mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-21 18:14:48 +08:00
28bc106b23
f2fs support atomic write with following semantics: 1. open db file 2. ioctl start atomic write 3. (write db file) * n 4. ioctl commit atomic write 5. close db file With this flow we can avoid file becoming corrupted when abnormal power cut, because we hold data of transaction in referenced pages linked in inmem_pages list of inode, but without setting them dirty, so these data won't be persisted unless we commit them in step 4. But we should still hold journal db file in memory by using volatile write, because our semantics of 'atomic write support' is incomplete, in step 4, we could fail to submit all dirty data of transaction, once partial dirty data was committed in storage, then after a checkpoint & abnormal power-cut, db file will be corrupted forever. So this patch tries to improve atomic write flow by adding a revoking flow, once inner error occurs in committing, this gives another chance to try to revoke these partial submitted data of current transaction, it makes committing operation more like aotmical one. If we're not lucky, once revoking operation was failed, EAGAIN will be reported to user for suggesting doing the recovery with held journal file, or retrying current transaction again. Signed-off-by: Chao Yu <chao2.yu@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
630 lines
15 KiB
C
630 lines
15 KiB
C
/*
|
|
* fs/f2fs/recovery.c
|
|
*
|
|
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com/
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/fs.h>
|
|
#include <linux/f2fs_fs.h>
|
|
#include "f2fs.h"
|
|
#include "node.h"
|
|
#include "segment.h"
|
|
|
|
/*
|
|
* Roll forward recovery scenarios.
|
|
*
|
|
* [Term] F: fsync_mark, D: dentry_mark
|
|
*
|
|
* 1. inode(x) | CP | inode(x) | dnode(F)
|
|
* -> Update the latest inode(x).
|
|
*
|
|
* 2. inode(x) | CP | inode(F) | dnode(F)
|
|
* -> No problem.
|
|
*
|
|
* 3. inode(x) | CP | dnode(F) | inode(x)
|
|
* -> Recover to the latest dnode(F), and drop the last inode(x)
|
|
*
|
|
* 4. inode(x) | CP | dnode(F) | inode(F)
|
|
* -> No problem.
|
|
*
|
|
* 5. CP | inode(x) | dnode(F)
|
|
* -> The inode(DF) was missing. Should drop this dnode(F).
|
|
*
|
|
* 6. CP | inode(DF) | dnode(F)
|
|
* -> No problem.
|
|
*
|
|
* 7. CP | dnode(F) | inode(DF)
|
|
* -> If f2fs_iget fails, then goto next to find inode(DF).
|
|
*
|
|
* 8. CP | dnode(F) | inode(x)
|
|
* -> If f2fs_iget fails, then goto next to find inode(DF).
|
|
* But it will fail due to no inode(DF).
|
|
*/
|
|
|
|
static struct kmem_cache *fsync_entry_slab;
|
|
|
|
bool space_for_roll_forward(struct f2fs_sb_info *sbi)
|
|
{
|
|
if (sbi->last_valid_block_count + sbi->alloc_valid_block_count
|
|
> sbi->user_block_count)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
|
|
nid_t ino)
|
|
{
|
|
struct fsync_inode_entry *entry;
|
|
|
|
list_for_each_entry(entry, head, list)
|
|
if (entry->inode->i_ino == ino)
|
|
