linux/drivers/infiniband/sw/rxe/rxe_resp.c
Bob Pearson 5993b75d0b RDMA/rxe: Fix unsafe drain work queue code
If create_qp does not fully succeed it is possible for qp cleanup
code to attempt to drain the send or recv work queues before the
queues have been created causing a seg fault. This patch checks
to see if the queues exist before attempting to drain them.

Link: https://lore.kernel.org/r/20230620135519.9365-3-rpearsonhpe@gmail.com
Reported-by: syzbot+2da1965168e7dbcba136@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/linux-rdma/00000000000012d89205fe7cfe00@google.com/raw
Fixes: 49dc9c1f0c ("RDMA/rxe: Cleanup reset state handling in rxe_resp.c")
Fixes: fbdeb828a2 ("RDMA/rxe: Cleanup error state handling in rxe_comp.c")
Signed-off-by: Bob Pearson <rpearsonhpe@gmail.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
2023-07-31 15:24:12 -03:00

1692 lines
40 KiB
C

// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
/*
* Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved.
* Copyright (c) 2015 System Fabric Works, Inc. All rights reserved.
*/
#include <linux/skbuff.h>
#include "rxe.h"
#include "rxe_loc.h"
#include "rxe_queue.h"
static char *resp_state_name[] = {
[RESPST_NONE] = "NONE",
[RESPST_GET_REQ] = "GET_REQ",
[RESPST_CHK_PSN] = "CHK_PSN",
[RESPST_CHK_OP_SEQ] = "CHK_OP_SEQ",
[RESPST_CHK_OP_VALID] = "CHK_OP_VALID",
[RESPST_CHK_RESOURCE] = "CHK_RESOURCE",
[RESPST_CHK_LENGTH] = "CHK_LENGTH",
[RESPST_CHK_RKEY] = "CHK_RKEY",
[RESPST_EXECUTE] = "EXECUTE",
[RESPST_READ_REPLY] = "READ_REPLY",
[RESPST_ATOMIC_REPLY] = "ATOMIC_REPLY",
[RESPST_ATOMIC_WRITE_REPLY] = "ATOMIC_WRITE_REPLY",
[RESPST_PROCESS_FLUSH] = "PROCESS_FLUSH",
[RESPST_COMPLETE] = "COMPLETE",
[RESPST_ACKNOWLEDGE] = "ACKNOWLEDGE",
[RESPST_CLEANUP] = "CLEANUP",
[RESPST_DUPLICATE_REQUEST] = "DUPLICATE_REQUEST",
[RESPST_ERR_MALFORMED_WQE] = "ERR_MALFORMED_WQE",
[RESPST_ERR_UNSUPPORTED_OPCODE] = "ERR_UNSUPPORTED_OPCODE",
[RESPST_ERR_MISALIGNED_ATOMIC] = "ERR_MISALIGNED_ATOMIC",
[RESPST_ERR_PSN_OUT_OF_SEQ] = "ERR_PSN_OUT_OF_SEQ",
[RESPST_ERR_MISSING_OPCODE_FIRST] = "ERR_MISSING_OPCODE_FIRST",
[RESPST_ERR_MISSING_OPCODE_LAST_C] = "ERR_MISSING_OPCODE_LAST_C",
[RESPST_ERR_MISSING_OPCODE_LAST_D1E] = "ERR_MISSING_OPCODE_LAST_D1E",
[RESPST_ERR_TOO_MANY_RDMA_ATM_REQ] = "ERR_TOO_MANY_RDMA_ATM_REQ",
[RESPST_ERR_RNR] = "ERR_RNR",
[RESPST_ERR_RKEY_VIOLATION] = "ERR_RKEY_VIOLATION",
[RESPST_ERR_INVALIDATE_RKEY] = "ERR_INVALIDATE_RKEY_VIOLATION",
[RESPST_ERR_LENGTH] = "ERR_LENGTH",
[RESPST_ERR_CQ_OVERFLOW] = "ERR_CQ_OVERFLOW",
[RESPST_ERROR] = "ERROR",
[RESPST_DONE] = "DONE",
[RESPST_EXIT] = "EXIT",
};
/* rxe_recv calls here to add a request packet to the input queue */
void rxe_resp_queue_pkt(struct rxe_qp *qp, struct sk_buff *skb)
{
int must_sched;
struct rxe_pkt_info *pkt = SKB_TO_PKT(skb);
skb_queue_tail(&qp->req_pkts, skb);
must_sched = (pkt->opcode == IB_OPCODE_RC_RDMA_READ_REQUEST) ||
(skb_queue_len(&qp->req_pkts) > 1);
if (must_sched)
rxe_sched_task(&qp->resp.task);
else
rxe_run_task(&qp->resp.task);
}
static inline enum resp_states get_req(struct rxe_qp *qp,
struct rxe_pkt_info **pkt_p)
{
struct sk_buff *skb;
skb = skb_peek(&qp->req_pkts);
if (!skb)
return RESPST_EXIT;
*pkt_p = SKB_TO_PKT(skb);
return (qp->resp.res) ? RESPST_READ_REPLY : RESPST_CHK_PSN;
}
static enum resp_states check_psn(struct rxe_qp *qp,
struct rxe_pkt_info *pkt)
{
int diff = psn_compare(pkt->psn, qp->resp.psn);
struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
switch (qp_type(qp)) {
case IB_QPT_RC:
if (diff > 0) {
if (qp->resp.sent_psn_nak)
return RESPST_CLEANUP;
qp->resp.sent_psn_nak = 1;
rxe_counter_inc(rxe, RXE_CNT_OUT_OF_SEQ_REQ);
return RESPST_ERR_PSN_OUT_OF_SEQ;
} else if (diff < 0) {
rxe_counter_inc(rxe, RXE_CNT_DUP_REQ);
return RESPST_DUPLICATE_REQUEST;
}
if (qp->resp.sent_psn_nak)
qp->resp.sent_psn_nak = 0;
break;
case IB_QPT_UC:
if (qp->resp.drop_msg || diff != 0) {
if (pkt->mask & RXE_START_MASK) {
qp->resp.drop_msg = 0;
return RESPST_CHK_OP_SEQ;
}
qp->resp.drop_msg = 1;
return RESPST_CLEANUP;
}
break;
default:
break;
}
return RESPST_CHK_OP_SEQ;
}
static enum resp_states check_op_seq(struct rxe_qp *qp,
struct rxe_pkt_info *pkt)
{
switch (qp_type(qp)) {
case IB_QPT_RC:
switch (qp->resp.opcode) {
case IB_OPCODE_RC_SEND_FIRST:
case IB_OPCODE_RC_SEND_MIDDLE:
switch (pkt->opcode) {
case IB_OPCODE_RC_SEND_MIDDLE:
case IB_OPCODE_RC_SEND_LAST:
case IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE:
case IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE:
return RESPST_CHK_OP_VALID;
default:
return RESPST_ERR_MISSING_OPCODE_LAST_C;
}
case IB_OPCODE_RC_RDMA_WRITE_FIRST:
case IB_OPCODE_RC_RDMA_WRITE_MIDDLE:
switch (pkt->opcode) {
case IB_OPCODE_RC_RDMA_WRITE_MIDDLE:
case IB_OPCODE_RC_RDMA_WRITE_LAST:
case IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE:
return RESPST_CHK_OP_VALID;
default:
return RESPST_ERR_MISSING_OPCODE_LAST_C;
}
default:
switch (pkt->opcode) {
