linux/fs/xfs/libxfs/xfs_alloc.c
Zizhi Wo 94a0333b92 xfs: Avoid races with cnt_btree lastrec updates
A concurrent file creation and little writing could unexpectedly return
-ENOSPC error since there is a race window that the allocator could get
the wrong agf->agf_longest.

Write file process steps:
1) Find the entry that best meets the conditions, then calculate the start
   address and length of the remaining part of the entry after allocation.
2) Delete this entry and update the -current- agf->agf_longest.
3) Insert the remaining unused parts of this entry based on the
   calculations in 1), and update the agf->agf_longest again if necessary.

Create file process steps:
1) Check whether there are free inodes in the inode chunk.
2) If there is no free inode, check whether there has space for creating
   inode chunks, perform the no-lock judgment first.
3) If the judgment succeeds, the judgment is performed again with agf lock
   held. Otherwire, an error is returned directly.

If the write process is in step 2) but not go to 3) yet, the create file
process goes to 2) at this time, it may be mistaken for no space,
resulting in the file system still has space but the file creation fails.

We have sent two different commits to the community in order to fix this
problem[1][2]. Unfortunately, both solutions have flaws. In [2], I
discussed with Dave and Darrick, realized that a better solution to this
problem requires the "last cnt record tracking" to be ripped out of the
generic btree code. And surprisingly, Dave directly provided his fix code.
This patch includes appropriate modifications based on his tmp-code to
address this issue.

The entire fix can be roughly divided into two parts:
1) Delete the code related to lastrec-update in the generic btree code.
2) Place the process of updating longest freespace with cntbt separately
   to the end of the cntbt modifications. Move the cursor to the rightmost
   firstly, and update the longest free extent based on the record.

Note that we can not update the longest with xfs_alloc_get_rec() after
find the longest record, as xfs_verify_agbno() may not pass because
pag->block_count is updated on the outside. Therefore, use
xfs_btree_get_rec() as a replacement.

[1] https://lore.kernel.org/all/20240419061848.1032366-2-yebin10@huawei.com
[2] https://lore.kernel.org/all/20240604071121.3981686-1-wozizhi@huawei.com

Reported by: Ye Bin <yebin10@huawei.com>

Signed-off-by: Zizhi Wo <wozizhi@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-07-04 12:44:16 +05:30

4165 lines
111 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_shared.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_btree.h"
#include "xfs_rmap.h"
#include "xfs_alloc_btree.h"
#include "xfs_alloc.h"
#include "xfs_extent_busy.h"
#include "xfs_errortag.h"
#include "xfs_error.h"
#include "xfs_trace.h"
#include "xfs_trans.h"
#include "xfs_buf_item.h"
#include "xfs_log.h"
#include "xfs_ag.h"
#include "xfs_ag_resv.h"
#include "xfs_bmap.h"
#include "xfs_health.h"
#include "xfs_extfree_item.h"
struct kmem_cache *xfs_extfree_item_cache;
struct workqueue_struct *xfs_alloc_wq;
#define XFS_ABSDIFF(a,b) (((a) <= (b)) ? ((b) - (a)) : ((a) - (b)))
#define XFSA_FIXUP_BNO_OK 1
#define XFSA_FIXUP_CNT_OK 2
/*
* Size of the AGFL. For CRC-enabled filesystes we steal a couple of slots in
* the beginning of the block for a proper header with the location information
* and CRC.
*/
unsigned int
xfs_agfl_size(
struct xfs_mount *mp)
{
unsigned int size = mp->m_sb.sb_sectsize;
if (xfs_has_crc(mp))
size -= sizeof(struct xfs_agfl);
return size / sizeof(xfs_agblock_t);
}
unsigned int
xfs_refc_block(
struct xfs_mount *mp)
{
if (xfs_has_rmapbt(mp))
return XFS_RMAP_BLOCK(mp) + 1;
if (xfs_has_finobt(mp))
return XFS_FIBT_BLOCK(mp) + 1;
return XFS_IBT_BLOCK(mp) + 1;
}
xfs_extlen_t
xfs_prealloc_blocks(
struct xfs_mount *mp)
{
if (xfs_has_reflink(mp))
return xfs_refc_block(mp) + 1;
if (xfs_has_rmapbt(mp))
return XFS_RMAP_BLOCK(mp) + 1;
if (xfs_has_finobt(mp))
return XFS_FIBT_BLOCK(mp) + 1;
return XFS_IBT_BLOCK(mp) + 1;
}
/*
* The number of blocks per AG that we withhold from xfs_dec_fdblocks to
* guarantee that we can refill the AGFL prior to allocating space in a nearly
* full AG. Although the space described by the free space btrees, the
* blocks used by the freesp btrees themselves, and the blocks owned by the
* AGFL are counted in the ondisk fdblocks, it's a mistake to let the ondisk
* free space in the AG drop so low that the free space btrees cannot refill an
* empty AGFL up to the minimum level. Rather than grind through empty AGs
* until the fs goes down, we subtract this many AG blocks from the incore
* fdblocks to ensure user allocation does not overcommit the space the
* filesystem needs for the AGFLs. The rmap btree uses a per-AG reservation to
* withhold space from xfs_dec_fdblocks, so we do not account for that here.
*/
#define XFS_ALLOCBT_AGFL_RESERVE 4
/*
* Compute the number of blocks that we set aside to guarantee the ability to
* refill the AGFL and handle a full bmap btree split.
*
* In order to avoid ENOSPC-related deadlock caused by out-of-order locking of
* AGF buffer (PV 947395), we place constraints on the relationship among
* actual allocations for data blocks, freelist blocks, and potential file data
* bmap btree blocks. However, these restrictions may result in no actual space
* allocated for a delayed extent, for example, a data block in a certain AG is
* allocated but there is no additional block for the additional bmap btree
* block due to a split of the bmap btree of the file. The result of this may
* lead to an infinite loop when the file gets flushed to disk and all delayed
* extents need to be actually allocated. To get around this, we explicitly set
* aside a few blocks which will not be reserved in delayed allocation.
*
* For each AG, we need to reserve enough blocks to replenish a totally empty
* AGFL and 4 more to handle a potential split of the file's bmap btree.
*/
unsigned int
xfs_alloc_set_aside(
struct xfs_mount *mp)
{
return mp->m_sb.sb_agcount * (XFS_ALLOCBT_AGFL_RESERVE + 4);
}
/*
* When deciding how much space to allocate out of an AG, we limit the
* allocation maximum size to the size the AG. However, we cannot use all the
* blocks in the AG - some are permanently used by metadata. These
* blocks are generally:
* - the AG superblock, AGF, AGI and AGFL
* - the AGF (bno and cnt) and AGI btree root blocks, and optionally
* the AGI free inode and rmap btree root blocks.
* - blocks on the AGFL according to xfs_alloc_set_aside() limits
* - the rmapbt root block
*
* The AG headers are sector sized, so the amount of space they take up is
* dependent on filesystem geometry. The others are all single blocks.
*/
unsigned int
xfs_alloc_ag_max_usable(
struct xfs_mount *mp)
{
unsigned int blocks;
blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */
blocks += XFS_ALLOCBT_AGFL_RESERVE;
blocks += 3; /* AGF, AGI btree root blocks */
if (xfs_has_finobt(mp))
blocks++; /* finobt root block */
if (xfs_has_rmapbt(mp))
blocks++; /* rmap root block */
if (xfs_has_reflink(mp))
blocks++; /* refcount root block */
return mp->m_sb.sb_agblocks - blocks;
}
static int
xfs_alloc_lookup(
struct xfs_btree_cur *cur,
xfs_lookup_t dir,
xfs_agblock_t bno,
xfs_extlen_t len,
int *stat)
{
int error;
cur->bc_rec.a.ar_startblock = bno;
cur->bc_rec.a.ar_blockcount = len;
error = xfs_btree_lookup(cur, dir, stat);
if (*stat == 1)
cur->bc_flags |= XFS_BTREE_ALLOCBT_ACTIVE;
else
cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE;
return error;
}
/*
* Lookup the record equal to [bno, len] in the btree given by cur.
*/
static inline int /* error */
xfs_alloc_lookup_eq(
struct xfs_btree_cur *cur, /* btree cursor */
xfs_agblock_t bno, /* starting block of extent */
xfs_extlen_t len, /* length of extent */
int *stat) /* success/failure */
{
return xfs_alloc_lookup(cur, XFS_LOOKUP_EQ, bno, len, stat);
}
/*
* Lookup the first record greater than or equal to [bno, len]
* in the btree given by cur.
*/
int /* error */
xfs_alloc_lookup_ge(
struct xfs_btree_cur *cur, /* btree cursor */
xfs_agblock_t bno, /* starting block of extent */
xfs_extlen_t len, /* length of extent */
int *stat) /* success/failure */
{
return xfs_alloc_lookup(cur, XFS_LOOKUP_GE, bno, len, stat);
}
/*
* Lookup the first record less than or equal to [bno, len]
* in the btree given by cur.
*/
int /* error */
xfs_alloc_lookup_le(
struct xfs_btree_cur *cur, /* btree cursor */
xfs_agblock_t bno, /* starting block of extent */
xfs_extlen_t len, /* length of extent */
int *stat) /* success/failure */
{
return xfs_alloc_lookup(cur, XFS_LOOKUP_LE, bno, len, stat);
}
static inline bool
xfs_alloc_cur_active(
struct xfs_btree_cur *cur)
{
return cur && (cur->bc_flags & XFS_BTREE_ALLOCBT_ACTIVE);
}
/*
* Update the record referred to by cur to the value given
* by [bno, len].
* This either works (return 0) or gets an EFSCORRUPTED error.
*/
STATIC int /* error */
xfs_alloc_update(
struct xfs_btree_cur *cur, /* btree cursor */
xfs_agblock_t bno, /* starting block of extent */
xfs_extlen_t len) /* length of extent */
{
union xfs_btree_rec rec;
rec.alloc.ar_startblock = cpu_to_be32(bno);
rec.alloc.ar_blockcount = cpu_to_be32(len);
return xfs_btree_update(cur, &rec);
}
/* Convert the ondisk btree record to its incore representation. */
void
xfs_alloc_btrec_to_irec(
const union xfs_btree_rec *rec,
struct xfs_alloc_rec_incore *irec)
{
irec->ar_startblock = be32_to_cpu(rec->alloc.ar_startblock);
irec->ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount);
}
/* Simple checks for free space records. */
xfs_failaddr_t
xfs_alloc_check_irec(
struct xfs_perag *pag,
const struct xfs_alloc_rec_incore *irec)
{
if (irec->ar_blockcount == 0)
return __this_address;
/* check for valid extent range, including overflow */
if (!xfs_verify_agbext(pag, irec->ar_startblock, irec->ar_blockcount))
return __this_address;
return NULL;
}
static inline int
xfs_alloc_complain_bad_rec(
struct xfs_btree_cur *cur,
xfs_failaddr_t fa,
const struct xfs_alloc_rec_incore *irec)
{
struct xfs_mount *mp = cur->bc_mp;
xfs_warn(mp,
"%sbt record corruption in AG %d detected at %pS!",
cur->bc_ops->name, cur->bc_ag.pag->pag_agno, fa);
xfs_warn(mp,
"start block 0x%x block count 0x%x", irec->ar_startblock,
irec->ar_blockcount);
xfs_btree_mark_sick(cur);
return -EFSCORRUPTED;
}
/*
* Get the data from the pointed-to record.
*/
int /* error */
xfs_alloc_get_rec(
struct xfs_btree_cur *cur, /* btree cursor */
xfs_agblock_t *bno, /* output: starting block of extent */
xfs_extlen_t *len, /* output: length of extent */
int *stat) /* output: success/failure */
{
struct xfs_alloc_rec_incore irec;
union xfs_btree_rec *rec;
xfs_failaddr_t fa;
int error;
error = xfs_btree_get_rec(cur, &rec, stat);
if (error || !(*stat))
return error;
xfs_alloc_btrec_to_irec(rec, &irec);
fa = xfs_alloc_check_irec(cur->bc_ag.pag, &irec);
if (fa)
return xfs_alloc_complain_bad_rec(cur, fa, &irec);
*bno = irec.ar_startblock;
*len = irec.ar_blockcount;
return 0;
}
/*
* Compute aligned version of the found extent.
* Takes alignment and min length into account.
*/
STATIC bool
xfs_alloc_compute_aligned(
xfs_alloc_arg_t *args, /* allocation argument structure */
xfs_agblock_t foundbno, /* starting block in found extent */
xfs_extlen_t foundlen, /* length in found extent */
xfs_agblock_t *resbno, /* result block number */
xfs_extlen_t *reslen, /* result length */
unsigned *busy_gen)
{
xfs_agblock_t bno = foundbno;
xfs_extlen_t len = foundlen;
xfs_extlen_t diff;
bool busy;
/* Trim busy sections out of found extent */
busy = xfs_extent_busy_trim(args, &bno, &len, busy_gen);
/*
* If we have a largish extent that happens to start before min_agbno,
* see if we can shift it into range...
