_I(d_inode(dentry)), dentry->d_name.name,
|
|
dentry->d_name.len);
|
|
if (!err) {
|
|
btrfs_i_size_write(BTRFS_I(inode), 0);
|
|
/*
|
|
* Propagate the last_unlink_trans value of the deleted dir to
|
|
* its parent directory. This is to prevent an unrecoverable
|
|
* log tree in the case we do something like this:
|
|
* 1) create dir foo
|
|
* 2) create snapshot under dir foo
|
|
* 3) delete the snapshot
|
|
* 4) rmdir foo
|
|
* 5) mkdir foo
|
|
* 6) fsync foo or some file inside foo
|
|
*/
|
|
if (last_unlink_trans >= trans->transid)
|
|
BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
|
|
}
|
|
out:
|
|
btrfs_end_transaction(trans);
|
|
btrfs_btree_balance_dirty(fs_info);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* btrfs_truncate_block - read, zero a chunk and write a block
|
|
* @inode - inode that we're zeroing
|
|
* @from - the offset to start zeroing
|
|
* @len - the length to zero, 0 to zero the entire range respective to the
|
|
* offset
|
|
* @front - zero up to the offset instead of from the offset on
|
|
*
|
|
* This will find the block for the "from" offset and cow the block and zero the
|
|
* part we want to zero. This is used with truncate and hole punching.
|
|
*/
|
|
int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
|
|
int front)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct address_space *mapping = inode->vfs_inode.i_mapping;
|
|
struct extent_io_tree *io_tree = &inode->io_tree;
|
|
struct btrfs_ordered_extent *ordered;
|
|
struct extent_state *cached_state = NULL;
|
|
struct extent_changeset *data_reserved = NULL;
|
|
bool only_release_metadata = false;
|
|
u32 blocksize = fs_info->sectorsize;
|
|
pgoff_t index = from >> PAGE_SHIFT;
|
|
unsigned offset = from & (blocksize - 1);
|
|
struct page *page;
|
|
gfp_t mask = btrfs_alloc_write_mask(mapping);
|
|
size_t write_bytes = blocksize;
|
|
int ret = 0;
|
|
u64 block_start;
|
|
u64 block_end;
|
|
|
|
if (IS_ALIGNED(offset, blocksize) &&
|
|
(!len || IS_ALIGNED(len, blocksize)))
|
|
goto out;
|
|
|
|
block_start = round_down(from, blocksize);
|
|
block_end = block_start + blocksize - 1;
|
|
|
|
ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
|
|
blocksize);
|
|
if (ret < 0) {
|
|
if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) {
|
|
/* For nocow case, no need to reserve data space */
|
|
only_release_metadata = true;
|
|
} else {
|
|
goto out;
|
|
}
|
|
}
|
|
ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize);
|
|
if (ret < 0) {
|
|
if (!only_release_metadata)
|
|
btrfs_free_reserved_data_space(inode, data_reserved,
|
|
block_start, blocksize);
|
|
goto out;
|
|
}
|
|
again:
|
|
page = find_or_create_page(mapping, index, mask);
|
|
if (!page) {
|
|
btrfs_delalloc_release_space(inode, data_reserved, block_start,
|
|
blocksize, true);
|
|
btrfs_delalloc_release_extents(inode, blocksize);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
ret = set_page_extent_mapped(page);
|
|
if (ret < 0)
|
|
goto out_unlock;
|
|
|
|
if (!PageUptodate(page)) {
|
|
ret = btrfs_readpage(NULL, page);
|
|
lock_page(page);
|
|
if (page->mapping != mapping) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
goto again;
|
|
}
|
|
if (!PageUptodate(page)) {
|
|
ret = -EIO;
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
wait_on_page_writeback(page);
|
|
|
|
lock_extent_bits(io_tree, block_start, block_end, &cached_state);
|
|
|
|
ordered = btrfs_lookup_ordered_extent(inode, block_start);
|
|
if (ordered) {
|
|
unlock_extent_cached(io_tree, block_start, block_end,
|
|
&cached_state);
|
|
unlock_page(page);
|
|
put_page(page);
|
|
btrfs_start_ordered_extent(ordered, 1);
|
|
btrfs_put_ordered_extent(ordered);
|
|
goto again;
|
|
}
|
|
|
|
clear_extent_bit(&inode->io_tree, block_start, block_end,
|
|
EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
|
|
0, 0, &cached_state);
|
|
|
|
ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
|
|
&cached_state);
|
|
if (ret) {
|
|
unlock_extent_cached(io_tree, block_start, block_end,
|
|
&cached_state);
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (offset != blocksize) {
|
|
if (!len)
|
|
len = blocksize - offset;
|
|
if (front)
|
|
memzero_page(page, (block_start - page_offset(page)),
|
|
offset);
|
|
else
|
|
memzero_page(page, (block_start - page_offset(page)) + offset,
|
|
len);
|
|
flush_dcache_page(page);
|
|
}
|
|
btrfs_page_clear_checked(fs_info, page, block_start,
|
|
block_end + 1 - block_start);
|
|
btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
|
|
unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
|
|
|
|
if (only_release_metadata)
|
|
set_extent_bit(&inode->io_tree, block_start, block_end,
|
|
EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL);
|
|
|
|
out_unlock:
|
|
if (ret) {
|
|
if (only_release_metadata)
|
|
btrfs_delalloc_release_metadata(inode, blocksize, true);
|
|
else
|
|
btrfs_delalloc_release_space(inode, data_reserved,
|
|
block_start, blocksize, true);
|
|
}
|
|
btrfs_delalloc_release_extents(inode, blocksize);
|
|
unlock_page(page);
|
|
put_page(page);
|
|
out:
|
|
if (only_release_metadata)
|
|
btrfs_check_nocow_unlock(inode);
|
|
extent_changeset_free(data_reserved);
|
|
return ret;
|
|
}
|
|
|
|
static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
|
|
u64 offset, u64 len)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_drop_extents_args drop_args = { 0 };
|
|
int ret;
|
|
|
|
/*
|
|
* If NO_HOLES is enabled, we don't need to do anything.
|
|
* Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
|
|
* or btrfs_update_inode() will be called, which guarantee that the next
|
|
* fsync will know this inode was changed and needs to be logged.
|
|
*/
|
|
if (btrfs_fs_incompat(fs_info, NO_HOLES))
|
|
return 0;
|
|
|
|
/*
|
|
* 1 - for the one we're dropping
|
|
* 1 - for the one we're adding
|
|
* 1 - for updating the inode.
|
|
*/
|
|
trans = btrfs_start_transaction(root, 3);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
drop_args.start = offset;
|
|
drop_args.end = offset + len;
|
|
drop_args.drop_cache = true;
|
|
|
|
ret = btrfs_drop_extents(trans, root, inode, &drop_args);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
btrfs_end_transaction(trans);
|
|
return ret;
|
|
}
|
|
|
|
ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
|
|
offset, 0, 0, len, 0, len, 0, 0, 0);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
} else {
|
|
btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
|
|
btrfs_update_inode(trans, root, inode);
|
|
}
|
|
btrfs_end_transaction(trans);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This function puts in dummy file extents for the area we're creating a hole
|
|
* for. So if we are truncating this file to a larger size we need to insert
|
|
* these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
|
|
* the range between oldsize and size
|
|
*/
|
|
int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
|
|
{
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct extent_io_tree *io_tree = &inode->io_tree;
|
|
struct extent_map *em = NULL;
|
|
struct extent_state *cached_state = NULL;
|
|
struct extent_map_tree *em_tree = &inode->extent_tree;
|
|
u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
|
|
u64 block_end = ALIGN(size, fs_info->sectorsize);
|
|
u64 last_byte;
|
|
u64 cur_offset;
|
|
u64 hole_size;
|
|
int err = 0;
|
|
|
|
/*
|
|
* If our size started in the middle of a block we need to zero out the
|
|
* rest of the block before we expand the i_size, otherwise we could
|
|
* expose stale data.
|
|
*/
|
|
err = btrfs_truncate_block(inode, oldsize, 0, 0);
|
|
if (err)
|
|
return err;
|
|
|
|
if (size <= hole_start)
|
|
return 0;
|
|
|
|
btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
|
|
&cached_state);
|
|
cur_offset = hole_start;
|
|
while (1) {
|
|
em = btrfs_get_extent(inode, NULL, 0, cur_offset,
|
|
block_end - cur_offset);
|
|
if (IS_ERR(em)) {
|
|
err = PTR_ERR(em);
|
|
em = NULL;
|
|
break;
|
|
}
|
|
last_byte = min(extent_map_end(em), block_end);
|
|
last_byte = ALIGN(last_byte, fs_info->sectorsize);
|
|
hole_size = last_byte - cur_offset;
|
|
|
|
if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
|
|
struct extent_map *hole_em;
|
|
|
|
err = maybe_insert_hole(root, inode, cur_offset,
|
|
hole_size);
|
|
if (err)
|
|
break;
|
|
|
|
err = btrfs_inode_set_file_extent_range(inode,
|
|
cur_offset, hole_size);
|
|
if (err)
|
|
break;
|
|
|
|
btrfs_drop_extent_cache(inode, cur_offset,
|
|
cur_offset + hole_size - 1, 0);
|
|
hole_em = alloc_extent_map();
|
|
if (!hole_em) {
|
|
btrfs_set_inode_full_sync(inode);
|
|
goto next;
|
|
}
|
|
hole_em->start = cur_offset;
|
|
hole_em->len = hole_size;
|
|
hole_em->orig_start = cur_offset;
|
|
|
|
hole_em->block_start = EXTENT_MAP_HOLE;
|
|
hole_em->block_len = 0;
|
|
hole_em->orig_block_len = 0;
|
|
hole_em->ram_bytes = hole_size;
|
|
hole_em->compress_type = BTRFS_COMPRESS_NONE;
|
|
hole_em->generation = fs_info->generation;
|
|
|
|
while (1) {
|
|
write_lock(&em_tree->lock);
|
|
err = add_extent_mapping(em_tree, hole_em, 1);
|
|
write_unlock(&em_tree->lock);
|
|
if (err != -EEXIST)
|
|
break;
|
|
btrfs_drop_extent_cache(inode, cur_offset,
|
|
cur_offset +
|
|
hole_size - 1, 0);
|
|
}
|
|
free_extent_map(hole_em);
|
|
} else {
|
|
err = btrfs_inode_set_file_extent_range(inode,
|
|
cur_offset, hole_size);
|
|
if (err)
|
|
break;
|
|
}
|
|
next:
|
|
free_extent_map(em);
|
|
em = NULL;
|
|
cur_offset = last_byte;
|
|
if (cur_offset >= block_end)
|
|
break;
|
|
}
|
|
free_extent_map(em);
|
|
unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
|
|
return err;
|
|
}
|
|
|
|
static int btrfs_setsize(struct inode *inode, struct iattr *attr)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_trans_handle *trans;
|
|
loff_t oldsize = i_size_read(inode);
|
|
loff_t newsize = attr->ia_size;
|
|
int mask = attr->ia_valid;
|
|
int ret;
|
|
|
|
/*
|
|
* The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
|
|
* special case where we need to update the times despite not having
|
|
* these flags set. For all other operations the VFS set these flags
|
|
* explicitly if it wants a timestamp update.
|
|
*/
|
|
if (newsize != oldsize) {
|
|
inode_inc_iversion(inode);
|
|
if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
|
|
inode->i_ctime = inode->i_mtime =
|
|
current_time(inode);
|
|
}
|
|
|
|
if (newsize > oldsize) {
|
|
/*
|
|
* Don't do an expanding truncate while snapshotting is ongoing.
|
|
* This is to ensure the snapshot captures a fully consistent
|
|
* state of this file - if the snapshot captures this expanding
|
|
* truncation, it must capture all writes that happened before
|
|
* this truncation.
|
|
*/
|
|
btrfs_drew_write_lock(&root->snapshot_lock);
|
|
ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
|
|
if (ret) {
|
|
btrfs_drew_write_unlock(&root->snapshot_lock);
|
|
return ret;
|
|
}
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans)) {
|
|
btrfs_drew_write_unlock(&root->snapshot_lock);
|
|
return PTR_ERR(trans);
|
|
}
|
|
|
|
i_size_write(inode, newsize);
|
|
btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
|
|
pagecache_isize_extended(inode, oldsize, newsize);
|
|
ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
|
|
btrfs_drew_write_unlock(&root->snapshot_lock);
|
|
btrfs_end_transaction(trans);
|
|
} else {
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
|
|
if (btrfs_is_zoned(fs_info)) {
|
|
ret = btrfs_wait_ordered_range(inode,
|
|
ALIGN(newsize, fs_info->sectorsize),
|
|
(u64)-1);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* We're truncating a file that used to have good data down to
|
|
* zero. Make sure any new writes to the file get on disk
|
|
* on close.
|
|
*/
|
|
if (newsize == 0)
|
|
set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
|
|
&BTRFS_I(inode)->runtime_flags);
|
|
|
|
truncate_setsize(inode, newsize);
|
|
|
|
inode_dio_wait(inode);
|
|
|
|
ret = btrfs_truncate(inode, newsize == oldsize);
|
|
if (ret && inode->i_nlink) {
|
|
int err;
|
|
|
|
/*
|
|
* Truncate failed, so fix up the in-memory size. We
|
|
* adjusted disk_i_size down as we removed extents, so
|
|
* wait for disk_i_size to be stable and then update the
|
|
* in-memory size to match.
|
|
*/
|
|
err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
|
|
if (err)
|
|
return err;
|
|
i_size_write(inode, BTRFS_I(inode)->disk_i_size);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
|
|
struct iattr *attr)
|
|
{
|
|
struct inode *inode = d_inode(dentry);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
int err;
|
|
|
|
if (btrfs_root_readonly(root))
|
|
return -EROFS;
|
|
|
|
err = setattr_prepare(mnt_userns, dentry, attr);
|
|
if (err)
|
|
return err;
|
|
|
|
if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
|
|
err = btrfs_setsize(inode, attr);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (attr->ia_valid) {
|
|
setattr_copy(mnt_userns, inode, attr);
|
|
inode_inc_iversion(inode);
|
|
err = btrfs_dirty_inode(inode);
|
|
|
|
if (!err && attr->ia_valid & ATTR_MODE)
|
|
err = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* While truncating the inode pages during eviction, we get the VFS
|
|
* calling btrfs_invalidate_folio() against each folio of the inode. This
|
|
* is slow because the calls to btrfs_invalidate_folio() result in a
|
|
* huge amount of calls to lock_extent_bits() and clear_extent_bit(),
|
|
* which keep merging and splitting extent_state structures over and over,
|
|
* wasting lots of time.
|
|
*
|
|
* Therefore if the inode is being evicted, let btrfs_invalidate_folio()
|
|
* skip all those expensive operations on a per folio basis and do only
|
|
* the ordered io finishing, while we release here the extent_map and
|
|
* extent_state structures, without the excessive merging and splitting.
|
|
*/
|
|
static void evict_inode_truncate_pages(struct inode *inode)
|
|
{
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
|
|
struct rb_node *node;
|
|
|
|
ASSERT(inode->i_state & I_FREEING);
|
|
truncate_inode_pages_final(&inode->i_data);
|
|
|
|
write_lock(&map_tree->lock);
|
|
while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
|
|
struct extent_map *em;
|
|
|
|
node = rb_first_cached(&map_tree->map);
|
|
em = rb_entry(node, struct extent_map, rb_node);
|
|
clear_bit(EXTENT_FLAG_PINNED, &em->flags);
|
|
clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
|
|
remove_extent_mapping(map_tree, em);
|
|
free_extent_map(em);
|
|
if (need_resched()) {
|
|
write_unlock(&map_tree->lock);
|
|
cond_resched();
|
|
write_lock(&map_tree->lock);
|
|
}
|
|
}
|
|
write_unlock(&map_tree->lock);
|
|
|
|
/*
|
|
* Keep looping until we have no more ranges in the io tree.
|
|
* We can have ongoing bios started by readahead that have
|
|
* their endio callback (extent_io.c:end_bio_extent_readpage)
|
|
* still in progress (unlocked the pages in the bio but did not yet
|
|
* unlocked the ranges in the io tree). Therefore this means some
|
|
* ranges can still be locked and eviction started because before
|
|
* submitting those bios, which are executed by a separate task (work
|
|
* queue kthread), inode references (inode->i_count) were not taken
|
|
* (which would be dropped in the end io callback of each bio).
|
|
* Therefore here we effectively end up waiting for those bios and
|
|
* anyone else holding locked ranges without having bumped the inode's
|
|
* reference count - if we don't do it, when they access the inode's
|
|
* io_tree to unlock a range it may be too late, leading to an
|
|
* use-after-free issue.
|
|
*/
|
|
spin_lock(&io_tree->lock);
|
|
while (!RB_EMPTY_ROOT(&io_tree->state)) {
|
|
struct extent_state *state;
|
|
struct extent_state *cached_state = NULL;
|
|
u64 start;
|
|
u64 end;
|
|
unsigned state_flags;
|
|
|
|
node = rb_first(&io_tree->state);
|
|
state = rb_entry(node, struct extent_state, rb_node);
|
|
start = state->start;
|
|
end = state->end;
|
|
state_flags = state->state;
|
|
spin_unlock(&io_tree->lock);
|
|
|
|
lock_extent_bits(io_tree, start, end, &cached_state);
|
|
|
|
/*
|
|
* If still has DELALLOC flag, the extent didn't reach disk,
|
|
* and its reserved space won't be freed by delayed_ref.
|
|
* So we need to free its reserved space here.
|
|
* (Refer to comment in btrfs_invalidate_folio, case 2)
|
|
*
|
|
* Note, end is the bytenr of last byte, so we need + 1 here.
|
|
*/
|
|
if (state_flags & EXTENT_DELALLOC)
|
|
btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
|
|
end - start + 1);
|
|
|
|
clear_extent_bit(io_tree, start, end,
|
|
EXTENT_LOCKED | EXTENT_DELALLOC |
|
|
EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
|
|
&cached_state);
|
|
|
|
cond_resched();
|
|
spin_lock(&io_tree->lock);
|
|
}
|
|
spin_unlock(&io_tree->lock);
|
|
}
|
|
|
|
static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
|
|
struct btrfs_block_rsv *rsv)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_trans_handle *trans;
|
|
u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
|
|
int ret;
|
|
|
|
/*
|
|
* Eviction should be taking place at some place safe because of our
|
|
* delayed iputs. However the normal flushing code will run delayed
|
|
* iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
|
|
*
|
|
* We reserve the delayed_refs_extra here again because we can't use
|
|
* btrfs_start_transaction(root, 0) for the same deadlocky reason as
|
|
* above. We reserve our extra bit here because we generate a ton of
|
|
* delayed refs activity by truncating.
|
|
*
|
|
* BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
|
|
* if we fail to make this reservation we can re-try without the
|
|
* delayed_refs_extra so we can make some forward progress.
|
|
*/
|
|
ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
|
|
BTRFS_RESERVE_FLUSH_EVICT);
|
|
if (ret) {
|
|
ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
|
|
BTRFS_RESERVE_FLUSH_EVICT);
|
|
if (ret) {
|
|
btrfs_warn(fs_info,
|
|
"could not allocate space for delete; will truncate on mount");
|
|
return ERR_PTR(-ENOSPC);
|
|
}
|
|
delayed_refs_extra = 0;
|
|
}
|
|
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans))
|
|
return trans;
|
|
|
|
if (delayed_refs_extra) {
|
|
trans->block_rsv = &fs_info->trans_block_rsv;
|
|
trans->bytes_reserved = delayed_refs_extra;
|
|
btrfs_block_rsv_migrate(rsv, trans->block_rsv,
|
|
delayed_refs_extra, 1);
|
|
}
|
|
return trans;
|
|
}
|
|
|
|
void btrfs_evict_inode(struct inode *inode)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_block_rsv *rsv;
|
|
int ret;
|
|
|
|
trace_btrfs_inode_evict(inode);
|
|
|
|
if (!root) {
|
|
fsverity_cleanup_inode(inode);
|
|
clear_inode(inode);
|
|
return;
|
|
}
|
|
|
|
evict_inode_truncate_pages(inode);
|
|
|
|
if (inode->i_nlink &&
|
|
((btrfs_root_refs(&root->root_item) != 0 &&
|
|
root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
|
|
btrfs_is_free_space_inode(BTRFS_I(inode))))
|
|
goto no_delete;
|
|
|
|
if (is_bad_inode(inode))
|
|
goto no_delete;
|
|
|
|
btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
|
|
|
|
if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
|
|
goto no_delete;
|
|
|
|
if (inode->i_nlink > 0) {
|
|
BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
|
|
root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
|
|
goto no_delete;
|
|
}
|
|
|
|
/*
|
|
* This makes sure the inode item in tree is uptodate and the space for
|
|
* the inode update is released.
|
|
*/
|
|
ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
|
|
if (ret)
|
|
goto no_delete;
|
|
|
|
/*
|
|
* This drops any pending insert or delete operations we have for this
|
|
* inode. We could have a delayed dir index deletion queued up, but
|
|
* we're removing the inode completely so that'll be taken care of in
|
|
* the truncate.
|
|
*/
|
|
btrfs_kill_delayed_inode_items(BTRFS_I(inode));
|
|
|
|
rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
|
|
if (!rsv)
|
|
goto no_delete;
|
|
rsv->size = btrfs_calc_metadata_size(fs_info, 1);
|
|
rsv->failfast = 1;
|
|
|
|
btrfs_i_size_write(BTRFS_I(inode), 0);
|
|
|
|
while (1) {
|
|
struct btrfs_truncate_control control = {
|
|
.inode = BTRFS_I(inode),
|
|
.ino = btrfs_ino(BTRFS_I(inode)),
|
|
.new_size = 0,
|
|
.min_type = 0,
|
|
};
|
|
|
|
trans = evict_refill_and_join(root, rsv);
|
|
if (IS_ERR(trans))
|
|
goto free_rsv;
|
|
|
|
trans->block_rsv = rsv;
|
|
|
|
ret = btrfs_truncate_inode_items(trans, root, &control);
|
|
trans->block_rsv = &fs_info->trans_block_rsv;
|
|
btrfs_end_transaction(trans);
|
|
btrfs_btree_balance_dirty(fs_info);
|
|
if (ret && ret != -ENOSPC && ret != -EAGAIN)
|
|
goto free_rsv;
|
|
else if (!ret)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Errors here aren't a big deal, it just means we leave orphan items in
|
|
* the tree. They will be cleaned up on the next mount. If the inode
|
|
* number gets reused, cleanup deletes the orphan item without doing
|
|
* anything, and unlink reuses the existing orphan item.
|
|
*
|
|
* If it turns out that we are dropping too many of these, we might want
|
|
* to add a mechanism for retrying these after a commit.
|
|
*/
|
|
trans = evict_refill_and_join(root, rsv);
|
|
if (!IS_ERR(trans)) {
|
|
trans->block_rsv = rsv;
|
|
btrfs_orphan_del(trans, BTRFS_I(inode));
|
|
trans->block_rsv = &fs_info->trans_block_rsv;
|
|
btrfs_end_transaction(trans);
|
|
}
|
|
|
|
free_rsv:
|
|
btrfs_free_block_rsv(fs_info, rsv);
|
|
no_delete:
|
|
/*
|
|
* If we didn't successfully delete, the orphan item will still be in
|
|
* the tree and we'll retry on the next mount. Again, we might also want
|
|
* to retry these periodically in the future.
|
|
*/
|
|
btrfs_remove_delayed_node(BTRFS_I(inode));
|
|
fsverity_cleanup_inode(inode);
|
|
clear_inode(inode);
|
|
}
|
|
|
|
/*
|
|
* Return the key found in the dir entry in the location pointer, fill @type
|
|
* with BTRFS_FT_*, and return 0.
|
|
*
|
|
* If no dir entries were found, returns -ENOENT.
|
|
* If found a corrupted location in dir entry, returns -EUCLEAN.
|
|
*/
|
|
static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
|
|
struct btrfs_key *location, u8 *type)
|
|
{
|
|
const char *name = dentry->d_name.name;
|
|
int namelen = dentry->d_name.len;
|
|
struct btrfs_dir_item *di;
|
|
struct btrfs_path *path;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
int ret = 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
|
|
name, namelen, 0);
|
|
if (IS_ERR_OR_NULL(di)) {
|
|
ret = di ? PTR_ERR(di) : -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
|
|
if (location->type != BTRFS_INODE_ITEM_KEY &&
|
|
location->type != BTRFS_ROOT_ITEM_KEY) {
|
|
ret = -EUCLEAN;
|
|
btrfs_warn(root->fs_info,
|
|
"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
|
|
__func__, name, btrfs_ino(BTRFS_I(dir)),
|
|
location->objectid, location->type, location->offset);
|
|
}
|
|
if (!ret)
|
|
*type = btrfs_dir_type(path->nodes[0], di);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* when we hit a tree root in a directory, the btrfs part of the inode
|
|
* needs to be changed to reflect the root directory of the tree root. This
|
|
* is kind of like crossing a mount point.