case IB_OPCODE_RC_SEND_MIDDLE:
case IB_OPCODE_RC_SEND_LAST:
case IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE:
case IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE:
case IB_OPCODE_RC_RDMA_WRITE_MIDDLE:
case IB_OPCODE_RC_RDMA_WRITE_LAST:
case IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE:
return RESPST_ERR_MISSING_OPCODE_FIRST;
default:
return RESPST_CHK_OP_VALID;
}
}
break;
case IB_QPT_UC:
switch (qp->resp.opcode) {
case IB_OPCODE_UC_SEND_FIRST:
case IB_OPCODE_UC_SEND_MIDDLE:
switch (pkt->opcode) {
case IB_OPCODE_UC_SEND_MIDDLE:
case IB_OPCODE_UC_SEND_LAST:
case IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE:
return RESPST_CHK_OP_VALID;
default:
return RESPST_ERR_MISSING_OPCODE_LAST_D1E;
}
case IB_OPCODE_UC_RDMA_WRITE_FIRST:
case IB_OPCODE_UC_RDMA_WRITE_MIDDLE:
switch (pkt->opcode) {
case IB_OPCODE_UC_RDMA_WRITE_MIDDLE:
case IB_OPCODE_UC_RDMA_WRITE_LAST:
case IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE:
return RESPST_CHK_OP_VALID;
default:
return RESPST_ERR_MISSING_OPCODE_LAST_D1E;
}
default:
switch (pkt->opcode) {
case IB_OPCODE_UC_SEND_MIDDLE:
case IB_OPCODE_UC_SEND_LAST:
case IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE:
case IB_OPCODE_UC_RDMA_WRITE_MIDDLE:
case IB_OPCODE_UC_RDMA_WRITE_LAST:
case IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE:
qp->resp.drop_msg = 1;
return RESPST_CLEANUP;
default:
return RESPST_CHK_OP_VALID;
}
}
break;
default:
return RESPST_CHK_OP_VALID;
}
}
static bool check_qp_attr_access(struct rxe_qp *qp,
struct rxe_pkt_info *pkt)
{
if (((pkt->mask & RXE_READ_MASK) &&
!(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_READ)) ||
((pkt->mask & (RXE_WRITE_MASK | RXE_ATOMIC_WRITE_MASK)) &&
!(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_WRITE)) ||
((pkt->mask & RXE_ATOMIC_MASK) &&
!(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
return false;
if (pkt->mask & RXE_FLUSH_MASK) {
u32 flush_type = feth_plt(pkt);
if ((flush_type & IB_FLUSH_GLOBAL &&
!(qp->attr.qp_access_flags & IB_ACCESS_FLUSH_GLOBAL)) ||
(flush_type & IB_FLUSH_PERSISTENT &&
!(qp->attr.qp_access_flags & IB_ACCESS_FLUSH_PERSISTENT)))
return false;
}
return true;
}
static enum resp_states check_op_valid(struct rxe_qp *qp,
struct rxe_pkt_info *pkt)
{
switch (qp_type(qp)) {
case IB_QPT_RC:
if (!check_qp_attr_access(qp, pkt))
return RESPST_ERR_UNSUPPORTED_OPCODE;
break;
case IB_QPT_UC:
if ((pkt->mask & RXE_WRITE_MASK) &&
!(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_WRITE)) {
qp->resp.drop_msg = 1;
return RESPST_CLEANUP;
}
break;
case IB_QPT_UD:
case IB_QPT_GSI:
break;
default:
WARN_ON_ONCE(1);
break;
}
return RESPST_CHK_RESOURCE;
}
static enum resp_states get_srq_wqe(struct rxe_qp *qp)
{
struct rxe_srq *srq = qp->srq;
struct rxe_queue *q = srq->rq.queue;
struct rxe_recv_wqe *wqe;
struct ib_event ev;
unsigned int count;
size_t size;
unsigned long flags;
if (srq->error)
return RESPST_ERR_RNR;
spin_lock_irqsave(&srq->rq.consumer_lock, flags);
wqe = queue_head(q, QUEUE_TYPE_FROM_CLIENT);
if (!wqe) {
spin_unlock_irqrestore(&srq->rq.consumer_lock, flags);
return RESPST_ERR_RNR;
}
/* don't trust user space data */
if (unlikely(wqe->dma.num_sge > srq->rq.max_sge)) {
spin_unlock_irqrestore(&srq->rq.consumer_lock, flags);
rxe_dbg_qp(qp, "invalid num_sge in SRQ entry\n");
return RESPST_ERR_MALFORMED_WQE;
}
size = sizeof(*wqe) + wqe->dma.num_sge*sizeof(struct rxe_sge);
memcpy(&qp->resp.srq_wqe, wqe, size);
qp->resp.wqe = &qp->resp.srq_wqe.wqe;
queue_advance_consumer(q, QUEUE_TYPE_FROM_CLIENT);
count = queue_count(q, QUEUE_TYPE_FROM_CLIENT);
if (srq->limit && srq->ibsrq.event_handler && (count < srq->limit)) {
srq->limit = 0;
goto event;
}
spin_unlock_irqrestore(&srq->rq.consumer_lock, flags);
return RESPST_CHK_LENGTH;
event:
spin_unlock_irqrestore(&srq->rq.consumer_lock, flags);
ev.device = qp->ibqp.device;
ev.element.srq = qp->ibqp.srq;
ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
srq->ibsrq.event_handler(&ev, srq->ibsrq.srq_context);
return RESPST_CHK_LENGTH;
}
static enum resp_states check_resource(struct rxe_qp *qp,
struct rxe_pkt_info *pkt)
{
struct rxe_srq *srq = qp->srq;
if (pkt->mask & (RXE_READ_OR_ATOMIC_MASK | RXE_ATOMIC_WRITE_MASK)) {
/* it is the requesters job to not send
* too many read/atomic ops, we just
* recycle the responder resource queue
*/
if (likely(qp->attr.max_dest_rd_atomic > 0))
return RESPST_CHK_LENGTH;
else
return RESPST_ERR_TOO_MANY_RDMA_ATM_REQ;
}
if (pkt->mask & RXE_RWR_MASK) {
if (srq)
return get_srq_wqe(qp);
qp->resp.wqe = queue_head(qp->rq.queue,
QUEUE_TYPE_FROM_CLIENT);
return (qp->resp.wqe) ? RESPST_CHK_LENGTH : RESPST_ERR_RNR;
}
return RESPST_CHK_LENGTH;
}
static enum resp_states rxe_resp_check_length(struct rxe_qp *qp,
struct rxe_pkt_info *pkt)
{
/*
* See IBA C9-92
* For UD QPs we only check if the packet will fit in the
* receive buffer later. For rmda operations additional
* length checks are performed in check_rkey.