return entry;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int recover_dentry(struct inode *inode, struct page *ipage)
|
|
{
|
|
struct f2fs_inode *raw_inode = F2FS_INODE(ipage);
|
|
nid_t pino = le32_to_cpu(raw_inode->i_pino);
|
|
struct f2fs_dir_entry *de;
|
|
struct qstr name;
|
|
struct page *page;
|
|
struct inode *dir, *einode;
|
|
int err = 0;
|
|
|
|
dir = f2fs_iget(inode->i_sb, pino);
|
|
if (IS_ERR(dir)) {
|
|
err = PTR_ERR(dir);
|
|
goto out;
|
|
}
|
|
|
|
if (file_enc_name(inode)) {
|
|
iput(dir);
|
|
return 0;
|
|
}
|
|
|
|
name.len = le32_to_cpu(raw_inode->i_namelen);
|
|
name.name = raw_inode->i_name;
|
|
|
|
if (unlikely(name.len > F2FS_NAME_LEN)) {
|
|
WARN_ON(1);
|
|
err = -ENAMETOOLONG;
|
|
goto out_err;
|
|
}
|
|
retry:
|
|
de = f2fs_find_entry(dir, &name, &page);
|
|
if (de && inode->i_ino == le32_to_cpu(de->ino))
|
|
goto out_unmap_put;
|
|
|
|
if (de) {
|
|
einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino));
|
|
if (IS_ERR(einode)) {
|
|
WARN_ON(1);
|
|
err = PTR_ERR(einode);
|
|
if (err == -ENOENT)
|
|
err = -EEXIST;
|
|
goto out_unmap_put;
|
|
}
|
|
err = acquire_orphan_inode(F2FS_I_SB(inode));
|
|
if (err) {
|
|
iput(einode);
|
|
goto out_unmap_put;
|
|
}
|
|
f2fs_delete_entry(de, page, dir, einode);
|
|
iput(einode);
|
|
goto retry;
|
|
}
|
|
err = __f2fs_add_link(dir, &name, inode, inode->i_ino, inode->i_mode);
|
|
if (err)
|
|
goto out_err;
|
|
|
|
if (is_inode_flag_set(F2FS_I(dir), FI_DELAY_IPUT)) {
|
|
iput(dir);
|
|
} else {
|
|
add_dirty_dir_inode(dir);
|
|
set_inode_flag(F2FS_I(dir), FI_DELAY_IPUT);
|
|
}
|
|
|
|
goto out;
|
|
|
|
out_unmap_put:
|
|
f2fs_dentry_kunmap(dir, page);
|
|
f2fs_put_page(page, 0);
|
|
out_err:
|
|
iput(dir);
|
|
out:
|
|
f2fs_msg(inode->i_sb, KERN_NOTICE,
|
|
"%s: ino = %x, name = %s, dir = %lx, err = %d",
|
|
__func__, ino_of_node(ipage), raw_inode->i_name,
|
|
IS_ERR(dir) ? 0 : dir->i_ino, err);
|
|
return err;
|
|
}
|
|
|
|
static void recover_inode(struct inode *inode, struct page *page)
|
|
{
|
|
struct f2fs_inode *raw = F2FS_INODE(page);
|
|
char *name;
|
|
|
|
inode->i_mode = le16_to_cpu(raw->i_mode);
|
|
i_size_write(inode, le64_to_cpu(raw->i_size));
|
|
inode->i_atime.tv_sec = le64_to_cpu(raw->i_mtime);
|
|
inode->i_ctime.tv_sec = le64_to_cpu(raw->i_ctime);
|
|
inode->i_mtime.tv_sec = le64_to_cpu(raw->i_mtime);
|
|
inode->i_atime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
|
|
inode->i_ctime.tv_nsec = le32_to_cpu(raw->i_ctime_nsec);
|
|
inode->i_mtime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
|
|
|
|
if (file_enc_name(inode))
|
|
name = "<encrypted>";
|
|
else
|
|
name = F2FS_INODE(page)->i_name;
|
|
|
|
f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s",
|
|
ino_of_node(page), name);
|
|
}
|
|
|
|
static bool is_same_inode(struct inode *inode, struct page *ipage)
|
|
{
|
|
struct f2fs_inode *ri = F2FS_INODE(ipage);
|
|
struct timespec disk;
|
|
|
|
if (!IS_INODE(ipage))
|
|
return true;
|
|
|
|
disk.tv_sec = le64_to_cpu(ri->i_ctime);
|
|
disk.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