*/
if (bno < args->min_agbno && bno + len > args->min_agbno) {
diff = args->min_agbno - bno;
if (len > diff) {
bno += diff;
len -= diff;
}
}
if (args->alignment > 1 && len >= args->minlen) {
xfs_agblock_t aligned_bno = roundup(bno, args->alignment);
diff = aligned_bno - bno;
*resbno = aligned_bno;
*reslen = diff >= len ? 0 : len - diff;
} else {
*resbno = bno;
*reslen = len;
}
return busy;
}
/*
* Compute best start block and diff for "near" allocations.
* freelen >= wantlen already checked by caller.
*/
STATIC xfs_extlen_t /* difference value (absolute) */
xfs_alloc_compute_diff(
xfs_agblock_t wantbno, /* target starting block */
xfs_extlen_t wantlen, /* target length */
xfs_extlen_t alignment, /* target alignment */
int datatype, /* are we allocating data? */
xfs_agblock_t freebno, /* freespace's starting block */
xfs_extlen_t freelen, /* freespace's length */
xfs_agblock_t *newbnop) /* result: best start block from free */
{
xfs_agblock_t freeend; /* end of freespace extent */
xfs_agblock_t newbno1; /* return block number */
xfs_agblock_t newbno2; /* other new block number */
xfs_extlen_t newlen1=0; /* length with newbno1 */
xfs_extlen_t newlen2=0; /* length with newbno2 */
xfs_agblock_t wantend; /* end of target extent */
bool userdata = datatype & XFS_ALLOC_USERDATA;
ASSERT(freelen >= wantlen);
freeend = freebno + freelen;
wantend = wantbno + wantlen;
/*
* We want to allocate from the start of a free extent if it is past
* the desired block or if we are allocating user data and the free
* extent is before desired block. The second case is there to allow
* for contiguous allocation from the remaining free space if the file
* grows in the short term.
*/
if (freebno >= wantbno || (userdata && freeend < wantend)) {
if ((newbno1 = roundup(freebno, alignment)) >= freeend)
newbno1 = NULLAGBLOCK;
} else if (freeend >= wantend && alignment > 1) {
newbno1 = roundup(wantbno, alignment);
newbno2 = newbno1 - alignment;
if (newbno1 >= freeend)
newbno1 = NULLAGBLOCK;
else
newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1);
if (newbno2 < freebno)
newbno2 = NULLAGBLOCK;
else
newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2);
if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) {
if (newlen1 < newlen2 ||
(newlen1 == newlen2 &&
XFS_ABSDIFF(newbno1, wantbno) >
XFS_ABSDIFF(newbno2, wantbno)))
newbno1 = newbno2;
} else if (newbno2 != NULLAGBLOCK)
newbno1 = newbno2;
} else if (freeend >= wantend) {
newbno1 = wantbno;
} else if (alignment > 1) {
newbno1 = roundup(freeend - wantlen, alignment);
if (newbno1 > freeend - wantlen &&
newbno1 - alignment >= freebno)
newbno1 -= alignment;
else if (newbno1 >= freeend)
newbno1 = NULLAGBLOCK;
} else
newbno1 = freeend - wantlen;
*newbnop = newbno1;
return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno);
}
/*
* Fix up the length, based on mod and prod.
* len should be k * prod + mod for some k.
* If len is too small it is returned unchanged.
* If len hits maxlen it is left alone.
*/
STATIC void
xfs_alloc_fix_len(
xfs_alloc_arg_t *args) /* allocation argument structure */
{
xfs_extlen_t k;
xfs_extlen_t rlen;
ASSERT(args->mod < args->prod);
rlen = args->len;
ASSERT(rlen >= args->minlen);
ASSERT(rlen <= args->maxlen);
if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen ||
(args->mod == 0 && rlen < args->prod))
return;
k = rlen % args->prod;
if (k == args->mod)
return;
if (k > args->mod)
rlen = rlen - (k - args->mod);
else
rlen = rlen - args->prod + (args->mod - k);
/* casts to (int) catch length underflows */
if ((int)rlen < (int)args->minlen)
return;
ASSERT(rlen >= args->minlen && rlen <= args->maxlen);
ASSERT(rlen % args->prod == args->mod);
ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >=
rlen + args->minleft);
args->len = rlen;
}
/*
* Determine if the cursor points to the block that contains the right-most
* block of records in the by-count btree. This block contains the largest
* contiguous free extent in the AG, so if we modify a record in this block we
* need to call xfs_alloc_fixup_longest() once the modifications are done to
* ensure the agf->agf_longest field is kept up to date with the longest free
* extent tracked by the by-count btree.
*/
static bool
xfs_alloc_cursor_at_lastrec(
struct xfs_btree_cur *cnt_cur)
{
struct xfs_btree_block *block;
union xfs_btree_ptr ptr;
struct xfs_buf *bp;
block = xfs_btree_get_block(cnt_cur, 0, &bp);
xfs_btree_get_sibling(cnt_cur, block, &ptr, XFS_BB_RIGHTSIB);
return xfs_btree_ptr_is_null(cnt_cur, &ptr);
}
/*
* Find the rightmost record of the cntbt, and return the longest free space
* recorded in it. Simply set both the block number and the length to their
* maximum values before searching.
*/
static int
xfs_cntbt_longest(
struct xfs_btree_cur *cnt_cur,
xfs_extlen_t *longest)
{
struct xfs_alloc_rec_incore irec;
union xfs_btree_rec *rec;
int stat = 0;
int error;
memset(&cnt_cur->bc_rec, 0xFF, sizeof(cnt_cur->bc_rec));
error = xfs_btree_lookup(cnt_cur, XFS_LOOKUP_LE, &stat);
if (error)
return error;
if (!stat) {
/* totally empty tree */
*longest = 0;
return 0;
}
error = xfs_btree_get_rec(cnt_cur, &rec, &stat);
if (error)
return error;
if (XFS_IS_CORRUPT(cnt_cur->bc_mp, !stat)) {
xfs_btree_mark_sick(cnt_cur);
return -EFSCORRUPTED;
}
xfs_alloc_btrec_to_irec(rec, &irec);
*longest = irec.ar_blockcount;
return 0;
}
/*
* Update the longest contiguous free extent in the AG from the by-count cursor
* that is passed to us. This should be done at the end of any allocation or
* freeing operation that touches the longest extent in the btree.
*
* Needing to update the longest extent can be determined by calling
* xfs_alloc_cursor_at_lastrec() after the cursor is positioned for record
* modification but before the modification begins.
*/
static int
xfs_alloc_fixup_longest(
struct xfs_btree_cur *cnt_cur)
{
struct xfs_perag *pag = cnt_cur->bc_ag.pag;
struct xfs_buf *bp = cnt_cur->bc_ag.agbp;
struct xfs_agf *agf = bp->b_addr;
xfs_extlen_t longest = 0;
int error;
/* Lookup last rec in order to update AGF. */
error = xfs_cntbt_longest(cnt_cur, &longest);
if (error)
return error;
pag->pagf_longest = longest;
agf->agf_longest = cpu_to_be32(pag->pagf_longest);
xfs_alloc_log_agf(cnt_cur->bc_tp, bp, XFS_AGF_LONGEST);
return 0;
}
/*
* Update the two btrees, logically removing from freespace the extent
* starting at rbno, rlen blocks. The extent is contained within the
* actual (current) free extent fbno for flen blocks.
* Flags are passed in indicating whether the cursors are set to the
* relevant records.
*/
STATIC int /* error code */
xfs_alloc_fixup_trees(
struct xfs_btree_cur *cnt_cur, /* cursor for by-size btree */
struct xfs_btree_cur *bno_cur, /* cursor for by-block btree */
xfs_agblock_t fbno, /* starting block of free extent */
xfs_extlen_t flen, /* length of free extent */
xfs_agblock_t rbno, /* starting block of returned extent */
xfs_extlen_t rlen, /* length of returned extent */
int flags) /* flags, XFSA_FIXUP_... */
{
int error; /* error code */
int i; /* operation results */
xfs_agblock_t nfbno1; /* first new free startblock */
xfs_agblock_t nfbno2; /* second new free startblock */
xfs_extlen_t nflen1=0; /* first new free length */
xfs_extlen_t nflen2=0; /* second new free length */
struct xfs_mount *mp;
bool fixup_longest = false;
mp = cnt_cur->bc_mp;
/*
* Look up the record in the by-size tree if necessary.
*/
if (flags & XFSA_FIXUP_CNT_OK) {
#ifdef DEBUG
if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i)))
return error;
if (XFS_IS_CORRUPT(mp,
i != 1 ||
nfbno1 != fbno ||
nflen1 != flen)) {
xfs_btree_mark_sick(cnt_cur);
return -EFSCORRUPTED;
}
#endif
} else {
if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i)))
return error;
if (XFS_IS_CORRUPT(mp, i != 1)) {
xfs_btree_mark_sick(cnt_cur);
return -EFSCORRUPTED;
}
}
/*
* Look up the record in the by-block tree if necessary.
*/
if (flags & XFSA_FIXUP_BNO_OK) {
#ifdef DEBUG
if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i)))
return error;
if (XFS_IS_CORRUPT(mp,
i != 1 ||
nfbno1 != fbno ||
nflen1 != flen)) {
xfs_btree_mark_sick(bno_cur);
return -EFSCORRUPTED;
}
#endif
} else {
if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i)))
return error;
if (XFS_IS_CORRUPT(mp, i != 1)) {
xfs_btree_mark_sick(bno_cur);
return -EFSCORRUPTED;
}
}
#ifdef DEBUG
if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) {
struct xfs_btree_block *bnoblock;
struct xfs_btree_block *cntblock;
bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp);
cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp);
if (XFS_IS_CORRUPT(mp,
bnoblock->bb_numrecs !=
cntblock->bb_numrecs)) {
xfs_btree_mark_sick(bno_cur);
return -EFSCORRUPTED;
}
}
#endif
/*
* Deal with all four cases: the allocated record is contained
* within the freespace record, so we can have new freespace
* at either (or both) end, or no freespace remaining.
*/
if (rbno == fbno && rlen == flen)
nfbno1 = nfbno2 = NULLAGBLOCK;
else if (rbno == fbno) {
nfbno1 = rbno + rlen;
nflen1 = flen - rlen;
nfbno2 = NULLAGBLOCK;
} else if (rbno + rlen == fbno + flen) {
nfbno1 = fbno;
nflen1 = flen - rlen;
nfbno2 = NULLAGBLOCK;
} else {
nfbno1 = fbno;
nflen1 = rbno - fbno;
nfbno2 = rbno + rlen;
nflen2 = (fbno + flen) - nfbno2;
}
if (xfs_alloc_cursor_at_lastrec(cnt_cur))
fixup_longest = true;
/*
* Delete the entry from the by-size btree.
*/
if ((error = xfs_btree_delete(cnt_cur, &i)))
return error;
if (XFS_IS_CORRUPT(mp, i != 1)) {
xfs_btree_mark_sick(cnt_cur);
return -EFSCORRUPTED;
}
/*
* Add new by-size btree entry(s).
*/
if (nfbno1 != NULLAGBLOCK) {
if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i)))
return error;
if (XFS_IS_CORRUPT(mp, i != 0)) {
xfs_btree_mark_sick(cnt_cur);
return -EFSCORRUPTED;
}
if ((error = xfs_btree_insert(cnt_cur, &i)))
return error;
if (XFS_IS_CORRUPT(mp, i != 1)) {
xfs_btree_mark_sick(cnt_cur);
return -EFSCORRUPTED;
}
}
if (nfbno2 != NULLAGBLOCK) {
if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i)))
return error;
if (XFS_IS_CORRUPT(mp, i != 0)) {
xfs_btree_mark_sick(cnt_cur);
return -EFSCORRUPTED;
}
if ((error = xfs_btree_insert(cnt_cur, &i)))
return error;
if (XFS_IS_CORRUPT(mp, i != 1)) {
xfs_btree_mark_sick(cnt_cur);
return -EFSCORRUPTED;
}
}
/*
* Fix up the by-block btree entry(s).
*/
if (nfbno1 == NULLAGBLOCK) {
/*
* No remaining freespace, just delete the by-block tree entry.
*/
if ((error = xfs_btree_delete(bno_cur, &i)))
return error;
if (XFS_IS_CORRUPT(mp, i != 1)) {
xfs_btree_mark_sick(bno_cur);
return -EFSCORRUPTED;
}
} else {
/*
* Update the by-block entry to start later|be shorter.
*/
if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1)))
return error;
}
if (nfbno2 != NULLAGBLOCK) {
/*
* 2 resulting free entries, need to add one.
*/
if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i)))
return error;
if (XFS_IS_CORRUPT(mp, i != 0)) {
xfs_btree_mark_sick(bno_cur);
return -EFSCORRUPTED;
}
if ((error = xfs_btree_insert(bno_cur, &i)))
return error;
if (XFS_IS_CORRUPT(mp, i != 1)) {
xfs_btree_mark_sick(bno_cur);
return -EFSCORRUPTED;
}
}
if (fixup_longest)
return xfs_alloc_fixup_longest(cnt_cur);
return 0;
}
/*
* We do not verify the AGFL contents against AGF-based index counters here,
* even though we may have access to the perag that contains shadow copies. We
* don't know if the AGF based counters have been checked, and if they have they
* still may be inconsistent because they haven't yet been reset on the first
* allocation after the AGF has been read in.
