mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-13 22:14:20 +08:00
aefcf2f4b5
Pull kernel lockdown mode from James Morris:
"This is the latest iteration of the kernel lockdown patchset, from
Matthew Garrett, David Howells and others.
From the original description:
This patchset introduces an optional kernel lockdown feature,
intended to strengthen the boundary between UID 0 and the kernel.
When enabled, various pieces of kernel functionality are restricted.
Applications that rely on low-level access to either hardware or the
kernel may cease working as a result - therefore this should not be
enabled without appropriate evaluation beforehand.
The majority of mainstream distributions have been carrying variants
of this patchset for many years now, so there's value in providing a
doesn't meet every distribution requirement, but gets us much closer
to not requiring external patches.
There are two major changes since this was last proposed for mainline:
- Separating lockdown from EFI secure boot. Background discussion is
covered here: https://lwn.net/Articles/751061/
- Implementation as an LSM, with a default stackable lockdown LSM
module. This allows the lockdown feature to be policy-driven,
rather than encoding an implicit policy within the mechanism.
The new locked_down LSM hook is provided to allow LSMs to make a
policy decision around whether kernel functionality that would allow
tampering with or examining the runtime state of the kernel should be
permitted.
The included lockdown LSM provides an implementation with a simple
policy intended for general purpose use. This policy provides a coarse
level of granularity, controllable via the kernel command line:
lockdown={integrity|confidentiality}
Enable the kernel lockdown feature. If set to integrity, kernel features
that allow userland to modify the running kernel are disabled. If set to
confidentiality, kernel features that allow userland to extract
confidential information from the kernel are also disabled.
This may also be controlled via /sys/kernel/security/lockdown and
overriden by kernel configuration.
New or existing LSMs may implement finer-grained controls of the
lockdown features. Refer to the lockdown_reason documentation in
include/linux/security.h for details.
The lockdown feature has had signficant design feedback and review
across many subsystems. This code has been in linux-next for some
weeks, with a few fixes applied along the way.
Stephen Rothwell noted that commit 9d1f8be5cf
("bpf: Restrict bpf
when kernel lockdown is in confidentiality mode") is missing a
Signed-off-by from its author. Matthew responded that he is providing
this under category (c) of the DCO"
* 'next-lockdown' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (31 commits)
kexec: Fix file verification on S390
security: constify some arrays in lockdown LSM
lockdown: Print current->comm in restriction messages
efi: Restrict efivar_ssdt_load when the kernel is locked down
tracefs: Restrict tracefs when the kernel is locked down
debugfs: Restrict debugfs when the kernel is locked down
kexec: Allow kexec_file() with appropriate IMA policy when locked down
lockdown: Lock down perf when in confidentiality mode
bpf: Restrict bpf when kernel lockdown is in confidentiality mode
lockdown: Lock down tracing and perf kprobes when in confidentiality mode
lockdown: Lock down /proc/kcore
x86/mmiotrace: Lock down the testmmiotrace module
lockdown: Lock down module params that specify hardware parameters (eg. ioport)
lockdown: Lock down TIOCSSERIAL
lockdown: Prohibit PCMCIA CIS storage when the kernel is locked down
acpi: Disable ACPI table override if the kernel is locked down
acpi: Ignore acpi_rsdp kernel param when the kernel has been locked down
ACPI: Limit access to custom_method when the kernel is locked down
x86/msr: Restrict MSR access when the kernel is locked down
x86: Lock down IO port access when the kernel is locked down
...
1834 lines
42 KiB
C
1834 lines
42 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* acpi_osl.c - OS-dependent functions ($Revision: 83 $)
|
|
*
|
|
* Copyright (C) 2000 Andrew Henroid
|
|
* Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
|
|
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
|
|
* Copyright (c) 2008 Intel Corporation
|
|
* Author: Matthew Wilcox <willy@linux.intel.com>
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/lockdep.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kmod.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/list.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/semaphore.h>
|
|
#include <linux/security.h>
|
|
|
|
#include <asm/io.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/io-64-nonatomic-lo-hi.h>
|
|
|
|
#include "acpica/accommon.h"
|
|
#include "acpica/acnamesp.h"
|
|
#include "internal.h"
|
|
|
|
#define _COMPONENT ACPI_OS_SERVICES
|
|
ACPI_MODULE_NAME("osl");
|
|
|
|
struct acpi_os_dpc {
|
|
acpi_osd_exec_callback function;
|
|
void *context;
|
|
struct work_struct work;
|
|
};
|
|
|
|
#ifdef ENABLE_DEBUGGER
|
|
#include <linux/kdb.h>
|
|
|
|
/* stuff for debugger support */
|
|
int acpi_in_debugger;
|
|
EXPORT_SYMBOL(acpi_in_debugger);
|
|
#endif /*ENABLE_DEBUGGER */
|
|
|
|
static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
|
|
u32 pm1b_ctrl);
|
|
static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
|
|
u32 val_b);
|
|
|
|
static acpi_osd_handler acpi_irq_handler;
|
|
static void *acpi_irq_context;
|
|
static struct workqueue_struct *kacpid_wq;
|
|
static struct workqueue_struct *kacpi_notify_wq;
|
|
static struct workqueue_struct *kacpi_hotplug_wq;
|
|
static bool acpi_os_initialized;
|
|
unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
|
|
bool acpi_permanent_mmap = false;
|
|
|
|
/*
|
|
* This list of permanent mappings is for memory that may be accessed from
|
|
* interrupt context, where we can't do the ioremap().
|
|
*/
|
|
struct acpi_ioremap {
|
|
struct list_head list;
|
|
void __iomem *virt;
|
|
acpi_physical_address phys;
|
|
acpi_size size;
|
|
unsigned long refcount;
|
|
};
|
|
|
|
static LIST_HEAD(acpi_ioremaps);
|
|
static DEFINE_MUTEX(acpi_ioremap_lock);
|
|
#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
|
|
|
|
static void __init acpi_request_region (struct acpi_generic_address *gas,
|
|
unsigned int length, char *desc)
|
|
{
|
|
u64 addr;
|
|
|
|
/* Handle possible alignment issues */
|
|
memcpy(&addr, &gas->address, sizeof(addr));
|
|
if (!addr || !length)
|
|
return;
|
|
|
|
/* Resources are never freed */
|
|
if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
|
|
request_region(addr, length, desc);
|
|
else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
|
|
request_mem_region(addr, length, desc);
|
|
}
|
|
|
|
static int __init acpi_reserve_resources(void)
|
|
{
|
|
acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
|
|
"ACPI PM1a_EVT_BLK");
|
|
|
|
acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
|
|
"ACPI PM1b_EVT_BLK");
|
|
|
|
acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
|
|
"ACPI PM1a_CNT_BLK");
|
|
|
|
acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
|
|
"ACPI PM1b_CNT_BLK");
|
|
|
|
if (acpi_gbl_FADT.pm_timer_length == 4)
|
|
acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
|
|
|
|
acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
|
|
"ACPI PM2_CNT_BLK");
|
|
|
|
/* Length of GPE blocks must be a non-negative multiple of 2 */
|
|
|
|
if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
|
|
acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
|
|
acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
|
|
|
|
if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
|
|
acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
|
|
acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
|
|
|
|
return 0;
|
|
}
|
|
fs_initcall_sync(acpi_reserve_resources);
|
|
|
|
void acpi_os_printf(const char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
acpi_os_vprintf(fmt, args);
|
|
va_end(args);
|
|
}
|
|
EXPORT_SYMBOL(acpi_os_printf);
|
|
|
|
void acpi_os_vprintf(const char *fmt, va_list args)
|
|
{
|
|
static char buffer[512];
|
|
|
|
vsprintf(buffer, fmt, args);
|
|
|
|
#ifdef ENABLE_DEBUGGER
|
|
if (acpi_in_debugger) {
|
|
kdb_printf("%s", buffer);
|
|
} else {
|
|
if (printk_get_level(buffer))
|
|
printk("%s", buffer);
|
|
else
|
|
printk(KERN_CONT "%s", buffer);
|
|
}
|
|
#else
|
|
if (acpi_debugger_write_log(buffer) < 0) {
|
|
if (printk_get_level(buffer))
|
|
printk("%s", buffer);
|
|
else
|
|
printk(KERN_CONT "%s", buffer);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_KEXEC
|
|
static unsigned long acpi_rsdp;
|
|
static int __init setup_acpi_rsdp(char *arg)
|
|
{
|
|
return kstrtoul(arg, 16, &acpi_rsdp);
|
|
}
|
|
early_param("acpi_rsdp", setup_acpi_rsdp);
|
|
#endif
|
|
|
|
acpi_physical_address __init acpi_os_get_root_pointer(void)
|
|
{
|
|
acpi_physical_address pa;
|
|
|
|
#ifdef CONFIG_KEXEC
|
|
/*
|
|
* We may have been provided with an RSDP on the command line,
|
|
* but if a malicious user has done so they may be pointing us
|
|
* at modified ACPI tables that could alter kernel behaviour -
|
|
* so, we check the lockdown status before making use of
|
|
* it. If we trust it then also stash it in an architecture
|
|
* specific location (if appropriate) so it can be carried
|
|
* over further kexec()s.