|
|
if (timespec_compare(&inode->i_ctime, &disk) > 0)
|
|
return false;
|
|
|
|
disk.tv_sec = le64_to_cpu(ri->i_atime);
|
|
disk.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
|
|
if (timespec_compare(&inode->i_atime, &disk) > 0)
|
|
return false;
|
|
|
|
disk.tv_sec = le64_to_cpu(ri->i_mtime);
|
|
disk.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
|
|
if (timespec_compare(&inode->i_mtime, &disk) > 0)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
|
|
{
|
|
unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
|
|
struct curseg_info *curseg;
|
|
struct page *page = NULL;
|
|
block_t blkaddr;
|
|
int err = 0;
|
|
|
|
/* get node pages in the current segment */
|
|
curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
|
|
blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
|
|
|
|
ra_meta_pages(sbi, blkaddr, 1, META_POR, true);
|
|
|
|
while (1) {
|
|
struct fsync_inode_entry *entry;
|
|
|
|
if (!is_valid_blkaddr(sbi, blkaddr, META_POR))
|
|
return 0;
|
|
|
|
page = get_tmp_page(sbi, blkaddr);
|
|
|
|
if (cp_ver != cpver_of_node(page))
|
|
break;
|
|
|
|
if (!is_fsync_dnode(page))
|
|
goto next;
|
|
|
|
entry = get_fsync_inode(head, ino_of_node(page));
|
|
if (entry) {
|
|
if (!is_same_inode(entry->inode, page))
|
|
goto next;
|
|
} else {
|
|
if (IS_INODE(page) && is_dent_dnode(page)) {
|
|
err = recover_inode_page(sbi, page);
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
/* add this fsync inode to the list */
|
|
entry = kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO);
|
|
if (!entry) {
|
|
err = -ENOMEM;
|
|
break;
|
|
}
|
|
/*
|
|
* CP | dnode(F) | inode(DF)
|
|
* For this case, we should not give up now.
|
|
*/
|
|
entry->inode = f2fs_iget(sbi->sb, ino_of_node(page));
|
|
if (IS_ERR(entry->inode)) {
|
|
err = PTR_ERR(entry->inode);
|
|
kmem_cache_free(fsync_entry_slab, entry);
|
|
if (err == -ENOENT) {
|
|
err = 0;
|
|
goto next;
|
|
}
|
|
break;
|
|
}
|
|
list_add_tail(&entry->list, head);
|
|
}
|
|
entry->blkaddr = blkaddr;
|
|
|
|
if (IS_INODE(page)) {
|
|
entry->last_inode = blkaddr;
|
|
if (is_dent_dnode(page))
|
|
entry->last_dentry = blkaddr;
|
|
}
|
|
next:
|
|
/* check next segment */
|
|
blkaddr = next_blkaddr_of_node(page);
|
|
f2fs_put_page(page, 1);
|
|
|
|
ra_meta_pages_cond(sbi, blkaddr);
|
|
}
|
|
f2fs_put_page(page, 1);
|
|
return err;
|
|
}
|
|
|
|
static void destroy_fsync_dnodes(struct list_head *head)
|
|
{
|
|
struct fsync_inode_entry *entry, *tmp;
|
|
|
|
list_for_each_entry_safe(entry, tmp, head, list) {
|
|
iput(entry->inode);
|
|
list_del(&entry->list);
|
|
kmem_cache_free(fsync_entry_slab, entry);
|
|
}
|
|
}
|
|
|
|
static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
|
|
block_t blkaddr, struct dnode_of_data *dn)
|
|
{
|
|
struct seg_entry *sentry;
|
|
unsigned int segno = GET_SEGNO(sbi, blkaddr);
|
|
unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
|
|
struct f2fs_summary_block *sum_node;
|
|
struct f2fs_summary sum;
|
|
struct page *sum_page, *node_page;
|