*/
if (pkt->mask & RXE_PAYLOAD_MASK && ((qp_type(qp) == IB_QPT_RC) ||
(qp_type(qp) == IB_QPT_UC))) {
unsigned int mtu = qp->mtu;
unsigned int payload = payload_size(pkt);
if ((pkt->mask & RXE_START_MASK) &&
(pkt->mask & RXE_END_MASK)) {
if (unlikely(payload > mtu)) {
rxe_dbg_qp(qp, "only packet too long");
return RESPST_ERR_LENGTH;
}
} else if ((pkt->mask & RXE_START_MASK) ||
(pkt->mask & RXE_MIDDLE_MASK)) {
if (unlikely(payload != mtu)) {
rxe_dbg_qp(qp, "first or middle packet not mtu");
return RESPST_ERR_LENGTH;
}
} else if (pkt->mask & RXE_END_MASK) {
if (unlikely((payload == 0) || (payload > mtu))) {
rxe_dbg_qp(qp, "last packet zero or too long");
return RESPST_ERR_LENGTH;
}
}
}
/* See IBA C9-94 */
if (pkt->mask & RXE_RETH_MASK) {
if (reth_len(pkt) > (1U << 31)) {
rxe_dbg_qp(qp, "dma length too long");
return RESPST_ERR_LENGTH;
}
}
if (pkt->mask & RXE_RDMA_OP_MASK)
return RESPST_CHK_RKEY;
else
return RESPST_EXECUTE;
}
/* if the reth length field is zero we can assume nothing
* about the rkey value and should not validate or use it.
* Instead set qp->resp.rkey to 0 which is an invalid rkey
* value since the minimum index part is 1.
*/
static void qp_resp_from_reth(struct rxe_qp *qp, struct rxe_pkt_info *pkt)
{
unsigned int length = reth_len(pkt);
qp->resp.va = reth_va(pkt);
qp->resp.offset = 0;
qp->resp.resid = length;
qp->resp.length = length;
if (pkt->mask & RXE_READ_OR_WRITE_MASK && length == 0)
qp->resp.rkey = 0;
else
qp->resp.rkey = reth_rkey(pkt);
}
static void qp_resp_from_atmeth(struct rxe_qp *qp, struct rxe_pkt_info *pkt)
{
qp->resp.va = atmeth_va(pkt);
qp->resp.offset = 0;
qp->resp.rkey = atmeth_rkey(pkt);
qp->resp.resid = sizeof(u64);
}
/* resolve the packet rkey to qp->resp.mr or set qp->resp.mr to NULL
* if an invalid rkey is received or the rdma length is zero. For middle
* or last packets use the stored value of mr.
*/
static enum resp_states check_rkey(struct rxe_qp *qp,
struct rxe_pkt_info *pkt)
{
struct rxe_mr *mr = NULL;
struct rxe_mw *mw = NULL;
u64 va;
u32 rkey;
u32 resid;
u32 pktlen;
int mtu = qp->mtu;
enum resp_states state;
int access = 0;
/* parse RETH or ATMETH header for first/only packets
* for va, length, rkey, etc. or use current value for
* middle/last packets.
*/
if (pkt->mask & (RXE_READ_OR_WRITE_MASK | RXE_ATOMIC_WRITE_MASK)) {
if (pkt->mask & RXE_RETH_MASK)
qp_resp_from_reth(qp, pkt);
access = (pkt->mask & RXE_READ_MASK) ? IB_ACCESS_REMOTE_READ
: IB_ACCESS_REMOTE_WRITE;
} else if (pkt->mask & RXE_FLUSH_MASK) {
u32 flush_type = feth_plt(pkt);
if (pkt->mask & RXE_RETH_MASK)
qp_resp_from_reth(qp, pkt);
if (flush_type & IB_FLUSH_GLOBAL)
access |= IB_ACCESS_FLUSH_GLOBAL;
if (flush_type & IB_FLUSH_PERSISTENT)
access |= IB_ACCESS_FLUSH_PERSISTENT;
} else if (pkt->mask & RXE_ATOMIC_MASK) {
qp_resp_from_atmeth(qp, pkt);
access = IB_ACCESS_REMOTE_ATOMIC;
} else {
/* shouldn't happen */
WARN_ON(1);
}
/* A zero-byte read or write op is not required to
* set an addr or rkey. See C9-88
*/
if ((pkt->mask & RXE_READ_OR_WRITE_MASK) &&
(pkt->mask & RXE_RETH_MASK) && reth_len(pkt) == 0) {
qp->resp.mr = NULL;
return RESPST_EXECUTE;
}
va = qp->resp.va;
rkey = qp->resp.rkey;
resid = qp->resp.resid;
pktlen = payload_size(pkt);
if (rkey_is_mw(rkey)) {
mw = rxe_lookup_mw(qp, access, rkey);
if (!mw) {
rxe_dbg_qp(qp, "no MW matches rkey %#x\n", rkey);
state = RESPST_ERR_RKEY_VIOLATION;
goto err;
}
mr = mw->mr;
if (!mr) {
rxe_dbg_qp(qp, "MW doesn't have an MR\n");
state = RESPST_ERR_RKEY_VIOLATION;
goto err;
}
if (mw->access & IB_ZERO_BASED)
qp->resp.offset = mw->addr;
rxe_get(mr);
rxe_put(mw);
mw = NULL;
} else {
mr = lookup_mr(qp->pd, access, rkey, RXE_LOOKUP_REMOTE);
if (!mr) {
rxe_dbg_qp(qp, "no MR matches rkey %#x\n", rkey);
state = RESPST_ERR_RKEY_VIOLATION;
goto err;
}
}
if (pkt->mask & RXE_FLUSH_MASK) {
/* FLUSH MR may not set va or resid
* no need to check range since we will flush whole mr
*/
if (feth_sel(pkt) == IB_FLUSH_MR)
goto skip_check_range;
}
if (mr_check_range(mr, va + qp->resp.offset, resid)) {
state = RESPST_ERR_RKEY_VIOLATION;
goto err;
}
skip_check_range:
if (pkt->mask & (RXE_WRITE_MASK | RXE_ATOMIC_WRITE_MASK)) {
if (resid > mtu) {
if (pktlen != mtu || bth_pad(pkt)) {
state = RESPST_ERR_LENGTH;
goto err;
}
} else {
if (pktlen != resid) {
state = RESPST_ERR_LENGTH;
goto err;
}
if ((bth_pad(pkt) != (0x3 & (-resid)))) {
/* This case may not be exactly that
* but nothing else fits.