|
|
*/
|
|
if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
|
|
acpi_arch_set_root_pointer(acpi_rsdp);
|
|
return acpi_rsdp;
|
|
}
|
|
#endif
|
|
pa = acpi_arch_get_root_pointer();
|
|
if (pa)
|
|
return pa;
|
|
|
|
if (efi_enabled(EFI_CONFIG_TABLES)) {
|
|
if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
|
|
return efi.acpi20;
|
|
if (efi.acpi != EFI_INVALID_TABLE_ADDR)
|
|
return efi.acpi;
|
|
pr_err(PREFIX "System description tables not found\n");
|
|
} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
|
|
acpi_find_root_pointer(&pa);
|
|
}
|
|
|
|
return pa;
|
|
}
|
|
|
|
/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
|
|
static struct acpi_ioremap *
|
|
acpi_map_lookup(acpi_physical_address phys, acpi_size size)
|
|
{
|
|
struct acpi_ioremap *map;
|
|
|
|
list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
|
|
if (map->phys <= phys &&
|
|
phys + size <= map->phys + map->size)
|
|
return map;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
|
|
static void __iomem *
|
|
acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
|
|
{
|
|
struct acpi_ioremap *map;
|
|
|
|
map = acpi_map_lookup(phys, size);
|
|
if (map)
|
|
return map->virt + (phys - map->phys);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
|
|
{
|
|
struct acpi_ioremap *map;
|
|
void __iomem *virt = NULL;
|
|
|
|
mutex_lock(&acpi_ioremap_lock);
|
|
map = acpi_map_lookup(phys, size);
|
|
if (map) {
|
|
virt = map->virt + (phys - map->phys);
|
|
map->refcount++;
|
|
}
|
|
mutex_unlock(&acpi_ioremap_lock);
|
|
return virt;
|
|
}
|
|
EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
|
|
|
|
/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
|
|
static struct acpi_ioremap *
|
|
acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
|
|
{
|
|
struct acpi_ioremap *map;
|
|
|
|
list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
|
|
if (map->virt <= virt &&
|
|
virt + size <= map->virt + map->size)
|
|
return map;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
|
|
/* ioremap will take care of cache attributes */
|
|
#define should_use_kmap(pfn) 0
|
|
#else
|
|
#define should_use_kmap(pfn) page_is_ram(pfn)
|
|
#endif
|
|
|
|
static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
|
|
{
|
|
unsigned long pfn;
|
|
|
|
pfn = pg_off >> PAGE_SHIFT;
|
|
if (should_use_kmap(pfn)) {
|
|
if (pg_sz > PAGE_SIZE)
|
|
return NULL;
|
|
return (void __iomem __force *)kmap(pfn_to_page(pfn));
|
|
} else
|
|
return acpi_os_ioremap(pg_off, pg_sz);
|
|
}
|
|
|
|
static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
|
|
{
|
|
unsigned long pfn;
|
|
|
|
pfn = pg_off >> PAGE_SHIFT;
|
|
if (should_use_kmap(pfn))
|
|
kunmap(pfn_to_page(pfn));
|
|
else
|
|
iounmap(vaddr);
|
|
}
|
|
|
|
/**
|
|
* acpi_os_map_iomem - Get a virtual address for a given physical address range.
|
|
* @phys: Start of the physical address range to map.
|
|
* @size: Size of the physical address range to map.
|
|
*
|
|
* Look up the given physical address range in the list of existing ACPI memory
|
|
* mappings. If found, get a reference to it and return a pointer to it (its
|
|
* virtual address). If not found, map it, add it to that list and return a
|
|
* pointer to it.
|
|
*
|
|
* During early init (when acpi_permanent_mmap has not been set yet) this
|
|
* routine simply calls __acpi_map_table() to get the job done.
|
|
*/
|
|
void __iomem __ref
|
|
*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
|
|
{
|
|
struct acpi_ioremap *map;
|
|
void __iomem *virt;
|
|
acpi_physical_address pg_off;
|
|
acpi_size pg_sz;
|
|
|
|
if (phys > ULONG_MAX) {
|
|
printk(KERN_ERR PREFIX "Cannot map memory that high\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (!acpi_permanent_mmap)
|
|
return __acpi_map_table((unsigned long)phys, size);
|
|
|
|
mutex_lock(&acpi_ioremap_lock);
|
|
/* Check if there's a suitable mapping already. */
|
|
map = acpi_map_lookup(phys, size);
|
|
if (map) {
|
|
map->refcount++;
|
|
goto out;
|
|
}
|
|
|
|
map = kzalloc(sizeof(*map), GFP_KERNEL);
|
|
if (!map) {
|
|
mutex_unlock(&acpi_ioremap_lock);
|
|
return NULL;
|
|
}
|
|
|
|
pg_off = round_down(phys, PAGE_SIZE);
|
|
pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
|
|
virt = acpi_map(pg_off, pg_sz);
|
|
if (!virt) {
|
|
mutex_unlock(&acpi_ioremap_lock);
|
|
kfree(map);
|
|
return NULL;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&map->list);
|
|
map->virt = virt;
|
|
map->phys = pg_off;
|
|
map->size = pg_sz;
|
|
map->refcount = 1;
|
|
|
|
list_add_tail_rcu(&map->list, &acpi_ioremaps);
|
|
|
|
out:
|
|
mutex_unlock(&acpi_ioremap_lock);
|
|
return map->virt + (phys - map->phys);
|
|
}
|
|
EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
|
|
|
|
void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
|
|
{
|
|
return (void *)acpi_os_map_iomem(phys, size);
|
|
}
|
|
EXPORT_SYMBOL_GPL(acpi_os_map_memory);
|
|
|
|
static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
|
|
{
|
|
if (!--map->refcount)
|
|
list_del_rcu(&map->list);
|
|
}
|
|
|
|
static void acpi_os_map_cleanup(struct acpi_ioremap *map)
|
|
{
|
|
if (!map->refcount) {
|
|
synchronize_rcu_expedited();
|
|
acpi_unmap(map->phys, map->virt);
|
|
kfree(map);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* acpi_os_unmap_iomem - Drop a memory mapping reference.