|
|
*/
|
|
static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
|
|
struct inode *dir,
|
|
struct dentry *dentry,
|
|
struct btrfs_key *location,
|
|
struct btrfs_root **sub_root)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct btrfs_root *new_root;
|
|
struct btrfs_root_ref *ref;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
int ret;
|
|
int err = 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
err = -ENOENT;
|
|
key.objectid = BTRFS_I(dir)->root->root_key.objectid;
|
|
key.type = BTRFS_ROOT_REF_KEY;
|
|
key.offset = location->objectid;
|
|
|
|
ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
|
|
if (ret) {
|
|
if (ret < 0)
|
|
err = ret;
|
|
goto out;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
|
|
if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
|
|
btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
|
|
goto out;
|
|
|
|
ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
|
|
(unsigned long)(ref + 1),
|
|
dentry->d_name.len);
|
|
if (ret)
|
|
goto out;
|
|
|
|
btrfs_release_path(path);
|
|
|
|
new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
|
|
if (IS_ERR(new_root)) {
|
|
err = PTR_ERR(new_root);
|
|
goto out;
|
|
}
|
|
|
|
*sub_root = new_root;
|
|
location->objectid = btrfs_root_dirid(&new_root->root_item);
|
|
location->type = BTRFS_INODE_ITEM_KEY;
|
|
location->offset = 0;
|
|
err = 0;
|
|
out:
|
|
btrfs_free_path(path);
|
|
return err;
|
|
}
|
|
|
|
static void inode_tree_add(struct inode *inode)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_inode *entry;
|
|
struct rb_node **p;
|
|
struct rb_node *parent;
|
|
struct rb_node *new = &BTRFS_I(inode)->rb_node;
|
|
u64 ino = btrfs_ino(BTRFS_I(inode));
|
|
|
|
if (inode_unhashed(inode))
|
|
return;
|
|
parent = NULL;
|
|
spin_lock(&root->inode_lock);
|
|
p = &root->inode_tree.rb_node;
|
|
while (*p) {
|
|
parent = *p;
|
|
entry = rb_entry(parent, struct btrfs_inode, rb_node);
|
|
|
|
if (ino < btrfs_ino(entry))
|
|
p = &parent->rb_left;
|
|
else if (ino > btrfs_ino(entry))
|
|
p = &parent->rb_right;
|
|
else {
|
|
WARN_ON(!(entry->vfs_inode.i_state &
|
|
(I_WILL_FREE | I_FREEING)));
|
|
rb_replace_node(parent, new, &root->inode_tree);
|
|
RB_CLEAR_NODE(parent);
|
|
spin_unlock(&root->inode_lock);
|
|
return;
|
|
}
|
|
}
|
|
rb_link_node(new, parent, p);
|
|
rb_insert_color(new, &root->inode_tree);
|
|
spin_unlock(&root->inode_lock);
|
|
}
|
|
|
|
static void inode_tree_del(struct btrfs_inode *inode)
|
|
{
|
|
struct btrfs_root *root = inode->root;
|
|
int empty = 0;
|
|
|
|
spin_lock(&root->inode_lock);
|
|
if (!RB_EMPTY_NODE(&inode->rb_node)) {
|
|
rb_erase(&inode->rb_node, &root->inode_tree);
|
|
RB_CLEAR_NODE(&inode->rb_node);
|
|
empty = RB_EMPTY_ROOT(&root->inode_tree);
|
|
}
|
|
spin_unlock(&root->inode_lock);
|
|
|
|
if (empty && btrfs_root_refs(&root->root_item) == 0) {
|
|
spin_lock(&root->inode_lock);
|
|
empty = RB_EMPTY_ROOT(&root->inode_tree);
|
|
spin_unlock(&root->inode_lock);
|
|
if (empty)
|
|
btrfs_add_dead_root(root);
|
|
}
|
|
}
|
|
|
|
|
|
static int btrfs_init_locked_inode(struct inode *inode, void *p)
|
|
{
|
|
struct btrfs_iget_args *args = p;
|
|
|
|
inode->i_ino = args->ino;
|
|
BTRFS_I(inode)->location.objectid = args->ino;
|
|
BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
|
|
BTRFS_I(inode)->location.offset = 0;
|
|
BTRFS_I(inode)->root = btrfs_grab_root(args->root);
|
|
BUG_ON(args->root && !BTRFS_I(inode)->root);
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_find_actor(struct inode *inode, void *opaque)
|
|
{
|
|
struct btrfs_iget_args *args = opaque;
|
|
|
|
return args->ino == BTRFS_I(inode)->location.objectid &&
|
|
args->root == BTRFS_I(inode)->root;
|
|
}
|
|
|
|
static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct inode *inode;
|
|
struct btrfs_iget_args args;
|
|
unsigned long hashval = btrfs_inode_hash(ino, root);
|
|
|
|
args.ino = ino;
|
|
args.root = root;
|
|
|
|
inode = iget5_locked(s, hashval, btrfs_find_actor,
|
|
btrfs_init_locked_inode,
|
|
(void *)&args);
|
|
return inode;
|
|
}
|
|
|
|
/*
|
|
* Get an inode object given its inode number and corresponding root.
|
|
* Path can be preallocated to prevent recursing back to iget through
|
|
* allocator. NULL is also valid but may require an additional allocation
|
|
* later.
|
|
*/
|
|
struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
|
|
struct btrfs_root *root, struct btrfs_path *path)
|
|
{
|
|
struct inode *inode;
|
|
|
|
inode = btrfs_iget_locked(s, ino, root);
|
|
if (!inode)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (inode->i_state & I_NEW) {
|
|
int ret;
|
|
|
|
ret = btrfs_read_locked_inode(inode, path);
|
|
if (!ret) {
|
|
inode_tree_add(inode);
|
|
unlock_new_inode(inode);
|
|
} else {
|
|
iget_failed(inode);
|
|
/*
|
|
* ret > 0 can come from btrfs_search_slot called by
|
|
* btrfs_read_locked_inode, this means the inode item
|
|
* was not found.
|
|
*/
|
|
if (ret > 0)
|
|
ret = -ENOENT;
|
|
inode = ERR_PTR(ret);
|
|
}
|
|
}
|
|
|
|
return inode;
|
|
}
|
|
|
|
struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
|
|
{
|
|
return btrfs_iget_path(s, ino, root, NULL);
|
|
}
|
|
|
|
static struct inode *new_simple_dir(struct super_block *s,
|
|
struct btrfs_key *key,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct inode *inode = new_inode(s);
|
|
|
|
if (!inode)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
BTRFS_I(inode)->root = btrfs_grab_root(root);
|
|
memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
|
|
set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
|
|
|
|
inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
|
|
/*
|
|
* We only need lookup, the rest is read-only and there's no inode
|
|
* associated with the dentry
|
|
*/
|
|
inode->i_op = &simple_dir_inode_operations;
|
|
inode->i_opflags &= ~IOP_XATTR;
|
|
inode->i_fop = &simple_dir_operations;
|
|
inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
|
|
inode->i_mtime = current_time(inode);
|
|
inode->i_atime = inode->i_mtime;
|
|
inode->i_ctime = inode->i_mtime;
|
|
BTRFS_I(inode)->i_otime = inode->i_mtime;
|
|
|
|
return inode;
|
|
}
|
|
|
|
static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
|
|
static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
|
|
static_assert(BTRFS_FT_DIR == FT_DIR);
|
|
static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
|
|
static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
|
|
static_assert(BTRFS_FT_FIFO == FT_FIFO);
|
|
static_assert(BTRFS_FT_SOCK == FT_SOCK);
|
|
static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
|
|
|
|
static inline u8 btrfs_inode_type(struct inode *inode)
|
|
{
|
|
return fs_umode_to_ftype(inode->i_mode);
|
|
}
|
|
|
|
struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
|
|
struct inode *inode;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct btrfs_root *sub_root = root;
|
|
struct btrfs_key location;
|
|
u8 di_type = 0;
|
|
int ret = 0;
|
|
|
|
if (dentry->d_name.len > BTRFS_NAME_LEN)
|
|
return ERR_PTR(-ENAMETOOLONG);
|
|
|
|
ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
|
|
if (ret < 0)
|
|
return ERR_PTR(ret);
|
|
|
|
if (location.type == BTRFS_INODE_ITEM_KEY) {
|
|
inode = btrfs_iget(dir->i_sb, location.objectid, root);
|
|
if (IS_ERR(inode))
|
|
return inode;
|
|
|
|
/* Do extra check against inode mode with di_type */
|
|
if (btrfs_inode_type(inode) != di_type) {
|
|
btrfs_crit(fs_info,
|
|
"inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
|
|
inode->i_mode, btrfs_inode_type(inode),
|
|
di_type);
|
|
iput(inode);
|
|
return ERR_PTR(-EUCLEAN);
|
|
}
|
|
return inode;
|
|
}
|
|
|
|
ret = fixup_tree_root_location(fs_info, dir, dentry,
|
|
&location, &sub_root);
|
|
if (ret < 0) {
|
|
if (ret != -ENOENT)
|
|
inode = ERR_PTR(ret);
|
|
else
|
|
inode = new_simple_dir(dir->i_sb, &location, sub_root);
|
|
} else {
|
|
inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
|
|
}
|
|
if (root != sub_root)
|
|
btrfs_put_root(sub_root);
|
|
|
|
if (!IS_ERR(inode) && root != sub_root) {
|
|
down_read(&fs_info->cleanup_work_sem);
|
|
if (!sb_rdonly(inode->i_sb))
|
|
ret = btrfs_orphan_cleanup(sub_root);
|
|
up_read(&fs_info->cleanup_work_sem);
|
|
if (ret) {
|
|
iput(inode);
|
|
inode = ERR_PTR(ret);
|
|
}
|
|
}
|
|
|
|
return inode;
|
|
}
|
|
|
|
static int btrfs_dentry_delete(const struct dentry *dentry)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct inode *inode = d_inode(dentry);
|
|
|
|
if (!inode && !IS_ROOT(dentry))
|
|
inode = d_inode(dentry->d_parent);
|
|
|
|
if (inode) {
|
|
root = BTRFS_I(inode)->root;
|
|
if (btrfs_root_refs(&root->root_item) == 0)
|
|
return 1;
|
|
|
|
if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
|
|
unsigned int flags)
|
|
{
|
|
struct inode *inode = btrfs_lookup_dentry(dir, dentry);
|
|
|
|
if (inode == ERR_PTR(-ENOENT))
|
|
inode = NULL;
|
|
return d_splice_alias(inode, dentry);
|
|
}
|
|
|
|
/*
|
|
* All this infrastructure exists because dir_emit can fault, and we are holding
|
|
* the tree lock when doing readdir. For now just allocate a buffer and copy
|
|
* our information into that, and then dir_emit from the buffer. This is
|
|
* similar to what NFS does, only we don't keep the buffer around in pagecache
|
|
* because I'm afraid I'll mess that up. Long term we need to make filldir do
|
|
* copy_to_user_inatomic so we don't have to worry about page faulting under the
|
|
* tree lock.
|
|
*/
|
|
static int btrfs_opendir(struct inode *inode, struct file *file)
|
|
{
|
|
struct btrfs_file_private *private;
|
|
|
|
private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
|
|
if (!private)
|
|
return -ENOMEM;
|
|
private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
|
|
if (!private->filldir_buf) {
|
|
kfree(private);
|
|
return -ENOMEM;
|
|
}
|
|
file->private_data = private;
|
|
return 0;
|
|
}
|
|
|
|
struct dir_entry {
|
|
u64 ino;
|
|
u64 offset;
|
|
unsigned type;
|
|
int name_len;
|
|
};
|
|
|
|
static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
|
|
{
|
|
while (entries--) {
|
|
struct dir_entry *entry = addr;
|
|
char *name = (char *)(entry + 1);
|
|
|
|
ctx->pos = get_unaligned(&entry->offset);
|
|
if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
|
|
get_unaligned(&entry->ino),
|
|
get_unaligned(&entry->type)))
|
|
return 1;
|
|
addr += sizeof(struct dir_entry) +
|
|
get_unaligned(&entry->name_len);
|
|
ctx->pos++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_file_private *private = file->private_data;
|
|
struct btrfs_dir_item *di;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
struct btrfs_path *path;
|
|
void *addr;
|
|
struct list_head ins_list;
|
|
struct list_head del_list;
|
|
int ret;
|
|
struct extent_buffer *leaf;
|
|
int slot;
|
|
char *name_ptr;
|
|
int name_len;
|
|
int entries = 0;
|
|
int total_len = 0;
|
|
bool put = false;
|
|
struct btrfs_key location;
|
|
|
|
if (!dir_emit_dots(file, ctx))
|
|
return 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
addr = private->filldir_buf;
|
|
path->reada = READA_FORWARD;
|
|
|
|
INIT_LIST_HEAD(&ins_list);
|
|
INIT_LIST_HEAD(&del_list);
|
|
put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
|
|
|
|
again:
|
|
key.type = BTRFS_DIR_INDEX_KEY;
|
|
key.offset = ctx->pos;
|
|
key.objectid = btrfs_ino(BTRFS_I(inode));
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto err;
|
|
|
|
while (1) {
|
|
struct dir_entry *entry;
|
|
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
if (slot >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0)
|
|
goto err;
|
|
else if (ret > 0)
|
|
break;
|
|
continue;
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &found_key, slot);
|
|
|
|
if (found_key.objectid != key.objectid)
|
|
break;
|
|
if (found_key.type != BTRFS_DIR_INDEX_KEY)
|
|
break;
|
|
if (found_key.offset < ctx->pos)
|
|
goto next;
|
|
if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
|
|
goto next;
|
|
di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
|
|
name_len = btrfs_dir_name_len(leaf, di);
|
|
if ((total_len + sizeof(struct dir_entry) + name_len) >=
|
|
PAGE_SIZE) {
|
|
btrfs_release_path(path);
|
|
ret = btrfs_filldir(private->filldir_buf, entries, ctx);
|
|
if (ret)
|
|
goto nopos;
|
|
addr = private->filldir_buf;
|
|
entries = 0;
|
|
total_len = 0;
|
|
goto again;
|
|
}
|
|
|
|
entry = addr;
|
|
put_unaligned(name_len, &entry->name_len);
|
|
name_ptr = (char *)(entry + 1);
|
|
read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
|
|
name_len);
|
|
put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
|
|
&entry->type);
|
|
btrfs_dir_item_key_to_cpu(leaf, di, &location);
|
|
put_unaligned(location.objectid, &entry->ino);
|
|
put_unaligned(found_key.offset, &entry->offset);
|
|
entries++;
|
|
addr += sizeof(struct dir_entry) + name_len;
|
|
total_len += sizeof(struct dir_entry) + name_len;
|
|
next:
|
|
path->slots[0]++;
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
ret = btrfs_filldir(private->filldir_buf, entries, ctx);
|
|
if (ret)
|
|
goto nopos;
|
|
|
|
ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
|
|
if (ret)
|
|
goto nopos;
|
|
|
|
/*
|
|
* Stop new entries from being returned after we return the last
|
|
* entry.
|
|
*
|
|
* New directory entries are assigned a strictly increasing
|
|
* offset. This means that new entries created during readdir
|
|
* are *guaranteed* to be seen in the future by that readdir.
|
|
* This has broken buggy programs which operate on names as
|
|
* they're returned by readdir. Until we re-use freed offsets
|
|
* we have this hack to stop new entries from being returned
|
|
* under the assumption that they'll never reach this huge
|
|
* offset.
|
|
*
|
|
* This is being careful not to overflow 32bit loff_t unless the
|
|
* last entry requires it because doing so has broken 32bit apps
|
|
* in the past.
|
|
*/
|
|
if (ctx->pos >= INT_MAX)
|
|
ctx->pos = LLONG_MAX;
|
|
else
|
|
ctx->pos = INT_MAX;
|
|
nopos:
|
|
ret = 0;
|
|
err:
|
|
if (put)
|
|
btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This is somewhat expensive, updating the tree every time the
|
|
* inode changes. But, it is most likely to find the inode in cache.
|
|
* FIXME, needs more benchmarking...there are no reasons other than performance
|
|
* to keep or drop this code.
|
|
*/
|
|
static int btrfs_dirty_inode(struct inode *inode)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_trans_handle *trans;
|
|
int ret;
|
|
|
|
if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
|
|
return 0;
|
|
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
|
|
if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
|
|
/* whoops, lets try again with the full transaction */
|
|
btrfs_end_transaction(trans);
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
|
|
}
|
|
btrfs_end_transaction(trans);
|
|
if (BTRFS_I(inode)->delayed_node)
|
|
btrfs_balance_delayed_items(fs_info);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This is a copy of file_update_time. We need this so we can return error on
|
|
* ENOSPC for updating the inode in the case of file write and mmap writes.
|
|
*/
|
|
static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
|
|
int flags)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
bool dirty = flags & ~S_VERSION;
|
|
|
|
if (btrfs_root_readonly(root))
|
|
return -EROFS;
|
|
|
|
if (flags & S_VERSION)
|
|
dirty |= inode_maybe_inc_iversion(inode, dirty);
|
|
if (flags & S_CTIME)
|
|
inode->i_ctime = *now;
|
|
if (flags & S_MTIME)
|
|
inode->i_mtime = *now;
|
|
if (flags & S_ATIME)
|
|
inode->i_atime = *now;
|
|
return dirty ? btrfs_dirty_inode(inode) : 0;
|
|
}
|
|
|
|
/*
|
|
* find the highest existing sequence number in a directory
|
|
* and then set the in-memory index_cnt variable to reflect
|
|
* free sequence numbers
|
|
*/
|
|
static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
|
|
{
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_key key, found_key;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
int ret;
|
|
|
|
key.objectid = btrfs_ino(inode);
|
|
key.type = BTRFS_DIR_INDEX_KEY;
|
|
key.offset = (u64)-1;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
/* FIXME: we should be able to handle this */
|
|
if (ret == 0)
|
|
goto out;
|
|
ret = 0;
|
|
|
|
if (path->slots[0] == 0) {
|
|
inode->index_cnt = BTRFS_DIR_START_INDEX;
|
|
goto out;
|
|
}
|
|
|
|
path->slots[0]--;
|
|
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
|
|
if (found_key.objectid != btrfs_ino(inode) ||
|
|
found_key.type != BTRFS_DIR_INDEX_KEY) {
|
|
inode->index_cnt = BTRFS_DIR_START_INDEX;
|
|
goto out;
|
|
}
|
|
|
|
inode->index_cnt = found_key.offset + 1;
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* helper to find a free sequence number in a given directory. This current
|
|
* code is very simple, later versions will do smarter things in the btree
|
|
*/
|
|
int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (dir->index_cnt == (u64)-1) {
|
|
ret = btrfs_inode_delayed_dir_index_count(dir);
|
|
if (ret) {
|
|
ret = btrfs_set_inode_index_count(dir);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
*index = dir->index_cnt;
|
|
dir->index_cnt++;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_insert_inode_locked(struct inode *inode)
|
|
{
|
|
struct btrfs_iget_args args;
|
|
|
|
args.ino = BTRFS_I(inode)->location.objectid;
|
|
args.root = BTRFS_I(inode)->root;
|
|
|
|
return insert_inode_locked4(inode,
|
|
btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
|
|
btrfs_find_actor, &args);
|
|
}
|
|
|
|
/*
|
|
* Inherit flags from the parent inode.
|
|
*
|
|
* Currently only the compression flags and the cow flags are inherited.
|
|
*/
|
|
static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
|
|
{
|
|
unsigned int flags;
|
|
|
|
if (!dir)
|
|
return;
|
|
|
|
flags = BTRFS_I(dir)->flags;
|
|
|
|
if (flags & BTRFS_INODE_NOCOMPRESS) {
|
|
BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
|
|
BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
|
|
} else if (flags & BTRFS_INODE_COMPRESS) {
|
|
BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
|
|
BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
|
|
}
|
|
|
|
if (flags & BTRFS_INODE_NODATACOW) {
|
|
BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
|
|
if (S_ISREG(inode->i_mode))
|
|
BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
|
|
}
|
|
|
|
btrfs_sync_inode_flags_to_i_flags(inode);
|
|
}
|
|
|
|
static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct user_namespace *mnt_userns,
|
|
struct inode *dir,
|
|
const char *name, int name_len,
|
|
u64 ref_objectid, u64 objectid,
|
|
umode_t mode, u64 *index)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct inode *inode;
|
|
struct btrfs_inode_item *inode_item;
|
|
struct btrfs_key *location;
|
|
struct btrfs_path *path;
|
|
struct btrfs_inode_ref *ref;
|
|
struct btrfs_key key[2];
|
|
u32 sizes[2];
|
|
struct btrfs_item_batch batch;
|
|
unsigned long ptr;
|
|
unsigned int nofs_flag;
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
nofs_flag = memalloc_nofs_save();
|
|
inode = new_inode(fs_info->sb);
|
|
memalloc_nofs_restore(nofs_flag);
|
|
if (!inode) {
|
|
btrfs_free_path(path);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* O_TMPFILE, set link count to 0, so that after this point,
|
|
* we fill in an inode item with the correct link count.
|
|
*/
|
|
if (!name)
|
|
set_nlink(inode, 0);
|
|
|
|
/*
|
|
* we have to initialize this early, so we can reclaim the inode
|
|
* number if we fail afterwards in this function.
|
|
*/
|
|
inode->i_ino = objectid;
|
|
|
|
if (dir && name) {
|
|
trace_btrfs_inode_request(dir);
|
|
|
|
ret = btrfs_set_inode_index(BTRFS_I(dir), index);
|
|
if (ret) {
|
|
btrfs_free_path(path);
|
|
iput(inode);
|
|
return ERR_PTR(ret);
|
|
}
|
|
} else if (dir) {
|
|
*index = 0;
|
|
}
|
|
/*
|
|
* index_cnt is ignored for everything but a dir,
|
|
* btrfs_set_inode_index_count has an explanation for the magic
|
|
* number
|
|
*/
|
|
BTRFS_I(inode)->index_cnt = 2;
|
|
BTRFS_I(inode)->dir_index = *index;
|
|
BTRFS_I(inode)->root = btrfs_grab_root(root);
|
|
BTRFS_I(inode)->generation = trans->transid;
|
|
inode->i_generation = BTRFS_I(inode)->generation;
|
|
|
|
/*
|
|
* We could have gotten an inode number from somebody who was fsynced
|
|
* and then removed in this same transaction, so let's just set full
|
|
* sync since it will be a full sync anyway and this will blow away the
|
|
* old info in the log.
|
|
*/
|
|
btrfs_set_inode_full_sync(BTRFS_I(inode));
|
|
|
|
key[0].objectid = objectid;
|
|
key[0].type = BTRFS_INODE_ITEM_KEY;
|
|
key[0].offset = 0;
|
|
|
|
sizes[0] = sizeof(struct btrfs_inode_item);
|
|
|
|
if (name) {
|
|
/*
|
|
* Start new inodes with an inode_ref. This is slightly more
|
|
* efficient for small numbers of hard links since they will
|
|
* be packed into one item. Extended refs will kick in if we
|
|
* add more hard links than can fit in the ref item.
|
|
*/
|
|
key[1].objectid = objectid;
|
|
key[1].type = BTRFS_INODE_REF_KEY;
|
|
key[1].offset = ref_objectid;
|
|
|
|
sizes[1] = name_len + sizeof(*ref);
|
|
}
|
|
|
|
location = &BTRFS_I(inode)->location;
|
|
location->objectid = objectid;
|
|
location->offset = 0;
|
|
location->type = BTRFS_INODE_ITEM_KEY;
|
|
|
|
ret = btrfs_insert_inode_locked(inode);
|
|
if (ret < 0) {
|
|
iput(inode);
|
|
goto fail;
|
|
}
|
|
|
|
batch.keys = &key[0];
|
|
batch.data_sizes = &sizes[0];
|
|
batch.total_data_size = sizes[0] + (name ? sizes[1] : 0);
|
|
batch.nr = name ? 2 : 1;
|
|
ret = btrfs_insert_empty_items(trans, root, path, &batch);
|
|
if (ret != 0)
|
|
goto fail_unlock;
|
|
|
|
inode_init_owner(mnt_userns, inode, dir, mode);
|
|
inode_set_bytes(inode, 0);
|
|
|
|
inode->i_mtime = current_time(inode);
|
|
inode->i_atime = inode->i_mtime;
|
|
inode->i_ctime = inode->i_mtime;
|
|
BTRFS_I(inode)->i_otime = inode->i_mtime;
|
|
|
|
inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
|
|
struct btrfs_inode_item);
|
|
memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
|
|
sizeof(*inode_item));
|
|
fill_inode_item(trans, path->nodes[0], inode_item, inode);
|
|
|
|
if (name) {
|
|
ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
|
|
struct btrfs_inode_ref);
|
|
btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
|
|
btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
|
|
ptr = (unsigned long)(ref + 1);
|
|
write_extent_buffer(path->nodes[0], name, ptr, name_len);
|
|
}
|
|
|
|
btrfs_mark_buffer_dirty(path->nodes[0]);
|
|
btrfs_free_path(path);
|
|
|
|
btrfs_inherit_iflags(inode, dir);
|
|
|
|
if (S_ISREG(mode)) {
|
|
if (btrfs_test_opt(fs_info, NODATASUM))
|
|
BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
|
|
if (btrfs_test_opt(fs_info, NODATACOW))
|
|
BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
|
|
BTRFS_INODE_NODATASUM;
|
|
}
|
|
|
|
inode_tree_add(inode);
|
|
|
|
trace_btrfs_inode_new(inode);
|
|
btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
|
|
|
|
btrfs_update_root_times(trans, root);
|
|
|
|
ret = btrfs_inode_inherit_props(trans, inode, dir);
|
|
if (ret)
|
|
btrfs_err(fs_info,
|
|
"error inheriting props for ino %llu (root %llu): %d",
|
|
btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
|
|
|
|
return inode;
|
|
|
|
fail_unlock:
|
|
discard_new_inode(inode);
|
|
fail:
|
|
if (dir && name)
|
|
BTRFS_I(dir)->index_cnt--;
|
|
btrfs_free_path(path);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
/*
|
|
* utility function to add 'inode' into 'parent_inode' with
|
|
* a give name and a given sequence number.
|
|
* if 'add_backref' is true, also insert a backref from the
|
|
* inode to the parent directory.
|
|
*/
|
|
int btrfs_add_link(struct btrfs_trans_handle *trans,
|
|
struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
|
|
const char *name, int name_len, int add_backref, u64 index)
|
|
{
|
|
int ret = 0;
|
|
struct btrfs_key key;
|
|
struct btrfs_root *root = parent_inode->root;
|
|
u64 ino = btrfs_ino(inode);
|
|
u64 parent_ino = btrfs_ino(parent_inode);
|
|
|
|
if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
|
|
memcpy(&key, &inode->root->root_key, sizeof(key));
|
|
} else {
|
|
key.objectid = ino;
|
|
key.type = BTRFS_INODE_ITEM_KEY;
|
|
key.offset = 0;
|
|
}
|
|
|
|
if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
|
|
ret = btrfs_add_root_ref(trans, key.objectid,
|
|
root->root_key.objectid, parent_ino,
|
|
index, name, name_len);
|
|
} else if (add_backref) {
|
|
ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
|
|
parent_ino, index);
|
|
}
|
|
|
|
/* Nothing to clean up yet */
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
|
|
btrfs_inode_type(&inode->vfs_inode), index);
|
|
if (ret == -EEXIST || ret == -EOVERFLOW)
|
|
goto fail_dir_item;
|
|
else if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
return ret;
|
|
}
|
|
|
|
btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
|
|
name_len * 2);
|
|
inode_inc_iversion(&parent_inode->vfs_inode);
|
|
/*
|
|
* If we are replaying a log tree, we do not want to update the mtime
|
|
* and ctime of the parent directory with the current time, since the
|
|
* log replay procedure is responsible for setting them to their correct
|
|
* values (the ones it had when the fsync was done).
|
|
*/
|
|
if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
|
|
struct timespec64 now = current_time(&parent_inode->vfs_inode);
|
|
|
|
parent_inode->vfs_inode.i_mtime = now;
|
|
parent_inode->vfs_inode.i_ctime = now;
|
|
}
|
|
ret = btrfs_update_inode(trans, root, parent_inode);
|
|
if (ret)
|
|
btrfs_abort_transaction(trans, ret);
|
|
return ret;
|
|
|
|
fail_dir_item:
|
|
if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
|
|
u64 local_index;
|
|
int err;
|
|
err = btrfs_del_root_ref(trans, key.objectid,
|
|
root->root_key.objectid, parent_ino,
|
|
&local_index, name, name_len);
|
|
if (err)
|
|
btrfs_abort_transaction(trans, err);
|
|
} else if (add_backref) {
|
|
u64 local_index;
|
|
int err;
|
|
|
|
err = btrfs_del_inode_ref(trans, root, name, name_len,
|
|
ino, parent_ino, &local_index);
|
|
if (err)
|
|
btrfs_abort_transaction(trans, err);
|
|
}
|
|
|
|
/* Return the original error code */
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
|
|
struct btrfs_inode *dir, struct dentry *dentry,
|
|
struct btrfs_inode *inode, int backref, u64 index)
|
|
{
|
|
int err = btrfs_add_link(trans, dir, inode,
|
|
dentry->d_name.name, dentry->d_name.len,
|
|
backref, index);
|
|
if (err > 0)
|
|
err = -EEXIST;
|
|
return err;
|
|
}
|
|
|
|
static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
|
|
struct dentry *dentry, umode_t mode, dev_t rdev)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct inode *inode = NULL;
|
|
int err;
|
|
u64 objectid;
|
|
u64 index = 0;
|
|
|
|
/*
|
|
* 2 for inode item and ref
|
|
* 2 for dir items
|
|
* 1 for xattr if selinux is on
|
|
*/
|
|
trans = btrfs_start_transaction(root, 5);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
err = btrfs_get_free_objectid(root, &objectid);
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
inode = btrfs_new_inode(trans, root, mnt_userns, dir,
|
|
dentry->d_name.name, dentry->d_name.len,
|
|
btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
|
|
if (IS_ERR(inode)) {
|
|
err = PTR_ERR(inode);
|
|
inode = NULL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* If the active LSM wants to access the inode during
|
|
* d_instantiate it needs these. Smack checks to see
|
|
* if the filesystem supports xattrs by looking at the
|
|
* ops vector.