*/
state = RESPST_ERR_LENGTH;
goto err;
}
}
}
WARN_ON_ONCE(qp->resp.mr);
qp->resp.mr = mr;
return RESPST_EXECUTE;
err:
qp->resp.mr = NULL;
if (mr)
rxe_put(mr);
if (mw)
rxe_put(mw);
return state;
}
static enum resp_states send_data_in(struct rxe_qp *qp, void *data_addr,
int data_len)
{
int err;
err = copy_data(qp->pd, IB_ACCESS_LOCAL_WRITE, &qp->resp.wqe->dma,
data_addr, data_len, RXE_TO_MR_OBJ);
if (unlikely(err))
return (err == -ENOSPC) ? RESPST_ERR_LENGTH
: RESPST_ERR_MALFORMED_WQE;
return RESPST_NONE;
}
static enum resp_states write_data_in(struct rxe_qp *qp,
struct rxe_pkt_info *pkt)
{
enum resp_states rc = RESPST_NONE;
int err;
int data_len = payload_size(pkt);
err = rxe_mr_copy(qp->resp.mr, qp->resp.va + qp->resp.offset,
payload_addr(pkt), data_len, RXE_TO_MR_OBJ);
if (err) {
rc = RESPST_ERR_RKEY_VIOLATION;
goto out;
}
qp->resp.va += data_len;
qp->resp.resid -= data_len;
out:
return rc;
}
static struct resp_res *rxe_prepare_res(struct rxe_qp *qp,
struct rxe_pkt_info *pkt,
int type)
{
struct resp_res *res;
u32 pkts;
res = &qp->resp.resources[qp->resp.res_head];
rxe_advance_resp_resource(qp);
free_rd_atomic_resource(res);
res->type = type;
res->replay = 0;
switch (type) {
case RXE_READ_MASK:
res->read.va = qp->resp.va + qp->resp.offset;
res->read.va_org = qp->resp.va + qp->resp.offset;
res->read.resid = qp->resp.resid;
res->read.length = qp->resp.resid;
res->read.rkey = qp->resp.rkey;
pkts = max_t(u32, (reth_len(pkt) + qp->mtu - 1)/qp->mtu, 1);
res->first_psn = pkt->psn;
res->cur_psn = pkt->psn;
res->last_psn = (pkt->psn + pkts - 1) & BTH_PSN_MASK;
res->state = rdatm_res_state_new;
break;
case RXE_ATOMIC_MASK:
case RXE_ATOMIC_WRITE_MASK:
res->first_psn = pkt->psn;
res->last_psn = pkt->psn;
res->cur_psn = pkt->psn;
break;
case RXE_FLUSH_MASK:
res->flush.va = qp->resp.va + qp->resp.offset;
res->flush.length = qp->resp.length;
res->flush.type = feth_plt(pkt);
res->flush.level = feth_sel(pkt);
}
return res;
}
static enum resp_states process_flush(struct rxe_qp *qp,
struct rxe_pkt_info *pkt)
{
u64 length, start;
struct rxe_mr *mr = qp->resp.mr;
struct resp_res *res = qp->resp.res;
/* oA19-14, oA19-15 */
if (res && res->replay)
return RESPST_ACKNOWLEDGE;
else if (!res) {
res = rxe_prepare_res(qp, pkt, RXE_FLUSH_MASK);
qp->resp.res = res;
}
if (res->flush.level == IB_FLUSH_RANGE) {
start = res->flush.va;
length = res->flush.length;
} else { /* level == IB_FLUSH_MR */
start = mr->ibmr.iova;
length = mr->ibmr.length;
}
if (res->flush.type & IB_FLUSH_PERSISTENT) {
if (rxe_flush_pmem_iova(mr, start, length))
return RESPST_ERR_RKEY_VIOLATION;
/* Make data persistent. */
wmb();
} else if (res->flush.type & IB_FLUSH_GLOBAL) {
/* Make data global visibility. */
wmb();
}
qp->resp.msn++;
/* next expected psn, read handles this separately */
qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK;
qp->resp.ack_psn = qp->resp.psn;
qp->resp.opcode = pkt->opcode;
qp->resp.status = IB_WC_SUCCESS;
return RESPST_ACKNOWLEDGE;
}
static enum resp_states atomic_reply(struct rxe_qp *qp,
struct rxe_pkt_info *pkt)
{
struct rxe_mr *mr = qp->resp.mr;
struct resp_res *res = qp->resp.res;
int err;
if (!res) {
res = rxe_prepare_res(qp, pkt, RXE_ATOMIC_MASK);
qp->resp.res = res;
}
if (!res->replay) {
u64 iova = qp->resp.va + qp->resp.offset;
err = rxe_mr_do_atomic_op(mr, iova, pkt->opcode,
atmeth_comp(pkt),
atmeth_swap_add(pkt),
&res->atomic.orig_val);
if (err)
return err;
qp->resp.msn++;
/* next expected psn, read handles this separately */
qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK;
qp->resp.ack_psn = qp->resp.psn;
qp->resp.opcode = pkt->opcode;
qp->resp.status = IB_WC_SUCCESS;
}
return RESPST_ACKNOWLEDGE;
}
static enum resp_states atomic_write_reply(struct rxe_qp *qp,
struct rxe_pkt_info *pkt)
{
struct resp_res *res = qp->resp.res;
struct rxe_mr *mr;
u64 value;
u64 iova;
int err;
if (!res) {
res = rxe_prepare_res(qp, pkt, RXE_ATOMIC_WRITE_MASK);
qp->resp.res = res;
}
if (res->replay)
return RESPST_ACKNOWLEDGE;
mr = qp->resp.mr;
value = *(u64 *)payload_addr(pkt);
iova = qp->resp.va + qp->resp.offset;
err = rxe_mr_do_atomic_write(mr, iova, value);
if (err)
return err;
qp->resp.resid = 0;
qp->resp.msn++;
/* next expected psn, read handles this separately */
qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK;
qp->resp.ack_psn = qp->resp.psn;
qp->resp.opcode = pkt->opcode;
qp->resp.status = IB_WC_SUCCESS;
return RESPST_ACKNOWLEDGE;
}
static struct sk_buff *prepare_ack_packet(struct rxe_qp *qp,
struct rxe_pkt_info *ack,
int opcode,
int payload,
u32 psn,
u8 syndrome)
{
struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
struct sk_buff *skb;
int paylen;
int pad;
int err;
/*
* allocate packet
*/
pad = (-payload) & 0x3;
paylen = rxe_opcode[opcode].length + payload + pad + RXE_ICRC_SIZE;
skb = rxe_init_packet(rxe, &qp->pri_av, paylen, ack);
if (!skb)
return NULL;
ack->qp = qp;
ack->opcode = opcode;
ack->mask = rxe_opcode[opcode].mask;
ack->paylen = paylen;
ack->psn = psn;
bth_init(ack, opcode, 0, 0, pad, IB_DEFAULT_PKEY_FULL,
qp->attr.dest_qp_num, 0, psn);
if (ack->mask & RXE_AETH_MASK) {
aeth_set_syn(ack, syndrome);
aeth_set_msn(ack, qp->resp.msn);
}
if (ack->mask & RXE_ATMACK_MASK)
atmack_set_orig(ack, qp->resp.res->atomic.orig_val);
err = rxe_prepare(&qp->pri_av, ack, skb);
if (err) {
kfree_skb(skb);
return NULL;
}
return skb;
}
/**
* rxe_recheck_mr - revalidate MR from rkey and get a reference
* @qp: the qp
* @rkey: the rkey
*
* This code allows the MR to be invalidated or deregistered or
* the MW if one was used to be invalidated or deallocated.