|
|
* @virt: Start of the address range to drop a reference to.
|
|
* @size: Size of the address range to drop a reference to.
|
|
*
|
|
* Look up the given virtual address range in the list of existing ACPI memory
|
|
* mappings, drop a reference to it and unmap it if there are no more active
|
|
* references to it.
|
|
*
|
|
* During early init (when acpi_permanent_mmap has not been set yet) this
|
|
* routine simply calls __acpi_unmap_table() to get the job done. Since
|
|
* __acpi_unmap_table() is an __init function, the __ref annotation is needed
|
|
* here.
|
|
*/
|
|
void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
|
|
{
|
|
struct acpi_ioremap *map;
|
|
|
|
if (!acpi_permanent_mmap) {
|
|
__acpi_unmap_table(virt, size);
|
|
return;
|
|
}
|
|
|
|
mutex_lock(&acpi_ioremap_lock);
|
|
map = acpi_map_lookup_virt(virt, size);
|
|
if (!map) {
|
|
mutex_unlock(&acpi_ioremap_lock);
|
|
WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
|
|
return;
|
|
}
|
|
acpi_os_drop_map_ref(map);
|
|
mutex_unlock(&acpi_ioremap_lock);
|
|
|
|
acpi_os_map_cleanup(map);
|
|
}
|
|
EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
|
|
|
|
void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
|
|
{
|
|
return acpi_os_unmap_iomem((void __iomem *)virt, size);
|
|
}
|
|
EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
|
|
|
|
int acpi_os_map_generic_address(struct acpi_generic_address *gas)
|
|
{
|
|
u64 addr;
|
|
void __iomem *virt;
|
|
|
|
if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
|
|
return 0;
|
|
|
|
/* Handle possible alignment issues */
|
|
memcpy(&addr, &gas->address, sizeof(addr));
|
|
if (!addr || !gas->bit_width)
|
|
return -EINVAL;
|
|
|
|
virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
|
|
if (!virt)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(acpi_os_map_generic_address);
|
|
|
|
void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
|
|
{
|
|
u64 addr;
|
|
struct acpi_ioremap *map;
|
|
|
|
if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
|
|
return;
|
|
|
|
/* Handle possible alignment issues */
|
|
memcpy(&addr, &gas->address, sizeof(addr));
|
|
if (!addr || !gas->bit_width)
|
|
return;
|
|
|
|
mutex_lock(&acpi_ioremap_lock);
|
|
map = acpi_map_lookup(addr, gas->bit_width / 8);
|
|
if (!map) {
|
|
mutex_unlock(&acpi_ioremap_lock);
|
|
return;
|
|
}
|
|
acpi_os_drop_map_ref(map);
|
|
mutex_unlock(&acpi_ioremap_lock);
|
|
|
|
acpi_os_map_cleanup(map);
|
|
}
|
|
EXPORT_SYMBOL(acpi_os_unmap_generic_address);
|
|
|
|
#ifdef ACPI_FUTURE_USAGE
|
|
acpi_status
|
|
acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
|
|
{
|
|
if (!phys || !virt)
|
|
return AE_BAD_PARAMETER;
|
|
|
|
*phys = virt_to_phys(virt);
|
|
|
|
return AE_OK;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
|
|
static bool acpi_rev_override;
|
|
|
|
int __init acpi_rev_override_setup(char *str)
|
|
{
|
|
acpi_rev_override = true;
|
|
return 1;
|
|
}
|
|
__setup("acpi_rev_override", acpi_rev_override_setup);
|
|
#else
|
|
#define acpi_rev_override false
|
|
#endif
|
|
|
|
#define ACPI_MAX_OVERRIDE_LEN 100
|
|
|
|
static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
|
|
|
|
acpi_status
|
|
acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
|
|
acpi_string *new_val)
|
|
{
|
|
if (!init_val || !new_val)
|
|
return AE_BAD_PARAMETER;
|
|
|
|
*new_val = NULL;
|
|
if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
|
|
printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
|
|
acpi_os_name);
|
|
*new_val = acpi_os_name;
|
|
}
|
|
|
|
if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
|
|
printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
|
|
*new_val = (char *)5;
|
|
}
|
|
|
|
return AE_OK;
|
|
}
|
|
|
|
static irqreturn_t acpi_irq(int irq, void *dev_id)
|
|
{
|
|
u32 handled;
|
|
|
|
handled = (*acpi_irq_handler) (acpi_irq_context);
|
|
|
|
if (handled) {
|
|
acpi_irq_handled++;
|
|
return IRQ_HANDLED;
|
|
} else {
|
|
acpi_irq_not_handled++;
|
|
return IRQ_NONE;
|
|
}
|
|
}
|
|
|
|
acpi_status
|
|
acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
|
|
void *context)
|
|
{
|
|
unsigned int irq;
|
|
|
|
acpi_irq_stats_init();
|
|
|
|
/*
|
|
* ACPI interrupts different from the SCI in our copy of the FADT are
|
|
* not supported.
|
|
*/
|
|
if (gsi != acpi_gbl_FADT.sci_interrupt)
|
|
return AE_BAD_PARAMETER;
|
|
|
|
if (acpi_irq_handler)
|
|
return AE_ALREADY_ACQUIRED;
|
|
|
|
if (acpi_gsi_to_irq(gsi, &irq) < 0) {
|
|
printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
|
|
gsi);
|
|
return AE_OK;
|
|
}
|
|
|
|
acpi_irq_handler = handler;
|
|
acpi_irq_context = context;
|
|
if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
|
|
printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
|
|
acpi_irq_handler = NULL;
|
|
return AE_NOT_ACQUIRED;
|
|
}
|
|
acpi_sci_irq = irq;
|
|
|
|
return AE_OK;
|
|
}
|
|
|
|
acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
|
|
{
|
|
if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
|
|
return AE_BAD_PARAMETER;
|
|
|
|
free_irq(acpi_sci_irq, acpi_irq);
|
|
acpi_irq_handler = NULL;
|
|
acpi_sci_irq = INVALID_ACPI_IRQ;
|
|
|
|
return AE_OK;
|
|
}
|
|
|
|
/*
|
|
* Running in interpreter thread context, safe to sleep
|
|
*/
|
|
|
|
void acpi_os_sleep(u64 ms)
|
|
{
|
|
msleep(ms);
|
|
}
|
|
|
|
void acpi_os_stall(u32 us)
|
|
{
|
|
while (us) {
|
|
u32 delay = 1000;
|
|
|
|
if (delay > us)
|
|
delay = us;
|
|
udelay(delay);
|
|
touch_nmi_watchdog();
|
|
us -= delay;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
|
|
* monotonically increasing timer with 100ns granularity. Do not use
|
|
* ktime_get() to implement this function because this function may get
|
|
* called after timekeeping has been suspended. Note: calling this function
|
|
* after timekeeping has been suspended may lead to unexpected results
|
|
* because when timekeeping is suspended the jiffies counter is not
|
|
* incremented. See also timekeeping_suspend().