|
|
*/
|
|
inode->i_op = &btrfs_special_inode_operations;
|
|
init_special_inode(inode, inode->i_mode, rdev);
|
|
|
|
err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
|
|
0, index);
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
btrfs_update_inode(trans, root, BTRFS_I(inode));
|
|
d_instantiate_new(dentry, inode);
|
|
|
|
out_unlock:
|
|
btrfs_end_transaction(trans);
|
|
btrfs_btree_balance_dirty(fs_info);
|
|
if (err && inode) {
|
|
inode_dec_link_count(inode);
|
|
discard_new_inode(inode);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir,
|
|
struct dentry *dentry, umode_t mode, bool excl)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct inode *inode = NULL;
|
|
int err;
|
|
u64 objectid;
|
|
u64 index = 0;
|
|
|
|
/*
|
|
* 2 for inode item and ref
|
|
* 2 for dir items
|
|
* 1 for xattr if selinux is on
|
|
*/
|
|
trans = btrfs_start_transaction(root, 5);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
err = btrfs_get_free_objectid(root, &objectid);
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
inode = btrfs_new_inode(trans, root, mnt_userns, dir,
|
|
dentry->d_name.name, dentry->d_name.len,
|
|
btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
|
|
if (IS_ERR(inode)) {
|
|
err = PTR_ERR(inode);
|
|
inode = NULL;
|
|
goto out_unlock;
|
|
}
|
|
/*
|
|
* If the active LSM wants to access the inode during
|
|
* d_instantiate it needs these. Smack checks to see
|
|
* if the filesystem supports xattrs by looking at the
|
|
* ops vector.
|
|
*/
|
|
inode->i_fop = &btrfs_file_operations;
|
|
inode->i_op = &btrfs_file_inode_operations;
|
|
inode->i_mapping->a_ops = &btrfs_aops;
|
|
|
|
err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
err = btrfs_update_inode(trans, root, BTRFS_I(inode));
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
|
|
0, index);
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
d_instantiate_new(dentry, inode);
|
|
|
|
out_unlock:
|
|
btrfs_end_transaction(trans);
|
|
if (err && inode) {
|
|
inode_dec_link_count(inode);
|
|
discard_new_inode(inode);
|
|
}
|
|
btrfs_btree_balance_dirty(fs_info);
|
|
return err;
|
|
}
|
|
|
|
static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
|
|
struct dentry *dentry)
|
|
{
|
|
struct btrfs_trans_handle *trans = NULL;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct inode *inode = d_inode(old_dentry);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
u64 index;
|
|
int err;
|
|
int drop_inode = 0;
|
|
|
|
/* do not allow sys_link's with other subvols of the same device */
|
|
if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
|
|
return -EXDEV;
|
|
|
|
if (inode->i_nlink >= BTRFS_LINK_MAX)
|
|
return -EMLINK;
|
|
|
|
err = btrfs_set_inode_index(BTRFS_I(dir), &index);
|
|
if (err)
|
|
goto fail;
|
|
|
|
/*
|
|
* 2 items for inode and inode ref
|
|
* 2 items for dir items
|
|
* 1 item for parent inode
|
|
* 1 item for orphan item deletion if O_TMPFILE
|
|
*/
|
|
trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
|
|
if (IS_ERR(trans)) {
|
|
err = PTR_ERR(trans);
|
|
trans = NULL;
|
|
goto fail;
|
|
}
|
|
|
|
/* There are several dir indexes for this inode, clear the cache. */
|
|
BTRFS_I(inode)->dir_index = 0ULL;
|
|
inc_nlink(inode);
|
|
inode_inc_iversion(inode);
|
|
inode->i_ctime = current_time(inode);
|
|
ihold(inode);
|
|
set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
|
|
|
|
err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
|
|
1, index);
|
|
|
|
if (err) {
|
|
drop_inode = 1;
|
|
} else {
|
|
struct dentry *parent = dentry->d_parent;
|
|
|
|
err = btrfs_update_inode(trans, root, BTRFS_I(inode));
|
|
if (err)
|
|
goto fail;
|
|
if (inode->i_nlink == 1) {
|
|
/*
|
|
* If new hard link count is 1, it's a file created
|
|
* with open(2) O_TMPFILE flag.
|
|
*/
|
|
err = btrfs_orphan_del(trans, BTRFS_I(inode));
|
|
if (err)
|
|
goto fail;
|
|
}
|
|
d_instantiate(dentry, inode);
|
|
btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
|
|
}
|
|
|
|
fail:
|
|
if (trans)
|
|
btrfs_end_transaction(trans);
|
|
if (drop_inode) {
|
|
inode_dec_link_count(inode);
|
|
iput(inode);
|
|
}
|
|
btrfs_btree_balance_dirty(fs_info);
|
|
return err;
|
|
}
|
|
|
|
static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
|
|
struct dentry *dentry, umode_t mode)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
|
|
struct inode *inode = NULL;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
int err = 0;
|
|
u64 objectid = 0;
|
|
u64 index = 0;
|
|
|
|
/*
|
|
* 2 items for inode and ref
|
|
* 2 items for dir items
|
|
* 1 for xattr if selinux is on
|
|
*/
|
|
trans = btrfs_start_transaction(root, 5);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
err = btrfs_get_free_objectid(root, &objectid);
|
|
if (err)
|
|
goto out_fail;
|
|
|
|
inode = btrfs_new_inode(trans, root, mnt_userns, dir,
|
|
dentry->d_name.name, dentry->d_name.len,
|
|
btrfs_ino(BTRFS_I(dir)), objectid,
|
|
S_IFDIR | mode, &index);
|
|
if (IS_ERR(inode)) {
|
|
err = PTR_ERR(inode);
|
|
inode = NULL;
|
|
goto out_fail;
|
|
}
|
|
|
|
/* these must be set before we unlock the inode */
|
|
inode->i_op = &btrfs_dir_inode_operations;
|
|
inode->i_fop = &btrfs_dir_file_operations;
|
|
|
|
err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
|
|
if (err)
|
|
goto out_fail;
|
|
|
|
btrfs_i_size_write(BTRFS_I(inode), 0);
|
|
err = btrfs_update_inode(trans, root, BTRFS_I(inode));
|
|
if (err)
|
|
goto out_fail;
|
|
|
|
err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
|
|
dentry->d_name.name,
|
|
dentry->d_name.len, 0, index);
|
|
if (err)
|
|
goto out_fail;
|
|
|
|
d_instantiate_new(dentry, inode);
|
|
|
|
out_fail:
|
|
btrfs_end_transaction(trans);
|
|
if (err && inode) {
|
|
inode_dec_link_count(inode);
|
|
discard_new_inode(inode);
|
|
}
|
|
btrfs_btree_balance_dirty(fs_info);
|
|
return err;
|
|
}
|
|
|
|
static noinline int uncompress_inline(struct btrfs_path *path,
|
|
struct page *page,
|
|
size_t pg_offset, u64 extent_offset,
|
|
struct btrfs_file_extent_item *item)
|
|
{
|
|
int ret;
|
|
struct extent_buffer *leaf = path->nodes[0];
|
|
char *tmp;
|
|
size_t max_size;
|
|
unsigned long inline_size;
|
|
unsigned long ptr;
|
|
int compress_type;
|
|
|
|
WARN_ON(pg_offset != 0);
|
|
compress_type = btrfs_file_extent_compression(leaf, item);
|
|
max_size = btrfs_file_extent_ram_bytes(leaf, item);
|
|
inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
|
|
tmp = kmalloc(inline_size, GFP_NOFS);
|
|
if (!tmp)
|
|
return -ENOMEM;
|
|
ptr = btrfs_file_extent_inline_start(item);
|
|
|
|
read_extent_buffer(leaf, tmp, ptr, inline_size);
|
|
|
|
max_size = min_t(unsigned long, PAGE_SIZE, max_size);
|
|
ret = btrfs_decompress(compress_type, tmp, page,
|
|
extent_offset, inline_size, max_size);
|
|
|
|
/*
|
|
* decompression code contains a memset to fill in any space between the end
|
|
* of the uncompressed data and the end of max_size in case the decompressed
|
|
* data ends up shorter than ram_bytes. That doesn't cover the hole between
|
|
* the end of an inline extent and the beginning of the next block, so we
|
|
* cover that region here.
|
|
*/
|
|
|
|
if (max_size + pg_offset < PAGE_SIZE)
|
|
memzero_page(page, pg_offset + max_size,
|
|
PAGE_SIZE - max_size - pg_offset);
|
|
kfree(tmp);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* btrfs_get_extent - Lookup the first extent overlapping a range in a file.
|
|
* @inode: file to search in
|
|
* @page: page to read extent data into if the extent is inline
|
|
* @pg_offset: offset into @page to copy to
|
|
* @start: file offset
|
|
* @len: length of range starting at @start
|
|
*
|
|
* This returns the first &struct extent_map which overlaps with the given
|
|
* range, reading it from the B-tree and caching it if necessary. Note that
|
|
* there may be more extents which overlap the given range after the returned
|
|
* extent_map.
|
|
*
|
|
* If @page is not NULL and the extent is inline, this also reads the extent
|
|
* data directly into the page and marks the extent up to date in the io_tree.
|
|
*
|
|
* Return: ERR_PTR on error, non-NULL extent_map on success.
|
|
*/
|
|
struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
|
|
struct page *page, size_t pg_offset,
|
|
u64 start, u64 len)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
int ret = 0;
|
|
u64 extent_start = 0;
|
|
u64 extent_end = 0;
|
|
u64 objectid = btrfs_ino(inode);
|
|
int extent_type = -1;
|
|
struct btrfs_path *path = NULL;
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_file_extent_item *item;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key found_key;
|
|
struct extent_map *em = NULL;
|
|
struct extent_map_tree *em_tree = &inode->extent_tree;
|
|
struct extent_io_tree *io_tree = &inode->io_tree;
|
|
|
|
read_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, start, len);
|
|
read_unlock(&em_tree->lock);
|
|
|
|
if (em) {
|
|
if (em->start > start || em->start + em->len <= start)
|
|
free_extent_map(em);
|
|
else if (em->block_start == EXTENT_MAP_INLINE && page)
|
|
free_extent_map(em);
|
|
else
|
|
goto out;
|
|
}
|
|
em = alloc_extent_map();
|
|
if (!em) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
em->start = EXTENT_MAP_HOLE;
|
|
em->orig_start = EXTENT_MAP_HOLE;
|
|
em->len = (u64)-1;
|
|
em->block_len = (u64)-1;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/* Chances are we'll be called again, so go ahead and do readahead */
|
|
path->reada = READA_FORWARD;
|
|
|
|
/*
|
|
* The same explanation in load_free_space_cache applies here as well,
|
|
* we only read when we're loading the free space cache, and at that
|
|
* point the commit_root has everything we need.
|
|
*/
|
|
if (btrfs_is_free_space_inode(inode)) {
|
|
path->search_commit_root = 1;
|
|
path->skip_locking = 1;
|
|
}
|
|
|
|
ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (ret > 0) {
|
|
if (path->slots[0] == 0)
|
|
goto not_found;
|
|
path->slots[0]--;
|
|
ret = 0;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
item = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
if (found_key.objectid != objectid ||
|
|
found_key.type != BTRFS_EXTENT_DATA_KEY) {
|
|
/*
|
|
* If we backup past the first extent we want to move forward
|
|
* and see if there is an extent in front of us, otherwise we'll
|
|
* say there is a hole for our whole search range which can
|
|
* cause problems.
|
|
*/
|
|
extent_end = start;
|
|
goto next;
|
|
}
|
|
|
|
extent_type = btrfs_file_extent_type(leaf, item);
|
|
extent_start = found_key.offset;
|
|
extent_end = btrfs_file_extent_end(path);
|
|
if (extent_type == BTRFS_FILE_EXTENT_REG ||
|
|
extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
|
|
/* Only regular file could have regular/prealloc extent */
|
|
if (!S_ISREG(inode->vfs_inode.i_mode)) {
|
|
ret = -EUCLEAN;
|
|
btrfs_crit(fs_info,
|
|
"regular/prealloc extent found for non-regular inode %llu",
|
|
btrfs_ino(inode));
|
|
goto out;
|
|
}
|
|
trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
|
|
extent_start);
|
|
} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
|
|
trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
|
|
path->slots[0],
|
|
extent_start);
|
|
}
|
|
next:
|
|
if (start >= extent_end) {
|
|
path->slots[0]++;
|
|
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0)
|
|
goto out;
|
|
else if (ret > 0)
|
|
goto not_found;
|
|
|
|
leaf = path->nodes[0];
|
|
}
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
if (found_key.objectid != objectid ||
|
|
found_key.type != BTRFS_EXTENT_DATA_KEY)
|
|
goto not_found;
|
|
if (start + len <= found_key.offset)
|
|
goto not_found;
|
|
if (start > found_key.offset)
|
|
goto next;
|
|
|
|
/* New extent overlaps with existing one */
|
|
em->start = start;
|
|
em->orig_start = start;
|
|
em->len = found_key.offset - start;
|
|
em->block_start = EXTENT_MAP_HOLE;
|
|
goto insert;
|
|
}
|
|
|
|
btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
|
|
|
|
if (extent_type == BTRFS_FILE_EXTENT_REG ||
|
|
extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
|
|
goto insert;
|
|
} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
|
|
unsigned long ptr;
|
|
char *map;
|
|
size_t size;
|
|
size_t extent_offset;
|
|
size_t copy_size;
|
|
|
|
if (!page)
|
|
goto out;
|
|
|
|
size = btrfs_file_extent_ram_bytes(leaf, item);
|
|
extent_offset = page_offset(page) + pg_offset - extent_start;
|
|
copy_size = min_t(u64, PAGE_SIZE - pg_offset,
|
|
size - extent_offset);
|
|
em->start = extent_start + extent_offset;
|
|
em->len = ALIGN(copy_size, fs_info->sectorsize);
|
|
em->orig_block_len = em->len;
|
|
em->orig_start = em->start;
|
|
ptr = btrfs_file_extent_inline_start(item) + extent_offset;
|
|
|
|
if (!PageUptodate(page)) {
|
|
if (btrfs_file_extent_compression(leaf, item) !=
|
|
BTRFS_COMPRESS_NONE) {
|
|
ret = uncompress_inline(path, page, pg_offset,
|
|
extent_offset, item);
|
|
if (ret)
|
|
goto out;
|
|
} else {
|
|
map = kmap_local_page(page);
|
|
read_extent_buffer(leaf, map + pg_offset, ptr,
|
|
copy_size);
|
|
if (pg_offset + copy_size < PAGE_SIZE) {
|
|
memset(map + pg_offset + copy_size, 0,
|
|
PAGE_SIZE - pg_offset -
|
|
copy_size);
|
|
}
|
|
kunmap_local(map);
|
|
}
|
|
flush_dcache_page(page);
|
|
}
|
|
set_extent_uptodate(io_tree, em->start,
|
|
extent_map_end(em) - 1, NULL, GFP_NOFS);
|
|
goto insert;
|
|
}
|
|
not_found:
|
|
em->start = start;
|
|
em->orig_start = start;
|
|
em->len = len;
|
|
em->block_start = EXTENT_MAP_HOLE;
|
|
insert:
|
|
ret = 0;
|
|
btrfs_release_path(path);
|
|
if (em->start > start || extent_map_end(em) <= start) {
|
|
btrfs_err(fs_info,
|
|
"bad extent! em: [%llu %llu] passed [%llu %llu]",
|
|
em->start, em->len, start, len);
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
write_lock(&em_tree->lock);
|
|
ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
|
|
write_unlock(&em_tree->lock);
|
|
out:
|
|
btrfs_free_path(path);
|
|
|
|
trace_btrfs_get_extent(root, inode, em);
|
|
|
|
if (ret) {
|
|
free_extent_map(em);
|
|
return ERR_PTR(ret);
|
|
}
|
|
return em;
|
|
}
|
|
|
|
struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
|
|
u64 start, u64 len)
|
|
{
|
|
struct extent_map *em;
|
|
struct extent_map *hole_em = NULL;
|
|
u64 delalloc_start = start;
|
|
u64 end;
|
|
u64 delalloc_len;
|
|
u64 delalloc_end;
|
|
int err = 0;
|
|
|
|
em = btrfs_get_extent(inode, NULL, 0, start, len);
|
|
if (IS_ERR(em))
|
|
return em;
|
|
/*
|
|
* If our em maps to:
|
|
* - a hole or
|
|
* - a pre-alloc extent,
|
|
* there might actually be delalloc bytes behind it.
|
|
*/
|
|
if (em->block_start != EXTENT_MAP_HOLE &&
|
|
!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
|
|
return em;
|
|
else
|
|
hole_em = em;
|
|
|
|
/* check to see if we've wrapped (len == -1 or similar) */
|
|
end = start + len;
|
|
if (end < start)
|
|
end = (u64)-1;
|
|
else
|
|
end -= 1;
|
|
|
|
em = NULL;
|
|
|
|
/* ok, we didn't find anything, lets look for delalloc */
|
|
delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
|
|
end, len, EXTENT_DELALLOC, 1);
|
|
delalloc_end = delalloc_start + delalloc_len;
|
|
if (delalloc_end < delalloc_start)
|
|
delalloc_end = (u64)-1;
|
|
|
|
/*
|
|
* We didn't find anything useful, return the original results from
|
|
* get_extent()
|
|
*/
|
|
if (delalloc_start > end || delalloc_end <= start) {
|
|
em = hole_em;
|
|
hole_em = NULL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Adjust the delalloc_start to make sure it doesn't go backwards from
|
|
* the start they passed in
|
|
*/
|
|
delalloc_start = max(start, delalloc_start);
|
|
delalloc_len = delalloc_end - delalloc_start;
|
|
|
|
if (delalloc_len > 0) {
|
|
u64 hole_start;
|
|
u64 hole_len;
|
|
const u64 hole_end = extent_map_end(hole_em);
|
|
|
|
em = alloc_extent_map();
|
|
if (!em) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
ASSERT(hole_em);
|
|
/*
|
|
* When btrfs_get_extent can't find anything it returns one
|
|
* huge hole
|
|
*
|
|
* Make sure what it found really fits our range, and adjust to
|
|
* make sure it is based on the start from the caller
|
|
*/
|
|
if (hole_end <= start || hole_em->start > end) {
|
|
free_extent_map(hole_em);
|
|
hole_em = NULL;
|
|
} else {
|
|
hole_start = max(hole_em->start, start);
|
|
hole_len = hole_end - hole_start;
|
|
}
|
|
|
|
if (hole_em && delalloc_start > hole_start) {
|
|
/*
|
|
* Our hole starts before our delalloc, so we have to
|
|
* return just the parts of the hole that go until the
|
|
* delalloc starts
|
|
*/
|
|
em->len = min(hole_len, delalloc_start - hole_start);
|
|
em->start = hole_start;
|
|
em->orig_start = hole_start;
|
|
/*
|
|
* Don't adjust block start at all, it is fixed at
|
|
* EXTENT_MAP_HOLE
|
|
*/
|
|
em->block_start = hole_em->block_start;
|
|
em->block_len = hole_len;
|
|
if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
|
|
set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
|
|
} else {
|
|
/*
|
|
* Hole is out of passed range or it starts after
|
|
* delalloc range
|
|
*/
|
|
em->start = delalloc_start;
|
|
em->len = delalloc_len;
|
|
em->orig_start = delalloc_start;
|
|
em->block_start = EXTENT_MAP_DELALLOC;
|
|
em->block_len = delalloc_len;
|
|
}
|
|
} else {
|
|
return hole_em;
|
|
}
|
|
out:
|
|
|
|
free_extent_map(hole_em);
|
|
if (err) {
|
|
free_extent_map(em);
|
|
return ERR_PTR(err);
|
|
}
|
|
return em;
|
|
}
|
|
|
|
static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
|
|
const u64 start,
|
|
const u64 len,
|
|
const u64 orig_start,
|
|
const u64 block_start,
|
|
const u64 block_len,
|
|
const u64 orig_block_len,
|
|
const u64 ram_bytes,
|
|
const int type)
|
|
{
|
|
struct extent_map *em = NULL;
|
|
int ret;
|
|
|
|
if (type != BTRFS_ORDERED_NOCOW) {
|
|
em = create_io_em(inode, start, len, orig_start, block_start,
|
|
block_len, orig_block_len, ram_bytes,
|
|
BTRFS_COMPRESS_NONE, /* compress_type */
|
|
type);
|
|
if (IS_ERR(em))
|
|
goto out;
|
|
}
|
|
ret = btrfs_add_ordered_extent(inode, start, len, len, block_start,
|
|
block_len, 0,
|
|
(1 << type) |
|
|
(1 << BTRFS_ORDERED_DIRECT),
|
|
BTRFS_COMPRESS_NONE);
|
|
if (ret) {
|
|
if (em) {
|
|
free_extent_map(em);
|
|
btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
|
|
}
|
|
em = ERR_PTR(ret);
|
|
}
|
|
out:
|
|
|
|
return em;
|
|
}
|
|
|
|
static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
|
|
u64 start, u64 len)
|
|
{
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct extent_map *em;
|
|
struct btrfs_key ins;
|
|
u64 alloc_hint;
|
|
int ret;
|
|
|
|
alloc_hint = get_extent_allocation_hint(inode, start, len);
|
|
ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
|
|
0, alloc_hint, &ins, 1, 1);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
em = btrfs_create_dio_extent(inode, start, ins.offset, start,
|
|
ins.objectid, ins.offset, ins.offset,
|
|
ins.offset, BTRFS_ORDERED_REGULAR);
|
|
btrfs_dec_block_group_reservations(fs_info, ins.objectid);
|
|
if (IS_ERR(em))
|
|
btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
|
|
1);
|
|
|
|
return em;
|
|
}
|
|
|
|
static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
|
|
{
|
|
struct btrfs_block_group *block_group;
|
|
bool readonly = false;
|
|
|
|
block_group = btrfs_lookup_block_group(fs_info, bytenr);
|
|
if (!block_group || block_group->ro)
|
|
readonly = true;
|
|
if (block_group)
|
|
btrfs_put_block_group(block_group);
|
|
return readonly;
|
|
}
|
|
|
|
/*
|
|
* Check if we can do nocow write into the range [@offset, @offset + @len)
|
|
*
|
|
* @offset: File offset
|
|
* @len: The length to write, will be updated to the nocow writeable
|
|
* range
|
|
* @orig_start: (optional) Return the original file offset of the file extent
|
|
* @orig_len: (optional) Return the original on-disk length of the file extent
|
|
* @ram_bytes: (optional) Return the ram_bytes of the file extent
|
|
* @strict: if true, omit optimizations that might force us into unnecessary
|
|
* cow. e.g., don't trust generation number.
|
|
*
|
|
* Return:
|
|
* >0 and update @len if we can do nocow write
|
|
* 0 if we can't do nocow write
|
|
* <0 if error happened
|
|
*
|
|
* NOTE: This only checks the file extents, caller is responsible to wait for
|
|
* any ordered extents.
|
|
*/
|
|
noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
|
|
u64 *orig_start, u64 *orig_block_len,
|
|
u64 *ram_bytes, bool strict)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_path *path;
|
|
int ret;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct btrfs_file_extent_item *fi;
|
|
struct btrfs_key key;
|
|
u64 disk_bytenr;
|
|
u64 backref_offset;
|
|
u64 extent_end;
|
|
u64 num_bytes;
|
|
int slot;
|
|
int found_type;
|
|
bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
ret = btrfs_lookup_file_extent(NULL, root, path,
|
|
btrfs_ino(BTRFS_I(inode)), offset, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
slot = path->slots[0];
|
|
if (ret == 1) {
|
|
if (slot == 0) {
|
|
/* can't find the item, must cow */
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
slot--;
|
|
}
|
|
ret = 0;
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
|
|
key.type != BTRFS_EXTENT_DATA_KEY) {
|
|
/* not our file or wrong item type, must cow */
|
|
goto out;
|
|
}
|
|
|
|
if (key.offset > offset) {
|
|
/* Wrong offset, must cow */
|
|
goto out;
|
|
}
|
|
|
|
fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
|
|
found_type = btrfs_file_extent_type(leaf, fi);
|
|
if (found_type != BTRFS_FILE_EXTENT_REG &&
|
|
found_type != BTRFS_FILE_EXTENT_PREALLOC) {
|
|
/* not a regular extent, must cow */
|
|
goto out;
|
|
}
|
|
|
|
if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
|
|
goto out;
|
|
|
|
extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
|
|
if (extent_end <= offset)
|
|
goto out;
|
|
|
|
disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
|
|
if (disk_bytenr == 0)
|
|
goto out;
|
|
|
|
if (btrfs_file_extent_compression(leaf, fi) ||
|
|
btrfs_file_extent_encryption(leaf, fi) ||
|
|
btrfs_file_extent_other_encoding(leaf, fi))
|
|
goto out;
|
|
|
|
/*
|
|
* Do the same check as in btrfs_cross_ref_exist but without the
|
|
* unnecessary search.
|
|
*/
|
|
if (!strict &&
|
|
(btrfs_file_extent_generation(leaf, fi) <=
|
|
btrfs_root_last_snapshot(&root->root_item)))
|
|
goto out;
|
|
|
|
backref_offset = btrfs_file_extent_offset(leaf, fi);
|
|
|
|
if (orig_start) {
|
|
*orig_start = key.offset - backref_offset;
|
|
*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
|
|
*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
|
|
}
|
|
|
|
if (btrfs_extent_readonly(fs_info, disk_bytenr))
|
|
goto out;
|
|
|
|
num_bytes = min(offset + *len, extent_end) - offset;
|
|
if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
|
|
u64 range_end;
|
|
|
|
range_end = round_up(offset + num_bytes,
|
|
root->fs_info->sectorsize) - 1;
|
|
ret = test_range_bit(io_tree, offset, range_end,
|
|
EXTENT_DELALLOC, 0, NULL);
|
|
if (ret) {
|
|
ret = -EAGAIN;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* look for other files referencing this extent, if we
|
|
* find any we must cow
|
|
*/
|
|
|
|
ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
|
|
key.offset - backref_offset, disk_bytenr,
|
|
strict);
|
|
if (ret) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* adjust disk_bytenr and num_bytes to cover just the bytes
|
|
* in this extent we are about to write. If there
|
|
* are any csums in that range we have to cow in order
|
|
* to keep the csums correct
|
|
*/
|
|
disk_bytenr += backref_offset;
|
|
disk_bytenr += offset - key.offset;
|
|
if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
|
|
goto out;
|
|
/*
|
|
* all of the above have passed, it is safe to overwrite this extent
|
|
* without cow
|
|
*/
|
|
*len = num_bytes;
|
|
ret = 1;
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
|
|
struct extent_state **cached_state, bool writing)
|
|
{
|
|
struct btrfs_ordered_extent *ordered;
|
|
int ret = 0;
|
|
|
|
while (1) {
|
|
lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
|
|
cached_state);
|
|
/*
|
|
* We're concerned with the entire range that we're going to be
|
|
* doing DIO to, so we need to make sure there's no ordered
|
|
* extents in this range.