* It is assumed that the access permissions if originally good
* are OK and the mappings to be unchanged.
*
* TODO: If someone reregisters an MR to change its size or
* access permissions during the processing of an RDMA read
* we should kill the responder resource and complete the
* operation with an error.
*
* Return: mr on success else NULL
*/
static struct rxe_mr *rxe_recheck_mr(struct rxe_qp *qp, u32 rkey)
{
struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
struct rxe_mr *mr;
struct rxe_mw *mw;
if (rkey_is_mw(rkey)) {
mw = rxe_pool_get_index(&rxe->mw_pool, rkey >> 8);
if (!mw)
return NULL;
mr = mw->mr;
if (mw->rkey != rkey || mw->state != RXE_MW_STATE_VALID ||
!mr || mr->state != RXE_MR_STATE_VALID) {
rxe_put(mw);
return NULL;
}
rxe_get(mr);
rxe_put(mw);
return mr;
}
mr = rxe_pool_get_index(&rxe->mr_pool, rkey >> 8);
if (!mr)
return NULL;
if (mr->rkey != rkey || mr->state != RXE_MR_STATE_VALID) {
rxe_put(mr);
return NULL;
}
return mr;
}
/* RDMA read response. If res is not NULL, then we have a current RDMA request
* being processed or replayed.
*/
static enum resp_states read_reply(struct rxe_qp *qp,
struct rxe_pkt_info *req_pkt)
{
struct rxe_pkt_info ack_pkt;
struct sk_buff *skb;
int mtu = qp->mtu;
enum resp_states state;
int payload;
int opcode;
int err;
struct resp_res *res = qp->resp.res;
struct rxe_mr *mr;
if (!res) {
res = rxe_prepare_res(qp, req_pkt, RXE_READ_MASK);
qp->resp.res = res;
}
if (res->state == rdatm_res_state_new) {
if (!res->replay || qp->resp.length == 0) {
/* if length == 0 mr will be NULL (is ok)
* otherwise qp->resp.mr holds a ref on mr
* which we transfer to mr and drop below.
*/
mr = qp->resp.mr;
qp->resp.mr = NULL;
} else {
mr = rxe_recheck_mr(qp, res->read.rkey);
if (!mr)
return RESPST_ERR_RKEY_VIOLATION;
}
if (res->read.resid <= mtu)
opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY;
else
opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST;
} else {
/* re-lookup mr from rkey on all later packets.
* length will be non-zero. This can fail if someone
* modifies or destroys the mr since the first packet.
*/
mr = rxe_recheck_mr(qp, res->read.rkey);
if (!mr)
return RESPST_ERR_RKEY_VIOLATION;
if (res->read.resid > mtu)
opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE;
else
opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST;
}
res->state = rdatm_res_state_next;
payload = min_t(int, res->read.resid, mtu);
skb = prepare_ack_packet(qp, &ack_pkt, opcode, payload,
res->cur_psn, AETH_ACK_UNLIMITED);
if (!skb) {
state = RESPST_ERR_RNR;
goto err_out;
}
err = rxe_mr_copy(mr, res->read.va, payload_addr(&ack_pkt),
payload, RXE_FROM_MR_OBJ);
if (err) {
kfree_skb(skb);
state = RESPST_ERR_RKEY_VIOLATION;
goto err_out;
}
if (bth_pad(&ack_pkt)) {
u8 *pad = payload_addr(&ack_pkt) + payload;
memset(pad, 0, bth_pad(&ack_pkt));
}
/* rxe_xmit_packet always consumes the skb */
err = rxe_xmit_packet(qp, &ack_pkt, skb);
if (err) {
state = RESPST_ERR_RNR;
goto err_out;
}
res->read.va += payload;
res->read.resid -= payload;
res->cur_psn = (res->cur_psn + 1) & BTH_PSN_MASK;
if (res->read.resid > 0) {
state = RESPST_DONE;
} else {
qp->resp.res = NULL;
if (!res->replay)
qp->resp.opcode = -1;
if (psn_compare(res->cur_psn, qp->resp.psn) >= 0)
qp->resp.psn = res->cur_psn;
state = RESPST_CLEANUP;
}
err_out:
if (mr)
rxe_put(mr);
return state;
}
static int invalidate_rkey(struct rxe_qp *qp, u32 rkey)
{
if (rkey_is_mw(rkey))
return rxe_invalidate_mw(qp, rkey);
else
return rxe_invalidate_mr(qp, rkey);
}
/* Executes a new request. A retried request never reach that function (send
* and writes are discarded, and reads and atomics are retried elsewhere.