|
struct dnode_of_data tdn = *dn;
|
|
nid_t ino, nid;
|
|
struct inode *inode;
|
|
unsigned int offset;
|
|
block_t bidx;
|
|
int i;
|
|
|
|
sentry = get_seg_entry(sbi, segno);
|
|
if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
|
|
return 0;
|
|
|
|
/* Get the previous summary */
|
|
for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) {
|
|
struct curseg_info *curseg = CURSEG_I(sbi, i);
|
|
if (curseg->segno == segno) {
|
|
sum = curseg->sum_blk->entries[blkoff];
|
|
goto got_it;
|
|
}
|
|
}
|
|
|
|
sum_page = get_sum_page(sbi, segno);
|
|
sum_node = (struct f2fs_summary_block *)page_address(sum_page);
|
|
sum = sum_node->entries[blkoff];
|
|
f2fs_put_page(sum_page, 1);
|
|
got_it:
|
|
/* Use the locked dnode page and inode */
|
|
nid = le32_to_cpu(sum.nid);
|
|
if (dn->inode->i_ino == nid) {
|
|
tdn.nid = nid;
|
|
if (!dn->inode_page_locked)
|
|
lock_page(dn->inode_page);
|
|
tdn.node_page = dn->inode_page;
|
|
tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
|
|
goto truncate_out;
|
|
} else if (dn->nid == nid) {
|
|
tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
|
|
goto truncate_out;
|
|
}
|
|
|
|
/* Get the node page */
|
|
node_page = get_node_page(sbi, nid);
|
|
if (IS_ERR(node_page))
|
|
return PTR_ERR(node_page);
|
|
|
|
offset = ofs_of_node(node_page);
|
|
ino = ino_of_node(node_page);
|
|
f2fs_put_page(node_page, 1);
|
|
|
|
if (ino != dn->inode->i_ino) {
|
|
/* Deallocate previous index in the node page */
|
|
inode = f2fs_iget(sbi->sb, ino);
|
|
if (IS_ERR(inode))
|
|
return PTR_ERR(inode);
|
|
} else {
|
|
inode = dn->inode;
|
|
}
|
|
|
|
bidx = start_bidx_of_node(offset, inode) + le16_to_cpu(sum.ofs_in_node);
|
|
|
|
/*
|
|
* if inode page is locked, unlock temporarily, but its reference
|
|
* count keeps alive.
|
|
*/
|
|
if (ino == dn->inode->i_ino && dn->inode_page_locked)
|
|
unlock_page(dn->inode_page);
|
|
|
|
set_new_dnode(&tdn, inode, NULL, NULL, 0);
|
|
if (get_dnode_of_data(&tdn, bidx, LOOKUP_NODE))
|
|
goto out;
|
|
|
|
if (tdn.data_blkaddr == blkaddr)
|
|
truncate_data_blocks_range(&tdn, 1);
|
|
|
|
f2fs_put_dnode(&tdn);
|
|
out:
|
|
if (ino != dn->inode->i_ino)
|
|
iput(inode);
|
|
else if (dn->inode_page_locked)
|
|
lock_page(dn->inode_page);
|
|
return 0;
|
|
|
|
truncate_out:
|
|
if (datablock_addr(tdn.node_page, tdn.ofs_in_node) == blkaddr)
|
|
truncate_data_blocks_range(&tdn, 1);
|
|
if (dn->inode->i_ino == nid && !dn->inode_page_locked)
|
|
unlock_page(dn->inode_page);
|
|
return 0;
|
|
}
|
|
|
|
static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
|
|
struct page *page, block_t blkaddr)
|
|
{
|
|
struct dnode_of_data dn;
|
|
struct node_info ni;
|
|
unsigned int start, end;
|
|
int err = 0, recovered = 0;
|
|
|
|
/* step 1: recover xattr */
|
|
if (IS_INODE(page)) {
|
|
recover_inline_xattr(inode, page);
|
|
} else if (f2fs_has_xattr_block(ofs_of_node(page))) {
|
|
/*
|
|
* Deprecated; xattr blocks should be found from cold log.
|
|
* But, we should remain this for backward compatibility.