|
|
*/
|
|
ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
|
|
lockend - lockstart + 1);
|
|
|
|
/*
|
|
* We need to make sure there are no buffered pages in this
|
|
* range either, we could have raced between the invalidate in
|
|
* generic_file_direct_write and locking the extent. The
|
|
* invalidate needs to happen so that reads after a write do not
|
|
* get stale data.
|
|
*/
|
|
if (!ordered &&
|
|
(!writing || !filemap_range_has_page(inode->i_mapping,
|
|
lockstart, lockend)))
|
|
break;
|
|
|
|
unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
|
|
cached_state);
|
|
|
|
if (ordered) {
|
|
/*
|
|
* If we are doing a DIO read and the ordered extent we
|
|
* found is for a buffered write, we can not wait for it
|
|
* to complete and retry, because if we do so we can
|
|
* deadlock with concurrent buffered writes on page
|
|
* locks. This happens only if our DIO read covers more
|
|
* than one extent map, if at this point has already
|
|
* created an ordered extent for a previous extent map
|
|
* and locked its range in the inode's io tree, and a
|
|
* concurrent write against that previous extent map's
|
|
* range and this range started (we unlock the ranges
|
|
* in the io tree only when the bios complete and
|
|
* buffered writes always lock pages before attempting
|
|
* to lock range in the io tree).
|
|
*/
|
|
if (writing ||
|
|
test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
|
|
btrfs_start_ordered_extent(ordered, 1);
|
|
else
|
|
ret = -ENOTBLK;
|
|
btrfs_put_ordered_extent(ordered);
|
|
} else {
|
|
/*
|
|
* We could trigger writeback for this range (and wait
|
|
* for it to complete) and then invalidate the pages for
|
|
* this range (through invalidate_inode_pages2_range()),
|
|
* but that can lead us to a deadlock with a concurrent
|
|
* call to readahead (a buffered read or a defrag call
|
|
* triggered a readahead) on a page lock due to an
|
|
* ordered dio extent we created before but did not have
|
|
* yet a corresponding bio submitted (whence it can not
|
|
* complete), which makes readahead wait for that
|
|
* ordered extent to complete while holding a lock on
|
|
* that page.
|
|
*/
|
|
ret = -ENOTBLK;
|
|
}
|
|
|
|
if (ret)
|
|
break;
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* The callers of this must take lock_extent() */
|
|
static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
|
|
u64 len, u64 orig_start, u64 block_start,
|
|
u64 block_len, u64 orig_block_len,
|
|
u64 ram_bytes, int compress_type,
|
|
int type)
|
|
{
|
|
struct extent_map_tree *em_tree;
|
|
struct extent_map *em;
|
|
int ret;
|
|
|
|
ASSERT(type == BTRFS_ORDERED_PREALLOC ||
|
|
type == BTRFS_ORDERED_COMPRESSED ||
|
|
type == BTRFS_ORDERED_NOCOW ||
|
|
type == BTRFS_ORDERED_REGULAR);
|
|
|
|
em_tree = &inode->extent_tree;
|
|
em = alloc_extent_map();
|
|
if (!em)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
em->start = start;
|
|
em->orig_start = orig_start;
|
|
em->len = len;
|
|
em->block_len = block_len;
|
|
em->block_start = block_start;
|
|
em->orig_block_len = orig_block_len;
|
|
em->ram_bytes = ram_bytes;
|
|
em->generation = -1;
|
|
set_bit(EXTENT_FLAG_PINNED, &em->flags);
|
|
if (type == BTRFS_ORDERED_PREALLOC) {
|
|
set_bit(EXTENT_FLAG_FILLING, &em->flags);
|
|
} else if (type == BTRFS_ORDERED_COMPRESSED) {
|
|
set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
|
|
em->compress_type = compress_type;
|
|
}
|
|
|
|
do {
|
|
btrfs_drop_extent_cache(inode, em->start,
|
|
em->start + em->len - 1, 0);
|
|
write_lock(&em_tree->lock);
|
|
ret = add_extent_mapping(em_tree, em, 1);
|
|
write_unlock(&em_tree->lock);
|
|
/*
|
|
* The caller has taken lock_extent(), who could race with us
|
|
* to add em?
|
|
*/
|
|
} while (ret == -EEXIST);
|
|
|
|
if (ret) {
|
|
free_extent_map(em);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
/* em got 2 refs now, callers needs to do free_extent_map once. */
|
|
return em;
|
|
}
|
|
|
|
|
|
static int btrfs_get_blocks_direct_write(struct extent_map **map,
|
|
struct inode *inode,
|
|
struct btrfs_dio_data *dio_data,
|
|
u64 start, u64 len)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct extent_map *em = *map;
|
|
int type;
|
|
u64 block_start, orig_start, orig_block_len, ram_bytes;
|
|
bool can_nocow = false;
|
|
bool space_reserved = false;
|
|
u64 prev_len;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* We don't allocate a new extent in the following cases
|
|
*
|
|
* 1) The inode is marked as NODATACOW. In this case we'll just use the
|
|
* existing extent.
|
|
* 2) The extent is marked as PREALLOC. We're good to go here and can
|
|
* just use the extent.
|
|
*
|
|
*/
|
|
if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
|
|
((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
|
|
em->block_start != EXTENT_MAP_HOLE)) {
|
|
if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
|
|
type = BTRFS_ORDERED_PREALLOC;
|
|
else
|
|
type = BTRFS_ORDERED_NOCOW;
|
|
len = min(len, em->len - (start - em->start));
|
|
block_start = em->block_start + (start - em->start);
|
|
|
|
if (can_nocow_extent(inode, start, &len, &orig_start,
|
|
&orig_block_len, &ram_bytes, false) == 1 &&
|
|
btrfs_inc_nocow_writers(fs_info, block_start))
|
|
can_nocow = true;
|
|
}
|
|
|
|
prev_len = len;
|
|
if (can_nocow) {
|
|
struct extent_map *em2;
|
|
|
|
/* We can NOCOW, so only need to reserve metadata space. */
|
|
ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len);
|
|
if (ret < 0) {
|
|
/* Our caller expects us to free the input extent map. */
|
|
free_extent_map(em);
|
|
*map = NULL;
|
|
btrfs_dec_nocow_writers(fs_info, block_start);
|
|
goto out;
|
|
}
|
|
space_reserved = true;
|
|
|
|
em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
|
|
orig_start, block_start,
|
|
len, orig_block_len,
|
|
ram_bytes, type);
|
|
btrfs_dec_nocow_writers(fs_info, block_start);
|
|
if (type == BTRFS_ORDERED_PREALLOC) {
|
|
free_extent_map(em);
|
|
*map = em = em2;
|
|
}
|
|
|
|
if (IS_ERR(em2)) {
|
|
ret = PTR_ERR(em2);
|
|
goto out;
|
|
}
|
|
} else {
|
|
/* Our caller expects us to free the input extent map. */
|
|
free_extent_map(em);
|
|
*map = NULL;
|
|
|
|
/* We have to COW, so need to reserve metadata and data space. */
|
|
ret = btrfs_delalloc_reserve_space(BTRFS_I(inode),
|
|
&dio_data->data_reserved,
|
|
start, len);
|
|
if (ret < 0)
|
|
goto out;
|
|
space_reserved = true;
|
|
|
|
em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
|
|
if (IS_ERR(em)) {
|
|
ret = PTR_ERR(em);
|
|
goto out;
|
|
}
|
|
*map = em;
|
|
len = min(len, em->len - (start - em->start));
|
|
if (len < prev_len)
|
|
btrfs_delalloc_release_space(BTRFS_I(inode),
|
|
dio_data->data_reserved,
|
|
start + len, prev_len - len,
|
|
true);
|
|
}
|
|
|
|
/*
|
|
* We have created our ordered extent, so we can now release our reservation
|
|
* for an outstanding extent.
|
|
*/
|
|
btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
|
|
|
|
/*
|
|
* Need to update the i_size under the extent lock so buffered
|
|
* readers will get the updated i_size when we unlock.
|
|
*/
|
|
if (start + len > i_size_read(inode))
|
|
i_size_write(inode, start + len);
|
|
out:
|
|
if (ret && space_reserved) {
|
|
btrfs_delalloc_release_extents(BTRFS_I(inode), len);
|
|
if (can_nocow) {
|
|
btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
|
|
} else {
|
|
btrfs_delalloc_release_space(BTRFS_I(inode),
|
|
dio_data->data_reserved,
|
|
start, len, true);
|
|
extent_changeset_free(dio_data->data_reserved);
|
|
dio_data->data_reserved = NULL;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
|
|
loff_t length, unsigned int flags, struct iomap *iomap,
|
|
struct iomap *srcmap)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct extent_map *em;
|
|
struct extent_state *cached_state = NULL;
|
|
struct btrfs_dio_data *dio_data = NULL;
|
|
u64 lockstart, lockend;
|
|
const bool write = !!(flags & IOMAP_WRITE);
|
|
int ret = 0;
|
|
u64 len = length;
|
|
bool unlock_extents = false;
|
|
|
|
if (!write)
|
|
len = min_t(u64, len, fs_info->sectorsize);
|
|
|
|
lockstart = start;
|
|
lockend = start + len - 1;
|
|
|
|
/*
|
|
* The generic stuff only does filemap_write_and_wait_range, which
|
|
* isn't enough if we've written compressed pages to this area, so we
|
|
* need to flush the dirty pages again to make absolutely sure that any
|
|
* outstanding dirty pages are on disk.
|
|
*/
|
|
if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
|
|
&BTRFS_I(inode)->runtime_flags)) {
|
|
ret = filemap_fdatawrite_range(inode->i_mapping, start,
|
|
start + length - 1);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS);
|
|
if (!dio_data)
|
|
return -ENOMEM;
|
|
|
|
iomap->private = dio_data;
|
|
|
|
|
|
/*
|
|
* If this errors out it's because we couldn't invalidate pagecache for
|
|
* this range and we need to fallback to buffered.
|
|
*/
|
|
if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) {
|
|
ret = -ENOTBLK;
|
|
goto err;
|
|
}
|
|
|
|
em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
|
|
if (IS_ERR(em)) {
|
|
ret = PTR_ERR(em);
|
|
goto unlock_err;
|
|
}
|
|
|
|
/*
|
|
* Ok for INLINE and COMPRESSED extents we need to fallback on buffered
|
|
* io. INLINE is special, and we could probably kludge it in here, but
|
|
* it's still buffered so for safety lets just fall back to the generic
|
|
* buffered path.
|
|
*
|
|
* For COMPRESSED we _have_ to read the entire extent in so we can
|
|
* decompress it, so there will be buffering required no matter what we
|
|
* do, so go ahead and fallback to buffered.
|
|
*
|
|
* We return -ENOTBLK because that's what makes DIO go ahead and go back
|
|
* to buffered IO. Don't blame me, this is the price we pay for using
|
|
* the generic code.
|
|
*/
|
|
if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
|
|
em->block_start == EXTENT_MAP_INLINE) {
|
|
free_extent_map(em);
|
|
ret = -ENOTBLK;
|
|
goto unlock_err;
|
|
}
|
|
|
|
len = min(len, em->len - (start - em->start));
|
|
|
|
/*
|
|
* If we have a NOWAIT request and the range contains multiple extents
|
|
* (or a mix of extents and holes), then we return -EAGAIN to make the
|
|
* caller fallback to a context where it can do a blocking (without
|
|
* NOWAIT) request. This way we avoid doing partial IO and returning
|
|
* success to the caller, which is not optimal for writes and for reads
|
|
* it can result in unexpected behaviour for an application.
|
|
*
|
|
* When doing a read, because we use IOMAP_DIO_PARTIAL when calling
|
|
* iomap_dio_rw(), we can end up returning less data then what the caller
|
|
* asked for, resulting in an unexpected, and incorrect, short read.
|
|
* That is, the caller asked to read N bytes and we return less than that,
|
|
* which is wrong unless we are crossing EOF. This happens if we get a
|
|
* page fault error when trying to fault in pages for the buffer that is
|
|
* associated to the struct iov_iter passed to iomap_dio_rw(), and we
|
|
* have previously submitted bios for other extents in the range, in
|
|
* which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
|
|
* those bios have completed by the time we get the page fault error,
|
|
* which we return back to our caller - we should only return EIOCBQUEUED
|
|
* after we have submitted bios for all the extents in the range.
|
|
*/
|
|
if ((flags & IOMAP_NOWAIT) && len < length) {
|
|
free_extent_map(em);
|
|
ret = -EAGAIN;
|
|
goto unlock_err;
|
|
}
|
|
|
|
if (write) {
|
|
ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
|
|
start, len);
|
|
if (ret < 0)
|
|
goto unlock_err;
|
|
unlock_extents = true;
|
|
/* Recalc len in case the new em is smaller than requested */
|
|
len = min(len, em->len - (start - em->start));
|
|
} else {
|
|
/*
|
|
* We need to unlock only the end area that we aren't using.
|
|
* The rest is going to be unlocked by the endio routine.
|
|
*/
|
|
lockstart = start + len;
|
|
if (lockstart < lockend)
|
|
unlock_extents = true;
|
|
}
|
|
|
|
if (unlock_extents)
|
|
unlock_extent_cached(&BTRFS_I(inode)->io_tree,
|
|
lockstart, lockend, &cached_state);
|
|
else
|
|
free_extent_state(cached_state);
|
|
|
|
/*
|
|
* Translate extent map information to iomap.
|
|
* We trim the extents (and move the addr) even though iomap code does
|
|
* that, since we have locked only the parts we are performing I/O in.
|
|
*/
|
|
if ((em->block_start == EXTENT_MAP_HOLE) ||
|
|
(test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
|
|
iomap->addr = IOMAP_NULL_ADDR;
|
|
iomap->type = IOMAP_HOLE;
|
|
} else {
|
|
iomap->addr = em->block_start + (start - em->start);
|
|
iomap->type = IOMAP_MAPPED;
|
|
}
|
|
iomap->offset = start;
|
|
iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
|
|
iomap->length = len;
|
|
|
|
if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start))
|
|
iomap->flags |= IOMAP_F_ZONE_APPEND;
|
|
|
|
free_extent_map(em);
|
|
|
|
return 0;
|
|
|
|
unlock_err:
|
|
unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
|
|
&cached_state);
|
|
err:
|
|
kfree(dio_data);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
|
|
ssize_t written, unsigned int flags, struct iomap *iomap)
|
|
{
|
|
int ret = 0;
|
|
struct btrfs_dio_data *dio_data = iomap->private;
|
|
size_t submitted = dio_data->submitted;
|
|
const bool write = !!(flags & IOMAP_WRITE);
|
|
|
|
if (!write && (iomap->type == IOMAP_HOLE)) {
|
|
/* If reading from a hole, unlock and return */
|
|
unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
|
|
goto out;
|
|
}
|
|
|
|
if (submitted < length) {
|
|
pos += submitted;
|
|
length -= submitted;
|
|
if (write)
|
|
__endio_write_update_ordered(BTRFS_I(inode), pos,
|
|
length, false);
|
|
else
|
|
unlock_extent(&BTRFS_I(inode)->io_tree, pos,
|
|
pos + length - 1);
|
|
ret = -ENOTBLK;
|
|
}
|
|
|
|
if (write)
|
|
extent_changeset_free(dio_data->data_reserved);
|
|
out:
|
|
kfree(dio_data);
|
|
iomap->private = NULL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
|
|
{
|
|
/*
|
|
* This implies a barrier so that stores to dio_bio->bi_status before
|
|
* this and loads of dio_bio->bi_status after this are fully ordered.
|
|
*/
|
|
if (!refcount_dec_and_test(&dip->refs))
|
|
return;
|
|
|
|
if (btrfs_op(dip->dio_bio) == BTRFS_MAP_WRITE) {
|
|
__endio_write_update_ordered(BTRFS_I(dip->inode),
|
|
dip->file_offset,
|
|
dip->bytes,
|
|
!dip->dio_bio->bi_status);
|
|
} else {
|
|
unlock_extent(&BTRFS_I(dip->inode)->io_tree,
|
|
dip->file_offset,
|
|
dip->file_offset + dip->bytes - 1);
|
|
}
|
|
|
|
bio_endio(dip->dio_bio);
|
|
kfree(dip);
|
|
}
|
|
|
|
static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
|
|
int mirror_num,
|
|
unsigned long bio_flags)
|
|
{
|
|
struct btrfs_dio_private *dip = bio->bi_private;
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
blk_status_t ret;
|
|
|
|
BUG_ON(bio_op(bio) == REQ_OP_WRITE);
|
|
|
|
ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
|
|
if (ret)
|
|
return ret;
|
|
|
|
refcount_inc(&dip->refs);
|
|
ret = btrfs_map_bio(fs_info, bio, mirror_num);
|
|
if (ret)
|
|
refcount_dec(&dip->refs);
|
|
return ret;
|
|
}
|
|
|
|
static blk_status_t btrfs_check_read_dio_bio(struct btrfs_dio_private *dip,
|
|
struct btrfs_bio *bbio,
|
|
const bool uptodate)
|
|
{
|
|
struct inode *inode = dip->inode;
|
|
struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
|
|
const u32 sectorsize = fs_info->sectorsize;
|
|
struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
|
|
struct bio_vec bvec;
|
|
struct bvec_iter iter;
|
|
u32 bio_offset = 0;
|
|
blk_status_t err = BLK_STS_OK;
|
|
|
|
__bio_for_each_segment(bvec, &bbio->bio, iter, bbio->iter) {
|
|
unsigned int i, nr_sectors, pgoff;
|
|
|
|
nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
|
|
pgoff = bvec.bv_offset;
|
|
for (i = 0; i < nr_sectors; i++) {
|
|
u64 start = bbio->file_offset + bio_offset;
|
|
|
|
ASSERT(pgoff < PAGE_SIZE);
|
|
if (uptodate &&
|
|
(!csum || !check_data_csum(inode, bbio,
|
|
bio_offset, bvec.bv_page,
|
|
pgoff, start))) {
|
|
clean_io_failure(fs_info, failure_tree, io_tree,
|
|
start, bvec.bv_page,
|
|
btrfs_ino(BTRFS_I(inode)),
|
|
pgoff);
|
|
} else {
|
|
int ret;
|
|
|
|
ret = btrfs_repair_one_sector(inode, &bbio->bio,
|
|
bio_offset, bvec.bv_page, pgoff,
|
|
start, bbio->mirror_num,
|
|
submit_dio_repair_bio);
|
|
if (ret)
|
|
err = errno_to_blk_status(ret);
|
|
}
|
|
ASSERT(bio_offset + sectorsize > bio_offset);
|
|
bio_offset += sectorsize;
|
|
pgoff += sectorsize;
|
|
}
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static void __endio_write_update_ordered(struct btrfs_inode *inode,
|
|
const u64 offset, const u64 bytes,
|
|
const bool uptodate)
|
|
{
|
|
btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes,
|
|
finish_ordered_fn, uptodate);
|
|
}
|
|
|
|
static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode,
|
|
struct bio *bio,
|
|
u64 dio_file_offset)
|
|
{
|
|
return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, false);
|
|
}
|
|
|
|
static void btrfs_end_dio_bio(struct bio *bio)
|
|
{
|
|
struct btrfs_dio_private *dip = bio->bi_private;
|
|
struct btrfs_bio *bbio = btrfs_bio(bio);
|
|
blk_status_t err = bio->bi_status;
|
|
|
|
if (err)
|
|
btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
|
|
"direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
|
|
btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
|
|
bio->bi_opf, bio->bi_iter.bi_sector,
|
|
bio->bi_iter.bi_size, err);
|
|
|
|
if (bio_op(bio) == REQ_OP_READ)
|
|
err = btrfs_check_read_dio_bio(dip, bbio, !err);
|
|
|
|
if (err)
|
|
dip->dio_bio->bi_status = err;
|
|
|
|
btrfs_record_physical_zoned(dip->inode, bbio->file_offset, bio);
|
|
|
|
bio_put(bio);
|
|
btrfs_dio_private_put(dip);
|
|
}
|
|
|
|
static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
|
|
struct inode *inode, u64 file_offset, int async_submit)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_dio_private *dip = bio->bi_private;
|
|
bool write = btrfs_op(bio) == BTRFS_MAP_WRITE;
|
|
blk_status_t ret;
|
|
|
|
/* Check btrfs_submit_bio_hook() for rules about async submit. */
|
|
if (async_submit)
|
|
async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
|
|
|
|
if (!write) {
|
|
ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
|
|
goto map;
|
|
|
|
if (write && async_submit) {
|
|
ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset,
|
|
btrfs_submit_bio_start_direct_io);
|
|
goto err;
|
|
} else if (write) {
|
|
/*
|
|
* If we aren't doing async submit, calculate the csum of the
|
|
* bio now.
|
|
*/
|
|
ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, false);
|
|
if (ret)
|
|
goto err;
|
|
} else {
|
|
u64 csum_offset;
|
|
|
|
csum_offset = file_offset - dip->file_offset;
|
|
csum_offset >>= fs_info->sectorsize_bits;
|
|
csum_offset *= fs_info->csum_size;
|
|
btrfs_bio(bio)->csum = dip->csums + csum_offset;
|
|
}
|
|
map:
|
|
ret = btrfs_map_bio(fs_info, bio, 0);
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
|
|
* or ordered extents whether or not we submit any bios.
|
|
*/
|
|
static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
|
|
struct inode *inode,
|
|
loff_t file_offset)
|
|
{
|
|
const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
|
|
const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
|
|
size_t dip_size;
|
|
struct btrfs_dio_private *dip;
|
|
|
|
dip_size = sizeof(*dip);
|
|
if (!write && csum) {
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
size_t nblocks;
|
|
|
|
nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits;
|
|
dip_size += fs_info->csum_size * nblocks;
|
|
}
|
|
|
|
dip = kzalloc(dip_size, GFP_NOFS);
|
|
if (!dip)
|
|
return NULL;
|
|
|
|
dip->inode = inode;
|
|
dip->file_offset = file_offset;
|
|
dip->bytes = dio_bio->bi_iter.bi_size;
|
|
dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9;
|
|
dip->dio_bio = dio_bio;
|
|
refcount_set(&dip->refs, 1);
|
|
return dip;
|
|
}
|
|
|
|
static void btrfs_submit_direct(const struct iomap_iter *iter,
|
|
struct bio *dio_bio, loff_t file_offset)
|
|
{
|
|
struct inode *inode = iter->inode;
|
|
const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
|
|
BTRFS_BLOCK_GROUP_RAID56_MASK);
|
|
struct btrfs_dio_private *dip;
|
|
struct bio *bio;
|
|
u64 start_sector;
|
|
int async_submit = 0;
|
|
u64 submit_len;
|
|
u64 clone_offset = 0;
|
|
u64 clone_len;
|
|
u64 logical;
|
|
int ret;
|
|
blk_status_t status;
|
|
struct btrfs_io_geometry geom;
|
|
struct btrfs_dio_data *dio_data = iter->iomap.private;
|
|
struct extent_map *em = NULL;
|
|
|
|
dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
|
|
if (!dip) {
|
|
if (!write) {
|
|
unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
|
|
file_offset + dio_bio->bi_iter.bi_size - 1);
|
|
}
|
|
dio_bio->bi_status = BLK_STS_RESOURCE;
|
|
bio_endio(dio_bio);
|
|
return;
|
|
}
|
|
|
|
if (!write) {
|
|
/*
|
|
* Load the csums up front to reduce csum tree searches and
|
|
* contention when submitting bios.
|
|
*
|
|
* If we have csums disabled this will do nothing.
|
|
*/
|
|
status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums);
|
|
if (status != BLK_STS_OK)
|
|
goto out_err;
|
|
}
|
|
|
|
start_sector = dio_bio->bi_iter.bi_sector;
|
|
submit_len = dio_bio->bi_iter.bi_size;
|
|
|
|
do {
|
|
logical = start_sector << 9;
|
|
em = btrfs_get_chunk_map(fs_info, logical, submit_len);
|
|
if (IS_ERR(em)) {
|
|
status = errno_to_blk_status(PTR_ERR(em));
|
|
em = NULL;
|
|
goto out_err_em;
|
|
}
|
|
ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio),
|
|
logical, &geom);
|
|
if (ret) {
|
|
status = errno_to_blk_status(ret);
|
|
goto out_err_em;
|
|
}
|
|
|
|
clone_len = min(submit_len, geom.len);
|
|
ASSERT(clone_len <= UINT_MAX);
|
|
|
|
/*
|
|
* This will never fail as it's passing GPF_NOFS and
|
|
* the allocation is backed by btrfs_bioset.
|
|
*/
|
|
bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
|
|
bio->bi_private = dip;
|
|
bio->bi_end_io = btrfs_end_dio_bio;
|
|
btrfs_bio(bio)->file_offset = file_offset;
|
|
|
|
if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
|
|
status = extract_ordered_extent(BTRFS_I(inode), bio,
|
|
file_offset);
|
|
if (status) {
|
|
bio_put(bio);
|
|
goto out_err;
|
|
}
|
|
}
|
|
|
|
ASSERT(submit_len >= clone_len);
|
|
submit_len -= clone_len;
|
|
|
|
/*
|
|
* Increase the count before we submit the bio so we know
|
|
* the end IO handler won't happen before we increase the
|
|
* count. Otherwise, the dip might get freed before we're
|
|
* done setting it up.
|
|
*
|
|
* We transfer the initial reference to the last bio, so we
|
|
* don't need to increment the reference count for the last one.
|
|
*/
|
|
if (submit_len > 0) {
|
|
refcount_inc(&dip->refs);
|
|
/*
|
|
* If we are submitting more than one bio, submit them
|
|
* all asynchronously. The exception is RAID 5 or 6, as
|
|
* asynchronous checksums make it difficult to collect
|
|
* full stripe writes.
|
|
*/
|
|
if (!raid56)
|
|
async_submit = 1;
|
|
}
|
|
|
|
status = btrfs_submit_dio_bio(bio, inode, file_offset,
|
|
async_submit);
|
|
if (status) {
|
|
bio_put(bio);
|
|
if (submit_len > 0)
|
|
refcount_dec(&dip->refs);
|
|
goto out_err_em;
|
|
}
|
|
|
|
dio_data->submitted += clone_len;
|
|
clone_offset += clone_len;
|
|
start_sector += clone_len >> 9;
|
|
file_offset += clone_len;
|
|
|
|
free_extent_map(em);
|
|
} while (submit_len > 0);
|
|
return;
|
|
|
|
out_err_em:
|
|
free_extent_map(em);
|
|
out_err:
|
|
dip->dio_bio->bi_status = status;
|
|
btrfs_dio_private_put(dip);
|
|
}
|
|
|
|
const struct iomap_ops btrfs_dio_iomap_ops = {
|
|
.iomap_begin = btrfs_dio_iomap_begin,
|
|
.iomap_end = btrfs_dio_iomap_end,
|
|
};
|
|
|
|
const struct iomap_dio_ops btrfs_dio_ops = {
|
|
.submit_io = btrfs_submit_direct,
|
|
};
|
|
|
|
static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
|
|
u64 start, u64 len)
|
|
{
|
|
int ret;
|
|
|
|
ret = fiemap_prep(inode, fieinfo, start, &len, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
|
|
}
|
|
|
|
int btrfs_readpage(struct file *file, struct page *page)
|
|
{
|
|
struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
|
|
u64 start = page_offset(page);
|
|
u64 end = start + PAGE_SIZE - 1;
|
|
struct btrfs_bio_ctrl bio_ctrl = { 0 };
|
|
int ret;
|
|
|
|
btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
|
|
|
|
ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
|
|
if (bio_ctrl.bio) {
|
|
int ret2;
|
|
|
|
ret2 = submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags);
|
|
if (ret == 0)
|
|
ret = ret2;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
int ret;
|
|
|
|
if (current->flags & PF_MEMALLOC) {
|
|
redirty_page_for_writepage(wbc, page);
|
|
unlock_page(page);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If we are under memory pressure we will call this directly from the
|
|
* VM, we need to make sure we have the inode referenced for the ordered
|
|
* extent. If not just return like we didn't do anything.