*/
static enum resp_states execute(struct rxe_qp *qp, struct rxe_pkt_info *pkt)
{
enum resp_states err;
struct sk_buff *skb = PKT_TO_SKB(pkt);
union rdma_network_hdr hdr;
if (pkt->mask & RXE_SEND_MASK) {
if (qp_type(qp) == IB_QPT_UD ||
qp_type(qp) == IB_QPT_GSI) {
if (skb->protocol == htons(ETH_P_IP)) {
memset(&hdr.reserved, 0,
sizeof(hdr.reserved));
memcpy(&hdr.roce4grh, ip_hdr(skb),
sizeof(hdr.roce4grh));
err = send_data_in(qp, &hdr, sizeof(hdr));
} else {
err = send_data_in(qp, ipv6_hdr(skb),
sizeof(hdr));
}
if (err)
return err;
}
err = send_data_in(qp, payload_addr(pkt), payload_size(pkt));
if (err)
return err;
} else if (pkt->mask & RXE_WRITE_MASK) {
err = write_data_in(qp, pkt);
if (err)
return err;
} else if (pkt->mask & RXE_READ_MASK) {
/* For RDMA Read we can increment the msn now. See C9-148. */
qp->resp.msn++;
return RESPST_READ_REPLY;
} else if (pkt->mask & RXE_ATOMIC_MASK) {
return RESPST_ATOMIC_REPLY;
} else if (pkt->mask & RXE_ATOMIC_WRITE_MASK) {
return RESPST_ATOMIC_WRITE_REPLY;
} else if (pkt->mask & RXE_FLUSH_MASK) {
return RESPST_PROCESS_FLUSH;
} else {
/* Unreachable */
WARN_ON_ONCE(1);
}
if (pkt->mask & RXE_IETH_MASK) {
u32 rkey = ieth_rkey(pkt);
err = invalidate_rkey(qp, rkey);
if (err)
return RESPST_ERR_INVALIDATE_RKEY;
}
if (pkt->mask & RXE_END_MASK)
/* We successfully processed this new request. */
qp->resp.msn++;
/* next expected psn, read handles this separately */
qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK;
qp->resp.ack_psn = qp->resp.psn;
qp->resp.opcode = pkt->opcode;
qp->resp.status = IB_WC_SUCCESS;
if (pkt->mask & RXE_COMP_MASK)
return RESPST_COMPLETE;
else if (qp_type(qp) == IB_QPT_RC)
return RESPST_ACKNOWLEDGE;
else
return RESPST_CLEANUP;
}
static enum resp_states do_complete(struct rxe_qp *qp,
struct rxe_pkt_info *pkt)
{
struct rxe_cqe cqe;
struct ib_wc *wc = &cqe.ibwc;
struct ib_uverbs_wc *uwc = &cqe.uibwc;
struct rxe_recv_wqe *wqe = qp->resp.wqe;
struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
unsigned long flags;
if (!wqe)
goto finish;
memset(&cqe, 0, sizeof(cqe));
if (qp->rcq->is_user) {
uwc->status = qp->resp.status;
uwc->qp_num = qp->ibqp.qp_num;
uwc->wr_id = wqe->wr_id;
} else {
wc->status = qp->resp.status;
wc->qp = &qp->ibqp;
wc->wr_id = wqe->wr_id;
}
if (wc->status == IB_WC_SUCCESS) {
rxe_counter_inc(rxe, RXE_CNT_RDMA_RECV);
wc->opcode = (pkt->mask & RXE_IMMDT_MASK &&
pkt->mask & RXE_WRITE_MASK) ?
IB_WC_RECV_RDMA_WITH_IMM : IB_WC_RECV;
wc->byte_len = (pkt->mask & RXE_IMMDT_MASK &&
pkt->mask & RXE_WRITE_MASK) ?
qp->resp.length : wqe->dma.length - wqe->dma.resid;
/* fields after byte_len are different between kernel and user
* space
*/
if (qp->rcq->is_user) {
uwc->wc_flags = IB_WC_GRH;
if (pkt->mask & RXE_IMMDT_MASK) {
uwc->wc_flags |= IB_WC_WITH_IMM;
uwc->ex.imm_data = immdt_imm(pkt);
}
if (pkt->mask & RXE_IETH_MASK) {
uwc->wc_flags |= IB_WC_WITH_INVALIDATE;
uwc->ex.invalidate_rkey = ieth_rkey(pkt);
}
if (pkt->mask & RXE_DETH_MASK)
uwc->src_qp = deth_sqp(pkt);
uwc->port_num = qp->attr.port_num;
} else {
struct sk_buff *skb = PKT_TO_SKB(pkt);
wc->wc_flags = IB_WC_GRH | IB_WC_WITH_NETWORK_HDR_TYPE;
if (skb->protocol == htons(ETH_P_IP))
wc->network_hdr_type = RDMA_NETWORK_IPV4;
else
wc->network_hdr_type = RDMA_NETWORK_IPV6;
if (is_vlan_dev(skb->dev)) {
wc->wc_flags |= IB_WC_WITH_VLAN;
wc->vlan_id = vlan_dev_vlan_id(skb->dev);
}
if (pkt->mask & RXE_IMMDT_MASK) {
wc->wc_flags |= IB_WC_WITH_IMM;
wc->ex.imm_data = immdt_imm(pkt);
}
if (pkt->mask & RXE_IETH_MASK) {
wc->wc_flags |= IB_WC_WITH_INVALIDATE;
wc->ex.invalidate_rkey = ieth_rkey(pkt);
}
if (pkt->mask & RXE_DETH_MASK)
wc->src_qp = deth_sqp(pkt);
wc->port_num = qp->attr.port_num;
}
} else {
if (wc->status != IB_WC_WR_FLUSH_ERR)
rxe_err_qp(qp, "non-flush error status = %d",
wc->status);
}
/* have copy for srq and reference for !srq */
if (!qp->srq)
queue_advance_consumer(qp->rq.queue, QUEUE_TYPE_FROM_CLIENT);
qp->resp.wqe = NULL;
if (rxe_cq_post(qp->rcq, &cqe, pkt ? bth_se(pkt) : 1))
return RESPST_ERR_CQ_OVERFLOW;
finish:
spin_lock_irqsave(&qp->state_lock, flags);
if (unlikely(qp_state(qp) == IB_QPS_ERR)) {
spin_unlock_irqrestore(&qp->state_lock, flags);
return RESPST_CHK_RESOURCE;
}
spin_unlock_irqrestore(&qp->state_lock, flags);
if (unlikely(!pkt))
return RESPST_DONE;
if (qp_type(qp) == IB_QPT_RC)
return RESPST_ACKNOWLEDGE;
else
return RESPST_CLEANUP;
}
static int send_common_ack(struct rxe_qp *qp, u8 syndrome, u32 psn,
int opcode, const char *msg)
{
int err;
struct rxe_pkt_info ack_pkt;
struct sk_buff *skb;
skb = prepare_ack_packet(qp, &ack_pkt, opcode, 0, psn, syndrome);
if (!skb)
return -ENOMEM;
err = rxe_xmit_packet(qp, &ack_pkt, skb);
if (err)
rxe_dbg_qp(qp, "Failed sending %s\n", msg);
return err;
}
static int send_ack(struct rxe_qp *qp, u8 syndrome, u32 psn)
{
return send_common_ack(qp, syndrome, psn,
IB_OPCODE_RC_ACKNOWLEDGE, "ACK");
}
static int send_atomic_ack(struct rxe_qp *qp, u8 syndrome, u32 psn)
{
int ret = send_common_ack(qp, syndrome, psn,
IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE, "ATOMIC ACK");
/* have to clear this since it is used to trigger