*
* This means we can only check that all agfl entries contain valid or null
* values because we can't reliably determine the active range to exclude
* NULLAGBNO as a valid value.
*
* However, we can't even do that for v4 format filesystems because there are
* old versions of mkfs out there that does not initialise the AGFL to known,
* verifiable values. HEnce we can't tell the difference between a AGFL block
* allocated by mkfs and a corrupted AGFL block here on v4 filesystems.
*
* As a result, we can only fully validate AGFL block numbers when we pull them
* from the freelist in xfs_alloc_get_freelist().
*/
static xfs_failaddr_t
xfs_agfl_verify(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_mount;
struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp);
__be32 *agfl_bno = xfs_buf_to_agfl_bno(bp);
int i;
if (!xfs_has_crc(mp))
return NULL;
if (!xfs_verify_magic(bp, agfl->agfl_magicnum))
return __this_address;
if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid))
return __this_address;
/*
* during growfs operations, the perag is not fully initialised,
* so we can't use it for any useful checking. growfs ensures we can't
* use it by using uncached buffers that don't have the perag attached
* so we can detect and avoid this problem.
*/
if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != bp->b_pag->pag_agno)
return __this_address;
for (i = 0; i < xfs_agfl_size(mp); i++) {
if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK &&
be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks)
return __this_address;
}
if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn)))
return __this_address;
return NULL;
}
static void
xfs_agfl_read_verify(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_mount;
xfs_failaddr_t fa;
/*
* There is no verification of non-crc AGFLs because mkfs does not
* initialise the AGFL to zero or NULL. Hence the only valid part of the
* AGFL is what the AGF says is active. We can't get to the AGF, so we
* can't verify just those entries are valid.
*/
if (!xfs_has_crc(mp))
return;
if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF))
xfs_verifier_error(bp, -EFSBADCRC, __this_address);
else {
fa = xfs_agfl_verify(bp);
if (fa)
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
}
}
static void
xfs_agfl_write_verify(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_mount;
struct xfs_buf_log_item *bip = bp->b_log_item;
xfs_failaddr_t fa;
/* no verification of non-crc AGFLs */
if (!xfs_has_crc(mp))
return;
fa = xfs_agfl_verify(bp);
if (fa) {
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
return;
}
if (bip)
XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn);
xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF);
}
const struct xfs_buf_ops xfs_agfl_buf_ops = {
.name = "xfs_agfl",
.magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) },
.verify_read = xfs_agfl_read_verify,
.verify_write = xfs_agfl_write_verify,
.verify_struct = xfs_agfl_verify,
};
/*
* Read in the allocation group free block array.
*/
int
xfs_alloc_read_agfl(
struct xfs_perag *pag,
struct xfs_trans *tp,
struct xfs_buf **bpp)
{
struct xfs_mount *mp = pag->pag_mount;
struct xfs_buf *bp;
int error;
error = xfs_trans_read_buf(
mp, tp, mp->m_ddev_targp,
XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGFL_DADDR(mp)),
XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops);
if (xfs_metadata_is_sick(error))
xfs_ag_mark_sick(pag, XFS_SICK_AG_AGFL);
if (error)
return error;
xfs_buf_set_ref(bp, XFS_AGFL_REF);
*bpp = bp;
return 0;
}
STATIC int
xfs_alloc_update_counters(
struct xfs_trans *tp,
struct xfs_buf *agbp,
long len)
{
struct xfs_agf *agf = agbp->b_addr;
agbp->b_pag->pagf_freeblks += len;
be32_add_cpu(&agf->agf_freeblks, len);
if (unlikely(be32_to_cpu(agf->agf_freeblks) >
be32_to_cpu(agf->agf_length))) {
xfs_buf_mark_corrupt(agbp);
xfs_ag_mark_sick(agbp->b_pag, XFS_SICK_AG_AGF);
return -EFSCORRUPTED;
}
xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS);
return 0;
}
/*
* Block allocation algorithm and data structures.
*/
struct xfs_alloc_cur {
struct xfs_btree_cur *cnt; /* btree cursors */
struct xfs_btree_cur *bnolt;
struct xfs_btree_cur *bnogt;
xfs_extlen_t cur_len;/* current search length */
xfs_agblock_t rec_bno;/* extent startblock */
xfs_extlen_t rec_len;/* extent length */
xfs_agblock_t bno; /* alloc bno */
xfs_extlen_t len; /* alloc len */
xfs_extlen_t diff; /* diff from search bno */
unsigned int busy_gen;/* busy state */
bool busy;
};
/*
* Set up cursors, etc. in the extent allocation cursor. This function can be
* called multiple times to reset an initialized structure without having to
* reallocate cursors.
*/
static int
xfs_alloc_cur_setup(
struct xfs_alloc_arg *args,
struct xfs_alloc_cur *acur)
{
int error;
int i;
acur->cur_len = args->maxlen;
acur->rec_bno = 0;
acur->rec_len = 0;
acur->bno = 0;
acur->len = 0;
acur->diff = -1;
acur->busy = false;
acur->busy_gen = 0;
/*
* Perform an initial cntbt lookup to check for availability of maxlen
* extents. If this fails, we'll return -ENOSPC to signal the caller to
* attempt a small allocation.
*/
if (!acur->cnt)
acur->cnt = xfs_cntbt_init_cursor(args->mp, args->tp,
args->agbp, args->pag);
error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i);
if (error)
return error;
/*
* Allocate the bnobt left and right search cursors.
*/
if (!acur->bnolt)
acur->bnolt = xfs_bnobt_init_cursor(args->mp, args->tp,
args->agbp, args->pag);
if (!acur->bnogt)
acur->bnogt = xfs_bnobt_init_cursor(args->mp, args->tp,
args->agbp, args->pag);
return i == 1 ? 0 : -ENOSPC;
}
static void
xfs_alloc_cur_close(
struct xfs_alloc_cur *acur,
bool error)
{
int cur_error = XFS_BTREE_NOERROR;
if (error)
cur_error = XFS_BTREE_ERROR;
if (acur->cnt)
xfs_btree_del_cursor(acur->cnt, cur_error);
if (acur->bnolt)
xfs_btree_del_cursor(acur->bnolt, cur_error);
if (acur->bnogt)
xfs_btree_del_cursor(acur->bnogt, cur_error);
acur->cnt = acur->bnolt = acur->bnogt = NULL;
}
/*
* Check an extent for allocation and track the best available candidate in the
* allocation structure. The cursor is deactivated if it has entered an out of
* range state based on allocation arguments. Optionally return the extent
* extent geometry and allocation status if requested by the caller.
*/
static int
xfs_alloc_cur_check(
struct xfs_alloc_arg *args,
struct xfs_alloc_cur *acur,
struct xfs_btree_cur *cur,
int *new)
{
int error, i;
xfs_agblock_t bno, bnoa, bnew;
xfs_extlen_t len, lena, diff = -1;
bool busy;
unsigned busy_gen = 0;
bool deactivate = false;
bool isbnobt = xfs_btree_is_bno(cur->bc_ops);
*new = 0;
error = xfs_alloc_get_rec(cur, &bno, &len, &i);
if (error)
return error;
if (XFS_IS_CORRUPT(args->mp, i != 1)) {
xfs_btree_mark_sick(cur);
return -EFSCORRUPTED;
}
/*
* Check minlen and deactivate a cntbt cursor if out of acceptable size
* range (i.e., walking backwards looking for a minlen extent).
*/
if (len < args->minlen) {
deactivate = !isbnobt;
goto out;
}
busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena,
&busy_gen);
acur->busy |= busy;
if (busy)
acur->busy_gen = busy_gen;
/* deactivate a bnobt cursor outside of locality range */
if (bnoa < args->min_agbno || bnoa > args->max_agbno) {
deactivate = isbnobt;
goto out;
}
if (lena < args->minlen)
goto out;
args->len = XFS_EXTLEN_MIN(lena, args->maxlen);
xfs_alloc_fix_len(args);
ASSERT(args->len >= args->minlen);
if (args->len < acur->len)
goto out;
/*
* We have an aligned record that satisfies minlen and beats or matches
* the candidate extent size. Compare locality for near allocation mode.
*/
diff = xfs_alloc_compute_diff(args->agbno, args->len,
args->alignment, args->datatype,
bnoa, lena, &bnew);
if (bnew == NULLAGBLOCK)
goto out;
/*
* Deactivate a bnobt cursor with worse locality than the current best.
*/
if (diff > acur->diff) {
deactivate = isbnobt;
goto out;
}
ASSERT(args->len > acur->len ||
(args->len == acur->len && diff <= acur->diff));
acur->rec_bno = bno;
acur->rec_len = len;
acur->bno = bnew;
acur->len = args->len;
acur->diff = diff;
*new = 1;
/*
* We're done if we found a perfect allocation. This only deactivates
* the current cursor, but this is just an optimization to terminate a
* cntbt search that otherwise runs to the edge of the tree.
*/
if (acur->diff == 0 && acur->len == args->maxlen)
deactivate = true;
out:
if (deactivate)
cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE;
trace_xfs_alloc_cur_check(cur, bno, len, diff, *new);
return 0;
}
/*
* Complete an allocation of a candidate extent. Remove the extent from both
* trees and update the args structure.
*/
STATIC int
xfs_alloc_cur_finish(
struct xfs_alloc_arg *args,
struct xfs_alloc_cur *acur)
{
int error;
ASSERT(acur->cnt && acur->bnolt);
ASSERT(acur->bno >= acur->rec_bno);
ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len);
ASSERT(xfs_verify_agbext(args->pag, acur->rec_bno, acur->rec_len));
error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno,
acur->rec_len, acur->bno, acur->len, 0);
if (error)
return error;
args->agbno = acur->bno;
args->len = acur->len;
args->wasfromfl = 0;
trace_xfs_alloc_cur(args);
return 0;
}
/*
* Locality allocation lookup algorithm. This expects a cntbt cursor and uses
* bno optimized lookup to search for extents with ideal size and locality.
*/
STATIC int
xfs_alloc_cntbt_iter(
struct xfs_alloc_arg *args,
struct xfs_alloc_cur *acur)
{
struct xfs_btree_cur *cur = acur->cnt;
xfs_agblock_t bno;
xfs_extlen_t len, cur_len;
int error;
int i;
if (!xfs_alloc_cur_active(cur))
return 0;
/* locality optimized lookup */
cur_len = acur->cur_len;
error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i);
if (error)
return error;
if (i == 0)
return 0;
error = xfs_alloc_get_rec(cur, &bno, &len, &i);
if (error)
return error;
/* check the current record and update search length from it */
error = xfs_alloc_cur_check(args, acur, cur, &i);
if (error)
return error;
ASSERT(len >= acur->cur_len);
acur->cur_len = len;
/*
* We looked up the first record >= [agbno, len] above. The agbno is a
* secondary key and so the current record may lie just before or after
* agbno. If it is past agbno, check the previous record too so long as
* the length matches as it may be closer. Don't check a smaller record
* because that could deactivate our cursor.
*/
if (bno > args->agbno) {
error = xfs_btree_decrement(cur, 0, &i);
if (!error && i) {
error = xfs_alloc_get_rec(cur, &bno, &len, &i);
if (!error && i && len == acur->cur_len)
error = xfs_alloc_cur_check(args, acur, cur,
&i);
}
if (error)
return error;
}
/*
* Increment the search key until we find at least one allocation
* candidate or if the extent we found was larger. Otherwise, double the
* search key to optimize the search. Efficiency is more important here
* than absolute best locality.
*/
cur_len <<= 1;
if (!acur->len || acur->cur_len >= cur_len)
acur->cur_len++;
else
acur->cur_len = cur_len;
return error;
}
/*
* Deal with the case where only small freespaces remain. Either return the
* contents of the last freespace record, or allocate space from the freelist if
* there is nothing in the tree.
*/
STATIC int /* error */
xfs_alloc_ag_vextent_small(
struct xfs_alloc_arg *args, /* allocation argument structure */
struct xfs_btree_cur *ccur, /* optional by-size cursor */
xfs_agblock_t *fbnop, /* result block number */
xfs_extlen_t *flenp, /* result length */
int *stat) /* status: 0-freelist, 1-normal/none */
{
struct xfs_agf *agf = args->agbp->b_addr;
int error = 0;
xfs_agblock_t fbno = NULLAGBLOCK;
xfs_extlen_t flen = 0;
int i = 0;
/*
* If a cntbt cursor is provided, try to allocate the largest record in
* the tree. Try the AGFL if the cntbt is empty, otherwise fail the
* allocation. Make sure to respect minleft even when pulling from the
* freelist.