|
|
*/
|
|
recover_xattr_data(inode, page, blkaddr);
|
|
goto out;
|
|
}
|
|
|
|
/* step 2: recover inline data */
|
|
if (recover_inline_data(inode, page))
|
|
goto out;
|
|
|
|
/* step 3: recover data indices */
|
|
start = start_bidx_of_node(ofs_of_node(page), inode);
|
|
end = start + ADDRS_PER_PAGE(page, inode);
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
|
|
err = get_dnode_of_data(&dn, start, ALLOC_NODE);
|
|
if (err)
|
|
goto out;
|
|
|
|
f2fs_wait_on_page_writeback(dn.node_page, NODE, true);
|
|
|
|
get_node_info(sbi, dn.nid, &ni);
|
|
f2fs_bug_on(sbi, ni.ino != ino_of_node(page));
|
|
f2fs_bug_on(sbi, ofs_of_node(dn.node_page) != ofs_of_node(page));
|
|
|
|
for (; start < end; start++, dn.ofs_in_node++) {
|
|
block_t src, dest;
|
|
|
|
src = datablock_addr(dn.node_page, dn.ofs_in_node);
|
|
dest = datablock_addr(page, dn.ofs_in_node);
|
|
|
|
/* skip recovering if dest is the same as src */
|
|
if (src == dest)
|
|
continue;
|
|
|
|
/* dest is invalid, just invalidate src block */
|
|
if (dest == NULL_ADDR) {
|
|
truncate_data_blocks_range(&dn, 1);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* dest is reserved block, invalidate src block
|
|
* and then reserve one new block in dnode page.
|
|
*/
|
|
if (dest == NEW_ADDR) {
|
|
truncate_data_blocks_range(&dn, 1);
|
|
err = reserve_new_block(&dn);
|
|
f2fs_bug_on(sbi, err);
|
|
continue;
|
|
}
|
|
|
|
/* dest is valid block, try to recover from src to dest */
|
|
if (is_valid_blkaddr(sbi, dest, META_POR)) {
|
|
|
|
if (src == NULL_ADDR) {
|
|
err = reserve_new_block(&dn);
|
|
/* We should not get -ENOSPC */
|
|
f2fs_bug_on(sbi, err);
|
|
}
|
|
|
|
/* Check the previous node page having this index */
|
|
err = check_index_in_prev_nodes(sbi, dest, &dn);
|
|
if (err)
|
|
goto err;
|
|
|
|
/* write dummy data page */
|
|
f2fs_replace_block(sbi, &dn, src, dest,
|
|
ni.version, false, false);
|
|
recovered++;
|
|
}
|
|
}
|
|
|
|
if (IS_INODE(dn.node_page))
|
|
sync_inode_page(&dn);
|
|
|
|
copy_node_footer(dn.node_page, page);
|
|
fill_node_footer(dn.node_page, dn.nid, ni.ino,
|
|
ofs_of_node(page), false);
|
|
set_page_dirty(dn.node_page);
|
|
err:
|
|
f2fs_put_dnode(&dn);
|
|
out:
|
|
f2fs_msg(sbi->sb, KERN_NOTICE,
|
|
"recover_data: ino = %lx, recovered = %d blocks, err = %d",
|
|
inode->i_ino, recovered, err);
|
|
return err;
|
|
}
|
|
|
|
static int recover_data(struct f2fs_sb_info *sbi, struct list_head *head)
|
|
{
|
|
unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
|
|
struct curseg_info *curseg;
|
|
struct page *page = NULL;
|
|
int err = 0;
|
|
block_t blkaddr;
|
|
|
|
/* get node pages in the current segment */
|
|
curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
|
|
blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
|
|
|
|
while (1) {
|
|
struct fsync_inode_entry *entry;
|
|
|
|
if (!is_valid_blkaddr(sbi, blkaddr, META_POR))
|
|
break;
|
|
|
|
ra_meta_pages_cond(sbi, blkaddr);
|
|
|
|
page = get_tmp_page(sbi, blkaddr);
|
|
|
|
if (cp_ver != cpver_of_node(page)) {
|
|
f2fs_put_page(page, 1);
|
|
break;
|
|
}
|
|
|
|
entry = get_fsync_inode(head, ino_of_node(page));
|
|
if (!entry)
|
|
goto next;
|
|
/*
|
|
* inode(x) | CP | inode(x) | dnode(F)
|
|
* In this case, we can lose the latest inode(x).