* long read replies
*/
qp->resp.res = NULL;
return ret;
}
static int send_read_response_ack(struct rxe_qp *qp, u8 syndrome, u32 psn)
{
int ret = send_common_ack(qp, syndrome, psn,
IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY,
"RDMA READ response of length zero ACK");
/* have to clear this since it is used to trigger
* long read replies
*/
qp->resp.res = NULL;
return ret;
}
static enum resp_states acknowledge(struct rxe_qp *qp,
struct rxe_pkt_info *pkt)
{
if (qp_type(qp) != IB_QPT_RC)
return RESPST_CLEANUP;
if (qp->resp.aeth_syndrome != AETH_ACK_UNLIMITED)
send_ack(qp, qp->resp.aeth_syndrome, pkt->psn);
else if (pkt->mask & RXE_ATOMIC_MASK)
send_atomic_ack(qp, AETH_ACK_UNLIMITED, pkt->psn);
else if (pkt->mask & (RXE_FLUSH_MASK | RXE_ATOMIC_WRITE_MASK))
send_read_response_ack(qp, AETH_ACK_UNLIMITED, pkt->psn);
else if (bth_ack(pkt))
send_ack(qp, AETH_ACK_UNLIMITED, pkt->psn);
return RESPST_CLEANUP;
}
static enum resp_states cleanup(struct rxe_qp *qp,
struct rxe_pkt_info *pkt)
{
struct sk_buff *skb;
if (pkt) {
skb = skb_dequeue(&qp->req_pkts);
rxe_put(qp);
kfree_skb(skb);
ib_device_put(qp->ibqp.device);
}
if (qp->resp.mr) {
rxe_put(qp->resp.mr);
qp->resp.mr = NULL;
}
return RESPST_DONE;
}
static struct resp_res *find_resource(struct rxe_qp *qp, u32 psn)
{
int i;
for (i = 0; i < qp->attr.max_dest_rd_atomic; i++) {
struct resp_res *res = &qp->resp.resources[i];
if (res->type == 0)
continue;
if (psn_compare(psn, res->first_psn) >= 0 &&
psn_compare(psn, res->last_psn) <= 0) {
return res;
}
}
return NULL;
}
static enum resp_states duplicate_request(struct rxe_qp *qp,
struct rxe_pkt_info *pkt)
{
enum resp_states rc;
u32 prev_psn = (qp->resp.ack_psn - 1) & BTH_PSN_MASK;
if (pkt->mask & RXE_SEND_MASK ||
pkt->mask & RXE_WRITE_MASK) {
/* SEND. Ack again and cleanup. C9-105. */
send_ack(qp, AETH_ACK_UNLIMITED, prev_psn);
return RESPST_CLEANUP;
} else if (pkt->mask & RXE_FLUSH_MASK) {
struct resp_res *res;
/* Find the operation in our list of responder resources. */
res = find_resource(qp, pkt->psn);
if (res) {
res->replay = 1;
res->cur_psn = pkt->psn;
qp->resp.res = res;
rc = RESPST_PROCESS_FLUSH;
goto out;
}
/* Resource not found. Class D error. Drop the request. */
rc = RESPST_CLEANUP;
goto out;
} else if (pkt->mask & RXE_READ_MASK) {
struct resp_res *res;
res = find_resource(qp, pkt->psn);
if (!res) {
/* Resource not found. Class D error. Drop the
* request.
*/
rc = RESPST_CLEANUP;
goto out;
} else {
/* Ensure this new request is the same as the previous
* one or a subset of it.
*/
u64 iova = reth_va(pkt);
u32 resid = reth_len(pkt);
if (iova < res->read.va_org ||
resid > res->read.length ||
(iova + resid) > (res->read.va_org +
res->read.length)) {
rc = RESPST_CLEANUP;
goto out;
}
if (reth_rkey(pkt) != res->read.rkey) {
rc = RESPST_CLEANUP;
goto out;
}
res->cur_psn = pkt->psn;
res->state = (pkt->psn == res->first_psn) ?
rdatm_res_state_new :
rdatm_res_state_replay;
res->replay = 1;
/* Reset the resource, except length. */
res->read.va_org = iova;
res->read.va = iova;
res->read.resid = resid;
/* Replay the RDMA read reply. */
qp->resp.res = res;
rc = RESPST_READ_REPLY;
goto out;
}
} else {
struct resp_res *res;
/* Find the operation in our list of responder resources. */
res = find_resource(qp, pkt->psn);
if (res) {
res->replay = 1;
res->cur_psn = pkt->psn;
qp->resp.res = res;
rc = pkt->mask & RXE_ATOMIC_MASK ?
RESPST_ATOMIC_REPLY :
RESPST_ATOMIC_WRITE_REPLY;
goto out;
}
/* Resource not found. Class D error. Drop the request. */
rc = RESPST_CLEANUP;
goto out;
}
out:
return rc;
}
/* Process a class A or C. Both are treated the same in this implementation. */
static void do_class_ac_error(struct rxe_qp *qp, u8 syndrome,
enum ib_wc_status status)
{
qp->resp.aeth_syndrome = syndrome;
qp->resp.status = status;
/* indicate that we should go through the ERROR state */
qp->resp.goto_error = 1;
}
static enum resp_states do_class_d1e_error(struct rxe_qp *qp)
{
/* UC */
if (qp->srq) {
/* Class E */
qp->resp.drop_msg = 1;
if (qp->resp.wqe) {
qp->resp.status = IB_WC_REM_INV_REQ_ERR;
return RESPST_COMPLETE;
} else {
return RESPST_CLEANUP;
}
} else {
/* Class D1. This packet may be the start of a
* new message and could be valid. The previous
* message is invalid and ignored. reset the
* recv wr to its original state
*/
if (qp->resp.wqe) {
qp->resp.wqe->dma.resid = qp->resp.wqe->dma.length;
qp->resp.wqe->dma.cur_sge = 0;
qp->resp.wqe->dma.sge_offset = 0;
qp->resp.opcode = -1;
}
if (qp->resp.mr) {
rxe_put(qp->resp.mr);
qp->resp.mr = NULL;
}
return RESPST_CLEANUP;
}
}
/* drain incoming request packet queue */
static void drain_req_pkts(struct rxe_qp *qp)
{
struct sk_buff *skb;
while ((skb = skb_dequeue(&qp->req_pkts))) {
rxe_put(qp);
kfree_skb(skb);
ib_device_put(qp->ibqp.device);
}
}
/* complete receive wqe with flush error */
static int flush_recv_wqe(struct rxe_qp *qp, struct rxe_recv_wqe *wqe)
{
struct rxe_cqe cqe = {};
struct ib_wc *wc = &cqe.ibwc;
struct ib_uverbs_wc *uwc = &cqe.uibwc;
int err;
if (qp->rcq->is_user) {
uwc->wr_id = wqe->wr_id;
uwc->status = IB_WC_WR_FLUSH_ERR;
uwc->qp_num = qp_num(qp);