|
|
*/
|
|
u64 acpi_os_get_timer(void)
|
|
{
|
|
return (get_jiffies_64() - INITIAL_JIFFIES) *
|
|
(ACPI_100NSEC_PER_SEC / HZ);
|
|
}
|
|
|
|
acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
|
|
{
|
|
u32 dummy;
|
|
|
|
if (!value)
|
|
value = &dummy;
|
|
|
|
*value = 0;
|
|
if (width <= 8) {
|
|
*(u8 *) value = inb(port);
|
|
} else if (width <= 16) {
|
|
*(u16 *) value = inw(port);
|
|
} else if (width <= 32) {
|
|
*(u32 *) value = inl(port);
|
|
} else {
|
|
BUG();
|
|
}
|
|
|
|
return AE_OK;
|
|
}
|
|
|
|
EXPORT_SYMBOL(acpi_os_read_port);
|
|
|
|
acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
|
|
{
|
|
if (width <= 8) {
|
|
outb(value, port);
|
|
} else if (width <= 16) {
|
|
outw(value, port);
|
|
} else if (width <= 32) {
|
|
outl(value, port);
|
|
} else {
|
|
BUG();
|
|
}
|
|
|
|
return AE_OK;
|
|
}
|
|
|
|
EXPORT_SYMBOL(acpi_os_write_port);
|
|
|
|
int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
|
|
{
|
|
|
|
switch (width) {
|
|
case 8:
|
|
*(u8 *) value = readb(virt_addr);
|
|
break;
|
|
case 16:
|
|
*(u16 *) value = readw(virt_addr);
|
|
break;
|
|
case 32:
|
|
*(u32 *) value = readl(virt_addr);
|
|
break;
|
|
case 64:
|
|
*(u64 *) value = readq(virt_addr);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
acpi_status
|
|
acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
|
|
{
|
|
void __iomem *virt_addr;
|
|
unsigned int size = width / 8;
|
|
bool unmap = false;
|
|
u64 dummy;
|
|
int error;
|
|
|
|
rcu_read_lock();
|
|
virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
|
|
if (!virt_addr) {
|
|
rcu_read_unlock();
|
|
virt_addr = acpi_os_ioremap(phys_addr, size);
|
|
if (!virt_addr)
|
|
return AE_BAD_ADDRESS;
|
|
unmap = true;
|
|
}
|
|
|
|
if (!value)
|
|
value = &dummy;
|
|
|
|
error = acpi_os_read_iomem(virt_addr, value, width);
|
|
BUG_ON(error);
|
|
|
|
if (unmap)
|
|
iounmap(virt_addr);
|
|
else
|
|
rcu_read_unlock();
|
|
|
|
return AE_OK;
|
|
}
|
|
|
|
acpi_status
|
|
acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
|
|
{
|
|
void __iomem *virt_addr;
|
|
unsigned int size = width / 8;
|
|
bool unmap = false;
|
|
|
|
rcu_read_lock();
|
|
virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
|
|
if (!virt_addr) {
|
|
rcu_read_unlock();
|
|
virt_addr = acpi_os_ioremap(phys_addr, size);
|
|
if (!virt_addr)
|
|
return AE_BAD_ADDRESS;
|
|
unmap = true;
|
|
}
|
|
|
|
switch (width) {
|
|
case 8:
|
|
writeb(value, virt_addr);
|
|
break;
|
|
case 16:
|
|
writew(value, virt_addr);
|
|
break;
|
|
case 32:
|
|
writel(value, virt_addr);
|
|
break;
|
|
case 64:
|
|
writeq(value, virt_addr);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
if (unmap)
|
|
iounmap(virt_addr);
|
|
else
|
|
rcu_read_unlock();
|
|
|
|
return AE_OK;
|
|
}
|
|
|
|
#ifdef CONFIG_PCI
|
|
acpi_status
|
|
acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
|
|
u64 *value, u32 width)
|
|
{
|
|
int result, size;
|
|
u32 value32;
|
|
|
|
if (!value)
|
|
return AE_BAD_PARAMETER;
|
|
|
|
switch (width) {
|
|
case 8:
|
|
size = 1;
|
|
break;
|
|
case 16:
|
|
size = 2;
|
|
break;
|
|
case 32:
|
|
size = 4;
|
|
break;
|
|
default:
|
|
return AE_ERROR;
|
|
}
|
|
|
|
result = raw_pci_read(pci_id->segment, pci_id->bus,
|
|
PCI_DEVFN(pci_id->device, pci_id->function),
|
|
reg, size, &value32);
|
|
*value = value32;
|
|
|
|
return (result ? AE_ERROR : AE_OK);
|
|
}
|
|
|
|
acpi_status
|
|
acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
|
|
u64 value, u32 width)
|
|
{
|
|
int result, size;
|
|
|
|
switch (width) {
|
|
case 8:
|
|
size = 1;
|
|
break;
|
|
case 16:
|
|
size = 2;
|
|
break;
|
|
case 32:
|
|
size = 4;
|
|
break;
|
|
default:
|
|
return AE_ERROR;
|
|
}
|
|
|
|
result = raw_pci_write(pci_id->segment, pci_id->bus,
|
|
PCI_DEVFN(pci_id->device, pci_id->function),
|
|
reg, size, value);
|
|
|
|
return (result ? AE_ERROR : AE_OK);
|
|
}
|
|
#endif
|
|
|
|
static void acpi_os_execute_deferred(struct work_struct *work)
|
|
{
|
|
struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
|
|
|
|
dpc->function(dpc->context);
|
|
kfree(dpc);
|
|
}
|
|
|
|
#ifdef CONFIG_ACPI_DEBUGGER
|
|
static struct acpi_debugger acpi_debugger;
|
|
static bool acpi_debugger_initialized;
|
|
|
|
int acpi_register_debugger(struct module *owner,
|
|
const struct acpi_debugger_ops *ops)
|
|
{
|
|
int ret = 0;
|
|
|
|
mutex_lock(&acpi_debugger.lock);
|
|
if (acpi_debugger.ops) {
|
|
ret = -EBUSY;
|
|
goto err_lock;
|
|
}
|
|
|
|
acpi_debugger.owner = owner;
|
|
acpi_debugger.ops = ops;
|
|
|
|
err_lock:
|
|
mutex_unlock(&acpi_debugger.lock);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(acpi_register_debugger);
|
|
|
|
void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
|
|
{
|
|
mutex_lock(&acpi_debugger.lock);
|
|
if (ops == acpi_debugger.ops) {
|
|
acpi_debugger.ops = NULL;
|
|
acpi_debugger.owner = NULL;
|
|
}
|
|
mutex_unlock(&acpi_debugger.lock);
|
|
}
|
|
EXPORT_SYMBOL(acpi_unregister_debugger);
|
|
|
|
int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
|
|
{
|
|
int ret;
|
|
int (*func)(acpi_osd_exec_callback, void *);
|
|
struct module *owner;
|
|
|
|
if (!acpi_debugger_initialized)
|
|
return -ENODEV;
|
|
mutex_lock(&acpi_debugger.lock);
|
|
if (!acpi_debugger.ops) {
|
|