|
|
* So, call recover_inode for the inode update.
|
|
*/
|
|
if (entry->last_inode == blkaddr)
|
|
recover_inode(entry->inode, page);
|
|
if (entry->last_dentry == blkaddr) {
|
|
err = recover_dentry(entry->inode, page);
|
|
if (err) {
|
|
f2fs_put_page(page, 1);
|
|
break;
|
|
}
|
|
}
|
|
err = do_recover_data(sbi, entry->inode, page, blkaddr);
|
|
if (err) {
|
|
f2fs_put_page(page, 1);
|
|
break;
|
|
}
|
|
|
|
if (entry->blkaddr == blkaddr) {
|
|
iput(entry->inode);
|
|
list_del(&entry->list);
|
|
kmem_cache_free(fsync_entry_slab, entry);
|
|
}
|
|
next:
|
|
/* check next segment */
|
|
blkaddr = next_blkaddr_of_node(page);
|
|
f2fs_put_page(page, 1);
|
|
}
|
|
if (!err)
|
|
allocate_new_segments(sbi);
|
|
return err;
|
|
}
|
|
|
|
int recover_fsync_data(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
|
|
struct list_head inode_list;
|
|
block_t blkaddr;
|
|
int err;
|
|
bool need_writecp = false;
|
|
|
|
fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
|
|
sizeof(struct fsync_inode_entry));
|
|
if (!fsync_entry_slab)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&inode_list);
|
|
|
|
/* prevent checkpoint */
|
|
mutex_lock(&sbi->cp_mutex);
|
|
|
|
blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
|
|
|
|
/* step #1: find fsynced inode numbers */
|
|
err = find_fsync_dnodes(sbi, &inode_list);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (list_empty(&inode_list))
|
|
goto out;
|
|
|
|
need_writecp = true;
|
|
|
|
/* step #2: recover data */
|
|
err = recover_data(sbi, &inode_list);
|
|
if (!err)
|
|
f2fs_bug_on(sbi, !list_empty(&inode_list));
|
|
out:
|
|
destroy_fsync_dnodes(&inode_list);
|
|
kmem_cache_destroy(fsync_entry_slab);
|
|
|
|
/* truncate meta pages to be used by the recovery */
|
|
truncate_inode_pages_range(META_MAPPING(sbi),
|
|
(loff_t)MAIN_BLKADDR(sbi) << PAGE_CACHE_SHIFT, -1);
|
|
|
|
if (err) {
|
|
truncate_inode_pages_final(NODE_MAPPING(sbi));
|
|
truncate_inode_pages_final(META_MAPPING(sbi));
|
|
}
|
|
|
|
clear_sbi_flag(sbi, SBI_POR_DOING);
|
|
if (err) {
|
|
bool invalidate = false;
|
|
|
|
if (discard_next_dnode(sbi, blkaddr))
|
|
invalidate = true;
|
|
|
|
/* Flush all the NAT/SIT pages */
|
|
while (get_pages(sbi, F2FS_DIRTY_META))
|
|
sync_meta_pages(sbi, META, LONG_MAX);
|
|
|
|
/* invalidate temporary meta page */
|
|
if (invalidate)
|
|
invalidate_mapping_pages(META_MAPPING(sbi),
|
|
blkaddr, blkaddr);
|
|
|
|
set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
|
|
mutex_unlock(&sbi->cp_mutex);
|
|
} else if (need_writecp) {
|
|
struct cp_control cpc = {
|
|
.reason = CP_RECOVERY,
|
|
};
|
|
mutex_unlock(&sbi->cp_mutex);
|
|
err = write_checkpoint(sbi, &cpc);
|
|
} else {
|
|
mutex_unlock(&sbi->cp_mutex);
|
|
}
|
|
return err;
|
|
}
|