*/
if (ccur)
error = xfs_btree_decrement(ccur, 0, &i);
if (error)
goto error;
if (i) {
error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i);
if (error)
goto error;
if (XFS_IS_CORRUPT(args->mp, i != 1)) {
xfs_btree_mark_sick(ccur);
error = -EFSCORRUPTED;
goto error;
}
goto out;
}
if (args->minlen != 1 || args->alignment != 1 ||
args->resv == XFS_AG_RESV_AGFL ||
be32_to_cpu(agf->agf_flcount) <= args->minleft)
goto out;
error = xfs_alloc_get_freelist(args->pag, args->tp, args->agbp,
&fbno, 0);
if (error)
goto error;
if (fbno == NULLAGBLOCK)
goto out;
xfs_extent_busy_reuse(args->mp, args->pag, fbno, 1,
(args->datatype & XFS_ALLOC_NOBUSY));
if (args->datatype & XFS_ALLOC_USERDATA) {
struct xfs_buf *bp;
error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp,
XFS_AGB_TO_DADDR(args->mp, args->agno, fbno),
args->mp->m_bsize, 0, &bp);
if (error)
goto error;
xfs_trans_binval(args->tp, bp);
}
*fbnop = args->agbno = fbno;
*flenp = args->len = 1;
if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) {
xfs_btree_mark_sick(ccur);
error = -EFSCORRUPTED;
goto error;
}
args->wasfromfl = 1;
trace_xfs_alloc_small_freelist(args);
/*
* If we're feeding an AGFL block to something that doesn't live in the
* free space, we need to clear out the OWN_AG rmap.
*/
error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1,
&XFS_RMAP_OINFO_AG);
if (error)
goto error;
*stat = 0;
return 0;
out:
/*
* Can't do the allocation, give up.
*/
if (flen < args->minlen) {
args->agbno = NULLAGBLOCK;
trace_xfs_alloc_small_notenough(args);
flen = 0;
}
*fbnop = fbno;
*flenp = flen;
*stat = 1;
trace_xfs_alloc_small_done(args);
return 0;
error:
trace_xfs_alloc_small_error(args);
return error;
}
/*
* Allocate a variable extent at exactly agno/bno.
* Extent's length (returned in *len) will be between minlen and maxlen,
* and of the form k * prod + mod unless there's nothing that large.
* Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it.
*/
STATIC int /* error */
xfs_alloc_ag_vextent_exact(
xfs_alloc_arg_t *args) /* allocation argument structure */
{
struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */
struct xfs_btree_cur *cnt_cur;/* by count btree cursor */
int error;
xfs_agblock_t fbno; /* start block of found extent */
xfs_extlen_t flen; /* length of found extent */
xfs_agblock_t tbno; /* start block of busy extent */
xfs_extlen_t tlen; /* length of busy extent */
xfs_agblock_t tend; /* end block of busy extent */
int i; /* success/failure of operation */
unsigned busy_gen;
ASSERT(args->alignment == 1);
/*
* Allocate/initialize a cursor for the by-number freespace btree.
*/
bno_cur = xfs_bnobt_init_cursor(args->mp, args->tp, args->agbp,
args->pag);
/*
* Lookup bno and minlen in the btree (minlen is irrelevant, really).
* Look for the closest free block <= bno, it must contain bno
* if any free block does.
*/
error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i);
if (error)
goto error0;
if (!i)
goto not_found;
/*
* Grab the freespace record.
*/
error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i);
if (error)
goto error0;
if (XFS_IS_CORRUPT(args->mp, i != 1)) {
xfs_btree_mark_sick(bno_cur);
error = -EFSCORRUPTED;
goto error0;
}
ASSERT(fbno <= args->agbno);
/*
* Check for overlapping busy extents.
*/
tbno = fbno;
tlen = flen;
xfs_extent_busy_trim(args, &tbno, &tlen, &busy_gen);
/*
* Give up if the start of the extent is busy, or the freespace isn't
* long enough for the minimum request.
*/
if (tbno > args->agbno)
goto not_found;
if (tlen < args->minlen)
goto not_found;
tend = tbno + tlen;
if (tend < args->agbno + args->minlen)
goto not_found;
/*
* End of extent will be smaller of the freespace end and the
* maximal requested end.
*
* Fix the length according to mod and prod if given.
*/
args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen)
- args->agbno;
xfs_alloc_fix_len(args);
ASSERT(args->agbno + args->len <= tend);
/*
* We are allocating agbno for args->len
* Allocate/initialize a cursor for the by-size btree.
*/
cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, args->agbp,
args->pag);
ASSERT(xfs_verify_agbext(args->pag, args->agbno, args->len));
error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno,
args->len, XFSA_FIXUP_BNO_OK);
if (error) {
xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
goto error0;
}
xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
args->wasfromfl = 0;
trace_xfs_alloc_exact_done(args);
return 0;
not_found:
/* Didn't find it, return null. */
xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
args->agbno = NULLAGBLOCK;
trace_xfs_alloc_exact_notfound(args);
return 0;
error0:
xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
trace_xfs_alloc_exact_error(args);
return error;
}
/*
* Search a given number of btree records in a given direction. Check each
* record against the good extent we've already found.
*/
STATIC int
xfs_alloc_walk_iter(
struct xfs_alloc_arg *args,
struct xfs_alloc_cur *acur,
struct xfs_btree_cur *cur,
bool increment,
bool find_one, /* quit on first candidate */
int count, /* rec count (-1 for infinite) */
int *stat)
{
int error;
int i;
*stat = 0;
/*
* Search so long as the cursor is active or we find a better extent.
* The cursor is deactivated if it extends beyond the range of the
* current allocation candidate.
*/
while (xfs_alloc_cur_active(cur) && count) {
error = xfs_alloc_cur_check(args, acur, cur, &i);
if (error)
return error;
if (i == 1) {
*stat = 1;
if (find_one)
break;
}
if (!xfs_alloc_cur_active(cur))
break;
if (increment)
error = xfs_btree_increment(cur, 0, &i);
else
error = xfs_btree_decrement(cur, 0, &i);
if (error)
return error;
if (i == 0)
cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE;
if (count > 0)
count--;
}
return 0;
}
/*
* Search the by-bno and by-size btrees in parallel in search of an extent with
* ideal locality based on the NEAR mode ->agbno locality hint.
*/
STATIC int
xfs_alloc_ag_vextent_locality(
struct xfs_alloc_arg *args,
struct xfs_alloc_cur *acur,
int *stat)
{
struct xfs_btree_cur *fbcur = NULL;
int error;
int i;
bool fbinc;
ASSERT(acur->len == 0);
*stat = 0;
error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i);
if (error)
return error;
error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i);
if (error)
return error;
error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i);
if (error)
return error;
/*
* Search the bnobt and cntbt in parallel. Search the bnobt left and
* right and lookup the closest extent to the locality hint for each
* extent size key in the cntbt. The entire search terminates
* immediately on a bnobt hit because that means we've found best case
* locality. Otherwise the search continues until the cntbt cursor runs
* off the end of the tree. If no allocation candidate is found at this
* point, give up on locality, walk backwards from the end of the cntbt
* and take the first available extent.
*
* The parallel tree searches balance each other out to provide fairly
* consistent performance for various situations. The bnobt search can
* have pathological behavior in the worst case scenario of larger
* allocation requests and fragmented free space. On the other hand, the
* bnobt is able to satisfy most smaller allocation requests much more
* quickly than the cntbt. The cntbt search can sift through fragmented
* free space and sets of free extents for larger allocation requests
* more quickly than the bnobt. Since the locality hint is just a hint
* and we don't want to scan the entire bnobt for perfect locality, the
* cntbt search essentially bounds the bnobt search such that we can
* find good enough locality at reasonable performance in most cases.
*/
while (xfs_alloc_cur_active(acur->bnolt) ||
xfs_alloc_cur_active(acur->bnogt) ||
xfs_alloc_cur_active(acur->cnt)) {
trace_xfs_alloc_cur_lookup(args);
/*
* Search the bnobt left and right. In the case of a hit, finish
* the search in the opposite direction and we're done.
*/
error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false,
true, 1, &i);
if (error)
return error;
if (i == 1) {
trace_xfs_alloc_cur_left(args);
fbcur = acur->bnogt;
fbinc = true;
break;
}
error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true,
1, &i);
if (error)
return error;
if (i == 1) {
trace_xfs_alloc_cur_right(args);
fbcur = acur->bnolt;
fbinc = false;
break;
}
/*
* Check the extent with best locality based on the current
* extent size search key and keep track of the best candidate.
*/
error = xfs_alloc_cntbt_iter(args, acur);
if (error)
return error;
if (!xfs_alloc_cur_active(acur->cnt)) {
trace_xfs_alloc_cur_lookup_done(args);
break;
}
}
/*
* If we failed to find anything due to busy extents, return empty
* handed so the caller can flush and retry. If no busy extents were
* found, walk backwards from the end of the cntbt as a last resort.
*/
if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) {
error = xfs_btree_decrement(acur->cnt, 0, &i);
if (error)
return error;
if (i) {
acur->cnt->bc_flags |= XFS_BTREE_ALLOCBT_ACTIVE;
fbcur = acur->cnt;
fbinc = false;
}
}
/*
* Search in the opposite direction for a better entry in the case of
* a bnobt hit or walk backwards from the end of the cntbt.
*/
if (fbcur) {
error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1,
&i);
if (error)
return error;
}
if (acur->len)
*stat = 1;
return 0;
}
/* Check the last block of the cnt btree for allocations. */
static int
xfs_alloc_ag_vextent_lastblock(
struct xfs_alloc_arg *args,
struct xfs_alloc_cur *acur,
xfs_agblock_t *bno,
xfs_extlen_t *len,
bool *allocated)
{
int error;
int i;
#ifdef DEBUG
/* Randomly don't execute the first algorithm. */
if (get_random_u32_below(2))
return 0;
#endif
/*
* Start from the entry that lookup found, sequence through all larger
* free blocks. If we're actually pointing at a record smaller than
* maxlen, go to the start of this block, and skip all those smaller
* than minlen.
*/
if (*len || args->alignment > 1) {
acur->cnt->bc_levels[0].ptr = 1;
do {
error = xfs_alloc_get_rec(acur->cnt, bno, len, &i);
if (error)
return error;
if (XFS_IS_CORRUPT(args->mp, i != 1)) {
xfs_btree_mark_sick(acur->cnt);
return -EFSCORRUPTED;
}
if (*len >= args->minlen)
break;
error = xfs_btree_increment(acur->cnt, 0, &i);
if (error)
return error;
} while (i);
ASSERT(*len >= args->minlen);
if (!i)
return 0;
}
error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i);
if (error)
return error;
/*
* It didn't work. We COULD be in a case where there's a good record
* somewhere, so try again.
*/
if (acur->len == 0)
return 0;
trace_xfs_alloc_near_first(args);
*allocated = true;
return 0;
}
/*
* Allocate a variable extent near bno in the allocation group agno.
* Extent's length (returned in len) will be between minlen and maxlen,
* and of the form k * prod + mod unless there's nothing that large.
* Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
*/
STATIC int
xfs_alloc_ag_vextent_near(
struct xfs_alloc_arg *args,
uint32_t alloc_flags)
{
struct xfs_alloc_cur acur = {};
int error; /* error code */
int i; /* result code, temporary */
xfs_agblock_t bno;
xfs_extlen_t len;
/* handle uninitialized agbno range so caller doesn't have to */
if (!args->min_agbno && !args->max_agbno)
args->max_agbno = args->mp->m_sb.sb_agblocks - 1;
ASSERT(args->min_agbno <= args->max_agbno);
/* clamp agbno to the range if it's outside */
if (args->agbno < args->min_agbno)
args->agbno = args->min_agbno;
if (args->agbno > args->max_agbno)
args->agbno = args->max_agbno;
/* Retry once quickly if we find busy extents before blocking. */
alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
restart:
len = 0;
/*
* Set up cursors and see if there are any free extents as big as
* maxlen. If not, pick the last entry in the tree unless the tree is
* empty.
*/
error = xfs_alloc_cur_setup(args, &acur);
if (error == -ENOSPC) {
error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno,
&len, &i);
if (error)
goto out;
if (i == 0 || len == 0) {
trace_xfs_alloc_near_noentry(args);
goto out;
}
ASSERT(i == 1);
} else if (error) {
goto out;
}
/*
* First algorithm.
* If the requested extent is large wrt the freespaces available
* in this a.g., then the cursor will be pointing to a btree entry
* near the right edge of the tree. If it's in the last btree leaf
* block, then we just examine all the entries in that block
* that are big enough, and pick the best one.
*/
if (xfs_btree_islastblock(acur.cnt, 0)) {
bool allocated = false;
error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len,
&allocated);
if (error)
goto out;
if (allocated)
goto alloc_finish;
}
/*
* Second algorithm. Combined cntbt and bnobt search to find ideal
* locality.
*/
error = xfs_alloc_ag_vextent_locality(args, &acur, &i);
if (error)
goto out;
/*
* If we couldn't get anything, give up.
*/
if (!acur.len) {
if (acur.busy) {
/*
* Our only valid extents must have been busy. Flush and
* retry the allocation again. If we get an -EAGAIN
* error, we're being told that a deadlock was avoided
* and the current transaction needs committing before
* the allocation can be retried.