ret = -ENODEV;
|
|
goto err_lock;
|
|
}
|
|
if (!try_module_get(acpi_debugger.owner)) {
|
|
ret = -ENODEV;
|
|
goto err_lock;
|
|
}
|
|
func = acpi_debugger.ops->create_thread;
|
|
owner = acpi_debugger.owner;
|
|
mutex_unlock(&acpi_debugger.lock);
|
|
|
|
ret = func(function, context);
|
|
|
|
mutex_lock(&acpi_debugger.lock);
|
|
module_put(owner);
|
|
err_lock:
|
|
mutex_unlock(&acpi_debugger.lock);
|
|
return ret;
|
|
}
|
|
|
|
ssize_t acpi_debugger_write_log(const char *msg)
|
|
{
|
|
ssize_t ret;
|
|
ssize_t (*func)(const char *);
|
|
struct module *owner;
|
|
|
|
if (!acpi_debugger_initialized)
|
|
return -ENODEV;
|
|
mutex_lock(&acpi_debugger.lock);
|
|
if (!acpi_debugger.ops) {
|
|
ret = -ENODEV;
|
|
goto err_lock;
|
|
}
|
|
if (!try_module_get(acpi_debugger.owner)) {
|
|
ret = -ENODEV;
|
|
goto err_lock;
|
|
}
|
|
func = acpi_debugger.ops->write_log;
|
|
owner = acpi_debugger.owner;
|
|
mutex_unlock(&acpi_debugger.lock);
|
|
|
|
ret = func(msg);
|
|
|
|
mutex_lock(&acpi_debugger.lock);
|
|
module_put(owner);
|
|
err_lock:
|
|
mutex_unlock(&acpi_debugger.lock);
|
|
return ret;
|
|
}
|
|
|
|
ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
|
|
{
|
|
ssize_t ret;
|
|
ssize_t (*func)(char *, size_t);
|
|
struct module *owner;
|
|
|
|
if (!acpi_debugger_initialized)
|
|
return -ENODEV;
|
|
mutex_lock(&acpi_debugger.lock);
|
|
if (!acpi_debugger.ops) {
|
|
ret = -ENODEV;
|
|
goto err_lock;
|
|
}
|
|
if (!try_module_get(acpi_debugger.owner)) {
|
|
ret = -ENODEV;
|
|
goto err_lock;
|
|
}
|
|
func = acpi_debugger.ops->read_cmd;
|
|
owner = acpi_debugger.owner;
|
|
mutex_unlock(&acpi_debugger.lock);
|
|
|
|
ret = func(buffer, buffer_length);
|
|
|
|
mutex_lock(&acpi_debugger.lock);
|
|
module_put(owner);
|
|
err_lock:
|
|
mutex_unlock(&acpi_debugger.lock);
|
|
return ret;
|
|
}
|
|
|
|
int acpi_debugger_wait_command_ready(void)
|
|
{
|
|
int ret;
|
|
int (*func)(bool, char *, size_t);
|
|
struct module *owner;
|
|
|
|
if (!acpi_debugger_initialized)
|
|
return -ENODEV;
|
|
mutex_lock(&acpi_debugger.lock);
|
|
if (!acpi_debugger.ops) {
|
|
ret = -ENODEV;
|
|
goto err_lock;
|
|
}
|
|
if (!try_module_get(acpi_debugger.owner)) {
|
|
ret = -ENODEV;
|
|
goto err_lock;
|
|
}
|
|
func = acpi_debugger.ops->wait_command_ready;
|
|
owner = acpi_debugger.owner;
|
|
mutex_unlock(&acpi_debugger.lock);
|
|
|
|
ret = func(acpi_gbl_method_executing,
|
|
acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
|
|
|
|
mutex_lock(&acpi_debugger.lock);
|
|
module_put(owner);
|
|
err_lock:
|
|
mutex_unlock(&acpi_debugger.lock);
|
|
return ret;
|
|
}
|
|
|
|
int acpi_debugger_notify_command_complete(void)
|
|
{
|
|
int ret;
|
|
int (*func)(void);
|
|
struct module *owner;
|
|
|
|
if (!acpi_debugger_initialized)
|
|
return -ENODEV;
|
|
mutex_lock(&acpi_debugger.lock);
|
|
if (!acpi_debugger.ops) {
|
|
ret = -ENODEV;
|
|
goto err_lock;
|
|
}
|
|
if (!try_module_get(acpi_debugger.owner)) {
|
|
ret = -ENODEV;
|
|
goto err_lock;
|
|
}
|
|
func = acpi_debugger.ops->notify_command_complete;
|
|
owner = acpi_debugger.owner;
|
|
mutex_unlock(&acpi_debugger.lock);
|
|
|
|
ret = func();
|
|
|
|
mutex_lock(&acpi_debugger.lock);
|
|
module_put(owner);
|
|
err_lock:
|
|
mutex_unlock(&acpi_debugger.lock);
|
|
return ret;
|
|
}
|
|
|
|
int __init acpi_debugger_init(void)
|
|
{
|
|
mutex_init(&acpi_debugger.lock);
|
|
acpi_debugger_initialized = true;
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: acpi_os_execute
|
|
*
|
|
* PARAMETERS: Type - Type of the callback
|
|
* Function - Function to be executed
|
|
* Context - Function parameters
|
|
*
|
|
* RETURN: Status
|
|
*
|
|
* DESCRIPTION: Depending on type, either queues function for deferred execution or
|
|
* immediately executes function on a separate thread.
|
|
*
|
|
******************************************************************************/
|
|
|
|
acpi_status acpi_os_execute(acpi_execute_type type,
|
|
acpi_osd_exec_callback function, void *context)
|
|
{
|
|
acpi_status status = AE_OK;
|
|
struct acpi_os_dpc *dpc;
|
|
struct workqueue_struct *queue;
|
|
int ret;
|
|
ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
|
|
"Scheduling function [%p(%p)] for deferred execution.\n",
|
|
function, context));
|
|
|
|
if (type == OSL_DEBUGGER_MAIN_THREAD) {
|
|
ret = acpi_debugger_create_thread(function, context);
|
|
if (ret) {
|
|
pr_err("Call to kthread_create() failed.\n");
|
|
status = AE_ERROR;
|
|
}
|
|
goto out_thread;
|
|
}
|
|
|
|
/*
|
|
* Allocate/initialize DPC structure. Note that this memory will be
|
|
* freed by the callee. The kernel handles the work_struct list in a
|
|
* way that allows us to also free its memory inside the callee.
|
|
* Because we may want to schedule several tasks with different
|
|
* parameters we can't use the approach some kernel code uses of
|
|
* having a static work_struct.
|
|
*/
|
|
|
|
dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
|
|
if (!dpc)
|
|
return AE_NO_MEMORY;
|
|
|
|
dpc->function = function;
|
|
dpc->context = context;
|
|
|
|
/*
|
|
* To prevent lockdep from complaining unnecessarily, make sure that
|
|
* there is a different static lockdep key for each workqueue by using
|
|
* INIT_WORK() for each of them separately.