|
|
*/
|
|
if (!igrab(inode)) {
|
|
redirty_page_for_writepage(wbc, page);
|
|
return AOP_WRITEPAGE_ACTIVATE;
|
|
}
|
|
ret = extent_write_full_page(page, wbc);
|
|
btrfs_add_delayed_iput(inode);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_writepages(struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
return extent_writepages(mapping, wbc);
|
|
}
|
|
|
|
static void btrfs_readahead(struct readahead_control *rac)
|
|
{
|
|
extent_readahead(rac);
|
|
}
|
|
|
|
/*
|
|
* For releasepage() and invalidate_folio() we have a race window where
|
|
* folio_end_writeback() is called but the subpage spinlock is not yet released.
|
|
* If we continue to release/invalidate the page, we could cause use-after-free
|
|
* for subpage spinlock. So this function is to spin and wait for subpage
|
|
* spinlock.
|
|
*/
|
|
static void wait_subpage_spinlock(struct page *page)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
|
|
struct btrfs_subpage *subpage;
|
|
|
|
if (fs_info->sectorsize == PAGE_SIZE)
|
|
return;
|
|
|
|
ASSERT(PagePrivate(page) && page->private);
|
|
subpage = (struct btrfs_subpage *)page->private;
|
|
|
|
/*
|
|
* This may look insane as we just acquire the spinlock and release it,
|
|
* without doing anything. But we just want to make sure no one is
|
|
* still holding the subpage spinlock.
|
|
* And since the page is not dirty nor writeback, and we have page
|
|
* locked, the only possible way to hold a spinlock is from the endio
|
|
* function to clear page writeback.
|
|
*
|
|
* Here we just acquire the spinlock so that all existing callers
|
|
* should exit and we're safe to release/invalidate the page.
|
|
*/
|
|
spin_lock_irq(&subpage->lock);
|
|
spin_unlock_irq(&subpage->lock);
|
|
}
|
|
|
|
static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
|
|
{
|
|
int ret = try_release_extent_mapping(page, gfp_flags);
|
|
|
|
if (ret == 1) {
|
|
wait_subpage_spinlock(page);
|
|
clear_page_extent_mapped(page);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
|
|
{
|
|
if (PageWriteback(page) || PageDirty(page))
|
|
return 0;
|
|
return __btrfs_releasepage(page, gfp_flags);
|
|
}
|
|
|
|
#ifdef CONFIG_MIGRATION
|
|
static int btrfs_migratepage(struct address_space *mapping,
|
|
struct page *newpage, struct page *page,
|
|
enum migrate_mode mode)
|
|
{
|
|
int ret;
|
|
|
|
ret = migrate_page_move_mapping(mapping, newpage, page, 0);
|
|
if (ret != MIGRATEPAGE_SUCCESS)
|
|
return ret;
|
|
|
|
if (page_has_private(page))
|
|
attach_page_private(newpage, detach_page_private(page));
|
|
|
|
if (PageOrdered(page)) {
|
|
ClearPageOrdered(page);
|
|
SetPageOrdered(newpage);
|
|
}
|
|
|
|
if (mode != MIGRATE_SYNC_NO_COPY)
|
|
migrate_page_copy(newpage, page);
|
|
else
|
|
migrate_page_states(newpage, page);
|
|
return MIGRATEPAGE_SUCCESS;
|
|
}
|
|
#endif
|
|
|
|
static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
|
|
size_t length)
|
|
{
|
|
struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct extent_io_tree *tree = &inode->io_tree;
|
|
struct extent_state *cached_state = NULL;
|
|
u64 page_start = folio_pos(folio);
|
|
u64 page_end = page_start + folio_size(folio) - 1;
|
|
u64 cur;
|
|
int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
|
|
|
|
/*
|
|
* We have folio locked so no new ordered extent can be created on this
|
|
* page, nor bio can be submitted for this folio.
|
|
*
|
|
* But already submitted bio can still be finished on this folio.
|
|
* Furthermore, endio function won't skip folio which has Ordered
|
|
* (Private2) already cleared, so it's possible for endio and
|
|
* invalidate_folio to do the same ordered extent accounting twice
|
|
* on one folio.
|
|
*
|
|
* So here we wait for any submitted bios to finish, so that we won't
|
|
* do double ordered extent accounting on the same folio.
|
|
*/
|
|
folio_wait_writeback(folio);
|
|
wait_subpage_spinlock(&folio->page);
|
|
|
|
/*
|
|
* For subpage case, we have call sites like
|
|
* btrfs_punch_hole_lock_range() which passes range not aligned to
|
|
* sectorsize.
|
|
* If the range doesn't cover the full folio, we don't need to and
|
|
* shouldn't clear page extent mapped, as folio->private can still
|
|
* record subpage dirty bits for other part of the range.
|
|
*
|
|
* For cases that invalidate the full folio even the range doesn't
|
|
* cover the full folio, like invalidating the last folio, we're
|
|
* still safe to wait for ordered extent to finish.
|
|
*/
|
|
if (!(offset == 0 && length == folio_size(folio))) {
|
|
btrfs_releasepage(&folio->page, GFP_NOFS);
|
|
return;
|
|
}
|
|
|
|
if (!inode_evicting)
|
|
lock_extent_bits(tree, page_start, page_end, &cached_state);
|
|
|
|
cur = page_start;
|
|
while (cur < page_end) {
|
|
struct btrfs_ordered_extent *ordered;
|
|
bool delete_states;
|
|
u64 range_end;
|
|
u32 range_len;
|
|
|
|
ordered = btrfs_lookup_first_ordered_range(inode, cur,
|
|
page_end + 1 - cur);
|
|
if (!ordered) {
|
|
range_end = page_end;
|
|
/*
|
|
* No ordered extent covering this range, we are safe
|
|
* to delete all extent states in the range.
|
|
*/
|
|
delete_states = true;
|
|
goto next;
|
|
}
|
|
if (ordered->file_offset > cur) {
|
|
/*
|
|
* There is a range between [cur, oe->file_offset) not
|
|
* covered by any ordered extent.
|
|
* We are safe to delete all extent states, and handle
|
|
* the ordered extent in the next iteration.
|
|
*/
|
|
range_end = ordered->file_offset - 1;
|
|
delete_states = true;
|
|
goto next;
|
|
}
|
|
|
|
range_end = min(ordered->file_offset + ordered->num_bytes - 1,
|
|
page_end);
|
|
ASSERT(range_end + 1 - cur < U32_MAX);
|
|
range_len = range_end + 1 - cur;
|
|
if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
|
|
/*
|
|
* If Ordered (Private2) is cleared, it means endio has
|
|
* already been executed for the range.
|
|
* We can't delete the extent states as
|
|
* btrfs_finish_ordered_io() may still use some of them.
|
|
*/
|
|
delete_states = false;
|
|
goto next;
|
|
}
|
|
btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
|
|
|
|
/*
|
|
* IO on this page will never be started, so we need to account
|
|
* for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
|
|
* here, must leave that up for the ordered extent completion.
|
|
*
|
|
* This will also unlock the range for incoming
|
|
* btrfs_finish_ordered_io().
|
|
*/
|
|
if (!inode_evicting)
|
|
clear_extent_bit(tree, cur, range_end,
|
|
EXTENT_DELALLOC |
|
|
EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
|
|
EXTENT_DEFRAG, 1, 0, &cached_state);
|
|
|
|
spin_lock_irq(&inode->ordered_tree.lock);
|
|
set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
|
|
ordered->truncated_len = min(ordered->truncated_len,
|
|
cur - ordered->file_offset);
|
|
spin_unlock_irq(&inode->ordered_tree.lock);
|
|
|
|
if (btrfs_dec_test_ordered_pending(inode, &ordered,
|
|
cur, range_end + 1 - cur)) {
|
|
btrfs_finish_ordered_io(ordered);
|
|
/*
|
|
* The ordered extent has finished, now we're again
|
|
* safe to delete all extent states of the range.
|
|
*/
|
|
delete_states = true;
|
|
} else {
|
|
/*
|
|
* btrfs_finish_ordered_io() will get executed by endio
|
|
* of other pages, thus we can't delete extent states
|
|
* anymore
|
|
*/
|
|
delete_states = false;
|
|
}
|
|
next:
|
|
if (ordered)
|
|
btrfs_put_ordered_extent(ordered);
|
|
/*
|
|
* Qgroup reserved space handler
|
|
* Sector(s) here will be either:
|
|
*
|
|
* 1) Already written to disk or bio already finished
|
|
* Then its QGROUP_RESERVED bit in io_tree is already cleared.
|
|
* Qgroup will be handled by its qgroup_record then.
|
|
* btrfs_qgroup_free_data() call will do nothing here.
|
|
*
|
|
* 2) Not written to disk yet
|
|
* Then btrfs_qgroup_free_data() call will clear the
|
|
* QGROUP_RESERVED bit of its io_tree, and free the qgroup
|
|
* reserved data space.
|
|
* Since the IO will never happen for this page.
|
|
*/
|
|
btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
|
|
if (!inode_evicting) {
|
|
clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
|
|
EXTENT_DELALLOC | EXTENT_UPTODATE |
|
|
EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1,
|
|
delete_states, &cached_state);
|
|
}
|
|
cur = range_end + 1;
|
|
}
|
|
/*
|
|
* We have iterated through all ordered extents of the page, the page
|
|
* should not have Ordered (Private2) anymore, or the above iteration
|
|
* did something wrong.
|
|
*/
|
|
ASSERT(!folio_test_ordered(folio));
|
|
btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
|
|
if (!inode_evicting)
|
|
__btrfs_releasepage(&folio->page, GFP_NOFS);
|
|
clear_page_extent_mapped(&folio->page);
|
|
}
|
|
|
|
/*
|
|
* btrfs_page_mkwrite() is not allowed to change the file size as it gets
|
|
* called from a page fault handler when a page is first dirtied. Hence we must
|
|
* be careful to check for EOF conditions here. We set the page up correctly
|
|
* for a written page which means we get ENOSPC checking when writing into
|
|
* holes and correct delalloc and unwritten extent mapping on filesystems that
|
|
* support these features.
|
|
*
|
|
* We are not allowed to take the i_mutex here so we have to play games to
|
|
* protect against truncate races as the page could now be beyond EOF. Because
|
|
* truncate_setsize() writes the inode size before removing pages, once we have
|
|
* the page lock we can determine safely if the page is beyond EOF. If it is not
|
|
* beyond EOF, then the page is guaranteed safe against truncation until we
|
|
* unlock the page.
|
|
*/
|
|
vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
|
|
{
|
|
struct page *page = vmf->page;
|
|
struct inode *inode = file_inode(vmf->vma->vm_file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct btrfs_ordered_extent *ordered;
|
|
struct extent_state *cached_state = NULL;
|
|
struct extent_changeset *data_reserved = NULL;
|
|
unsigned long zero_start;
|
|
loff_t size;
|
|
vm_fault_t ret;
|
|
int ret2;
|
|
int reserved = 0;
|
|
u64 reserved_space;
|
|
u64 page_start;
|
|
u64 page_end;
|
|
u64 end;
|
|
|
|
reserved_space = PAGE_SIZE;
|
|
|
|
sb_start_pagefault(inode->i_sb);
|
|
page_start = page_offset(page);
|
|
page_end = page_start + PAGE_SIZE - 1;
|
|
end = page_end;
|
|
|
|
/*
|
|
* Reserving delalloc space after obtaining the page lock can lead to
|
|
* deadlock. For example, if a dirty page is locked by this function
|
|
* and the call to btrfs_delalloc_reserve_space() ends up triggering
|
|
* dirty page write out, then the btrfs_writepage() function could
|
|
* end up waiting indefinitely to get a lock on the page currently
|
|
* being processed by btrfs_page_mkwrite() function.
|
|
*/
|
|
ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
|
|
page_start, reserved_space);
|
|
if (!ret2) {
|
|
ret2 = file_update_time(vmf->vma->vm_file);
|
|
reserved = 1;
|
|
}
|
|
if (ret2) {
|
|
ret = vmf_error(ret2);
|
|
if (reserved)
|
|
goto out;
|
|
goto out_noreserve;
|
|
}
|
|
|
|
ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
|
|
again:
|
|
down_read(&BTRFS_I(inode)->i_mmap_lock);
|
|
lock_page(page);
|
|
size = i_size_read(inode);
|
|
|
|
if ((page->mapping != inode->i_mapping) ||
|
|
(page_start >= size)) {
|
|
/* page got truncated out from underneath us */
|
|
goto out_unlock;
|
|
}
|
|
wait_on_page_writeback(page);
|
|
|
|
lock_extent_bits(io_tree, page_start, page_end, &cached_state);
|
|
ret2 = set_page_extent_mapped(page);
|
|
if (ret2 < 0) {
|
|
ret = vmf_error(ret2);
|
|
unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* we can't set the delalloc bits if there are pending ordered
|
|
* extents. Drop our locks and wait for them to finish
|
|
*/
|
|
ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
|
|
PAGE_SIZE);
|
|
if (ordered) {
|
|
unlock_extent_cached(io_tree, page_start, page_end,
|
|
&cached_state);
|
|
unlock_page(page);
|
|
up_read(&BTRFS_I(inode)->i_mmap_lock);
|
|
btrfs_start_ordered_extent(ordered, 1);
|
|
btrfs_put_ordered_extent(ordered);
|
|
goto again;
|
|
}
|
|
|
|
if (page->index == ((size - 1) >> PAGE_SHIFT)) {
|
|
reserved_space = round_up(size - page_start,
|
|
fs_info->sectorsize);
|
|
if (reserved_space < PAGE_SIZE) {
|
|
end = page_start + reserved_space - 1;
|
|
btrfs_delalloc_release_space(BTRFS_I(inode),
|
|
data_reserved, page_start,
|
|
PAGE_SIZE - reserved_space, true);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* page_mkwrite gets called when the page is firstly dirtied after it's
|
|
* faulted in, but write(2) could also dirty a page and set delalloc
|
|
* bits, thus in this case for space account reason, we still need to
|
|
* clear any delalloc bits within this page range since we have to
|
|
* reserve data&meta space before lock_page() (see above comments).
|
|
*/
|
|
clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
|
|
EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
|
|
EXTENT_DEFRAG, 0, 0, &cached_state);
|
|
|
|
ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
|
|
&cached_state);
|
|
if (ret2) {
|
|
unlock_extent_cached(io_tree, page_start, page_end,
|
|
&cached_state);
|
|
ret = VM_FAULT_SIGBUS;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* page is wholly or partially inside EOF */
|
|
if (page_start + PAGE_SIZE > size)
|
|
zero_start = offset_in_page(size);
|
|
else
|
|
zero_start = PAGE_SIZE;
|
|
|
|
if (zero_start != PAGE_SIZE) {
|
|
memzero_page(page, zero_start, PAGE_SIZE - zero_start);
|
|
flush_dcache_page(page);
|
|
}
|
|
btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
|
|
btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
|
|
btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
|
|
|
|
btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
|
|
|
|
unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
|
|
up_read(&BTRFS_I(inode)->i_mmap_lock);
|
|
|
|
btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
|
|
sb_end_pagefault(inode->i_sb);
|
|
extent_changeset_free(data_reserved);
|
|
return VM_FAULT_LOCKED;
|
|
|
|
out_unlock:
|
|
unlock_page(page);
|
|
up_read(&BTRFS_I(inode)->i_mmap_lock);
|
|
out:
|
|
btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
|
|
btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
|
|
reserved_space, (ret != 0));
|
|
out_noreserve:
|
|
sb_end_pagefault(inode->i_sb);
|
|
extent_changeset_free(data_reserved);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_truncate(struct inode *inode, bool skip_writeback)
|
|
{
|
|
struct btrfs_truncate_control control = {
|
|
.inode = BTRFS_I(inode),
|
|
.ino = btrfs_ino(BTRFS_I(inode)),
|
|
.min_type = BTRFS_EXTENT_DATA_KEY,
|
|
.clear_extent_range = true,
|
|
};
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_block_rsv *rsv;
|
|
int ret;
|
|
struct btrfs_trans_handle *trans;
|
|
u64 mask = fs_info->sectorsize - 1;
|
|
u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
|
|
|
|
if (!skip_writeback) {
|
|
ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
|
|
(u64)-1);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Yes ladies and gentlemen, this is indeed ugly. We have a couple of
|
|
* things going on here:
|
|
*
|
|
* 1) We need to reserve space to update our inode.
|
|
*
|
|
* 2) We need to have something to cache all the space that is going to
|
|
* be free'd up by the truncate operation, but also have some slack
|
|
* space reserved in case it uses space during the truncate (thank you
|
|
* very much snapshotting).
|
|
*
|
|
* And we need these to be separate. The fact is we can use a lot of
|
|
* space doing the truncate, and we have no earthly idea how much space
|
|
* we will use, so we need the truncate reservation to be separate so it
|
|
* doesn't end up using space reserved for updating the inode. We also
|
|
* need to be able to stop the transaction and start a new one, which
|
|
* means we need to be able to update the inode several times, and we
|
|
* have no idea of knowing how many times that will be, so we can't just
|
|
* reserve 1 item for the entirety of the operation, so that has to be
|
|
* done separately as well.
|
|
*
|
|
* So that leaves us with
|
|
*
|
|
* 1) rsv - for the truncate reservation, which we will steal from the
|
|
* transaction reservation.
|
|
* 2) fs_info->trans_block_rsv - this will have 1 items worth left for
|
|
* updating the inode.
|
|
*/
|
|
rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
|
|
if (!rsv)
|
|
return -ENOMEM;
|
|
rsv->size = min_size;
|
|
rsv->failfast = 1;
|
|
|
|
/*
|
|
* 1 for the truncate slack space
|
|
* 1 for updating the inode.
|
|
*/
|
|
trans = btrfs_start_transaction(root, 2);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out;
|
|
}
|
|
|
|
/* Migrate the slack space for the truncate to our reserve */
|
|
ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
|
|
min_size, false);
|
|
BUG_ON(ret);
|
|
|
|
trans->block_rsv = rsv;
|
|
|
|
while (1) {
|
|
struct extent_state *cached_state = NULL;
|
|
const u64 new_size = inode->i_size;
|
|
const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
|
|
|
|
control.new_size = new_size;
|
|
lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
|
|
&cached_state);
|
|
/*
|
|
* We want to drop from the next block forward in case this new
|
|
* size is not block aligned since we will be keeping the last
|
|
* block of the extent just the way it is.
|
|
*/
|
|
btrfs_drop_extent_cache(BTRFS_I(inode),
|
|
ALIGN(new_size, fs_info->sectorsize),
|
|
(u64)-1, 0);
|
|
|
|
ret = btrfs_truncate_inode_items(trans, root, &control);
|
|
|
|
inode_sub_bytes(inode, control.sub_bytes);
|
|
btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), control.last_size);
|
|
|
|
unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
|
|
(u64)-1, &cached_state);
|
|
|
|
trans->block_rsv = &fs_info->trans_block_rsv;
|
|
if (ret != -ENOSPC && ret != -EAGAIN)
|
|
break;
|
|
|
|
ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
|
|
if (ret)
|
|
break;
|
|
|
|
btrfs_end_transaction(trans);
|
|
btrfs_btree_balance_dirty(fs_info);
|
|
|
|
trans = btrfs_start_transaction(root, 2);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
trans = NULL;
|
|
break;
|
|
}
|
|
|
|
btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
|
|
ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
|
|
rsv, min_size, false);
|
|
BUG_ON(ret); /* shouldn't happen */
|
|
trans->block_rsv = rsv;
|
|
}
|
|
|
|
/*
|
|
* We can't call btrfs_truncate_block inside a trans handle as we could
|
|
* deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
|
|
* know we've truncated everything except the last little bit, and can
|
|
* do btrfs_truncate_block and then update the disk_i_size.
|
|
*/
|
|
if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
|
|
btrfs_end_transaction(trans);
|
|
btrfs_btree_balance_dirty(fs_info);
|
|
|
|
ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
|
|
if (ret)
|
|
goto out;
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out;
|
|
}
|
|
btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
|
|
}
|
|
|
|
if (trans) {
|
|
int ret2;
|
|
|
|
trans->block_rsv = &fs_info->trans_block_rsv;
|
|
ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode));
|
|
if (ret2 && !ret)
|
|
ret = ret2;
|
|
|
|
ret2 = btrfs_end_transaction(trans);
|
|
if (ret2 && !ret)
|
|
ret = ret2;
|
|
btrfs_btree_balance_dirty(fs_info);
|
|
}
|
|
out:
|
|
btrfs_free_block_rsv(fs_info, rsv);
|
|
/*
|
|
* So if we truncate and then write and fsync we normally would just
|
|
* write the extents that changed, which is a problem if we need to
|
|
* first truncate that entire inode. So set this flag so we write out
|
|
* all of the extents in the inode to the sync log so we're completely
|
|
* safe.
|
|
*
|
|
* If no extents were dropped or trimmed we don't need to force the next
|
|
* fsync to truncate all the inode's items from the log and re-log them
|
|
* all. This means the truncate operation did not change the file size,
|
|
* or changed it to a smaller size but there was only an implicit hole
|
|
* between the old i_size and the new i_size, and there were no prealloc
|
|
* extents beyond i_size to drop.
|
|
*/
|
|
if (control.extents_found > 0)
|
|
btrfs_set_inode_full_sync(BTRFS_I(inode));
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* create a new subvolume directory/inode (helper for the ioctl).
|
|
*/
|
|
int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *new_root,
|
|
struct btrfs_root *parent_root,
|
|
struct user_namespace *mnt_userns)
|
|
{
|
|
struct inode *inode;
|
|
int err;
|
|
u64 index = 0;
|
|
u64 ino;
|
|
|
|
err = btrfs_get_free_objectid(new_root, &ino);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
inode = btrfs_new_inode(trans, new_root, mnt_userns, NULL, "..", 2,
|
|
ino, ino,
|
|
S_IFDIR | (~current_umask() & S_IRWXUGO),
|
|
&index);
|
|
if (IS_ERR(inode))
|
|
return PTR_ERR(inode);
|
|
inode->i_op = &btrfs_dir_inode_operations;
|
|
inode->i_fop = &btrfs_dir_file_operations;
|
|
|
|
set_nlink(inode, 1);
|
|
btrfs_i_size_write(BTRFS_I(inode), 0);
|
|
unlock_new_inode(inode);
|
|
|
|
err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
|
|
if (err)
|
|
btrfs_err(new_root->fs_info,
|
|
"error inheriting subvolume %llu properties: %d",
|
|
new_root->root_key.objectid, err);
|
|
|
|
err = btrfs_update_inode(trans, new_root, BTRFS_I(inode));
|
|
|
|
iput(inode);
|
|
return err;
|
|
}
|
|
|
|
struct inode *btrfs_alloc_inode(struct super_block *sb)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(sb);
|
|
struct btrfs_inode *ei;
|
|
struct inode *inode;
|
|
|
|
ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
|
|
if (!ei)
|
|
return NULL;
|
|
|
|
ei->root = NULL;
|
|
ei->generation = 0;
|
|
ei->last_trans = 0;
|
|
ei->last_sub_trans = 0;
|
|
ei->logged_trans = 0;
|
|
ei->delalloc_bytes = 0;
|
|
ei->new_delalloc_bytes = 0;
|
|
ei->defrag_bytes = 0;
|
|
ei->disk_i_size = 0;
|
|
ei->flags = 0;
|
|
ei->ro_flags = 0;
|
|
ei->csum_bytes = 0;
|
|
ei->index_cnt = (u64)-1;
|
|
ei->dir_index = 0;
|
|
ei->last_unlink_trans = 0;
|
|
ei->last_reflink_trans = 0;
|
|
ei->last_log_commit = 0;
|
|
|
|
spin_lock_init(&ei->lock);
|
|
ei->outstanding_extents = 0;
|
|
if (sb->s_magic != BTRFS_TEST_MAGIC)
|
|
btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
|
|
BTRFS_BLOCK_RSV_DELALLOC);
|
|
ei->runtime_flags = 0;
|
|
ei->prop_compress = BTRFS_COMPRESS_NONE;
|
|
ei->defrag_compress = BTRFS_COMPRESS_NONE;
|
|
|
|
ei->delayed_node = NULL;
|
|
|
|
ei->i_otime.tv_sec = 0;
|
|
ei->i_otime.tv_nsec = 0;
|
|
|
|
inode = &ei->vfs_inode;
|
|
extent_map_tree_init(&ei->extent_tree);
|
|
extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
|
|
extent_io_tree_init(fs_info, &ei->io_failure_tree,
|
|
IO_TREE_INODE_IO_FAILURE, inode);
|
|
extent_io_tree_init(fs_info, &ei->file_extent_tree,
|
|
IO_TREE_INODE_FILE_EXTENT, inode);
|
|
ei->io_tree.track_uptodate = true;
|
|
ei->io_failure_tree.track_uptodate = true;
|
|
atomic_set(&ei->sync_writers, 0);
|
|
mutex_init(&ei->log_mutex);
|
|
btrfs_ordered_inode_tree_init(&ei->ordered_tree);
|
|
INIT_LIST_HEAD(&ei->delalloc_inodes);
|
|
INIT_LIST_HEAD(&ei->delayed_iput);
|
|
RB_CLEAR_NODE(&ei->rb_node);
|
|
init_rwsem(&ei->i_mmap_lock);
|
|
|
|
return inode;
|
|
}
|
|
|
|
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
|
|
void btrfs_test_destroy_inode(struct inode *inode)
|
|
{
|
|
btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
|
|
kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
|
|
}
|
|
#endif
|
|
|
|
void btrfs_free_inode(struct inode *inode)
|
|
{
|
|
kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
|
|
}
|
|
|
|
void btrfs_destroy_inode(struct inode *vfs_inode)
|
|
{
|
|
struct btrfs_ordered_extent *ordered;
|
|
struct btrfs_inode *inode = BTRFS_I(vfs_inode);
|
|
struct btrfs_root *root = inode->root;
|
|
|
|
WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
|
|
WARN_ON(vfs_inode->i_data.nrpages);
|
|
WARN_ON(inode->block_rsv.reserved);
|
|
WARN_ON(inode->block_rsv.size);
|
|
WARN_ON(inode->outstanding_extents);
|
|
if (!S_ISDIR(vfs_inode->i_mode)) {
|
|
WARN_ON(inode->delalloc_bytes);
|
|
WARN_ON(inode->new_delalloc_bytes);
|
|
}
|
|
WARN_ON(inode->csum_bytes);
|
|
WARN_ON(inode->defrag_bytes);
|
|
|
|
/*
|
|
* This can happen where we create an inode, but somebody else also
|
|
* created the same inode and we need to destroy the one we already
|
|
* created.