*/
trace_xfs_alloc_near_busy(args);
error = xfs_extent_busy_flush(args->tp, args->pag,
acur.busy_gen, alloc_flags);
if (error)
goto out;
alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
goto restart;
}
trace_xfs_alloc_size_neither(args);
args->agbno = NULLAGBLOCK;
goto out;
}
alloc_finish:
/* fix up btrees on a successful allocation */
error = xfs_alloc_cur_finish(args, &acur);
out:
xfs_alloc_cur_close(&acur, error);
return error;
}
/*
* Allocate a variable extent anywhere in the allocation group agno.
* Extent's length (returned in len) will be between minlen and maxlen,
* and of the form k * prod + mod unless there's nothing that large.
* Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
*/
static int
xfs_alloc_ag_vextent_size(
struct xfs_alloc_arg *args,
uint32_t alloc_flags)
{
struct xfs_agf *agf = args->agbp->b_addr;
struct xfs_btree_cur *bno_cur;
struct xfs_btree_cur *cnt_cur;
xfs_agblock_t fbno; /* start of found freespace */
xfs_extlen_t flen; /* length of found freespace */
xfs_agblock_t rbno; /* returned block number */
xfs_extlen_t rlen; /* length of returned extent */
bool busy;
unsigned busy_gen;
int error;
int i;
/* Retry once quickly if we find busy extents before blocking. */
alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
restart:
/*
* Allocate and initialize a cursor for the by-size btree.
*/
cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, args->agbp,
args->pag);
bno_cur = NULL;
/*
* Look for an entry >= maxlen+alignment-1 blocks.
*/
if ((error = xfs_alloc_lookup_ge(cnt_cur, 0,
args->maxlen + args->alignment - 1, &i)))
goto error0;
/*
* If none then we have to settle for a smaller extent. In the case that
* there are no large extents, this will return the last entry in the
* tree unless the tree is empty. In the case that there are only busy
* large extents, this will return the largest small extent unless there
* are no smaller extents available.
*/
if (!i) {
error = xfs_alloc_ag_vextent_small(args, cnt_cur,
&fbno, &flen, &i);
if (error)
goto error0;
if (i == 0 || flen == 0) {
xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
trace_xfs_alloc_size_noentry(args);
return 0;
}
ASSERT(i == 1);
busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno,
&rlen, &busy_gen);
} else {
/*
* Search for a non-busy extent that is large enough.
*/
for (;;) {
error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i);
if (error)
goto error0;
if (XFS_IS_CORRUPT(args->mp, i != 1)) {
xfs_btree_mark_sick(cnt_cur);
error = -EFSCORRUPTED;
goto error0;
}
busy = xfs_alloc_compute_aligned(args, fbno, flen,
&rbno, &rlen, &busy_gen);
if (rlen >= args->maxlen)
break;
error = xfs_btree_increment(cnt_cur, 0, &i);
if (error)
goto error0;
if (i)
continue;
/*
* Our only valid extents must have been busy. Flush and
* retry the allocation again. If we get an -EAGAIN
* error, we're being told that a deadlock was avoided
* and the current transaction needs committing before
* the allocation can be retried.
*/
trace_xfs_alloc_size_busy(args);
error = xfs_extent_busy_flush(args->tp, args->pag,
busy_gen, alloc_flags);
if (error)
goto error0;
alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
goto restart;
}
}
/*
* In the first case above, we got the last entry in the
* by-size btree. Now we check to see if the space hits maxlen
* once aligned; if not, we search left for something better.
* This can't happen in the second case above.
*/
rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
if (XFS_IS_CORRUPT(args->mp,
rlen != 0 &&
(rlen > flen ||
rbno + rlen > fbno + flen))) {
xfs_btree_mark_sick(cnt_cur);
error = -EFSCORRUPTED;
goto error0;
}
if (rlen < args->maxlen) {
xfs_agblock_t bestfbno;
xfs_extlen_t bestflen;
xfs_agblock_t bestrbno;
xfs_extlen_t bestrlen;
bestrlen = rlen;
bestrbno = rbno;
bestflen = flen;
bestfbno = fbno;
for (;;) {
if ((error = xfs_btree_decrement(cnt_cur, 0, &i)))
goto error0;
if (i == 0)
break;
if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen,
&i)))
goto error0;
if (XFS_IS_CORRUPT(args->mp, i != 1)) {
xfs_btree_mark_sick(cnt_cur);
error = -EFSCORRUPTED;
goto error0;
}
if (flen < bestrlen)
break;
busy = xfs_alloc_compute_aligned(args, fbno, flen,
&rbno, &rlen, &busy_gen);
rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
if (XFS_IS_CORRUPT(args->mp,
rlen != 0 &&
(rlen > flen ||
rbno + rlen > fbno + flen))) {
xfs_btree_mark_sick(cnt_cur);
error = -EFSCORRUPTED;
goto error0;
}
if (rlen > bestrlen) {
bestrlen = rlen;
bestrbno = rbno;
bestflen = flen;
bestfbno = fbno;
if (rlen == args->maxlen)
break;
}
}
if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen,
&i)))
goto error0;
if (XFS_IS_CORRUPT(args->mp, i != 1)) {
xfs_btree_mark_sick(cnt_cur);
error = -EFSCORRUPTED;
goto error0;
}
rlen = bestrlen;
rbno = bestrbno;
flen = bestflen;
fbno = bestfbno;
}
args->wasfromfl = 0;
/*
* Fix up the length.
*/
args->len = rlen;
if (rlen < args->minlen) {
if (busy) {
/*
* Our only valid extents must have been busy. Flush and
* retry the allocation again. If we get an -EAGAIN
* error, we're being told that a deadlock was avoided
* and the current transaction needs committing before
* the allocation can be retried.
*/
trace_xfs_alloc_size_busy(args);
error = xfs_extent_busy_flush(args->tp, args->pag,
busy_gen, alloc_flags);
if (error)
goto error0;
alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
goto restart;
}
goto out_nominleft;
}
xfs_alloc_fix_len(args);
rlen = args->len;
if (XFS_IS_CORRUPT(args->mp, rlen > flen)) {
xfs_btree_mark_sick(cnt_cur);
error = -EFSCORRUPTED;
goto error0;
}
/*
* Allocate and initialize a cursor for the by-block tree.
*/
bno_cur = xfs_bnobt_init_cursor(args->mp, args->tp, args->agbp,
args->pag);
if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen,
rbno, rlen, XFSA_FIXUP_CNT_OK)))
goto error0;
xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
cnt_cur = bno_cur = NULL;
args->len = rlen;
args->agbno = rbno;
if (XFS_IS_CORRUPT(args->mp,
args->agbno + args->len >
be32_to_cpu(agf->agf_length))) {
xfs_ag_mark_sick(args->pag, XFS_SICK_AG_BNOBT);
error = -EFSCORRUPTED;
goto error0;
}
trace_xfs_alloc_size_done(args);
return 0;
error0:
trace_xfs_alloc_size_error(args);
if (cnt_cur)
xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
if (bno_cur)
xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
return error;
out_nominleft:
xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
trace_xfs_alloc_size_nominleft(args);
args->agbno = NULLAGBLOCK;
return 0;
}
/*
* Free the extent starting at agno/bno for length.
*/
int
xfs_free_ag_extent(
struct xfs_trans *tp,
struct xfs_buf *agbp,
xfs_agnumber_t agno,
xfs_agblock_t bno,
xfs_extlen_t len,
const struct xfs_owner_info *oinfo,
enum xfs_ag_resv_type type)
{
struct xfs_mount *mp;
struct xfs_btree_cur *bno_cur;
struct xfs_btree_cur *cnt_cur;
xfs_agblock_t gtbno; /* start of right neighbor */
xfs_extlen_t gtlen; /* length of right neighbor */
xfs_agblock_t ltbno; /* start of left neighbor */
xfs_extlen_t ltlen; /* length of left neighbor */
xfs_agblock_t nbno; /* new starting block of freesp */
xfs_extlen_t nlen; /* new length of freespace */
int haveleft; /* have a left neighbor */
int haveright; /* have a right neighbor */
int i;
int error;
struct xfs_perag *pag = agbp->b_pag;
bool fixup_longest = false;
bno_cur = cnt_cur = NULL;
mp = tp->t_mountp;
if (!xfs_rmap_should_skip_owner_update(oinfo)) {
error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo);
if (error)
goto error0;
}
/*
* Allocate and initialize a cursor for the by-block btree.
*/
bno_cur = xfs_bnobt_init_cursor(mp, tp, agbp, pag);
/*
* Look for a neighboring block on the left (lower block numbers)
* that is contiguous with this space.
*/
if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft)))
goto error0;
if (haveleft) {
/*
* There is a block to our left.
*/
if ((error = xfs_alloc_get_rec(bno_cur, &ltbno, &ltlen, &i)))
goto error0;
if (XFS_IS_CORRUPT(mp, i != 1)) {
xfs_btree_mark_sick(bno_cur);
error = -EFSCORRUPTED;
goto error0;
}
/*
* It's not contiguous, though.
*/
if (ltbno + ltlen < bno)
haveleft = 0;
else {
/*
* If this failure happens the request to free this
* space was invalid, it's (partly) already free.
* Very bad.
*/
if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) {
xfs_btree_mark_sick(bno_cur);
error = -EFSCORRUPTED;
goto error0;
}
}
}
/*
* Look for a neighboring block on the right (higher block numbers)
* that is contiguous with this space.
*/
if ((error = xfs_btree_increment(bno_cur, 0, &haveright)))
goto error0;
if (haveright) {
/*
* There is a block to our right.
*/
if ((error = xfs_alloc_get_rec(bno_cur, &gtbno, &gtlen, &i)))
goto error0;
if (XFS_IS_CORRUPT(mp, i != 1)) {
xfs_btree_mark_sick(bno_cur);
error = -EFSCORRUPTED;
goto error0;
}
/*
* It's not contiguous, though.
*/
if (bno + len < gtbno)
haveright = 0;
else {
/*
* If this failure happens the request to free this
* space was invalid, it's (partly) already free.
* Very bad.
*/
if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) {
xfs_btree_mark_sick(bno_cur);
error = -EFSCORRUPTED;
goto error0;
}
}
}
/*
* Now allocate and initialize a cursor for the by-size tree.
*/
cnt_cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag);
/*
* Have both left and right contiguous neighbors.
* Merge all three into a single free block.
*/
if (haveleft && haveright) {
/*
* Delete the old by-size entry on the left.
*/
if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
goto error0;
if (XFS_IS_CORRUPT(mp, i != 1)) {
xfs_btree_mark_sick(cnt_cur);
error = -EFSCORRUPTED;
goto error0;
}
if ((error = xfs_btree_delete(cnt_cur, &i)))
goto error0;
if (XFS_IS_CORRUPT(mp, i != 1)) {
xfs_btree_mark_sick(cnt_cur);
error = -EFSCORRUPTED;
goto error0;
}
/*
* Delete the old by-size entry on the right.
*/
if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
goto error0;
if (XFS_IS_CORRUPT(mp, i != 1)) {
xfs_btree_mark_sick(cnt_cur);
error = -EFSCORRUPTED;
goto error0;
}
if ((error = xfs_btree_delete(cnt_cur, &i)))
goto error0;
if (XFS_IS_CORRUPT(mp, i != 1)) {
xfs_btree_mark_sick(cnt_cur);
error = -EFSCORRUPTED;
goto error0;
}
/*
* Delete the old by-block entry for the right block.
*/
if ((error = xfs_btree_delete(bno_cur, &i)))
goto error0;
if (XFS_IS_CORRUPT(mp, i != 1)) {
xfs_btree_mark_sick(bno_cur);
error = -EFSCORRUPTED;
goto error0;
}
/*
* Move the by-block cursor back to the left neighbor.
*/
if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
goto error0;
if (XFS_IS_CORRUPT(mp, i != 1)) {
xfs_btree_mark_sick(bno_cur);
error = -EFSCORRUPTED;
goto error0;
}
#ifdef DEBUG
/*
* Check that this is the right record: delete didn't
* mangle the cursor.
*/
{
xfs_agblock_t xxbno;
xfs_extlen_t xxlen;
if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen,
&i)))
goto error0;
if (XFS_IS_CORRUPT(mp,
i != 1 ||
xxbno != ltbno ||
xxlen != ltlen)) {
xfs_btree_mark_sick(bno_cur);
error = -EFSCORRUPTED;
goto error0;
}
}
#endif
/*
* Update remaining by-block entry to the new, joined block.
*/
nbno = ltbno;
nlen = len + ltlen + gtlen;
if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
goto error0;
}
/*
* Have only a left contiguous neighbor.
* Merge it together with the new freespace.
*/
else if (haveleft) {
/*
* Delete the old by-size entry on the left.
*/
if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
goto error0;
if (XFS_IS_CORRUPT(mp, i != 1)) {
xfs_btree_mark_sick(cnt_cur);
error = -EFSCORRUPTED;
goto error0;
}
if ((error = xfs_btree_delete(cnt_cur, &i)))
goto error0;
if (XFS_IS_CORRUPT(mp, i != 1)) {
xfs_btree_mark_sick(cnt_cur);
error = -EFSCORRUPTED;
goto error0;
}
/*
* Back up the by-block cursor to the left neighbor, and
* update its length.