|
|
*/
|
|
if (type == OSL_NOTIFY_HANDLER) {
|
|
queue = kacpi_notify_wq;
|
|
INIT_WORK(&dpc->work, acpi_os_execute_deferred);
|
|
} else if (type == OSL_GPE_HANDLER) {
|
|
queue = kacpid_wq;
|
|
INIT_WORK(&dpc->work, acpi_os_execute_deferred);
|
|
} else {
|
|
pr_err("Unsupported os_execute type %d.\n", type);
|
|
status = AE_ERROR;
|
|
}
|
|
|
|
if (ACPI_FAILURE(status))
|
|
goto err_workqueue;
|
|
|
|
/*
|
|
* On some machines, a software-initiated SMI causes corruption unless
|
|
* the SMI runs on CPU 0. An SMI can be initiated by any AML, but
|
|
* typically it's done in GPE-related methods that are run via
|
|
* workqueues, so we can avoid the known corruption cases by always
|
|
* queueing on CPU 0.
|
|
*/
|
|
ret = queue_work_on(0, queue, &dpc->work);
|
|
if (!ret) {
|
|
printk(KERN_ERR PREFIX
|
|
"Call to queue_work() failed.\n");
|
|
status = AE_ERROR;
|
|
}
|
|
err_workqueue:
|
|
if (ACPI_FAILURE(status))
|
|
kfree(dpc);
|
|
out_thread:
|
|
return status;
|
|
}
|
|
EXPORT_SYMBOL(acpi_os_execute);
|
|
|
|
void acpi_os_wait_events_complete(void)
|
|
{
|
|
/*
|
|
* Make sure the GPE handler or the fixed event handler is not used
|
|
* on another CPU after removal.
|
|
*/
|
|
if (acpi_sci_irq_valid())
|
|
synchronize_hardirq(acpi_sci_irq);
|
|
flush_workqueue(kacpid_wq);
|
|
flush_workqueue(kacpi_notify_wq);
|
|
}
|
|
EXPORT_SYMBOL(acpi_os_wait_events_complete);
|
|
|
|
struct acpi_hp_work {
|
|
struct work_struct work;
|
|
struct acpi_device *adev;
|
|
u32 src;
|
|
};
|
|
|
|
static void acpi_hotplug_work_fn(struct work_struct *work)
|
|
{
|
|
struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
|
|
|
|
acpi_os_wait_events_complete();
|
|
acpi_device_hotplug(hpw->adev, hpw->src);
|
|
kfree(hpw);
|
|
}
|
|
|
|
acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
|
|
{
|
|
struct acpi_hp_work *hpw;
|
|
|
|
ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
|
|
"Scheduling hotplug event (%p, %u) for deferred execution.\n",
|
|
adev, src));
|
|
|
|
hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
|
|
if (!hpw)
|
|
return AE_NO_MEMORY;
|
|
|
|
INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
|
|
hpw->adev = adev;
|
|
hpw->src = src;
|
|
/*
|
|
* We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
|
|
* the hotplug code may call driver .remove() functions, which may
|
|
* invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
|
|
* these workqueues.
|
|
*/
|
|
if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
|
|
kfree(hpw);
|
|
return AE_ERROR;
|
|
}
|
|
return AE_OK;
|
|
}
|
|
|
|
bool acpi_queue_hotplug_work(struct work_struct *work)
|
|
{
|
|
return queue_work(kacpi_hotplug_wq, work);
|
|
}
|
|
|
|
acpi_status
|
|
acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
|
|
{
|
|
struct semaphore *sem = NULL;
|
|
|
|
sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
|
|
if (!sem)
|
|
return AE_NO_MEMORY;
|
|
|
|
sema_init(sem, initial_units);
|
|
|
|
*handle = (acpi_handle *) sem;
|
|
|
|
ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
|
|
*handle, initial_units));
|
|
|
|
return AE_OK;
|
|
}
|
|
|
|
/*
|
|
* TODO: A better way to delete semaphores? Linux doesn't have a
|
|
* 'delete_semaphore()' function -- may result in an invalid
|
|
* pointer dereference for non-synchronized consumers. Should
|
|
* we at least check for blocked threads and signal/cancel them?
|
|
*/
|
|
|
|
acpi_status acpi_os_delete_semaphore(acpi_handle handle)
|
|
{
|
|
struct semaphore *sem = (struct semaphore *)handle;
|
|
|
|
if (!sem)
|
|
return AE_BAD_PARAMETER;
|
|
|
|
ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
|
|
|
|
BUG_ON(!list_empty(&sem->wait_list));
|
|
kfree(sem);
|
|
sem = NULL;
|
|
|
|
return AE_OK;
|
|
}
|
|
|
|
/*
|
|
* TODO: Support for units > 1?
|
|
*/
|
|
acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
|
|
{
|
|
acpi_status status = AE_OK;
|
|
struct semaphore *sem = (struct semaphore *)handle;
|
|
long jiffies;
|
|
int ret = 0;
|
|
|
|
if (!acpi_os_initialized)
|
|
return AE_OK;
|
|
|
|
if (!sem || (units < 1))
|
|
return AE_BAD_PARAMETER;
|
|
|
|
if (units > 1)
|
|
return AE_SUPPORT;
|
|
|
|
ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
|
|
handle, units, timeout));
|
|
|
|
if (timeout == ACPI_WAIT_FOREVER)
|
|
jiffies = MAX_SCHEDULE_TIMEOUT;
|
|
else
|
|
jiffies = msecs_to_jiffies(timeout);
|
|
|
|
ret = down_timeout(sem, jiffies);
|
|
if (ret)
|
|
status = AE_TIME;
|
|
|
|
if (ACPI_FAILURE(status)) {
|
|
ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
|
|
"Failed to acquire semaphore[%p|%d|%d], %s",
|
|
handle, units, timeout,
|
|
acpi_format_exception(status)));
|
|
} else {
|
|
ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
|
|
"Acquired semaphore[%p|%d|%d]", handle,
|
|
units, timeout));
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* TODO: Support for units > 1?
|
|
*/
|
|
acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
|
|
{
|
|
struct semaphore *sem = (struct semaphore *)handle;
|
|
|
|
if (!acpi_os_initialized)
|
|
return AE_OK;
|
|
|
|
if (!sem || (units < 1))
|
|
return AE_BAD_PARAMETER;
|
|
|
|
if (units > 1)
|
|
return AE_SUPPORT;
|
|
|
|
ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
|
|
units));
|
|
|
|
up(sem);
|
|
|
|
return AE_OK;
|
|
}
|
|
|
|
acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
|
|
{
|
|
#ifdef ENABLE_DEBUGGER
|
|
if (acpi_in_debugger) {
|
|
u32 chars;
|
|
|
|
kdb_read(buffer, buffer_length);
|
|
|
|
/* remove the CR kdb includes */
|
|
chars = strlen(buffer) - 1;
|
|
buffer[chars] = '\0';
|
|
}
|
|
#else
|
|
int ret;
|
|
|
|
ret = acpi_debugger_read_cmd(buffer, buffer_length);
|
|
if (ret < 0)
|
|
return AE_ERROR;
|
|
if (bytes_read)
|
|
*bytes_read = ret;
|
|
#endif
|
|
|
|
return AE_OK;
|
|
}
|
|
EXPORT_SYMBOL(acpi_os_get_line);
|
|
|
|
acpi_status acpi_os_wait_command_ready(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = acpi_debugger_wait_command_ready();
|
|
if (ret < 0)
|
|
return AE_ERROR;
|
|
return AE_OK;
|
|
}
|
|
|
|
acpi_status acpi_os_notify_command_complete(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = acpi_debugger_notify_command_complete();
|
|
if (ret < 0)
|
|
return AE_ERROR;
|
|
return AE_OK;
|
|
}
|
|
|
|
acpi_status acpi_os_signal(u32 function, void *info)
|
|
{
|
|
switch (function) {
|
|
case ACPI_SIGNAL_FATAL:
|
|
printk(KERN_ERR PREFIX "Fatal opcode executed\n");
|
|
break;
|
|
case ACPI_SIGNAL_BREAKPOINT:
|
|
/*
|
|
* AML Breakpoint
|
|
* ACPI spec. says to treat it as a NOP unless
|
|
* you are debugging. So if/when we integrate
|
|
* AML debugger into the kernel debugger its
|
|
* hook will go here. But until then it is
|
|
* not useful to print anything on breakpoints.