} else {
wc->wr_id = wqe->wr_id;
wc->status = IB_WC_WR_FLUSH_ERR;
wc->qp = &qp->ibqp;
}
err = rxe_cq_post(qp->rcq, &cqe, 0);
if (err)
rxe_dbg_cq(qp->rcq, "post cq failed err = %d", err);
return err;
}
/* drain and optionally complete the recive queue
* if unable to complete a wqe stop completing and
* just flush the remaining wqes
*/
static void flush_recv_queue(struct rxe_qp *qp, bool notify)
{
struct rxe_queue *q = qp->rq.queue;
struct rxe_recv_wqe *wqe;
int err;
if (qp->srq) {
if (notify && qp->ibqp.event_handler) {
struct ib_event ev;
ev.device = qp->ibqp.device;
ev.element.qp = &qp->ibqp;
ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
}
return;
}
/* recv queue not created. nothing to do. */
if (!qp->rq.queue)
return;
while ((wqe = queue_head(q, q->type))) {
if (notify) {
err = flush_recv_wqe(qp, wqe);
if (err)
notify = 0;
}
queue_advance_consumer(q, q->type);
}
qp->resp.wqe = NULL;
}
int rxe_responder(struct rxe_qp *qp)
{
struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
enum resp_states state;
struct rxe_pkt_info *pkt = NULL;
int ret;
unsigned long flags;
spin_lock_irqsave(&qp->state_lock, flags);
if (!qp->valid || qp_state(qp) == IB_QPS_ERR ||
qp_state(qp) == IB_QPS_RESET) {
bool notify = qp->valid && (qp_state(qp) == IB_QPS_ERR);
drain_req_pkts(qp);
flush_recv_queue(qp, notify);
spin_unlock_irqrestore(&qp->state_lock, flags);
goto exit;
}
spin_unlock_irqrestore(&qp->state_lock, flags);
qp->resp.aeth_syndrome = AETH_ACK_UNLIMITED;
state = RESPST_GET_REQ;
while (1) {
rxe_dbg_qp(qp, "state = %s\n", resp_state_name[state]);
switch (state) {
case RESPST_GET_REQ:
state = get_req(qp, &pkt);
break;
case RESPST_CHK_PSN:
state = check_psn(qp, pkt);
break;
case RESPST_CHK_OP_SEQ:
state = check_op_seq(qp, pkt);
break;
case RESPST_CHK_OP_VALID:
state = check_op_valid(qp, pkt);
break;
case RESPST_CHK_RESOURCE:
state = check_resource(qp, pkt);
break;
case RESPST_CHK_LENGTH:
state = rxe_resp_check_length(qp, pkt);
break;
case RESPST_CHK_RKEY:
state = check_rkey(qp, pkt);
break;
case RESPST_EXECUTE:
state = execute(qp, pkt);
break;
case RESPST_COMPLETE:
state = do_complete(qp, pkt);
break;
case RESPST_READ_REPLY:
state = read_reply(qp, pkt);
break;
case RESPST_ATOMIC_REPLY:
state = atomic_reply(qp, pkt);
break;
case RESPST_ATOMIC_WRITE_REPLY:
state = atomic_write_reply(qp, pkt);
break;
case RESPST_PROCESS_FLUSH:
state = process_flush(qp, pkt);
break;
case RESPST_ACKNOWLEDGE:
state = acknowledge(qp, pkt);
break;
case RESPST_CLEANUP:
state = cleanup(qp, pkt);
break;
case RESPST_DUPLICATE_REQUEST:
state = duplicate_request(qp, pkt);
break;
case RESPST_ERR_PSN_OUT_OF_SEQ:
/* RC only - Class B. Drop packet. */
send_ack(qp, AETH_NAK_PSN_SEQ_ERROR, qp->resp.psn);
state = RESPST_CLEANUP;
break;
case RESPST_ERR_TOO_MANY_RDMA_ATM_REQ:
case RESPST_ERR_MISSING_OPCODE_FIRST:
case RESPST_ERR_MISSING_OPCODE_LAST_C:
case RESPST_ERR_UNSUPPORTED_OPCODE:
case RESPST_ERR_MISALIGNED_ATOMIC:
/* RC Only - Class C. */
do_class_ac_error(qp, AETH_NAK_INVALID_REQ,
IB_WC_REM_INV_REQ_ERR);
state = RESPST_COMPLETE;
break;
case RESPST_ERR_MISSING_OPCODE_LAST_D1E:
state = do_class_d1e_error(qp);
break;
case RESPST_ERR_RNR:
if (qp_type(qp) == IB_QPT_RC) {
rxe_counter_inc(rxe, RXE_CNT_SND_RNR);
/* RC - class B */
send_ack(qp, AETH_RNR_NAK |
(~AETH_TYPE_MASK &
qp->attr.min_rnr_timer),
pkt->psn);
} else {
/* UD/UC - class D */
qp->resp.drop_msg = 1;
}
state = RESPST_CLEANUP;
break;
case RESPST_ERR_RKEY_VIOLATION:
if (qp_type(qp) == IB_QPT_RC) {
/* Class C */
do_class_ac_error(qp, AETH_NAK_REM_ACC_ERR,
IB_WC_REM_ACCESS_ERR);
state = RESPST_COMPLETE;
} else {
qp->resp.drop_msg = 1;
if (qp->srq) {
/* UC/SRQ Class D */
qp->resp.status = IB_WC_REM_ACCESS_ERR;
state = RESPST_COMPLETE;
} else {
/* UC/non-SRQ Class E. */
state = RESPST_CLEANUP;
}
}
break;
case RESPST_ERR_INVALIDATE_RKEY:
/* RC - Class J. */
qp->resp.goto_error = 1;
qp->resp.status = IB_WC_REM_INV_REQ_ERR;
state = RESPST_COMPLETE;
break;
case RESPST_ERR_LENGTH:
if (qp_type(qp) == IB_QPT_RC) {
/* Class C */
do_class_ac_error(qp, AETH_NAK_INVALID_REQ,
IB_WC_REM_INV_REQ_ERR);
state = RESPST_COMPLETE;
} else if (qp->srq) {
/* UC/UD - class E */
qp->resp.status = IB_WC_REM_INV_REQ_ERR;
state = RESPST_COMPLETE;
} else {
/* UC/UD - class D */
qp->resp.drop_msg = 1;
state = RESPST_CLEANUP;
}
break;
case RESPST_ERR_MALFORMED_WQE:
/* All, Class A. */
do_class_ac_error(qp, AETH_NAK_REM_OP_ERR,
IB_WC_LOC_QP_OP_ERR);
state = RESPST_COMPLETE;
break;
case RESPST_ERR_CQ_OVERFLOW:
/* All - Class G */
state = RESPST_ERROR;
break;
case RESPST_DONE:
if (qp->resp.goto_error) {
state = RESPST_ERROR;
break;
}
goto done;
case RESPST_EXIT:
if (qp->resp.goto_error) {
state = RESPST_ERROR;
break;
}
goto exit;
case RESPST_ERROR:
qp->resp.goto_error = 0;
rxe_dbg_qp(qp, "moved to error state\n");
rxe_qp_error(qp);
goto exit;
default:
WARN_ON_ONCE(1);
}
}
/* A non-zero return value will cause rxe_do_task to
* exit its loop and end the work item. A zero return
* will continue looping and return to rxe_responder
*/
done:
ret = 0;
goto out;
exit:
ret = -EAGAIN;
out:
return ret;
}