*/
if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
goto error0;
if (XFS_IS_CORRUPT(mp, i != 1)) {
xfs_btree_mark_sick(bno_cur);
error = -EFSCORRUPTED;
goto error0;
}
nbno = ltbno;
nlen = len + ltlen;
if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
goto error0;
}
/*
* Have only a right contiguous neighbor.
* Merge it together with the new freespace.
*/
else if (haveright) {
/*
* Delete the old by-size entry on the right.
*/
if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
goto error0;
if (XFS_IS_CORRUPT(mp, i != 1)) {
xfs_btree_mark_sick(cnt_cur);
error = -EFSCORRUPTED;
goto error0;
}
if ((error = xfs_btree_delete(cnt_cur, &i)))
goto error0;
if (XFS_IS_CORRUPT(mp, i != 1)) {
xfs_btree_mark_sick(cnt_cur);
error = -EFSCORRUPTED;
goto error0;
}
/*
* Update the starting block and length of the right
* neighbor in the by-block tree.
*/
nbno = bno;
nlen = len + gtlen;
if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
goto error0;
}
/*
* No contiguous neighbors.
* Insert the new freespace into the by-block tree.
*/
else {
nbno = bno;
nlen = len;
if ((error = xfs_btree_insert(bno_cur, &i)))
goto error0;
if (XFS_IS_CORRUPT(mp, i != 1)) {
xfs_btree_mark_sick(bno_cur);
error = -EFSCORRUPTED;
goto error0;
}
}
xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
bno_cur = NULL;
/*
* In all cases we need to insert the new freespace in the by-size tree.
*
* If this new freespace is being inserted in the block that contains
* the largest free space in the btree, make sure we also fix up the
* agf->agf-longest tracker field.
*/
if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i)))
goto error0;
if (XFS_IS_CORRUPT(mp, i != 0)) {
xfs_btree_mark_sick(cnt_cur);
error = -EFSCORRUPTED;
goto error0;
}
if (xfs_alloc_cursor_at_lastrec(cnt_cur))
fixup_longest = true;
if ((error = xfs_btree_insert(cnt_cur, &i)))
goto error0;
if (XFS_IS_CORRUPT(mp, i != 1)) {
xfs_btree_mark_sick(cnt_cur);
error = -EFSCORRUPTED;
goto error0;
}
if (fixup_longest) {
error = xfs_alloc_fixup_longest(cnt_cur);
if (error)
goto error0;
}
xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
cnt_cur = NULL;
/*
* Update the freespace totals in the ag and superblock.
*/
error = xfs_alloc_update_counters(tp, agbp, len);
xfs_ag_resv_free_extent(agbp->b_pag, type, tp, len);
if (error)
goto error0;
XFS_STATS_INC(mp, xs_freex);
XFS_STATS_ADD(mp, xs_freeb, len);
trace_xfs_free_extent(mp, agno, bno, len, type, haveleft, haveright);
return 0;
error0:
trace_xfs_free_extent(mp, agno, bno, len, type, -1, -1);
if (bno_cur)
xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
if (cnt_cur)
xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
return error;
}
/*
* Visible (exported) allocation/free functions.
* Some of these are used just by xfs_alloc_btree.c and this file.
*/
/*
* Compute and fill in value of m_alloc_maxlevels.
*/
void
xfs_alloc_compute_maxlevels(
xfs_mount_t *mp) /* file system mount structure */
{
mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr,
(mp->m_sb.sb_agblocks + 1) / 2);
ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk());
}
/*
* Find the length of the longest extent in an AG. The 'need' parameter
* specifies how much space we're going to need for the AGFL and the
* 'reserved' parameter tells us how many blocks in this AG are reserved for
* other callers.
*/
xfs_extlen_t
xfs_alloc_longest_free_extent(
struct xfs_perag *pag,
xfs_extlen_t need,
xfs_extlen_t reserved)
{
xfs_extlen_t delta = 0;
/*
* If the AGFL needs a recharge, we'll have to subtract that from the
* longest extent.
*/
if (need > pag->pagf_flcount)
delta = need - pag->pagf_flcount;
/*
* If we cannot maintain others' reservations with space from the
* not-longest freesp extents, we'll have to subtract /that/ from
* the longest extent too.
*/
if (pag->pagf_freeblks - pag->pagf_longest < reserved)
delta += reserved - (pag->pagf_freeblks - pag->pagf_longest);
/*
* If the longest extent is long enough to satisfy all the
* reservations and AGFL rules in place, we can return this extent.
*/
if (pag->pagf_longest > delta)
return min_t(xfs_extlen_t, pag->pag_mount->m_ag_max_usable,
pag->pagf_longest - delta);
/* Otherwise, let the caller try for 1 block if there's space. */
return pag->pagf_flcount > 0 || pag->pagf_longest > 0;
}
/*
* Compute the minimum length of the AGFL in the given AG. If @pag is NULL,
* return the largest possible minimum length.
*/
unsigned int
xfs_alloc_min_freelist(
struct xfs_mount *mp,
struct xfs_perag *pag)
{
/* AG btrees have at least 1 level. */
const unsigned int bno_level = pag ? pag->pagf_bno_level : 1;
const unsigned int cnt_level = pag ? pag->pagf_cnt_level : 1;
const unsigned int rmap_level = pag ? pag->pagf_rmap_level : 1;
unsigned int min_free;
ASSERT(mp->m_alloc_maxlevels > 0);
/*
* For a btree shorter than the maximum height, the worst case is that
* every level gets split and a new level is added, then while inserting
* another entry to refill the AGFL, every level under the old root gets
* split again. This is:
*
* (full height split reservation) + (AGFL refill split height)
* = (current height + 1) + (current height - 1)
* = (new height) + (new height - 2)
* = 2 * new height - 2
*
* For a btree of maximum height, the worst case is that every level
* under the root gets split, then while inserting another entry to
* refill the AGFL, every level under the root gets split again. This is
* also:
*
* 2 * (current height - 1)
* = 2 * (new height - 1)
* = 2 * new height - 2
*/
/* space needed by-bno freespace btree */
min_free = min(bno_level + 1, mp->m_alloc_maxlevels) * 2 - 2;
/* space needed by-size freespace btree */
min_free += min(cnt_level + 1, mp->m_alloc_maxlevels) * 2 - 2;
/* space needed reverse mapping used space btree */
if (xfs_has_rmapbt(mp))
min_free += min(rmap_level + 1, mp->m_rmap_maxlevels) * 2 - 2;
return min_free;
}
/*
* Check if the operation we are fixing up the freelist for should go ahead or
* not. If we are freeing blocks, we always allow it, otherwise the allocation
* is dependent on whether the size and shape of free space available will
* permit the requested allocation to take place.
*/
static bool
xfs_alloc_space_available(
struct xfs_alloc_arg *args,
xfs_extlen_t min_free,
int flags)
{
struct xfs_perag *pag = args->pag;
xfs_extlen_t alloc_len, longest;
xfs_extlen_t reservation; /* blocks that are still reserved */
int available;
xfs_extlen_t agflcount;
if (flags & XFS_ALLOC_FLAG_FREEING)
return true;
reservation = xfs_ag_resv_needed(pag, args->resv);
/* do we have enough contiguous free space for the allocation? */
alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop;
longest = xfs_alloc_longest_free_extent(pag, min_free, reservation);
if (longest < alloc_len)
return false;
/*
* Do we have enough free space remaining for the allocation? Don't
* account extra agfl blocks because we are about to defer free them,
* making them unavailable until the current transaction commits.
*/
agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free);
available = (int)(pag->pagf_freeblks + agflcount -
reservation - min_free - args->minleft);
if (available < (int)max(args->total, alloc_len))
return false;
/*
* Clamp maxlen to the amount of free space available for the actual
* extent allocation.
*/
if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) {
args->maxlen = available;
ASSERT(args->maxlen > 0);
ASSERT(args->maxlen >= args->minlen);
}
return true;
}
/*
* Check the agfl fields of the agf for inconsistency or corruption.
*
* The original purpose was to detect an agfl header padding mismatch between
* current and early v5 kernels. This problem manifests as a 1-slot size
* difference between the on-disk flcount and the active [first, last] range of
* a wrapped agfl.
*
* However, we need to use these same checks to catch agfl count corruptions
* unrelated to padding. This could occur on any v4 or v5 filesystem, so either
* way, we need to reset the agfl and warn the user.
*
* Return true if a reset is required before the agfl can be used, false
* otherwise.
*/
static bool
xfs_agfl_needs_reset(
struct xfs_mount *mp,
struct xfs_agf *agf)
{
uint32_t f = be32_to_cpu(agf->agf_flfirst);
uint32_t l = be32_to_cpu(agf->agf_fllast);
uint32_t c = be32_to_cpu(agf->agf_flcount);
int agfl_size = xfs_agfl_size(mp);
int active;
/*
* The agf read verifier catches severe corruption of these fields.
* Repeat some sanity checks to cover a packed -> unpacked mismatch if
* the verifier allows it.
*/
if (f >= agfl_size || l >= agfl_size)
return true;
if (c > agfl_size)
return true;
/*
* Check consistency between the on-disk count and the active range. An
* agfl padding mismatch manifests as an inconsistent flcount.
*/
if (c && l >= f)
active = l - f + 1;
else if (c)
active = agfl_size - f + l + 1;
else
active = 0;
return active != c;
}
/*
* Reset the agfl to an empty state. Ignore/drop any existing blocks since the
* agfl content cannot be trusted. Warn the user that a repair is required to
* recover leaked blocks.
*
* The purpose of this mechanism is to handle filesystems affected by the agfl
* header padding mismatch problem. A reset keeps the filesystem online with a
* relatively minor free space accounting inconsistency rather than suffer the
* inevitable crash from use of an invalid agfl block.
*/
static void
xfs_agfl_reset(
struct xfs_trans *tp,
struct xfs_buf *agbp,
struct xfs_perag *pag)
{
struct xfs_mount *mp = tp->t_mountp;
struct xfs_agf *agf = agbp->b_addr;
ASSERT(xfs_perag_agfl_needs_reset(pag));
trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_);
xfs_warn(mp,
"WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. "
"Please unmount and run xfs_repair.",
pag->pag_agno, pag->pagf_flcount);
agf->agf_flfirst = 0;
agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1);
agf->agf_flcount = 0;
xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST |
XFS_AGF_FLCOUNT);
pag->pagf_flcount = 0;
clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
}
/*
* Add the extent to the list of extents to be free at transaction end.
* The list is maintained sorted (by block number).
*/
static int
xfs_defer_extent_free(
struct xfs_trans *tp,
xfs_fsblock_t bno,
xfs_filblks_t len,
const struct xfs_owner_info *oinfo,
enum xfs_ag_resv_type type,
unsigned int free_flags,
struct xfs_defer_pending **dfpp)
{
struct xfs_extent_free_item *xefi;
struct xfs_mount *mp = tp->t_mountp;
ASSERT(len <= XFS_MAX_BMBT_EXTLEN);
ASSERT(!isnullstartblock(bno));
ASSERT(!(free_flags & ~XFS_FREE_EXTENT_ALL_FLAGS));
if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbext(mp, bno, len)))
return -EFSCORRUPTED;
xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
GFP_KERNEL | __GFP_NOFAIL);
xefi->xefi_startblock = bno;
xefi->xefi_blockcount = (xfs_extlen_t)len;
xefi->xefi_agresv = type;
if (free_flags & XFS_FREE_EXTENT_SKIP_DISCARD)
xefi->xefi_flags |= XFS_EFI_SKIP_DISCARD;
if (oinfo) {
ASSERT(oinfo->oi_offset == 0);
if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK)
xefi->xefi_flags |= XFS_EFI_ATTR_FORK;
if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK)
xefi->xefi_flags |= XFS_EFI_BMBT_BLOCK;
xefi->xefi_owner = oinfo->oi_owner;
} else {
xefi->xefi_owner = XFS_RMAP_OWN_NULL;
}
xfs_extent_free_defer_add(tp, xefi, dfpp);
return 0;
}
int
xfs_free_extent_later(
struct xfs_trans *tp,
xfs_fsblock_t bno,
xfs_filblks_t len,
const struct xfs_owner_info *oinfo,
enum xfs_ag_resv_type type,
unsigned int free_flags)
{
struct xfs_defer_pending *dontcare = NULL;
return xfs_defer_extent_free(tp, bno, len, oinfo, type, free_flags,
&dontcare);
}
/*
* Set up automatic freeing of unwritten space in the filesystem.
*
* This function attached a paused deferred extent free item to the
* transaction. Pausing means that the EFI will be logged in the next
* transaction commit, but the pending EFI will not be finished until the
* pending item is unpaused.
*
* If the system goes down after the EFI has been persisted to the log but
* before the pending item is unpaused, log recovery will find the EFI, fail to
* find the EFD, and free the space.
*
* If the pending item is unpaused, the next transaction commit will log an EFD
* without freeing the space.