|
|
*/
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return AE_OK;
|
|
}
|
|
|
|
static int __init acpi_os_name_setup(char *str)
|
|
{
|
|
char *p = acpi_os_name;
|
|
int count = ACPI_MAX_OVERRIDE_LEN - 1;
|
|
|
|
if (!str || !*str)
|
|
return 0;
|
|
|
|
for (; count-- && *str; str++) {
|
|
if (isalnum(*str) || *str == ' ' || *str == ':')
|
|
*p++ = *str;
|
|
else if (*str == '\'' || *str == '"')
|
|
continue;
|
|
else
|
|
break;
|
|
}
|
|
*p = 0;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
__setup("acpi_os_name=", acpi_os_name_setup);
|
|
|
|
/*
|
|
* Disable the auto-serialization of named objects creation methods.
|
|
*
|
|
* This feature is enabled by default. It marks the AML control methods
|
|
* that contain the opcodes to create named objects as "Serialized".
|
|
*/
|
|
static int __init acpi_no_auto_serialize_setup(char *str)
|
|
{
|
|
acpi_gbl_auto_serialize_methods = FALSE;
|
|
pr_info("ACPI: auto-serialization disabled\n");
|
|
|
|
return 1;
|
|
}
|
|
|
|
__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
|
|
|
|
/* Check of resource interference between native drivers and ACPI
|
|
* OperationRegions (SystemIO and System Memory only).
|
|
* IO ports and memory declared in ACPI might be used by the ACPI subsystem
|
|
* in arbitrary AML code and can interfere with legacy drivers.
|
|
* acpi_enforce_resources= can be set to:
|
|
*
|
|
* - strict (default) (2)
|
|
* -> further driver trying to access the resources will not load
|
|
* - lax (1)
|
|
* -> further driver trying to access the resources will load, but you
|
|
* get a system message that something might go wrong...
|
|
*
|
|
* - no (0)
|
|
* -> ACPI Operation Region resources will not be registered
|
|
*
|
|
*/
|
|
#define ENFORCE_RESOURCES_STRICT 2
|
|
#define ENFORCE_RESOURCES_LAX 1
|
|
#define ENFORCE_RESOURCES_NO 0
|
|
|
|
static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
|
|
|
|
static int __init acpi_enforce_resources_setup(char *str)
|
|
{
|
|
if (str == NULL || *str == '\0')
|
|
return 0;
|
|
|
|
if (!strcmp("strict", str))
|
|
acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
|
|
else if (!strcmp("lax", str))
|
|
acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
|
|
else if (!strcmp("no", str))
|
|
acpi_enforce_resources = ENFORCE_RESOURCES_NO;
|
|
|
|
return 1;
|
|
}
|
|
|
|
__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
|
|
|
|
/* Check for resource conflicts between ACPI OperationRegions and native
|
|
* drivers */
|
|
int acpi_check_resource_conflict(const struct resource *res)
|
|
{
|
|
acpi_adr_space_type space_id;
|
|
acpi_size length;
|
|
u8 warn = 0;
|
|
int clash = 0;
|
|
|
|
if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
|
|
return 0;
|
|
if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
|
|
return 0;
|
|
|
|
if (res->flags & IORESOURCE_IO)
|
|
space_id = ACPI_ADR_SPACE_SYSTEM_IO;
|
|
else
|
|
space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
|
|
|
|
length = resource_size(res);
|
|
if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
|
|
warn = 1;
|
|
clash = acpi_check_address_range(space_id, res->start, length, warn);
|
|
|
|
if (clash) {
|
|
if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
|
|
if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
|
|
printk(KERN_NOTICE "ACPI: This conflict may"
|
|
" cause random problems and system"
|
|
" instability\n");
|
|
printk(KERN_INFO "ACPI: If an ACPI driver is available"
|
|
" for this device, you should use it instead of"
|
|
" the native driver\n");
|
|
}
|
|
if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
|
|
return -EBUSY;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(acpi_check_resource_conflict);
|
|
|
|
int acpi_check_region(resource_size_t start, resource_size_t n,
|
|
const char *name)
|
|
{
|
|
struct resource res = {
|
|
.start = start,
|
|
.end = start + n - 1,
|
|
.name = name,
|
|
.flags = IORESOURCE_IO,
|
|
};
|
|
|
|
return acpi_check_resource_conflict(&res);
|
|
}
|
|
EXPORT_SYMBOL(acpi_check_region);
|
|
|
|
static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
|
|
void *_res, void **return_value)
|
|
{
|
|
struct acpi_mem_space_context **mem_ctx;
|
|
union acpi_operand_object *handler_obj;
|
|
union acpi_operand_object *region_obj2;
|
|
union acpi_operand_object *region_obj;
|
|
struct resource *res = _res;
|
|
acpi_status status;
|
|
|
|
region_obj = acpi_ns_get_attached_object(handle);
|
|
if (!region_obj)
|
|
return AE_OK;
|
|
|
|
handler_obj = region_obj->region.handler;
|
|
if (!handler_obj)
|
|
return AE_OK;
|
|
|
|
if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
|
|
return AE_OK;
|
|
|
|
if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
|
|
return AE_OK;
|
|
|
|
region_obj2 = acpi_ns_get_secondary_object(region_obj);
|
|
if (!region_obj2)
|
|
return AE_OK;
|
|
|
|
mem_ctx = (void *)®ion_obj2->extra.region_context;
|
|
|
|
if (!(mem_ctx[0]->address >= res->start &&
|
|
mem_ctx[0]->address < res->end))
|
|
return AE_OK;
|
|
|
|
status = handler_obj->address_space.setup(region_obj,
|
|
ACPI_REGION_DEACTIVATE,
|
|
NULL, (void **)mem_ctx);
|
|
if (ACPI_SUCCESS(status))
|
|
region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* acpi_release_memory - Release any mappings done to a memory region
|
|
* @handle: Handle to namespace node
|
|
* @res: Memory resource
|
|
* @level: A level that terminates the search
|
|
*
|
|
* Walks through @handle and unmaps all SystemMemory Operation Regions that
|
|
* overlap with @res and that have already been activated (mapped).
|
|
*
|
|
* This is a helper that allows drivers to place special requirements on memory
|
|
* region that may overlap with operation regions, primarily allowing them to
|
|
* safely map the region as non-cached memory.
|
|
*
|
|
* The unmapped Operation Regions will be automatically remapped next time they
|
|
* are called, so the drivers do not need to do anything else.
|
|
*/
|
|
acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
|
|
u32 level)
|
|
{
|
|
if (!(res->flags & IORESOURCE_MEM))
|
|
return AE_TYPE;
|
|
|
|
return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
|
|
acpi_deactivate_mem_region, NULL, res, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(acpi_release_memory);
|
|
|
|
/*
|
|
* Let drivers know whether the resource checks are effective
|
|
*/
|
|
int acpi_resources_are_enforced(void)
|
|
{
|
|
return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
|
|
}
|
|
EXPORT_SYMBOL(acpi_resources_are_enforced);
|
|
|
|
/*
|
|
* Deallocate the memory for a spinlock.