|
|
*/
|
|
if (!root)
|
|
return;
|
|
|
|
while (1) {
|
|
ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
|
|
if (!ordered)
|
|
break;
|
|
else {
|
|
btrfs_err(root->fs_info,
|
|
"found ordered extent %llu %llu on inode cleanup",
|
|
ordered->file_offset, ordered->num_bytes);
|
|
btrfs_remove_ordered_extent(inode, ordered);
|
|
btrfs_put_ordered_extent(ordered);
|
|
btrfs_put_ordered_extent(ordered);
|
|
}
|
|
}
|
|
btrfs_qgroup_check_reserved_leak(inode);
|
|
inode_tree_del(inode);
|
|
btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
|
|
btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
|
|
btrfs_put_root(inode->root);
|
|
}
|
|
|
|
int btrfs_drop_inode(struct inode *inode)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
|
|
if (root == NULL)
|
|
return 1;
|
|
|
|
/* the snap/subvol tree is on deleting */
|
|
if (btrfs_root_refs(&root->root_item) == 0)
|
|
return 1;
|
|
else
|
|
return generic_drop_inode(inode);
|
|
}
|
|
|
|
static void init_once(void *foo)
|
|
{
|
|
struct btrfs_inode *ei = (struct btrfs_inode *) foo;
|
|
|
|
inode_init_once(&ei->vfs_inode);
|
|
}
|
|
|
|
void __cold btrfs_destroy_cachep(void)
|
|
{
|
|
/*
|
|
* Make sure all delayed rcu free inodes are flushed before we
|
|
* destroy cache.
|
|
*/
|
|
rcu_barrier();
|
|
kmem_cache_destroy(btrfs_inode_cachep);
|
|
kmem_cache_destroy(btrfs_trans_handle_cachep);
|
|
kmem_cache_destroy(btrfs_path_cachep);
|
|
kmem_cache_destroy(btrfs_free_space_cachep);
|
|
kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
|
|
}
|
|
|
|
int __init btrfs_init_cachep(void)
|
|
{
|
|
btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
|
|
sizeof(struct btrfs_inode), 0,
|
|
SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
|
|
init_once);
|
|
if (!btrfs_inode_cachep)
|
|
goto fail;
|
|
|
|
btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
|
|
sizeof(struct btrfs_trans_handle), 0,
|
|
SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
|
|
if (!btrfs_trans_handle_cachep)
|
|
goto fail;
|
|
|
|
btrfs_path_cachep = kmem_cache_create("btrfs_path",
|
|
sizeof(struct btrfs_path), 0,
|
|
SLAB_MEM_SPREAD, NULL);
|
|
if (!btrfs_path_cachep)
|
|
goto fail;
|
|
|
|
btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
|
|
sizeof(struct btrfs_free_space), 0,
|
|
SLAB_MEM_SPREAD, NULL);
|
|
if (!btrfs_free_space_cachep)
|
|
goto fail;
|
|
|
|
btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
|
|
PAGE_SIZE, PAGE_SIZE,
|
|
SLAB_MEM_SPREAD, NULL);
|
|
if (!btrfs_free_space_bitmap_cachep)
|
|
goto fail;
|
|
|
|
return 0;
|
|
fail:
|
|
btrfs_destroy_cachep();
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int btrfs_getattr(struct user_namespace *mnt_userns,
|
|
const struct path *path, struct kstat *stat,
|
|
u32 request_mask, unsigned int flags)
|
|
{
|
|
u64 delalloc_bytes;
|
|
u64 inode_bytes;
|
|
struct inode *inode = d_inode(path->dentry);
|
|
u32 blocksize = inode->i_sb->s_blocksize;
|
|
u32 bi_flags = BTRFS_I(inode)->flags;
|
|
u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
|
|
|
|
stat->result_mask |= STATX_BTIME;
|
|
stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
|
|
stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
|
|
if (bi_flags & BTRFS_INODE_APPEND)
|
|
stat->attributes |= STATX_ATTR_APPEND;
|
|
if (bi_flags & BTRFS_INODE_COMPRESS)
|
|
stat->attributes |= STATX_ATTR_COMPRESSED;
|
|
if (bi_flags & BTRFS_INODE_IMMUTABLE)
|
|
stat->attributes |= STATX_ATTR_IMMUTABLE;
|
|
if (bi_flags & BTRFS_INODE_NODUMP)
|
|
stat->attributes |= STATX_ATTR_NODUMP;
|
|
if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
|
|
stat->attributes |= STATX_ATTR_VERITY;
|
|
|
|
stat->attributes_mask |= (STATX_ATTR_APPEND |
|
|
STATX_ATTR_COMPRESSED |
|
|
STATX_ATTR_IMMUTABLE |
|
|
STATX_ATTR_NODUMP);
|
|
|
|
generic_fillattr(mnt_userns, inode, stat);
|
|
stat->dev = BTRFS_I(inode)->root->anon_dev;
|
|
|
|
spin_lock(&BTRFS_I(inode)->lock);
|
|
delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
|
|
inode_bytes = inode_get_bytes(inode);
|
|
spin_unlock(&BTRFS_I(inode)->lock);
|
|
stat->blocks = (ALIGN(inode_bytes, blocksize) +
|
|
ALIGN(delalloc_bytes, blocksize)) >> 9;
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_rename_exchange(struct inode *old_dir,
|
|
struct dentry *old_dentry,
|
|
struct inode *new_dir,
|
|
struct dentry *new_dentry)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root = BTRFS_I(old_dir)->root;
|
|
struct btrfs_root *dest = BTRFS_I(new_dir)->root;
|
|
struct inode *new_inode = new_dentry->d_inode;
|
|
struct inode *old_inode = old_dentry->d_inode;
|
|
struct timespec64 ctime = current_time(old_inode);
|
|
struct btrfs_rename_ctx old_rename_ctx;
|
|
struct btrfs_rename_ctx new_rename_ctx;
|
|
u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
|
|
u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
|
|
u64 old_idx = 0;
|
|
u64 new_idx = 0;
|
|
int ret;
|
|
int ret2;
|
|
bool need_abort = false;
|
|
|
|
/*
|
|
* For non-subvolumes allow exchange only within one subvolume, in the
|
|
* same inode namespace. Two subvolumes (represented as directory) can
|
|
* be exchanged as they're a logical link and have a fixed inode number.
|
|
*/
|
|
if (root != dest &&
|
|
(old_ino != BTRFS_FIRST_FREE_OBJECTID ||
|
|
new_ino != BTRFS_FIRST_FREE_OBJECTID))
|
|
return -EXDEV;
|
|
|
|
/* close the race window with snapshot create/destroy ioctl */
|
|
if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
|
|
new_ino == BTRFS_FIRST_FREE_OBJECTID)
|
|
down_read(&fs_info->subvol_sem);
|
|
|
|
/*
|
|
* We want to reserve the absolute worst case amount of items. So if
|
|
* both inodes are subvols and we need to unlink them then that would
|
|
* require 4 item modifications, but if they are both normal inodes it
|
|
* would require 5 item modifications, so we'll assume their normal
|
|
* inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
|
|
* should cover the worst case number of items we'll modify.
|
|
*/
|
|
trans = btrfs_start_transaction(root, 12);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out_notrans;
|
|
}
|
|
|
|
if (dest != root) {
|
|
ret = btrfs_record_root_in_trans(trans, dest);
|
|
if (ret)
|
|
goto out_fail;
|
|
}
|
|
|
|
/*
|
|
* We need to find a free sequence number both in the source and
|
|
* in the destination directory for the exchange.
|
|
*/
|
|
ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
|
|
if (ret)
|
|
goto out_fail;
|
|
ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
|
|
if (ret)
|
|
goto out_fail;
|
|
|
|
BTRFS_I(old_inode)->dir_index = 0ULL;
|
|
BTRFS_I(new_inode)->dir_index = 0ULL;
|
|
|
|
/* Reference for the source. */
|
|
if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
|
|
/* force full log commit if subvolume involved. */
|
|
btrfs_set_log_full_commit(trans);
|
|
} else {
|
|
ret = btrfs_insert_inode_ref(trans, dest,
|
|
new_dentry->d_name.name,
|
|
new_dentry->d_name.len,
|
|
old_ino,
|
|
btrfs_ino(BTRFS_I(new_dir)),
|
|
old_idx);
|
|
if (ret)
|
|
goto out_fail;
|
|
need_abort = true;
|
|
}
|
|
|
|
/* And now for the dest. */
|
|
if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
|
|
/* force full log commit if subvolume involved. */
|
|
btrfs_set_log_full_commit(trans);
|
|
} else {
|
|
ret = btrfs_insert_inode_ref(trans, root,
|
|
old_dentry->d_name.name,
|
|
old_dentry->d_name.len,
|
|
new_ino,
|
|
btrfs_ino(BTRFS_I(old_dir)),
|
|
new_idx);
|
|
if (ret) {
|
|
if (need_abort)
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_fail;
|
|
}
|
|
}
|
|
|
|
/* Update inode version and ctime/mtime. */
|
|
inode_inc_iversion(old_dir);
|
|
inode_inc_iversion(new_dir);
|
|
inode_inc_iversion(old_inode);
|
|
inode_inc_iversion(new_inode);
|
|
old_dir->i_ctime = old_dir->i_mtime = ctime;
|
|
new_dir->i_ctime = new_dir->i_mtime = ctime;
|
|
old_inode->i_ctime = ctime;
|
|
new_inode->i_ctime = ctime;
|
|
|
|
if (old_dentry->d_parent != new_dentry->d_parent) {
|
|
btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
|
|
BTRFS_I(old_inode), 1);
|
|
btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
|
|
BTRFS_I(new_inode), 1);
|
|
}
|
|
|
|
/* src is a subvolume */
|
|
if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
|
|
ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
|
|
} else { /* src is an inode */
|
|
ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
|
|
BTRFS_I(old_dentry->d_inode),
|
|
old_dentry->d_name.name,
|
|
old_dentry->d_name.len,
|
|
&old_rename_ctx);
|
|
if (!ret)
|
|
ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
|
|
}
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_fail;
|
|
}
|
|
|
|
/* dest is a subvolume */
|
|
if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
|
|
ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
|
|
} else { /* dest is an inode */
|
|
ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
|
|
BTRFS_I(new_dentry->d_inode),
|
|
new_dentry->d_name.name,
|
|
new_dentry->d_name.len,
|
|
&new_rename_ctx);
|
|
if (!ret)
|
|
ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
|
|
}
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_fail;
|
|
}
|
|
|
|
ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
|
|
new_dentry->d_name.name,
|
|
new_dentry->d_name.len, 0, old_idx);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_fail;
|
|
}
|
|
|
|
ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
|
|
old_dentry->d_name.name,
|
|
old_dentry->d_name.len, 0, new_idx);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_fail;
|
|
}
|
|
|
|
if (old_inode->i_nlink == 1)
|
|
BTRFS_I(old_inode)->dir_index = old_idx;
|
|
if (new_inode->i_nlink == 1)
|
|
BTRFS_I(new_inode)->dir_index = new_idx;
|
|
|
|
/*
|
|
* Now pin the logs of the roots. We do it to ensure that no other task
|
|
* can sync the logs while we are in progress with the rename, because
|
|
* that could result in an inconsistency in case any of the inodes that
|
|
* are part of this rename operation were logged before.
|
|
*/
|
|
if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
|
|
btrfs_pin_log_trans(root);
|
|
if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
|
|
btrfs_pin_log_trans(dest);
|
|
|
|
/* Do the log updates for all inodes. */
|
|
if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
|
|
btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
|
|
old_rename_ctx.index, new_dentry->d_parent);
|
|
if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
|
|
btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
|
|
new_rename_ctx.index, old_dentry->d_parent);
|
|
|
|
/* Now unpin the logs. */
|
|
if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
|
|
btrfs_end_log_trans(root);
|
|
if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
|
|
btrfs_end_log_trans(dest);
|
|
out_fail:
|
|
ret2 = btrfs_end_transaction(trans);
|
|
ret = ret ? ret : ret2;
|
|
out_notrans:
|
|
if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
|
|
old_ino == BTRFS_FIRST_FREE_OBJECTID)
|
|
up_read(&fs_info->subvol_sem);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct user_namespace *mnt_userns,
|
|
struct inode *dir,
|
|
struct dentry *dentry)
|
|
{
|
|
int ret;
|
|
struct inode *inode;
|
|
u64 objectid;
|
|
u64 index;
|
|
|
|
ret = btrfs_get_free_objectid(root, &objectid);
|
|
if (ret)
|
|
return ret;
|
|
|
|
inode = btrfs_new_inode(trans, root, mnt_userns, dir,
|
|
dentry->d_name.name,
|
|
dentry->d_name.len,
|
|
btrfs_ino(BTRFS_I(dir)),
|
|
objectid,
|
|
S_IFCHR | WHITEOUT_MODE,
|
|
&index);
|
|
|
|
if (IS_ERR(inode)) {
|
|
ret = PTR_ERR(inode);
|
|
return ret;
|
|
}
|
|
|
|
inode->i_op = &btrfs_special_inode_operations;
|
|
init_special_inode(inode, inode->i_mode,
|
|
WHITEOUT_DEV);
|
|
|
|
ret = btrfs_init_inode_security(trans, inode, dir,
|
|
&dentry->d_name);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
|
|
BTRFS_I(inode), 0, index);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
|
|
out:
|
|
unlock_new_inode(inode);
|
|
if (ret)
|
|
inode_dec_link_count(inode);
|
|
iput(inode);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_rename(struct user_namespace *mnt_userns,
|
|
struct inode *old_dir, struct dentry *old_dentry,
|
|
struct inode *new_dir, struct dentry *new_dentry,
|
|
unsigned int flags)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
|
|
struct btrfs_trans_handle *trans;
|
|
unsigned int trans_num_items;
|
|
struct btrfs_root *root = BTRFS_I(old_dir)->root;
|
|
struct btrfs_root *dest = BTRFS_I(new_dir)->root;
|
|
struct inode *new_inode = d_inode(new_dentry);
|
|
struct inode *old_inode = d_inode(old_dentry);
|
|
struct btrfs_rename_ctx rename_ctx;
|
|
u64 index = 0;
|
|
int ret;
|
|
int ret2;
|
|
u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
|
|
|
|
if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
|
|
return -EPERM;
|
|
|
|
/* we only allow rename subvolume link between subvolumes */
|
|
if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
|
|
return -EXDEV;
|
|
|
|
if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
|
|
(new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
|
|
return -ENOTEMPTY;
|
|
|
|
if (S_ISDIR(old_inode->i_mode) && new_inode &&
|
|
new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
|
|
return -ENOTEMPTY;
|
|
|
|
|
|
/* check for collisions, even if the name isn't there */
|
|
ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
|
|
new_dentry->d_name.name,
|
|
new_dentry->d_name.len);
|
|
|
|
if (ret) {
|
|
if (ret == -EEXIST) {
|
|
/* we shouldn't get
|
|
* eexist without a new_inode */
|
|
if (WARN_ON(!new_inode)) {
|
|
return ret;
|
|
}
|
|
} else {
|
|
/* maybe -EOVERFLOW */
|
|
return ret;
|
|
}
|
|
}
|
|
ret = 0;
|
|
|
|
/*
|
|
* we're using rename to replace one file with another. Start IO on it
|
|
* now so we don't add too much work to the end of the transaction
|
|
*/
|
|
if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
|
|
filemap_flush(old_inode->i_mapping);
|
|
|
|
/* close the racy window with snapshot create/destroy ioctl */
|
|
if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
|
|
down_read(&fs_info->subvol_sem);
|
|
/*
|
|
* We want to reserve the absolute worst case amount of items. So if
|
|
* both inodes are subvols and we need to unlink them then that would
|
|
* require 4 item modifications, but if they are both normal inodes it
|
|
* would require 5 item modifications, so we'll assume they are normal
|
|
* inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
|
|
* should cover the worst case number of items we'll modify.
|
|
* If our rename has the whiteout flag, we need more 5 units for the
|
|
* new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
|
|
* when selinux is enabled).
|
|
*/
|
|
trans_num_items = 11;
|
|
if (flags & RENAME_WHITEOUT)
|
|
trans_num_items += 5;
|
|
trans = btrfs_start_transaction(root, trans_num_items);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out_notrans;
|
|
}
|
|
|
|
if (dest != root) {
|
|
ret = btrfs_record_root_in_trans(trans, dest);
|
|
if (ret)
|
|
goto out_fail;
|
|
}
|
|
|
|
ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
|
|
if (ret)
|
|
goto out_fail;
|
|
|
|
BTRFS_I(old_inode)->dir_index = 0ULL;
|
|
if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
|
|
/* force full log commit if subvolume involved. */
|
|
btrfs_set_log_full_commit(trans);
|
|
} else {
|
|
ret = btrfs_insert_inode_ref(trans, dest,
|
|
new_dentry->d_name.name,
|
|
new_dentry->d_name.len,
|
|
old_ino,
|
|
btrfs_ino(BTRFS_I(new_dir)), index);
|
|
if (ret)
|
|
goto out_fail;
|
|
}
|
|
|
|
inode_inc_iversion(old_dir);
|
|
inode_inc_iversion(new_dir);
|
|
inode_inc_iversion(old_inode);
|
|
old_dir->i_ctime = old_dir->i_mtime =
|
|
new_dir->i_ctime = new_dir->i_mtime =
|
|
old_inode->i_ctime = current_time(old_dir);
|
|
|
|
if (old_dentry->d_parent != new_dentry->d_parent)
|
|
btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
|
|
BTRFS_I(old_inode), 1);
|
|
|
|
if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
|
|
ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
|
|
} else {
|
|
ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
|
|
BTRFS_I(d_inode(old_dentry)),
|
|
old_dentry->d_name.name,
|
|
old_dentry->d_name.len,
|
|
&rename_ctx);
|
|
if (!ret)
|
|
ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
|
|
}
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_fail;
|
|
}
|
|
|
|
if (new_inode) {
|
|
inode_inc_iversion(new_inode);
|
|
new_inode->i_ctime = current_time(new_inode);
|
|
if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
|
|
BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
|
|
ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
|
|
BUG_ON(new_inode->i_nlink == 0);
|
|
} else {
|
|
ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
|
|
BTRFS_I(d_inode(new_dentry)),
|
|
new_dentry->d_name.name,
|
|
new_dentry->d_name.len);
|
|
}
|
|
if (!ret && new_inode->i_nlink == 0)
|
|
ret = btrfs_orphan_add(trans,
|
|
BTRFS_I(d_inode(new_dentry)));
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_fail;
|
|
}
|
|
}
|
|
|
|
ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
|
|
new_dentry->d_name.name,
|
|
new_dentry->d_name.len, 0, index);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_fail;
|
|
}
|
|
|
|
if (old_inode->i_nlink == 1)
|
|
BTRFS_I(old_inode)->dir_index = index;
|
|
|
|
if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
|
|
btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
|
|
rename_ctx.index, new_dentry->d_parent);
|
|
|
|
if (flags & RENAME_WHITEOUT) {
|
|
ret = btrfs_whiteout_for_rename(trans, root, mnt_userns,
|
|
old_dir, old_dentry);
|
|
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_fail;
|
|
}
|
|
}
|
|
out_fail:
|
|
ret2 = btrfs_end_transaction(trans);
|
|
ret = ret ? ret : ret2;
|
|
out_notrans:
|
|
if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
|
|
up_read(&fs_info->subvol_sem);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir,
|
|
struct dentry *old_dentry, struct inode *new_dir,
|
|
struct dentry *new_dentry, unsigned int flags)
|
|
{
|
|
if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
|
|
return -EINVAL;
|
|
|
|
if (flags & RENAME_EXCHANGE)
|
|
return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
|
|
new_dentry);
|
|
|
|
return btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir,
|
|
new_dentry, flags);
|
|
}
|
|
|
|
struct btrfs_delalloc_work {
|
|
struct inode *inode;
|
|
struct completion completion;
|
|
struct list_head list;
|
|
struct btrfs_work work;
|
|
};
|
|
|
|
static void btrfs_run_delalloc_work(struct btrfs_work *work)
|
|
{
|
|
struct btrfs_delalloc_work *delalloc_work;
|
|
struct inode *inode;
|
|
|
|
delalloc_work = container_of(work, struct btrfs_delalloc_work,
|
|
work);
|
|
inode = delalloc_work->inode;
|
|
filemap_flush(inode->i_mapping);
|
|
if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
|
|
&BTRFS_I(inode)->runtime_flags))
|
|
filemap_flush(inode->i_mapping);
|
|
|
|
iput(inode);
|
|
complete(&delalloc_work->completion);
|
|
}
|
|
|
|
static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
|
|
{
|
|
struct btrfs_delalloc_work *work;
|
|
|
|
work = kmalloc(sizeof(*work), GFP_NOFS);
|
|
if (!work)
|
|
return NULL;
|
|
|
|
init_completion(&work->completion);
|
|
INIT_LIST_HEAD(&work->list);
|
|
work->inode = inode;
|
|
btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
|
|
|
|
return work;
|
|
}
|
|
|
|
/*
|
|
* some fairly slow code that needs optimization. This walks the list
|
|
* of all the inodes with pending delalloc and forces them to disk.
|
|
*/
|
|
static int start_delalloc_inodes(struct btrfs_root *root,
|
|
struct writeback_control *wbc, bool snapshot,
|
|
bool in_reclaim_context)
|
|
{
|
|
struct btrfs_inode *binode;
|
|
struct inode *inode;
|
|
struct btrfs_delalloc_work *work, *next;
|
|
struct list_head works;
|
|
struct list_head splice;
|
|
int ret = 0;
|
|
bool full_flush = wbc->nr_to_write == LONG_MAX;
|
|
|
|
INIT_LIST_HEAD(&works);
|
|
INIT_LIST_HEAD(&splice);
|
|
|
|
mutex_lock(&root->delalloc_mutex);
|
|
spin_lock(&root->delalloc_lock);
|
|
list_splice_init(&root->delalloc_inodes, &splice);
|
|
while (!list_empty(&splice)) {
|
|
binode = list_entry(splice.next, struct btrfs_inode,
|
|
delalloc_inodes);
|
|
|
|
list_move_tail(&binode->delalloc_inodes,
|
|
&root->delalloc_inodes);
|
|
|
|
if (in_reclaim_context &&
|
|
test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
|
|
continue;
|
|
|
|
inode = igrab(&binode->vfs_inode);
|
|
if (!inode) {
|
|
cond_resched_lock(&root->delalloc_lock);
|
|
continue;
|
|
}
|
|
spin_unlock(&root->delalloc_lock);
|
|
|
|
if (snapshot)
|
|
set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
|
|
&binode->runtime_flags);
|
|
if (full_flush) {
|
|
work = btrfs_alloc_delalloc_work(inode);
|
|
if (!work) {
|
|
iput(inode);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
list_add_tail(&work->list, &works);
|
|
btrfs_queue_work(root->fs_info->flush_workers,
|
|
&work->work);
|
|
} else {
|
|
ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
|
|
btrfs_add_delayed_iput(inode);
|
|
if (ret || wbc->nr_to_write <= 0)
|
|
goto out;
|
|
}
|
|
cond_resched();
|
|
spin_lock(&root->delalloc_lock);
|
|
}
|
|
spin_unlock(&root->delalloc_lock);
|
|
|
|
out:
|
|
list_for_each_entry_safe(work, next, &works, list) {
|
|
list_del_init(&work->list);
|
|
wait_for_completion(&work->completion);
|
|
kfree(work);
|
|
}
|
|
|
|
if (!list_empty(&splice)) {
|
|
spin_lock(&root->delalloc_lock);
|
|
list_splice_tail(&splice, &root->delalloc_inodes);
|
|
spin_unlock(&root->delalloc_lock);
|
|
}
|
|
mutex_unlock(&root->delalloc_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
|
|
{
|
|
struct writeback_control wbc = {
|
|
.nr_to_write = LONG_MAX,
|
|
.sync_mode = WB_SYNC_NONE,
|
|
.range_start = 0,
|
|
.range_end = LLONG_MAX,
|
|
};
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
|
|
if (BTRFS_FS_ERROR(fs_info))
|
|
return -EROFS;
|
|
|
|
return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
|
|
}
|
|
|
|
int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
|
|
bool in_reclaim_context)
|
|
{
|
|
struct writeback_control wbc = {
|
|
.nr_to_write = nr,
|
|
.sync_mode = WB_SYNC_NONE,
|
|
.range_start = 0,
|
|
.range_end = LLONG_MAX,
|
|
};
|
|
struct btrfs_root *root;
|
|
struct list_head splice;
|
|
int ret;
|
|
|
|
if (BTRFS_FS_ERROR(fs_info))
|
|
return -EROFS;
|
|
|
|
INIT_LIST_HEAD(&splice);
|
|
|
|
mutex_lock(&fs_info->delalloc_root_mutex);
|
|
spin_lock(&fs_info->delalloc_root_lock);
|
|
list_splice_init(&fs_info->delalloc_roots, &splice);
|
|
while (!list_empty(&splice)) {
|
|
/*
|
|
* Reset nr_to_write here so we know that we're doing a full
|
|
* flush.
|
|
*/
|
|
if (nr == LONG_MAX)
|
|
wbc.nr_to_write = LONG_MAX;
|
|
|
|
root = list_first_entry(&splice, struct btrfs_root,
|
|
delalloc_root);
|
|
root = btrfs_grab_root(root);
|
|
BUG_ON(!root);
|
|
list_move_tail(&root->delalloc_root,
|
|
&fs_info->delalloc_roots);
|
|
spin_unlock(&fs_info->delalloc_root_lock);
|
|
|
|
ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
|
|
btrfs_put_root(root);
|
|
if (ret < 0 || wbc.nr_to_write <= 0)
|
|
goto out;
|
|
spin_lock(&fs_info->delalloc_root_lock);
|
|
}
|
|
spin_unlock(&fs_info->delalloc_root_lock);
|
|
|
|
ret = 0;
|
|
out:
|
|
if (!list_empty(&splice)) {
|
|
spin_lock(&fs_info->delalloc_root_lock);
|
|
list_splice_tail(&splice, &fs_info->delalloc_roots);
|
|
spin_unlock(&fs_info->delalloc_root_lock);
|
|
}
|
|
mutex_unlock(&fs_info->delalloc_root_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
|
|
struct dentry *dentry, const char *symname)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
struct inode *inode = NULL;
|
|
int err;
|
|
u64 objectid;
|
|
u64 index = 0;
|
|
int name_len;
|
|
int datasize;
|
|
unsigned long ptr;
|
|
struct btrfs_file_extent_item *ei;
|
|
struct extent_buffer *leaf;
|
|
|
|
name_len = strlen(symname);
|
|
if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
|
|
return -ENAMETOOLONG;
|
|
|
|
/*
|
|
* 2 items for inode item and ref
|
|
* 2 items for dir items
|
|
* 1 item for updating parent inode item
|
|
* 1 item for the inline extent item
|
|
* 1 item for xattr if selinux is on
|
|
*/
|
|
trans = btrfs_start_transaction(root, 7);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
err = btrfs_get_free_objectid(root, &objectid);
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
inode = btrfs_new_inode(trans, root, mnt_userns, dir,
|
|
dentry->d_name.name, dentry->d_name.len,
|
|
btrfs_ino(BTRFS_I(dir)), objectid,
|
|
S_IFLNK | S_IRWXUGO, &index);
|
|
if (IS_ERR(inode)) {
|
|
err = PTR_ERR(inode);
|
|
inode = NULL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* If the active LSM wants to access the inode during
|
|
* d_instantiate it needs these. Smack checks to see
|
|
* if the filesystem supports xattrs by looking at the
|
|
* ops vector.