*
* Caller must ensure that the tp, fsbno, len, oinfo, and resv flags of the
* @args structure are set to the relevant values.
*/
int
xfs_alloc_schedule_autoreap(
const struct xfs_alloc_arg *args,
unsigned int free_flags,
struct xfs_alloc_autoreap *aarp)
{
int error;
error = xfs_defer_extent_free(args->tp, args->fsbno, args->len,
&args->oinfo, args->resv, free_flags, &aarp->dfp);
if (error)
return error;
xfs_defer_item_pause(args->tp, aarp->dfp);
return 0;
}
/*
* Cancel automatic freeing of unwritten space in the filesystem.
*
* Earlier, we created a paused deferred extent free item and attached it to
* this transaction so that we could automatically roll back a new space
* allocation if the system went down. Now we want to cancel the paused work
* item by marking the EFI stale so we don't actually free the space, unpausing
* the pending item and logging an EFD.
*
* The caller generally should have already mapped the space into the ondisk
* filesystem. If the reserved space was partially used, the caller must call
* xfs_free_extent_later to create a new EFI to free the unused space.
*/
void
xfs_alloc_cancel_autoreap(
struct xfs_trans *tp,
struct xfs_alloc_autoreap *aarp)
{
struct xfs_defer_pending *dfp = aarp->dfp;
struct xfs_extent_free_item *xefi;
if (!dfp)
return;
list_for_each_entry(xefi, &dfp->dfp_work, xefi_list)
xefi->xefi_flags |= XFS_EFI_CANCELLED;
xfs_defer_item_unpause(tp, dfp);
}
/*
* Commit automatic freeing of unwritten space in the filesystem.
*
* This unpauses an earlier _schedule_autoreap and commits to freeing the
* allocated space. Call this if none of the reserved space was used.
*/
void
xfs_alloc_commit_autoreap(
struct xfs_trans *tp,
struct xfs_alloc_autoreap *aarp)
{
if (aarp->dfp)
xfs_defer_item_unpause(tp, aarp->dfp);
}
#ifdef DEBUG
/*
* Check if an AGF has a free extent record whose length is equal to
* args->minlen.
*/
STATIC int
xfs_exact_minlen_extent_available(
struct xfs_alloc_arg *args,
struct xfs_buf *agbp,
int *stat)
{
struct xfs_btree_cur *cnt_cur;
xfs_agblock_t fbno;
xfs_extlen_t flen;
int error = 0;
cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, agbp,
args->pag);
error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat);
if (error)
goto out;
if (*stat == 0) {
xfs_btree_mark_sick(cnt_cur);
error = -EFSCORRUPTED;
goto out;
}
error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat);
if (error)
goto out;
if (*stat == 1 && flen != args->minlen)
*stat = 0;
out:
xfs_btree_del_cursor(cnt_cur, error);
return error;
}
#endif
/*
* Decide whether to use this allocation group for this allocation.
* If so, fix up the btree freelist's size.
*/
int /* error */
xfs_alloc_fix_freelist(
struct xfs_alloc_arg *args, /* allocation argument structure */
uint32_t alloc_flags)
{
struct xfs_mount *mp = args->mp;
struct xfs_perag *pag = args->pag;
struct xfs_trans *tp = args->tp;
struct xfs_buf *agbp = NULL;
struct xfs_buf *agflbp = NULL;
struct xfs_alloc_arg targs; /* local allocation arguments */
xfs_agblock_t bno; /* freelist block */
xfs_extlen_t need; /* total blocks needed in freelist */
int error = 0;
/* deferred ops (AGFL block frees) require permanent transactions */
ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
if (!xfs_perag_initialised_agf(pag)) {
error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
if (error) {
/* Couldn't lock the AGF so skip this AG. */
if (error == -EAGAIN)
error = 0;
goto out_no_agbp;
}
}
/*
* If this is a metadata preferred pag and we are user data then try
* somewhere else if we are not being asked to try harder at this
* point
*/
if (xfs_perag_prefers_metadata(pag) &&
(args->datatype & XFS_ALLOC_USERDATA) &&
(alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)) {
ASSERT(!(alloc_flags & XFS_ALLOC_FLAG_FREEING));
goto out_agbp_relse;
}
need = xfs_alloc_min_freelist(mp, pag);
if (!xfs_alloc_space_available(args, need, alloc_flags |
XFS_ALLOC_FLAG_CHECK))
goto out_agbp_relse;
/*
* Get the a.g. freespace buffer.
* Can fail if we're not blocking on locks, and it's held.
*/
if (!agbp) {
error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
if (error) {
/* Couldn't lock the AGF so skip this AG. */
if (error == -EAGAIN)
error = 0;
goto out_no_agbp;
}
}
/* reset a padding mismatched agfl before final free space check */
if (xfs_perag_agfl_needs_reset(pag))
xfs_agfl_reset(tp, agbp, pag);
/* If there isn't enough total space or single-extent, reject it. */
need = xfs_alloc_min_freelist(mp, pag);
if (!xfs_alloc_space_available(args, need, alloc_flags))
goto out_agbp_relse;
#ifdef DEBUG
if (args->alloc_minlen_only) {
int stat;
error = xfs_exact_minlen_extent_available(args, agbp, &stat);
if (error || !stat)
goto out_agbp_relse;
}
#endif
/*
* Make the freelist shorter if it's too long.
*
* Note that from this point onwards, we will always release the agf and
* agfl buffers on error. This handles the case where we error out and
* the buffers are clean or may not have been joined to the transaction
* and hence need to be released manually. If they have been joined to
* the transaction, then xfs_trans_brelse() will handle them
* appropriately based on the recursion count and dirty state of the
* buffer.
*
* XXX (dgc): When we have lots of free space, does this buy us
* anything other than extra overhead when we need to put more blocks
* back on the free list? Maybe we should only do this when space is
* getting low or the AGFL is more than half full?
*
* The NOSHRINK flag prevents the AGFL from being shrunk if it's too
* big; the NORMAP flag prevents AGFL expand/shrink operations from
* updating the rmapbt. Both flags are used in xfs_repair while we're
* rebuilding the rmapbt, and neither are used by the kernel. They're
* both required to ensure that rmaps are correctly recorded for the
* regenerated AGFL, bnobt, and cntbt. See repair/phase5.c and
* repair/rmap.c in xfsprogs for details.
*/
memset(&targs, 0, sizeof(targs));
/* struct copy below */
if (alloc_flags & XFS_ALLOC_FLAG_NORMAP)
targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE;
else
targs.oinfo = XFS_RMAP_OINFO_AG;
while (!(alloc_flags & XFS_ALLOC_FLAG_NOSHRINK) &&
pag->pagf_flcount > need) {
error = xfs_alloc_get_freelist(pag, tp, agbp, &bno, 0);
if (error)
goto out_agbp_relse;
/*
* Defer the AGFL block free.
*
* This helps to prevent log reservation overruns due to too
* many allocation operations in a transaction. AGFL frees are
* prone to this problem because for one they are always freed
* one at a time. Further, an immediate AGFL block free can
* cause a btree join and require another block free before the
* real allocation can proceed.
* Deferring the free disconnects freeing up the AGFL slot from
* freeing the block.
*/
error = xfs_free_extent_later(tp,
XFS_AGB_TO_FSB(mp, args->agno, bno), 1,
&targs.oinfo, XFS_AG_RESV_AGFL, 0);
if (error)
goto out_agbp_relse;
}
targs.tp = tp;
targs.mp = mp;
targs.agbp = agbp;
targs.agno = args->agno;
targs.alignment = targs.minlen = targs.prod = 1;
targs.pag = pag;
error = xfs_alloc_read_agfl(pag, tp, &agflbp);
if (error)
goto out_agbp_relse;
/* Make the freelist longer if it's too short. */
while (pag->pagf_flcount < need) {
targs.agbno = 0;
targs.maxlen = need - pag->pagf_flcount;
targs.resv = XFS_AG_RESV_AGFL;
/* Allocate as many blocks as possible at once. */
error = xfs_alloc_ag_vextent_size(&targs, alloc_flags);
if (error)
goto out_agflbp_relse;
/*
* Stop if we run out. Won't happen if callers are obeying
* the restrictions correctly. Can happen for free calls
* on a completely full ag.
*/
if (targs.agbno == NULLAGBLOCK) {
if (alloc_flags & XFS_ALLOC_FLAG_FREEING)
break;
goto out_agflbp_relse;
}
if (!xfs_rmap_should_skip_owner_update(&targs.oinfo)) {
error = xfs_rmap_alloc(tp, agbp, pag,
targs.agbno, targs.len, &targs.oinfo);
if (error)
goto out_agflbp_relse;
}
error = xfs_alloc_update_counters(tp, agbp,
-((long)(targs.len)));
if (error)
goto out_agflbp_relse;
/*
* Put each allocated block on the list.
*/
for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) {
error = xfs_alloc_put_freelist(pag, tp, agbp,
agflbp, bno, 0);
if (error)
goto out_agflbp_relse;
}
}
xfs_trans_brelse(tp, agflbp);
args->agbp = agbp;
return 0;
out_agflbp_relse:
xfs_trans_brelse(tp, agflbp);
out_agbp_relse:
if (agbp)
xfs_trans_brelse(tp, agbp);
out_no_agbp:
args->agbp = NULL;
return error;
}
/*
* Get a block from the freelist.
* Returns with the buffer for the block gotten.
*/
int
xfs_alloc_get_freelist(
struct xfs_perag *pag,
struct xfs_trans *tp,
struct xfs_buf *agbp,
xfs_agblock_t *bnop,
int btreeblk)
{
struct xfs_agf *agf = agbp->b_addr;
struct xfs_buf *agflbp;
xfs_agblock_t bno;
__be32 *agfl_bno;
int error;
uint32_t logflags;
struct xfs_mount *mp = tp->t_mountp;
/*
* Freelist is empty, give up.
*/
if (!agf->agf_flcount) {
*bnop = NULLAGBLOCK;
return 0;
}
/*
* Read the array of free blocks.
*/
error = xfs_alloc_read_agfl(pag, tp, &agflbp);
if (error)
return error;
/*
* Get the block number and update the data structures.
*/
agfl_bno = xfs_buf_to_agfl_bno(agflbp);
bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]);
if (XFS_IS_CORRUPT(tp->t_mountp, !xfs_verify_agbno(pag, bno)))
return -EFSCORRUPTED;
be32_add_cpu(&agf->agf_flfirst, 1);
xfs_trans_brelse(tp, agflbp);
if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp))
agf->agf_flfirst = 0;
ASSERT(!xfs_perag_agfl_needs_reset(pag));
be32_add_cpu(&agf->agf_flcount, -1);
pag->pagf_flcount--;
logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT;
if (btreeblk) {
be32_add_cpu(&agf->agf_btreeblks, 1);
pag->pagf_btreeblks++;
logflags |= XFS_AGF_BTREEBLKS;
}
xfs_alloc_log_agf(tp, agbp, logflags);
*bnop = bno;
return 0;
}
/*
* Log the given fields from the agf structure.
*/
void
xfs_alloc_log_agf(
struct xfs_trans *tp,
struct xfs_buf *bp,
uint32_t fields)
{
int first; /* first byte offset */
int last; /* last byte offset */
static const short offsets[] = {
offsetof(xfs_agf_t, agf_magicnum),
offsetof(xfs_agf_t, agf_versionnum),
offsetof(xfs_agf_t, agf_seqno),
offsetof(xfs_agf_t, agf_length),
offsetof(xfs_agf_t, agf_bno_root), /* also cnt/rmap root */
offsetof(xfs_agf_t, agf_bno_level), /* also cnt/rmap levels */
offsetof(xfs_agf_t, agf_flfirst),
offsetof(xfs_agf_t, agf_fllast),
offsetof(xfs_agf_t, agf_flcount),
offsetof(xfs_agf_t, agf_freeblks),
offsetof(xfs_agf_t, agf_longest),
offsetof(xfs_agf_t, agf_btreeblks),
offsetof(xfs_agf_t, agf_uuid),
offsetof(xfs_agf_t, agf_rmap_blocks),
offsetof(xfs_agf_t, agf_refcount_blocks),
offsetof(xfs_agf_t, agf_refcount_root),
offsetof(xfs_agf_t, agf_refcount_level),
/* needed so that we don't log the whole rest of the structure: */
offsetof(xfs_agf_t, agf_spare64),
sizeof(xfs_agf_t)
};
trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_);
xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF);
xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last);
xfs_trans_log_buf(tp, bp, (uint)first, (uint)last);
}
/*
* Put the block on the freelist for the allocation group.