|
|
*/
|
|
void acpi_os_delete_lock(acpi_spinlock handle)
|
|
{
|
|
ACPI_FREE(handle);
|
|
}
|
|
|
|
/*
|
|
* Acquire a spinlock.
|
|
*
|
|
* handle is a pointer to the spinlock_t.
|
|
*/
|
|
|
|
acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
|
|
{
|
|
acpi_cpu_flags flags;
|
|
spin_lock_irqsave(lockp, flags);
|
|
return flags;
|
|
}
|
|
|
|
/*
|
|
* Release a spinlock. See above.
|
|
*/
|
|
|
|
void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
|
|
{
|
|
spin_unlock_irqrestore(lockp, flags);
|
|
}
|
|
|
|
#ifndef ACPI_USE_LOCAL_CACHE
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: acpi_os_create_cache
|
|
*
|
|
* PARAMETERS: name - Ascii name for the cache
|
|
* size - Size of each cached object
|
|
* depth - Maximum depth of the cache (in objects) <ignored>
|
|
* cache - Where the new cache object is returned
|
|
*
|
|
* RETURN: status
|
|
*
|
|
* DESCRIPTION: Create a cache object
|
|
*
|
|
******************************************************************************/
|
|
|
|
acpi_status
|
|
acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
|
|
{
|
|
*cache = kmem_cache_create(name, size, 0, 0, NULL);
|
|
if (*cache == NULL)
|
|
return AE_ERROR;
|
|
else
|
|
return AE_OK;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: acpi_os_purge_cache
|
|
*
|
|
* PARAMETERS: Cache - Handle to cache object
|
|
*
|
|
* RETURN: Status
|
|
*
|
|
* DESCRIPTION: Free all objects within the requested cache.
|
|
*
|
|
******************************************************************************/
|
|
|
|
acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
|
|
{
|
|
kmem_cache_shrink(cache);
|
|
return (AE_OK);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: acpi_os_delete_cache
|
|
*
|
|
* PARAMETERS: Cache - Handle to cache object
|
|
*
|
|
* RETURN: Status
|
|
*
|
|
* DESCRIPTION: Free all objects within the requested cache and delete the
|
|
* cache object.
|
|
*
|
|
******************************************************************************/
|
|
|
|
acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
|
|
{
|
|
kmem_cache_destroy(cache);
|
|
return (AE_OK);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* FUNCTION: acpi_os_release_object
|
|
*
|
|
* PARAMETERS: Cache - Handle to cache object
|
|
* Object - The object to be released
|
|
*
|
|
* RETURN: None
|
|
*
|
|
* DESCRIPTION: Release an object to the specified cache. If cache is full,
|
|
* the object is deleted.
|
|
*
|
|
******************************************************************************/
|
|
|
|
acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
|
|
{
|
|
kmem_cache_free(cache, object);
|
|
return (AE_OK);
|
|
}
|
|
#endif
|
|
|
|
static int __init acpi_no_static_ssdt_setup(char *s)
|
|
{
|
|
acpi_gbl_disable_ssdt_table_install = TRUE;
|
|
pr_info("ACPI: static SSDT installation disabled\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
|
|
|
|
static int __init acpi_disable_return_repair(char *s)
|
|
{
|
|
printk(KERN_NOTICE PREFIX
|
|
"ACPI: Predefined validation mechanism disabled\n");
|
|
acpi_gbl_disable_auto_repair = TRUE;
|
|
|
|
return 1;
|
|
}
|
|
|
|
__setup("acpica_no_return_repair", acpi_disable_return_repair);
|
|
|
|
acpi_status __init acpi_os_initialize(void)
|
|
{
|
|
acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
|
|
acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
|
|
acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
|
|
acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
|
|
if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
|
|
/*
|
|
* Use acpi_os_map_generic_address to pre-map the reset
|
|
* register if it's in system memory.
|
|
*/
|
|
int rv;
|
|
|
|
rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
|
|
pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
|
|
}
|
|
acpi_os_initialized = true;
|
|
|
|
return AE_OK;
|
|
}
|
|
|
|
acpi_status __init acpi_os_initialize1(void)
|
|
{
|
|
kacpid_wq = alloc_workqueue("kacpid", 0, 1);
|
|
kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
|
|
kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
|
|
BUG_ON(!kacpid_wq);
|
|
BUG_ON(!kacpi_notify_wq);
|
|
BUG_ON(!kacpi_hotplug_wq);
|
|
acpi_osi_init();
|
|
return AE_OK;
|
|
}
|
|
|
|
acpi_status acpi_os_terminate(void)
|
|
{
|
|
if (acpi_irq_handler) {
|
|
acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
|
|
acpi_irq_handler);
|
|
}
|
|
|
|
acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
|
|
acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
|
|
acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
|
|
acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
|
|
if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
|
|
acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
|
|
|
|
destroy_workqueue(kacpid_wq);
|
|
destroy_workqueue(kacpi_notify_wq);
|
|
destroy_workqueue(kacpi_hotplug_wq);
|
|
|
|
return AE_OK;
|
|
}
|
|
|
|
acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
|
|
u32 pm1b_control)
|
|
{
|
|
int rc = 0;
|
|
if (__acpi_os_prepare_sleep)
|
|
rc = __acpi_os_prepare_sleep(sleep_state,
|
|
pm1a_control, pm1b_control);
|
|
if (rc < 0)
|
|
return AE_ERROR;
|
|
else if (rc > 0)
|
|
return AE_CTRL_TERMINATE;
|
|
|
|
return AE_OK;
|
|
}
|
|
|
|
void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
|
|
u32 pm1a_ctrl, u32 pm1b_ctrl))
|
|
{
|
|
__acpi_os_prepare_sleep = func;
|
|
}
|
|
|
|
#if (ACPI_REDUCED_HARDWARE)
|
|
acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
|
|
u32 val_b)
|
|
{
|
|
int rc = 0;
|
|
if (__acpi_os_prepare_extended_sleep)
|
|
rc = __acpi_os_prepare_extended_sleep(sleep_state,
|
|
val_a, val_b);
|
|
if (rc < 0)
|
|
return AE_ERROR;
|
|
else if (rc > 0)
|
|
return AE_CTRL_TERMINATE;
|
|
|
|
return AE_OK;
|
|
}
|
|
#else
|
|
acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
|
|
u32 val_b)
|
|
{
|
|
return AE_OK;
|
|
}
|
|
#endif
|
|
|
|
void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
|
|
u32 val_a, u32 val_b))
|
|
{
|
|
__acpi_os_prepare_extended_sleep = func;
|
|
}
|
|
|
|
acpi_status acpi_os_enter_sleep(u8 sleep_state,
|
|
u32 reg_a_value, u32 reg_b_value)
|
|
{
|
|
acpi_status status;
|
|
|
|
if (acpi_gbl_reduced_hardware)
|
|
status = acpi_os_prepare_extended_sleep(sleep_state,
|
|
reg_a_value,
|
|
reg_b_value);
|
|
else
|
|
status = acpi_os_prepare_sleep(sleep_state,
|
|
reg_a_value, reg_b_value);
|
|
return status;
|
|
}
|