|
|
*/
|
|
inode->i_fop = &btrfs_file_operations;
|
|
inode->i_op = &btrfs_file_inode_operations;
|
|
inode->i_mapping->a_ops = &btrfs_aops;
|
|
|
|
err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
err = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
key.objectid = btrfs_ino(BTRFS_I(inode));
|
|
key.offset = 0;
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
datasize = btrfs_file_extent_calc_inline_size(name_len);
|
|
err = btrfs_insert_empty_item(trans, root, path, &key,
|
|
datasize);
|
|
if (err) {
|
|
btrfs_free_path(path);
|
|
goto out_unlock;
|
|
}
|
|
leaf = path->nodes[0];
|
|
ei = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
btrfs_set_file_extent_generation(leaf, ei, trans->transid);
|
|
btrfs_set_file_extent_type(leaf, ei,
|
|
BTRFS_FILE_EXTENT_INLINE);
|
|
btrfs_set_file_extent_encryption(leaf, ei, 0);
|
|
btrfs_set_file_extent_compression(leaf, ei, 0);
|
|
btrfs_set_file_extent_other_encoding(leaf, ei, 0);
|
|
btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
|
|
|
|
ptr = btrfs_file_extent_inline_start(ei);
|
|
write_extent_buffer(leaf, symname, ptr, name_len);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_free_path(path);
|
|
|
|
inode->i_op = &btrfs_symlink_inode_operations;
|
|
inode_nohighmem(inode);
|
|
inode_set_bytes(inode, name_len);
|
|
btrfs_i_size_write(BTRFS_I(inode), name_len);
|
|
err = btrfs_update_inode(trans, root, BTRFS_I(inode));
|
|
/*
|
|
* Last step, add directory indexes for our symlink inode. This is the
|
|
* last step to avoid extra cleanup of these indexes if an error happens
|
|
* elsewhere above.
|
|
*/
|
|
if (!err)
|
|
err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
|
|
BTRFS_I(inode), 0, index);
|
|
if (err)
|
|
goto out_unlock;
|
|
|
|
d_instantiate_new(dentry, inode);
|
|
|
|
out_unlock:
|
|
btrfs_end_transaction(trans);
|
|
if (err && inode) {
|
|
inode_dec_link_count(inode);
|
|
discard_new_inode(inode);
|
|
}
|
|
btrfs_btree_balance_dirty(fs_info);
|
|
return err;
|
|
}
|
|
|
|
static struct btrfs_trans_handle *insert_prealloc_file_extent(
|
|
struct btrfs_trans_handle *trans_in,
|
|
struct btrfs_inode *inode,
|
|
struct btrfs_key *ins,
|
|
u64 file_offset)
|
|
{
|
|
struct btrfs_file_extent_item stack_fi;
|
|
struct btrfs_replace_extent_info extent_info;
|
|
struct btrfs_trans_handle *trans = trans_in;
|
|
struct btrfs_path *path;
|
|
u64 start = ins->objectid;
|
|
u64 len = ins->offset;
|
|
int qgroup_released;
|
|
int ret;
|
|
|
|
memset(&stack_fi, 0, sizeof(stack_fi));
|
|
|
|
btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
|
|
btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
|
|
btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
|
|
btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
|
|
btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
|
|
btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
|
|
/* Encryption and other encoding is reserved and all 0 */
|
|
|
|
qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
|
|
if (qgroup_released < 0)
|
|
return ERR_PTR(qgroup_released);
|
|
|
|
if (trans) {
|
|
ret = insert_reserved_file_extent(trans, inode,
|
|
file_offset, &stack_fi,
|
|
true, qgroup_released);
|
|
if (ret)
|
|
goto free_qgroup;
|
|
return trans;
|
|
}
|
|
|
|
extent_info.disk_offset = start;
|
|
extent_info.disk_len = len;
|
|
extent_info.data_offset = 0;
|
|
extent_info.data_len = len;
|
|
extent_info.file_offset = file_offset;
|
|
extent_info.extent_buf = (char *)&stack_fi;
|
|
extent_info.is_new_extent = true;
|
|
extent_info.qgroup_reserved = qgroup_released;
|
|
extent_info.insertions = 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto free_qgroup;
|
|
}
|
|
|
|
ret = btrfs_replace_file_extents(inode, path, file_offset,
|
|
file_offset + len - 1, &extent_info,
|
|
&trans);
|
|
btrfs_free_path(path);
|
|
if (ret)
|
|
goto free_qgroup;
|
|
return trans;
|
|
|
|
free_qgroup:
|
|
/*
|
|
* We have released qgroup data range at the beginning of the function,
|
|
* and normally qgroup_released bytes will be freed when committing
|
|
* transaction.
|
|
* But if we error out early, we have to free what we have released
|
|
* or we leak qgroup data reservation.
|
|
*/
|
|
btrfs_qgroup_free_refroot(inode->root->fs_info,
|
|
inode->root->root_key.objectid, qgroup_released,
|
|
BTRFS_QGROUP_RSV_DATA);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
|
|
u64 start, u64 num_bytes, u64 min_size,
|
|
loff_t actual_len, u64 *alloc_hint,
|
|
struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
|
|
struct extent_map *em;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_key ins;
|
|
u64 cur_offset = start;
|
|
u64 clear_offset = start;
|
|
u64 i_size;
|
|
u64 cur_bytes;
|
|
u64 last_alloc = (u64)-1;
|
|
int ret = 0;
|
|
bool own_trans = true;
|
|
u64 end = start + num_bytes - 1;
|
|
|
|
if (trans)
|
|
own_trans = false;
|
|
while (num_bytes > 0) {
|
|
cur_bytes = min_t(u64, num_bytes, SZ_256M);
|
|
cur_bytes = max(cur_bytes, min_size);
|
|
/*
|
|
* If we are severely fragmented we could end up with really
|
|
* small allocations, so if the allocator is returning small
|
|
* chunks lets make its job easier by only searching for those
|
|
* sized chunks.
|
|
*/
|
|
cur_bytes = min(cur_bytes, last_alloc);
|
|
ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
|
|
min_size, 0, *alloc_hint, &ins, 1, 0);
|
|
if (ret)
|
|
break;
|
|
|
|
/*
|
|
* We've reserved this space, and thus converted it from
|
|
* ->bytes_may_use to ->bytes_reserved. Any error that happens
|
|
* from here on out we will only need to clear our reservation
|
|
* for the remaining unreserved area, so advance our
|
|
* clear_offset by our extent size.
|
|
*/
|
|
clear_offset += ins.offset;
|
|
|
|
last_alloc = ins.offset;
|
|
trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
|
|
&ins, cur_offset);
|
|
/*
|
|
* Now that we inserted the prealloc extent we can finally
|
|
* decrement the number of reservations in the block group.
|
|
* If we did it before, we could race with relocation and have
|
|
* relocation miss the reserved extent, making it fail later.
|
|
*/
|
|
btrfs_dec_block_group_reservations(fs_info, ins.objectid);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
btrfs_free_reserved_extent(fs_info, ins.objectid,
|
|
ins.offset, 0);
|
|
break;
|
|
}
|
|
|
|
btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
|
|
cur_offset + ins.offset -1, 0);
|
|
|
|
em = alloc_extent_map();
|
|
if (!em) {
|
|
btrfs_set_inode_full_sync(BTRFS_I(inode));
|
|
goto next;
|
|
}
|
|
|
|
em->start = cur_offset;
|
|
em->orig_start = cur_offset;
|
|
em->len = ins.offset;
|
|
em->block_start = ins.objectid;
|
|
em->block_len = ins.offset;
|
|
em->orig_block_len = ins.offset;
|
|
em->ram_bytes = ins.offset;
|
|
set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
|
|
em->generation = trans->transid;
|
|
|
|
while (1) {
|
|
write_lock(&em_tree->lock);
|
|
ret = add_extent_mapping(em_tree, em, 1);
|
|
write_unlock(&em_tree->lock);
|
|
if (ret != -EEXIST)
|
|
break;
|
|
btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
|
|
cur_offset + ins.offset - 1,
|
|
0);
|
|
}
|
|
free_extent_map(em);
|
|
next:
|
|
num_bytes -= ins.offset;
|
|
cur_offset += ins.offset;
|
|
*alloc_hint = ins.objectid + ins.offset;
|
|
|
|
inode_inc_iversion(inode);
|
|
inode->i_ctime = current_time(inode);
|
|
BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
|
|
if (!(mode & FALLOC_FL_KEEP_SIZE) &&
|
|
(actual_len > inode->i_size) &&
|
|
(cur_offset > inode->i_size)) {
|
|
if (cur_offset > actual_len)
|
|
i_size = actual_len;
|
|
else
|
|
i_size = cur_offset;
|
|
i_size_write(inode, i_size);
|
|
btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
|
|
}
|
|
|
|
ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
|
|
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
if (own_trans)
|
|
btrfs_end_transaction(trans);
|
|
break;
|
|
}
|
|
|
|
if (own_trans) {
|
|
btrfs_end_transaction(trans);
|
|
trans = NULL;
|
|
}
|
|
}
|
|
if (clear_offset < end)
|
|
btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
|
|
end - clear_offset + 1);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_prealloc_file_range(struct inode *inode, int mode,
|
|
u64 start, u64 num_bytes, u64 min_size,
|
|
loff_t actual_len, u64 *alloc_hint)
|
|
{
|
|
return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
|
|
min_size, actual_len, alloc_hint,
|
|
NULL);
|
|
}
|
|
|
|
int btrfs_prealloc_file_range_trans(struct inode *inode,
|
|
struct btrfs_trans_handle *trans, int mode,
|
|
u64 start, u64 num_bytes, u64 min_size,
|
|
loff_t actual_len, u64 *alloc_hint)
|
|
{
|
|
return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
|
|
min_size, actual_len, alloc_hint, trans);
|
|
}
|
|
|
|
static int btrfs_permission(struct user_namespace *mnt_userns,
|
|
struct inode *inode, int mask)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
umode_t mode = inode->i_mode;
|
|
|
|
if (mask & MAY_WRITE &&
|
|
(S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
|
|
if (btrfs_root_readonly(root))
|
|
return -EROFS;
|
|
if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
|
|
return -EACCES;
|
|
}
|
|
return generic_permission(mnt_userns, inode, mask);
|
|
}
|
|
|
|
static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
|
|
struct dentry *dentry, umode_t mode)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct inode *inode = NULL;
|
|
u64 objectid;
|
|
u64 index;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* 5 units required for adding orphan entry
|
|
*/
|
|
trans = btrfs_start_transaction(root, 5);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
ret = btrfs_get_free_objectid(root, &objectid);
|
|
if (ret)
|
|
goto out;
|
|
|
|
inode = btrfs_new_inode(trans, root, mnt_userns, dir, NULL, 0,
|
|
btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
|
|
if (IS_ERR(inode)) {
|
|
ret = PTR_ERR(inode);
|
|
inode = NULL;
|
|
goto out;
|
|
}
|
|
|
|
inode->i_fop = &btrfs_file_operations;
|
|
inode->i_op = &btrfs_file_inode_operations;
|
|
|
|
inode->i_mapping->a_ops = &btrfs_aops;
|
|
|
|
ret = btrfs_init_inode_security(trans, inode, dir, NULL);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
|
|
if (ret)
|
|
goto out;
|
|
ret = btrfs_orphan_add(trans, BTRFS_I(inode));
|
|
if (ret)
|
|
goto out;
|
|
|
|
/*
|
|
* We set number of links to 0 in btrfs_new_inode(), and here we set
|
|
* it to 1 because d_tmpfile() will issue a warning if the count is 0,
|
|
* through:
|
|
*
|
|
* d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
|
|
*/
|
|
set_nlink(inode, 1);
|
|
d_tmpfile(dentry, inode);
|
|
unlock_new_inode(inode);
|
|
mark_inode_dirty(inode);
|
|
out:
|
|
btrfs_end_transaction(trans);
|
|
if (ret && inode)
|
|
discard_new_inode(inode);
|
|
btrfs_btree_balance_dirty(fs_info);
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
unsigned long index = start >> PAGE_SHIFT;
|
|
unsigned long end_index = end >> PAGE_SHIFT;
|
|
struct page *page;
|
|
u32 len;
|
|
|
|
ASSERT(end + 1 - start <= U32_MAX);
|
|
len = end + 1 - start;
|
|
while (index <= end_index) {
|
|
page = find_get_page(inode->vfs_inode.i_mapping, index);
|
|
ASSERT(page); /* Pages should be in the extent_io_tree */
|
|
|
|
btrfs_page_set_writeback(fs_info, page, start, len);
|
|
put_page(page);
|
|
index++;
|
|
}
|
|
}
|
|
|
|
static int btrfs_encoded_io_compression_from_extent(
|
|
struct btrfs_fs_info *fs_info,
|
|
int compress_type)
|
|
{
|
|
switch (compress_type) {
|
|
case BTRFS_COMPRESS_NONE:
|
|
return BTRFS_ENCODED_IO_COMPRESSION_NONE;
|
|
case BTRFS_COMPRESS_ZLIB:
|
|
return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
|
|
case BTRFS_COMPRESS_LZO:
|
|
/*
|
|
* The LZO format depends on the sector size. 64K is the maximum
|
|
* sector size that we support.
|
|
*/
|
|
if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
|
|
return -EINVAL;
|
|
return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
|
|
(fs_info->sectorsize_bits - 12);
|
|
case BTRFS_COMPRESS_ZSTD:
|
|
return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
|
|
default:
|
|
return -EUCLEAN;
|
|
}
|
|
}
|
|
|
|
static ssize_t btrfs_encoded_read_inline(
|
|
struct kiocb *iocb,
|
|
struct iov_iter *iter, u64 start,
|
|
u64 lockend,
|
|
struct extent_state **cached_state,
|
|
u64 extent_start, size_t count,
|
|
struct btrfs_ioctl_encoded_io_args *encoded,
|
|
bool *unlocked)
|
|
{
|
|
struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct extent_io_tree *io_tree = &inode->io_tree;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_file_extent_item *item;
|
|
u64 ram_bytes;
|
|
unsigned long ptr;
|
|
void *tmp;
|
|
ssize_t ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
|
|
extent_start, 0);
|
|
if (ret) {
|
|
if (ret > 0) {
|
|
/* The extent item disappeared? */
|
|
ret = -EIO;
|
|
}
|
|
goto out;
|
|
}
|
|
leaf = path->nodes[0];
|
|
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
|
|
|
|
ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
|
|
ptr = btrfs_file_extent_inline_start(item);
|
|
|
|
encoded->len = min_t(u64, extent_start + ram_bytes,
|
|
inode->vfs_inode.i_size) - iocb->ki_pos;
|
|
ret = btrfs_encoded_io_compression_from_extent(fs_info,
|
|
btrfs_file_extent_compression(leaf, item));
|
|
if (ret < 0)
|
|
goto out;
|
|
encoded->compression = ret;
|
|
if (encoded->compression) {
|
|
size_t inline_size;
|
|
|
|
inline_size = btrfs_file_extent_inline_item_len(leaf,
|
|
path->slots[0]);
|
|
if (inline_size > count) {
|
|
ret = -ENOBUFS;
|
|
goto out;
|
|
}
|
|
count = inline_size;
|
|
encoded->unencoded_len = ram_bytes;
|
|
encoded->unencoded_offset = iocb->ki_pos - extent_start;
|
|
} else {
|
|
count = min_t(u64, count, encoded->len);
|
|
encoded->len = count;
|
|
encoded->unencoded_len = count;
|
|
ptr += iocb->ki_pos - extent_start;
|
|
}
|
|
|
|
tmp = kmalloc(count, GFP_NOFS);
|
|
if (!tmp) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
read_extent_buffer(leaf, tmp, ptr, count);
|
|
btrfs_release_path(path);
|
|
unlock_extent_cached(io_tree, start, lockend, cached_state);
|
|
btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
|
|
*unlocked = true;
|
|
|
|
ret = copy_to_iter(tmp, count, iter);
|
|
if (ret != count)
|
|
ret = -EFAULT;
|
|
kfree(tmp);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
struct btrfs_encoded_read_private {
|
|
struct btrfs_inode *inode;
|
|
u64 file_offset;
|
|
wait_queue_head_t wait;
|
|
atomic_t pending;
|
|
blk_status_t status;
|
|
bool skip_csum;
|
|
};
|
|
|
|
static blk_status_t submit_encoded_read_bio(struct btrfs_inode *inode,
|
|
struct bio *bio, int mirror_num)
|
|
{
|
|
struct btrfs_encoded_read_private *priv = bio->bi_private;
|
|
struct btrfs_bio *bbio = btrfs_bio(bio);
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
blk_status_t ret;
|
|
|
|
if (!priv->skip_csum) {
|
|
ret = btrfs_lookup_bio_sums(&inode->vfs_inode, bio, NULL);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
|
|
if (ret) {
|
|
btrfs_bio_free_csum(bbio);
|
|
return ret;
|
|
}
|
|
|
|
atomic_inc(&priv->pending);
|
|
ret = btrfs_map_bio(fs_info, bio, mirror_num);
|
|
if (ret) {
|
|
atomic_dec(&priv->pending);
|
|
btrfs_bio_free_csum(bbio);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static blk_status_t btrfs_encoded_read_verify_csum(struct btrfs_bio *bbio)
|
|
{
|
|
const bool uptodate = (bbio->bio.bi_status == BLK_STS_OK);
|
|
struct btrfs_encoded_read_private *priv = bbio->bio.bi_private;
|
|
struct btrfs_inode *inode = priv->inode;
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
u32 sectorsize = fs_info->sectorsize;
|
|
struct bio_vec *bvec;
|
|
struct bvec_iter_all iter_all;
|
|
u64 start = priv->file_offset;
|
|
u32 bio_offset = 0;
|
|
|
|
if (priv->skip_csum || !uptodate)
|
|
return bbio->bio.bi_status;
|
|
|
|
bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
|
|
unsigned int i, nr_sectors, pgoff;
|
|
|
|
nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
|
|
pgoff = bvec->bv_offset;
|
|
for (i = 0; i < nr_sectors; i++) {
|
|
ASSERT(pgoff < PAGE_SIZE);
|
|
if (check_data_csum(&inode->vfs_inode, bbio, bio_offset,
|
|
bvec->bv_page, pgoff, start))
|
|
return BLK_STS_IOERR;
|
|
start += sectorsize;
|
|
bio_offset += sectorsize;
|
|
pgoff += sectorsize;
|
|
}
|
|
}
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
static void btrfs_encoded_read_endio(struct bio *bio)
|
|
{
|
|
struct btrfs_encoded_read_private *priv = bio->bi_private;
|
|
struct btrfs_bio *bbio = btrfs_bio(bio);
|
|
blk_status_t status;
|
|
|
|
status = btrfs_encoded_read_verify_csum(bbio);
|
|
if (status) {
|
|
/*
|
|
* The memory barrier implied by the atomic_dec_return() here
|
|
* pairs with the memory barrier implied by the
|
|
* atomic_dec_return() or io_wait_event() in
|
|
* btrfs_encoded_read_regular_fill_pages() to ensure that this
|
|
* write is observed before the load of status in
|
|
* btrfs_encoded_read_regular_fill_pages().
|
|
*/
|
|
WRITE_ONCE(priv->status, status);
|
|
}
|
|
if (!atomic_dec_return(&priv->pending))
|
|
wake_up(&priv->wait);
|
|
btrfs_bio_free_csum(bbio);
|
|
bio_put(bio);
|
|
}
|
|
|
|
static int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
|
|
u64 file_offset,
|
|
u64 disk_bytenr,
|
|
u64 disk_io_size,
|
|
struct page **pages)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct btrfs_encoded_read_private priv = {
|
|
.inode = inode,
|
|
.file_offset = file_offset,
|
|
.pending = ATOMIC_INIT(1),
|
|
.skip_csum = (inode->flags & BTRFS_INODE_NODATASUM),
|
|
};
|
|
unsigned long i = 0;
|
|
u64 cur = 0;
|
|
int ret;
|
|
|
|
init_waitqueue_head(&priv.wait);
|
|
/*
|
|
* Submit bios for the extent, splitting due to bio or stripe limits as
|
|
* necessary.
|
|
*/
|
|
while (cur < disk_io_size) {
|
|
struct extent_map *em;
|
|
struct btrfs_io_geometry geom;
|
|
struct bio *bio = NULL;
|
|
u64 remaining;
|
|
|
|
em = btrfs_get_chunk_map(fs_info, disk_bytenr + cur,
|
|
disk_io_size - cur);
|
|
if (IS_ERR(em)) {
|
|
ret = PTR_ERR(em);
|
|
} else {
|
|
ret = btrfs_get_io_geometry(fs_info, em, BTRFS_MAP_READ,
|
|
disk_bytenr + cur, &geom);
|
|
free_extent_map(em);
|
|
}
|
|
if (ret) {
|
|
WRITE_ONCE(priv.status, errno_to_blk_status(ret));
|
|
break;
|
|
}
|
|
remaining = min(geom.len, disk_io_size - cur);
|
|
while (bio || remaining) {
|
|
size_t bytes = min_t(u64, remaining, PAGE_SIZE);
|
|
|
|
if (!bio) {
|
|
bio = btrfs_bio_alloc(BIO_MAX_VECS);
|
|
bio->bi_iter.bi_sector =
|
|
(disk_bytenr + cur) >> SECTOR_SHIFT;
|
|
bio->bi_end_io = btrfs_encoded_read_endio;
|
|
bio->bi_private = &priv;
|
|
bio->bi_opf = REQ_OP_READ;
|
|
}
|
|
|
|
if (!bytes ||
|
|
bio_add_page(bio, pages[i], bytes, 0) < bytes) {
|
|
blk_status_t status;
|
|
|
|
status = submit_encoded_read_bio(inode, bio, 0);
|
|
if (status) {
|
|
WRITE_ONCE(priv.status, status);
|
|
bio_put(bio);
|
|
goto out;
|
|
}
|
|
bio = NULL;
|
|
continue;
|
|
}
|
|
|
|
i++;
|
|
cur += bytes;
|
|
remaining -= bytes;
|
|
}
|
|
}
|
|
|
|
out:
|
|
if (atomic_dec_return(&priv.pending))
|
|
io_wait_event(priv.wait, !atomic_read(&priv.pending));
|
|
/* See btrfs_encoded_read_endio() for ordering. */
|
|
return blk_status_to_errno(READ_ONCE(priv.status));
|
|
}
|
|
|
|
static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
|
|
struct iov_iter *iter,
|
|
u64 start, u64 lockend,
|
|
struct extent_state **cached_state,
|
|
u64 disk_bytenr, u64 disk_io_size,
|
|
size_t count, bool compressed,
|
|
bool *unlocked)
|
|
{
|
|
struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
|
|
struct extent_io_tree *io_tree = &inode->io_tree;
|
|
struct page **pages;
|
|
unsigned long nr_pages, i;
|
|
u64 cur;
|
|
size_t page_offset;
|
|
ssize_t ret;
|
|
|
|
nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
|
|
pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
|
|
if (!pages)
|
|
return -ENOMEM;
|
|
for (i = 0; i < nr_pages; i++) {
|
|
pages[i] = alloc_page(GFP_NOFS);
|
|
if (!pages[i]) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
|
|
disk_io_size, pages);
|
|
if (ret)
|
|
goto out;
|
|
|
|
unlock_extent_cached(io_tree, start, lockend, cached_state);
|
|
btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
|
|
*unlocked = true;
|
|
|
|
if (compressed) {
|
|
i = 0;
|
|
page_offset = 0;
|
|
} else {
|
|
i = (iocb->ki_pos - start) >> PAGE_SHIFT;
|
|
page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
|
|
}
|
|
cur = 0;
|
|
while (cur < count) {
|
|
size_t bytes = min_t(size_t, count - cur,
|
|
PAGE_SIZE - page_offset);
|
|
|
|
if (copy_page_to_iter(pages[i], page_offset, bytes,
|
|
iter) != bytes) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
i++;
|
|
cur += bytes;
|
|
page_offset = 0;
|
|
}
|
|
ret = count;
|
|
out:
|
|
for (i = 0; i < nr_pages; i++) {
|
|
if (pages[i])
|
|
__free_page(pages[i]);
|
|
}
|
|
kfree(pages);
|
|
return ret;
|
|
}
|
|
|
|
ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
|
|
struct btrfs_ioctl_encoded_io_args *encoded)
|
|
{
|
|
struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct extent_io_tree *io_tree = &inode->io_tree;
|
|
ssize_t ret;
|
|
size_t count = iov_iter_count(iter);
|
|
u64 start, lockend, disk_bytenr, disk_io_size;
|
|
struct extent_state *cached_state = NULL;
|
|
struct extent_map *em;
|
|
bool unlocked = false;
|
|
|
|
file_accessed(iocb->ki_filp);
|
|
|
|
btrfs_inode_lock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
|
|
|
|
if (iocb->ki_pos >= inode->vfs_inode.i_size) {
|
|
btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
|
|
return 0;
|
|
}
|
|
start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
|
|
/*
|
|
* We don't know how long the extent containing iocb->ki_pos is, but if
|
|
* it's compressed we know that it won't be longer than this.
|
|
*/
|
|
lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
|
|
|
|
for (;;) {
|
|
struct btrfs_ordered_extent *ordered;
|
|
|
|
ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
|
|
lockend - start + 1);
|
|
if (ret)
|
|
goto out_unlock_inode;
|
|
lock_extent_bits(io_tree, start, lockend, &cached_state);
|
|
ordered = btrfs_lookup_ordered_range(inode, start,
|
|
lockend - start + 1);
|
|
if (!ordered)
|
|
break;
|
|
btrfs_put_ordered_extent(ordered);
|
|
unlock_extent_cached(io_tree, start, lockend, &cached_state);
|
|
cond_resched();
|
|
}
|
|
|
|
em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
|
|
if (IS_ERR(em)) {
|
|
ret = PTR_ERR(em);
|
|
goto out_unlock_extent;
|
|
}
|
|
|
|
if (em->block_start == EXTENT_MAP_INLINE) {
|
|
u64 extent_start = em->start;
|
|
|
|
/*
|
|
* For inline extents we get everything we need out of the
|
|
* extent item.
|
|
*/
|
|
free_extent_map(em);
|
|
em = NULL;
|
|
ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
|
|
&cached_state, extent_start,
|
|
count, encoded, &unlocked);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* We only want to return up to EOF even if the extent extends beyond
|
|
* that.
|
|
*/
|
|
encoded->len = min_t(u64, extent_map_end(em),
|
|
inode->vfs_inode.i_size) - iocb->ki_pos;
|
|
if (em->block_start == EXTENT_MAP_HOLE ||
|
|
test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
|
|
disk_bytenr = EXTENT_MAP_HOLE;
|
|
count = min_t(u64, count, encoded->len);
|
|
encoded->len = count;
|
|
encoded->unencoded_len = count;
|
|
} else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
|
|
disk_bytenr = em->block_start;
|
|
/*
|
|
* Bail if the buffer isn't large enough to return the whole
|
|
* compressed extent.
|
|
*/
|
|
if (em->block_len > count) {
|
|
ret = -ENOBUFS;
|
|
goto out_em;
|
|
}
|
|
disk_io_size = count = em->block_len;
|
|
encoded->unencoded_len = em->ram_bytes;
|
|
encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
|
|
ret = btrfs_encoded_io_compression_from_extent(fs_info,
|
|
em->compress_type);
|
|
if (ret < 0)
|
|
goto out_em;
|
|
encoded->compression = ret;
|
|
} else {
|
|
disk_bytenr = em->block_start + (start - em->start);
|
|
if (encoded->len > count)
|
|
encoded->len = count;
|
|
/*
|
|
* Don't read beyond what we locked. This also limits the page
|
|
* allocations that we'll do.
|
|
*/
|
|
disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
|
|
count = start + disk_io_size - iocb->ki_pos;
|
|
encoded->len = count;
|
|
encoded->unencoded_len = count;
|
|
disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
|
|
}
|
|
free_extent_map(em);
|
|
em = NULL;
|
|
|
|
if (disk_bytenr == EXTENT_MAP_HOLE) {
|
|
unlock_extent_cached(io_tree, start, lockend, &cached_state);
|
|
btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
|
|
unlocked = true;
|
|
ret = iov_iter_zero(count, iter);
|
|
if (ret != count)
|
|
ret = -EFAULT;
|
|
} else {
|
|
ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
|
|
&cached_state, disk_bytenr,
|
|
disk_io_size, count,
|
|
encoded->compression,
|
|
&unlocked);
|
|
}
|
|
|
|
out:
|
|
if (ret >= 0)
|
|
iocb->ki_pos += encoded->len;
|
|
out_em:
|
|
free_extent_map(em);
|
|
out_unlock_extent:
|
|
if (!unlocked)
|
|
unlock_extent_cached(io_tree, start, lockend, &cached_state);
|
|
out_unlock_inode:
|
|
if (!unlocked)
|
|
btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
|
|
return ret;
|
|
}
|
|
|
|
ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
|
|
const struct btrfs_ioctl_encoded_io_args *encoded)
|
|
{
|
|
struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct extent_io_tree *io_tree = &inode->io_tree;
|
|
struct extent_changeset *data_reserved = NULL;
|
|
struct extent_state *cached_state = NULL;
|
|
int compression;
|
|
size_t orig_count;
|
|
u64 start, end;
|
|
u64 num_bytes, ram_bytes, disk_num_bytes;
|
|
unsigned long nr_pages, i;
|
|
struct page **pages;
|
|
struct btrfs_key ins;
|
|
bool extent_reserved = false;
|
|
struct extent_map *em;
|
|
ssize_t ret;
|
|
|
|
switch (encoded->compression) {
|
|
case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
|
|
compression = BTRFS_COMPRESS_ZLIB;
|
|
break;
|
|
case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
|
|
compression = BTRFS_COMPRESS_ZSTD;
|
|
break;
|
|
case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
|
|
case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
|
|
case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
|
|
case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
|
|
case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
|
|
/* The sector size must match for LZO. */
|
|
if (encoded->compression -
|
|
BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
|
|
fs_info->sectorsize_bits)
|
|
return -EINVAL;
|
|
compression = BTRFS_COMPRESS_LZO;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
|
|
return -EINVAL;
|
|
|
|
orig_count = iov_iter_count(from);
|
|
|
|
/* The extent size must be sane. */
|
|
if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
|
|
orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* The compressed data must be smaller than the decompressed data.
|
|
*
|
|
* It's of course possible for data to compress to larger or the same
|
|
* size, but the buffered I/O path falls back to no compression for such
|
|
* data, and we don't want to break any assumptions by creating these
|
|
* extents.
|
|
*
|
|
* Note that this is less strict than the current check we have that the
|
|
* compressed data must be at least one sector smaller than the
|
|
* decompressed data. We only want to enforce the weaker requirement
|
|
* from old kernels that it is at least one byte smaller.
|
|
*/
|
|
if (orig_count >= encoded->unencoded_len)
|
|
return -EINVAL;
|
|
|
|
/* The extent must start on a sector boundary. */
|
|
start = iocb->ki_pos;
|
|
if (!IS_ALIGNED(start, fs_info->sectorsize))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* The extent must end on a sector boundary. However, we allow a write
|
|
* which ends at or extends i_size to have an unaligned length; we round
|
|
* up the extent size and set i_size to the unaligned end.
|
|
*/
|
|
if (start + encoded->len < inode->vfs_inode.i_size &&
|
|
!IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
|
|
return -EINVAL;
|
|
|
|
/* Finally, the offset in the unencoded data must be sector-aligned. */
|
|
if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
|
|
return -EINVAL;
|
|
|
|
num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
|
|
ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
|
|
end = start + num_bytes - 1;
|
|
|
|
/*
|
|
* If the extent cannot be inline, the compressed data on disk must be
|
|
* sector-aligned. For convenience, we extend it with zeroes if it
|
|
* isn't.
|
|
*/
|
|
disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
|
|
nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
|
|
pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
|
|
if (!pages)
|
|
return -ENOMEM;
|
|
for (i = 0; i < nr_pages; i++) {
|
|
size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
|
|
char *kaddr;
|
|
|
|
pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
|
|
if (!pages[i]) {
|
|
ret = -ENOMEM;
|
|
goto out_pages;
|
|
}
|
|
kaddr = kmap(pages[i]);
|
|
if (copy_from_iter(kaddr, bytes, from) != bytes) {
|
|
kunmap(pages[i]);
|
|
ret = -EFAULT;
|
|
goto out_pages;
|
|
}
|
|
if (bytes < PAGE_SIZE)
|
|
memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
|
|
kunmap(pages[i]);
|
|
}
|
|
|
|
for (;;) {
|
|
struct btrfs_ordered_extent *ordered;
|
|
|
|
ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
|
|
if (ret)
|
|
goto out_pages;
|
|
ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
|
|
start >> PAGE_SHIFT,
|
|
end >> PAGE_SHIFT);
|
|
if (ret)
|
|
goto out_pages;
|
|
lock_extent_bits(io_tree, start, end, &cached_state);
|
|
ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
|
|
if (!ordered &&
|
|
!filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
|
|
break;
|
|
if (ordered)
|
|
btrfs_put_ordered_extent(ordered);
|
|
unlock_extent_cached(io_tree, start, end, &cached_state);
|
|
cond_resched();
|
|
}
|
|
|
|
/*
|
|
* We don't use the higher-level delalloc space functions because our
|
|
* num_bytes and disk_num_bytes are different.
|
|
*/
|
|
ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
|
|
if (ret)
|
|
goto out_unlock;
|
|
ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
|
|
if (ret)
|
|
goto out_free_data_space;
|
|
ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes);
|
|
if (ret)
|
|
goto out_qgroup_free_data;
|
|
|
|
/* Try an inline extent first. */
|
|
if (start == 0 && encoded->unencoded_len == encoded->len &&
|
|
encoded->unencoded_offset == 0) {
|
|
ret = cow_file_range_inline(inode, encoded->len, orig_count,
|
|
compression, pages, true);
|
|
if (ret <= 0) {
|
|
if (ret == 0)
|
|
ret = orig_count;
|
|
goto out_delalloc_release;
|
|
}
|
|
}
|
|
|
|
ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
|
|
disk_num_bytes, 0, 0, &ins, 1, 1);
|
|
if (ret)
|
|
goto out_delalloc_release;
|
|
extent_reserved = true;
|
|
|
|
em = create_io_em(inode, start, num_bytes,
|
|
start - encoded->unencoded_offset, ins.objectid,
|
|
ins.offset, ins.offset, ram_bytes, compression,
|
|
BTRFS_ORDERED_COMPRESSED);
|
|
if (IS_ERR(em)) {
|
|
ret = PTR_ERR(em);
|
|
goto out_free_reserved;
|
|
}
|
|
free_extent_map(em);
|
|
|
|
ret = btrfs_add_ordered_extent(inode, start, num_bytes, ram_bytes,
|
|
ins.objectid, ins.offset,
|
|
encoded->unencoded_offset,
|
|
(1 << BTRFS_ORDERED_ENCODED) |
|
|
(1 << BTRFS_ORDERED_COMPRESSED),
|
|
compression);
|
|
if (ret) {
|
|
btrfs_drop_extent_cache(inode, start, end, 0);
|
|
goto out_free_reserved;
|
|
}
|
|
btrfs_dec_block_group_reservations(fs_info, ins.objectid);
|
|
|
|
if (start + encoded->len > inode->vfs_inode.i_size)
|
|
i_size_write(&inode->vfs_inode, start + encoded->len);
|
|
|
|
unlock_extent_cached(io_tree, start, end, &cached_state);
|
|
|
|
btrfs_delalloc_release_extents(inode, num_bytes);
|
|
|
|
if (btrfs_submit_compressed_write(inode, start, num_bytes, ins.objectid,
|
|
ins.offset, pages, nr_pages, 0, NULL,
|
|
false)) {
|
|
btrfs_writepage_endio_finish_ordered(inode, pages[0], start, end, 0);
|
|
ret = -EIO;
|
|
goto out_pages;
|
|
}
|
|
ret = orig_count;
|
|
goto out;
|
|
|
|
out_free_reserved:
|
|
btrfs_dec_block_group_reservations(fs_info, ins.objectid);
|
|
btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
|
|
out_delalloc_release:
|
|
btrfs_delalloc_release_extents(inode, num_bytes);
|
|
btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
|
|
out_qgroup_free_data:
|
|
if (ret < 0)
|
|
btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes);
|
|
out_free_data_space:
|
|
/*
|
|
* If btrfs_reserve_extent() succeeded, then we already decremented
|
|
* bytes_may_use.
|
|
*/
|
|
if (!extent_reserved)
|
|
btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
|
|
out_unlock:
|
|
unlock_extent_cached(io_tree, start, end, &cached_state);
|
|
out_pages:
|
|
for (i = 0; i < nr_pages; i++) {
|
|
if (pages[i])
|
|
__free_page(pages[i]);
|
|
}
|
|
kvfree(pages);
|
|
out:
|
|
if (ret >= 0)
|
|
iocb->ki_pos += encoded->len;
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_SWAP
|
|
/*
|
|
* Add an entry indicating a block group or device which is pinned by a
|
|
* swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
|
|
* negative errno on failure.
|
|
*/
|
|
static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
|
|
bool is_block_group)
|
|
{
|
|
struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
|
|
struct btrfs_swapfile_pin *sp, *entry;
|
|
struct rb_node **p;
|
|
struct rb_node *parent = NULL;
|
|
|
|
sp = kmalloc(sizeof(*sp), GFP_NOFS);
|
|
if (!sp)
|
|
return -ENOMEM;
|
|
sp->ptr = ptr;
|
|
sp->inode = inode;
|
|
sp->is_block_group = is_block_group;
|
|
sp->bg_extent_count = 1;
|
|
|
|
spin_lock(&fs_info->swapfile_pins_lock);
|
|
p = &fs_info->swapfile_pins.rb_node;
|
|
while (*p) {
|
|
parent = *p;
|
|
entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
|
|
if (sp->ptr < entry->ptr ||
|
|
(sp->ptr == entry->ptr && sp->inode < entry->inode)) {
|
|
p = &(*p)->rb_left;
|
|
} else if (sp->ptr > entry->ptr ||
|
|
(sp->ptr == entry->ptr && sp->inode > entry->inode)) {
|
|
p = &(*p)->rb_right;
|
|
} else {
|
|
if (is_block_group)
|
|
entry->bg_extent_count++;
|
|
spin_unlock(&fs_info->swapfile_pins_lock);
|
|
kfree(sp);
|
|
return 1;
|
|
}
|
|
}
|
|
rb_link_node(&sp->node, parent, p);
|
|
rb_insert_color(&sp->node, &fs_info->swapfile_pins);
|
|
spin_unlock(&fs_info->swapfile_pins_lock);
|
|
return 0;
|
|
}
|
|
|
|
/* Free all of the entries pinned by this swapfile. */
|
|
static void btrfs_free_swapfile_pins(struct inode *inode)
|
|
{
|
|
struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
|
|
struct btrfs_swapfile_pin *sp;
|
|
struct rb_node *node, *next;
|
|
|
|
spin_lock(&fs_info->swapfile_pins_lock);
|
|
node = rb_first(&fs_info->swapfile_pins);
|
|
while (node) {
|
|
next = rb_next(node);
|
|
sp = rb_entry(node, struct btrfs_swapfile_pin, node);
|
|
if (sp->inode == inode) {
|
|
rb_erase(&sp->node, &fs_info->swapfile_pins);
|
|
if (sp->is_block_group) {
|
|
btrfs_dec_block_group_swap_extents(sp->ptr,
|
|
sp->bg_extent_count);
|
|
btrfs_put_block_group(sp->ptr);
|
|
}
|
|
kfree(sp);
|
|
}
|
|
node = next;
|
|
}
|
|
spin_unlock(&fs_info->swapfile_pins_lock);
|
|
}
|
|
|
|
struct btrfs_swap_info {
|
|
u64 start;
|
|
u64 block_start;
|
|
u64 block_len;
|
|
u64 lowest_ppage;
|
|
u64 highest_ppage;
|
|
unsigned long nr_pages;
|
|
int nr_extents;
|
|
};
|
|
|
|
static int btrfs_add_swap_extent(struct swap_info_struct *sis,
|
|
struct btrfs_swap_info *bsi)
|
|
{
|
|
unsigned long nr_pages;
|
|
unsigned long max_pages;
|
|
u64 first_ppage, first_ppage_reported, next_ppage;
|
|
int ret;
|
|
|
|
/*
|
|
* Our swapfile may have had its size extended after the swap header was
|
|
* written. In that case activating the swapfile should not go beyond
|
|
* the max size set in the swap header.
|
|
*/
|
|
if (bsi->nr_pages >= sis->max)
|
|
return 0;
|
|
|
|
max_pages = sis->max - bsi->nr_pages;
|
|
first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
|
|
next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
|
|
PAGE_SIZE) >> PAGE_SHIFT;
|
|
|
|
if (first_ppage >= next_ppage)
|
|
return 0;
|
|
nr_pages = next_ppage - first_ppage;
|
|
nr_pages = min(nr_pages, max_pages);
|
|
|
|
first_ppage_reported = first_ppage;
|
|
if (bsi->start == 0)
|
|
first_ppage_reported++;
|
|
if (bsi->lowest_ppage > first_ppage_reported)
|
|
bsi->lowest_ppage = first_ppage_reported;
|
|
if (bsi->highest_ppage < (next_ppage - 1))
|
|
bsi->highest_ppage = next_ppage - 1;
|
|
|
|
ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
|
|
if (ret < 0)
|
|
return ret;
|
|
bsi->nr_extents += ret;
|
|
bsi->nr_pages += nr_pages;
|
|
return 0;
|
|
}
|
|
|
|
static void btrfs_swap_deactivate(struct file *file)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
|
|
btrfs_free_swapfile_pins(inode);
|
|
atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
|
|
}
|
|
|
|
static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
|
|
sector_t *span)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct extent_state *cached_state = NULL;
|
|
struct extent_map *em = NULL;
|
|
struct btrfs_device *device = NULL;
|
|
struct btrfs_swap_info bsi = {
|
|
.lowest_ppage = (sector_t)-1ULL,
|
|
};
|
|
int ret = 0;
|
|
u64 isize;
|
|
u64 start;
|
|
|
|
/*
|
|
* If the swap file was just created, make sure delalloc is done. If the
|
|
* file changes again after this, the user is doing something stupid and
|
|
* we don't really care.
|
|
*/
|
|
ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* The inode is locked, so these flags won't change after we check them.
|
|
*/
|
|
if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
|
|
btrfs_warn(fs_info, "swapfile must not be compressed");
|
|
return -EINVAL;
|
|
}
|
|
if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
|
|
btrfs_warn(fs_info, "swapfile must not be copy-on-write");
|
|
return -EINVAL;
|
|
}
|
|
if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
|
|
btrfs_warn(fs_info, "swapfile must not be checksummed");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Balance or device remove/replace/resize can move stuff around from
|
|
* under us. The exclop protection makes sure they aren't running/won't
|
|
* run concurrently while we are mapping the swap extents, and
|
|
* fs_info->swapfile_pins prevents them from running while the swap
|
|
* file is active and moving the extents. Note that this also prevents
|
|
* a concurrent device add which isn't actually necessary, but it's not
|
|
* really worth the trouble to allow it.
|
|
*/
|
|
if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
|
|
btrfs_warn(fs_info,
|
|
"cannot activate swapfile while exclusive operation is running");
|
|
return -EBUSY;
|
|
}
|
|
|
|
/*
|
|
* Prevent snapshot creation while we are activating the swap file.
|
|
* We do not want to race with snapshot creation. If snapshot creation
|
|
* already started before we bumped nr_swapfiles from 0 to 1 and
|
|
* completes before the first write into the swap file after it is
|
|
* activated, than that write would fallback to COW.
|
|
*/
|
|
if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
|
|
btrfs_exclop_finish(fs_info);
|
|
btrfs_warn(fs_info,
|
|
"cannot activate swapfile because snapshot creation is in progress");
|
|
return -EINVAL;
|
|
}
|
|
/*
|
|
* Snapshots can create extents which require COW even if NODATACOW is
|
|
* set. We use this counter to prevent snapshots. We must increment it
|
|
* before walking the extents because we don't want a concurrent
|
|
* snapshot to run after we've already checked the extents.
|
|
*
|
|
* It is possible that subvolume is marked for deletion but still not
|
|
* removed yet. To prevent this race, we check the root status before
|
|
* activating the swapfile.
|
|
*/
|
|
spin_lock(&root->root_item_lock);
|
|
if (btrfs_root_dead(root)) {
|
|
spin_unlock(&root->root_item_lock);
|
|
|
|
btrfs_exclop_finish(fs_info);
|
|
btrfs_warn(fs_info,
|
|
"cannot activate swapfile because subvolume %llu is being deleted",
|
|
root->root_key.objectid);
|
|
return -EPERM;
|
|
}
|
|
atomic_inc(&root->nr_swapfiles);
|
|
spin_unlock(&root->root_item_lock);
|
|
|
|
isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
|
|
|
|
lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
|
|
start = 0;
|
|
while (start < isize) {
|
|
u64 logical_block_start, physical_block_start;
|
|
struct btrfs_block_group *bg;
|
|
u64 len = isize - start;
|
|
|
|
em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
|
|
if (IS_ERR(em)) {
|
|
ret = PTR_ERR(em);
|
|
goto out;
|
|
}
|
|
|
|
if (em->block_start == EXTENT_MAP_HOLE) {
|
|
btrfs_warn(fs_info, "swapfile must not have holes");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
if (em->block_start == EXTENT_MAP_INLINE) {
|
|
/*
|
|
* It's unlikely we'll ever actually find ourselves
|
|
* here, as a file small enough to fit inline won't be
|
|
* big enough to store more than the swap header, but in
|
|
* case something changes in the future, let's catch it
|
|
* here rather than later.
|
|
*/
|
|
btrfs_warn(fs_info, "swapfile must not be inline");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
|
|
btrfs_warn(fs_info, "swapfile must not be compressed");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
logical_block_start = em->block_start + (start - em->start);
|
|
len = min(len, em->len - (start - em->start));
|
|
free_extent_map(em);
|
|
em = NULL;
|
|
|
|
ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (ret) {
|
|
ret = 0;
|
|
} else {
|
|
btrfs_warn(fs_info,
|
|
"swapfile must not be copy-on-write");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
|
|
if (IS_ERR(em)) {
|
|
ret = PTR_ERR(em);
|
|
goto out;
|
|
}
|
|
|
|
if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
|
|
btrfs_warn(fs_info,
|
|
"swapfile must have single data profile");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (device == NULL) {
|
|
device = em->map_lookup->stripes[0].dev;
|
|
ret = btrfs_add_swapfile_pin(inode, device, false);
|
|
if (ret == 1)
|
|
ret = 0;
|
|
else if (ret)
|
|
goto out;
|
|
} else if (device != em->map_lookup->stripes[0].dev) {
|
|
btrfs_warn(fs_info, "swapfile must be on one device");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
physical_block_start = (em->map_lookup->stripes[0].physical +
|
|
(logical_block_start - em->start));
|
|
len = min(len, em->len - (logical_block_start - em->start));
|
|
free_extent_map(em);
|
|
em = NULL;
|
|
|
|
bg = btrfs_lookup_block_group(fs_info, logical_block_start);
|
|
if (!bg) {
|
|
btrfs_warn(fs_info,
|
|
"could not find block group containing swapfile");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (!btrfs_inc_block_group_swap_extents(bg)) {
|
|
btrfs_warn(fs_info,
|
|
"block group for swapfile at %llu is read-only%s",
|
|
bg->start,
|
|
atomic_read(&fs_info->scrubs_running) ?
|
|
" (scrub running)" : "");
|
|
btrfs_put_block_group(bg);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_add_swapfile_pin(inode, bg, true);
|
|
if (ret) {
|
|
btrfs_put_block_group(bg);
|
|
if (ret == 1)
|
|
ret = 0;
|
|
else
|
|
goto out;
|
|
}
|
|
|
|
if (bsi.block_len &&
|
|
bsi.block_start + bsi.block_len == physical_block_start) {
|
|
bsi.block_len += len;
|
|
} else {
|
|
if (bsi.block_len) {
|
|
ret = btrfs_add_swap_extent(sis, &bsi);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
bsi.start = start;
|
|
bsi.block_start = physical_block_start;
|
|
bsi.block_len = len;
|
|
}
|
|
|
|
start += len;
|
|
}
|
|
|
|
if (bsi.block_len)
|
|
ret = btrfs_add_swap_extent(sis, &bsi);
|
|
|
|
out:
|
|
if (!IS_ERR_OR_NULL(em))
|
|
free_extent_map(em);
|
|
|
|
unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
|
|
|
|
if (ret)
|
|
btrfs_swap_deactivate(file);
|
|
|
|
btrfs_drew_write_unlock(&root->snapshot_lock);
|
|
|
|
btrfs_exclop_finish(fs_info);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (device)
|
|
sis->bdev = device->bdev;
|
|
*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
|
|
sis->max = bsi.nr_pages;
|
|
sis->pages = bsi.nr_pages - 1;
|
|
sis->highest_bit = bsi.nr_pages - 1;
|
|
return bsi.nr_extents;
|
|
}
|
|
#else
|
|
static void btrfs_swap_deactivate(struct file *file)
|
|
{
|
|
}
|
|
|
|
static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
|
|
sector_t *span)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Update the number of bytes used in the VFS' inode. When we replace extents in
|
|
* a range (clone, dedupe, fallocate's zero range), we must update the number of
|
|
* bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
|
|
* always get a correct value.
|
|
*/
|
|
void btrfs_update_inode_bytes(struct btrfs_inode *inode,
|
|
const u64 add_bytes,
|
|
const u64 del_bytes)
|
|
{
|
|
if (add_bytes == del_bytes)
|
|
return;
|
|
|
|
spin_lock(&inode->lock);
|
|
if (del_bytes > 0)
|
|
inode_sub_bytes(&inode->vfs_inode, del_bytes);
|
|
if (add_bytes > 0)
|
|
inode_add_bytes(&inode->vfs_inode, add_bytes);
|
|
spin_unlock(&inode->lock);
|
|
}
|
|
|
|
static const struct inode_operations btrfs_dir_inode_operations = {
|
|
.getattr = btrfs_getattr,
|
|
.lookup = btrfs_lookup,
|
|
.create = btrfs_create,
|
|
.unlink = btrfs_unlink,
|
|
.link = btrfs_link,
|
|
.mkdir = btrfs_mkdir,
|
|
.rmdir = btrfs_rmdir,
|
|
.rename = btrfs_rename2,
|
|
.symlink = btrfs_symlink,
|
|
.setattr = btrfs_setattr,
|
|
.mknod = btrfs_mknod,
|
|
.listxattr = btrfs_listxattr,
|
|
.permission = btrfs_permission,
|
|
.get_acl = btrfs_get_acl,
|
|
.set_acl = btrfs_set_acl,
|
|
.update_time = btrfs_update_time,
|
|
.tmpfile = btrfs_tmpfile,
|
|
.fileattr_get = btrfs_fileattr_get,
|
|
.fileattr_set = btrfs_fileattr_set,
|
|
};
|
|
|
|
static const struct file_operations btrfs_dir_file_operations = {
|
|
.llseek = generic_file_llseek,
|
|
.read = generic_read_dir,
|
|
.iterate_shared = btrfs_real_readdir,
|
|
.open = btrfs_opendir,
|
|
.unlocked_ioctl = btrfs_ioctl,
|
|
#ifdef CONFIG_COMPAT
|
|
.compat_ioctl = btrfs_compat_ioctl,
|
|
#endif
|
|
.release = btrfs_release_file,
|
|
.fsync = btrfs_sync_file,
|
|
};
|
|
|
|
/*
|
|
* btrfs doesn't support the bmap operation because swapfiles
|
|
* use bmap to make a mapping of extents in the file. They assume
|
|
* these extents won't change over the life of the file and they
|
|
* use the bmap result to do IO directly to the drive.
|
|
*
|
|
* the btrfs bmap call would return logical addresses that aren't
|
|
* suitable for IO and they also will change frequently as COW
|
|
* operations happen. So, swapfile + btrfs == corruption.
|
|
*
|
|
* For now we're avoiding this by dropping bmap.
|
|
*/
|
|
static const struct address_space_operations btrfs_aops = {
|
|
.readpage = btrfs_readpage,
|
|
.writepage = btrfs_writepage,
|
|
.writepages = btrfs_writepages,
|
|
.readahead = btrfs_readahead,
|
|
.direct_IO = noop_direct_IO,
|
|
.invalidate_folio = btrfs_invalidate_folio,
|
|
.releasepage = btrfs_releasepage,
|
|
#ifdef CONFIG_MIGRATION
|
|
.migratepage = btrfs_migratepage,
|
|
#endif
|
|
.dirty_folio = filemap_dirty_folio,
|
|
.error_remove_page = generic_error_remove_page,
|
|
.swap_activate = btrfs_swap_activate,
|
|
.swap_deactivate = btrfs_swap_deactivate,
|
|
};
|
|
|
|
static const struct inode_operations btrfs_file_inode_operations = {
|
|
.getattr = btrfs_getattr,
|
|
.setattr = btrfs_setattr,
|
|
.listxattr = btrfs_listxattr,
|
|
.permission = btrfs_permission,
|
|
.fiemap = btrfs_fiemap,
|
|
.get_acl = btrfs_get_acl,
|
|
.set_acl = btrfs_set_acl,
|
|
.update_time = btrfs_update_time,
|
|
.fileattr_get = btrfs_fileattr_get,
|
|
.fileattr_set = btrfs_fileattr_set,
|
|
};
|
|
static const struct inode_operations btrfs_special_inode_operations = {
|
|
.getattr = btrfs_getattr,
|
|
.setattr = btrfs_setattr,
|
|
.permission = btrfs_permission,
|
|
.listxattr = btrfs_listxattr,
|
|
.get_acl = btrfs_get_acl,
|
|
.set_acl = btrfs_set_acl,
|
|
.update_time = btrfs_update_time,
|
|
};
|
|
static const struct inode_operations btrfs_symlink_inode_operations = {
|
|
.get_link = page_get_link,
|
|
.getattr = btrfs_getattr,
|
|
.setattr = btrfs_setattr,
|
|
.permission = btrfs_permission,
|
|
.listxattr = btrfs_listxattr,
|
|
.update_time = btrfs_update_time,
|
|
};
|
|
|
|
const struct dentry_operations btrfs_dentry_operations = {
|
|
.d_delete = btrfs_dentry_delete,
|
|
};
|