*/
int
xfs_alloc_put_freelist(
struct xfs_perag *pag,
struct xfs_trans *tp,
struct xfs_buf *agbp,
struct xfs_buf *agflbp,
xfs_agblock_t bno,
int btreeblk)
{
struct xfs_mount *mp = tp->t_mountp;
struct xfs_agf *agf = agbp->b_addr;
__be32 *blockp;
int error;
uint32_t logflags;
__be32 *agfl_bno;
int startoff;
if (!agflbp) {
error = xfs_alloc_read_agfl(pag, tp, &agflbp);
if (error)
return error;
}
be32_add_cpu(&agf->agf_fllast, 1);
if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp))
agf->agf_fllast = 0;
ASSERT(!xfs_perag_agfl_needs_reset(pag));
be32_add_cpu(&agf->agf_flcount, 1);
pag->pagf_flcount++;
logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT;
if (btreeblk) {
be32_add_cpu(&agf->agf_btreeblks, -1);
pag->pagf_btreeblks--;
logflags |= XFS_AGF_BTREEBLKS;
}
xfs_alloc_log_agf(tp, agbp, logflags);
ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp));
agfl_bno = xfs_buf_to_agfl_bno(agflbp);
blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)];
*blockp = cpu_to_be32(bno);
startoff = (char *)blockp - (char *)agflbp->b_addr;
xfs_alloc_log_agf(tp, agbp, logflags);
xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF);
xfs_trans_log_buf(tp, agflbp, startoff,
startoff + sizeof(xfs_agblock_t) - 1);
return 0;
}
/*
* Check that this AGF/AGI header's sequence number and length matches the AG
* number and size in fsblocks.
*/
xfs_failaddr_t
xfs_validate_ag_length(
struct xfs_buf *bp,
uint32_t seqno,
uint32_t length)
{
struct xfs_mount *mp = bp->b_mount;
/*
* During growfs operations, the perag is not fully initialised,
* so we can't use it for any useful checking. growfs ensures we can't
* use it by using uncached buffers that don't have the perag attached
* so we can detect and avoid this problem.
*/
if (bp->b_pag && seqno != bp->b_pag->pag_agno)
return __this_address;
/*
* Only the last AG in the filesystem is allowed to be shorter
* than the AG size recorded in the superblock.
*/
if (length != mp->m_sb.sb_agblocks) {
/*
* During growfs, the new last AG can get here before we
* have updated the superblock. Give it a pass on the seqno
* check.
*/
if (bp->b_pag && seqno != mp->m_sb.sb_agcount - 1)
return __this_address;
if (length < XFS_MIN_AG_BLOCKS)
return __this_address;
if (length > mp->m_sb.sb_agblocks)
return __this_address;
}
return NULL;
}
/*
* Verify the AGF is consistent.
*
* We do not verify the AGFL indexes in the AGF are fully consistent here
* because of issues with variable on-disk structure sizes. Instead, we check
* the agfl indexes for consistency when we initialise the perag from the AGF
* information after a read completes.
*
* If the index is inconsistent, then we mark the perag as needing an AGFL
* reset. The first AGFL update performed then resets the AGFL indexes and
* refills the AGFL with known good free blocks, allowing the filesystem to
* continue operating normally at the cost of a few leaked free space blocks.
*/
static xfs_failaddr_t
xfs_agf_verify(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_mount;
struct xfs_agf *agf = bp->b_addr;
xfs_failaddr_t fa;
uint32_t agf_seqno = be32_to_cpu(agf->agf_seqno);
uint32_t agf_length = be32_to_cpu(agf->agf_length);
if (xfs_has_crc(mp)) {
if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid))
return __this_address;
if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn)))
return __this_address;
}
if (!xfs_verify_magic(bp, agf->agf_magicnum))
return __this_address;
if (!XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)))
return __this_address;
/*
* Both agf_seqno and agf_length need to validated before anything else
* block number related in the AGF or AGFL can be checked.
*/
fa = xfs_validate_ag_length(bp, agf_seqno, agf_length);
if (fa)
return fa;
if (be32_to_cpu(agf->agf_flfirst) >= xfs_agfl_size(mp))
return __this_address;
if (be32_to_cpu(agf->agf_fllast) >= xfs_agfl_size(mp))
return __this_address;
if (be32_to_cpu(agf->agf_flcount) > xfs_agfl_size(mp))
return __this_address;
if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) ||
be32_to_cpu(agf->agf_freeblks) > agf_length)
return __this_address;
if (be32_to_cpu(agf->agf_bno_level) < 1 ||
be32_to_cpu(agf->agf_cnt_level) < 1 ||
be32_to_cpu(agf->agf_bno_level) > mp->m_alloc_maxlevels ||
be32_to_cpu(agf->agf_cnt_level) > mp->m_alloc_maxlevels)
return __this_address;
if (xfs_has_lazysbcount(mp) &&
be32_to_cpu(agf->agf_btreeblks) > agf_length)
return __this_address;
if (xfs_has_rmapbt(mp)) {
if (be32_to_cpu(agf->agf_rmap_blocks) > agf_length)
return __this_address;
if (be32_to_cpu(agf->agf_rmap_level) < 1 ||
be32_to_cpu(agf->agf_rmap_level) > mp->m_rmap_maxlevels)
return __this_address;
}
if (xfs_has_reflink(mp)) {
if (be32_to_cpu(agf->agf_refcount_blocks) > agf_length)
return __this_address;
if (be32_to_cpu(agf->agf_refcount_level) < 1 ||
be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels)
return __this_address;
}
return NULL;
}
static void
xfs_agf_read_verify(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_mount;
xfs_failaddr_t fa;
if (xfs_has_crc(mp) &&
!xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF))
xfs_verifier_error(bp, -EFSBADCRC, __this_address);
else {
fa = xfs_agf_verify(bp);
if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF))
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
}
}
static void
xfs_agf_write_verify(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_mount;
struct xfs_buf_log_item *bip = bp->b_log_item;
struct xfs_agf *agf = bp->b_addr;
xfs_failaddr_t fa;
fa = xfs_agf_verify(bp);
if (fa) {
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
return;
}
if (!xfs_has_crc(mp))
return;
if (bip)
agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn);
xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF);
}
const struct xfs_buf_ops xfs_agf_buf_ops = {
.name = "xfs_agf",
.magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) },
.verify_read = xfs_agf_read_verify,
.verify_write = xfs_agf_write_verify,
.verify_struct = xfs_agf_verify,
};
/*
* Read in the allocation group header (free/alloc section).
*/
int
xfs_read_agf(
struct xfs_perag *pag,
struct xfs_trans *tp,
int flags,
struct xfs_buf **agfbpp)
{
struct xfs_mount *mp = pag->pag_mount;
int error;
trace_xfs_read_agf(pag->pag_mount, pag->pag_agno);
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGF_DADDR(mp)),
XFS_FSS_TO_BB(mp, 1), flags, agfbpp, &xfs_agf_buf_ops);
if (xfs_metadata_is_sick(error))
xfs_ag_mark_sick(pag, XFS_SICK_AG_AGF);
if (error)
return error;
xfs_buf_set_ref(*agfbpp, XFS_AGF_REF);
return 0;
}
/*
* Read in the allocation group header (free/alloc section) and initialise the
* perag structure if necessary. If the caller provides @agfbpp, then return the
* locked buffer to the caller, otherwise free it.
*/
int
xfs_alloc_read_agf(
struct xfs_perag *pag,
struct xfs_trans *tp,
int flags,
struct xfs_buf **agfbpp)
{
struct xfs_buf *agfbp;
struct xfs_agf *agf;
int error;
int allocbt_blks;
trace_xfs_alloc_read_agf(pag->pag_mount, pag->pag_agno);
/* We don't support trylock when freeing. */
ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) !=
(XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK));
error = xfs_read_agf(pag, tp,
(flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
&agfbp);
if (error)
return error;
agf = agfbp->b_addr;
if (!xfs_perag_initialised_agf(pag)) {
pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks);
pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks);
pag->pagf_flcount = be32_to_cpu(agf->agf_flcount);
pag->pagf_longest = be32_to_cpu(agf->agf_longest);
pag->pagf_bno_level = be32_to_cpu(agf->agf_bno_level);
pag->pagf_cnt_level = be32_to_cpu(agf->agf_cnt_level);
pag->pagf_rmap_level = be32_to_cpu(agf->agf_rmap_level);
pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level);
if (xfs_agfl_needs_reset(pag->pag_mount, agf))
set_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
else
clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
/*
* Update the in-core allocbt counter. Filter out the rmapbt
* subset of the btreeblks counter because the rmapbt is managed
* by perag reservation. Subtract one for the rmapbt root block
* because the rmap counter includes it while the btreeblks
* counter only tracks non-root blocks.
*/
allocbt_blks = pag->pagf_btreeblks;
if (xfs_has_rmapbt(pag->pag_mount))
allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1;
if (allocbt_blks > 0)
atomic64_add(allocbt_blks,
&pag->pag_mount->m_allocbt_blks);
set_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
}
#ifdef DEBUG
else if (!xfs_is_shutdown(pag->pag_mount)) {
ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks));
ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks));
ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount));
ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest));
ASSERT(pag->pagf_bno_level == be32_to_cpu(agf->agf_bno_level));
ASSERT(pag->pagf_cnt_level == be32_to_cpu(agf->agf_cnt_level));
}
#endif
if (agfbpp)
*agfbpp = agfbp;
else
xfs_trans_brelse(tp, agfbp);
return 0;
}
/*
* Pre-proces allocation arguments to set initial state that we don't require
* callers to set up correctly, as well as bounds check the allocation args
* that are set up.
*/
static int
xfs_alloc_vextent_check_args(
struct xfs_alloc_arg *args,
xfs_fsblock_t target,
xfs_agnumber_t *minimum_agno)
{
struct xfs_mount *mp = args->mp;
xfs_agblock_t agsize;
args->fsbno = NULLFSBLOCK;
*minimum_agno = 0;
if (args->tp->t_highest_agno != NULLAGNUMBER)
*minimum_agno = args->tp->t_highest_agno;
/*
* Just fix this up, for the case where the last a.g. is shorter
* (or there's only one a.g.) and the caller couldn't easily figure
* that out (xfs_bmap_alloc).
*/
agsize = mp->m_sb.sb_agblocks;
if (args->maxlen > agsize)
args->maxlen = agsize;
if (args->alignment == 0)
args->alignment = 1;
ASSERT(args->minlen > 0);
ASSERT(args->maxlen > 0);
ASSERT(args->alignment > 0);
ASSERT(args->resv != XFS_AG_RESV_AGFL);
ASSERT(XFS_FSB_TO_AGNO(mp, target) < mp->m_sb.sb_agcount);
ASSERT(XFS_FSB_TO_AGBNO(mp, target) < agsize);
ASSERT(args->minlen <= args->maxlen);
ASSERT(args->minlen <= agsize);
ASSERT(args->mod < args->prod);
if (XFS_FSB_TO_AGNO(mp, target) >= mp->m_sb.sb_agcount ||
XFS_FSB_TO_AGBNO(mp, target) >= agsize ||
args->minlen > args->maxlen || args->minlen > agsize ||
args->mod >= args->prod) {
trace_xfs_alloc_vextent_badargs(args);
return -ENOSPC;
}
if (args->agno != NULLAGNUMBER && *minimum_agno > args->agno) {
trace_xfs_alloc_vextent_skip_deadlock(args);
return -ENOSPC;
}
return 0;
}
/*
* Prepare an AG for allocation. If the AG is not prepared to accept the
* allocation, return failure.
*
* XXX(dgc): The complexity of "need_pag" will go away as all caller paths are
* modified to hold their own perag references.
*/
static int
xfs_alloc_vextent_prepare_ag(
struct xfs_alloc_arg *args,
uint32_t alloc_flags)
{
bool need_pag = !args->pag;
int error;
if (need_pag)
args->pag = xfs_perag_get(args->mp, args->agno);
args->agbp = NULL;
error = xfs_alloc_fix_freelist(args, alloc_flags);
if (error) {
trace_xfs_alloc_vextent_nofix(args);
if (need_pag)
xfs_perag_put(args->pag);
args->agbno = NULLAGBLOCK;
return error;
}
if (!args->agbp) {
/* cannot allocate in this AG at all */
trace_xfs_alloc_vextent_noagbp(args);
args->agbno = NULLAGBLOCK;
return 0;
}
args->wasfromfl = 0;
return 0;
}
/*
* Post-process allocation results to account for the allocation if it succeed
* and set the allocated block number correctly for the caller.
*
* XXX: we should really be returning ENOSPC for ENOSPC, not
* hiding it behind a "successful" NULLFSBLOCK allocation.
*/
static int
xfs_alloc_vextent_finish(
struct xfs_alloc_arg *args,
xfs_agnumber_t minimum_agno,
int alloc_error,
bool drop_perag)
{
struct xfs_mount *mp = args->mp;
int error = 0;
/*
* We can end up here with a locked AGF. If we failed, the caller is
* likely going to try to allocate again with different parameters, and
* that can widen the AGs that are searched for free space. If we have
* to do BMBT block allocation, we have to do a new allocation.
*
* Hence leaving this function with the AGF locked opens up potential
* ABBA AGF deadlocks because a future allocation attempt in this
* transaction may attempt to lock a lower number AGF.
*
* We can't release the AGF until the transaction is commited, so at
* this point we must update the "first allocation" tracker to point at
* this AG if the tracker is empty or points to a lower AG. This allows
* the next allocation attempt to be modified appropriately to avoid
* deadlocks.
*/
if (args->agbp &&
(args->tp->t_highest_agno == NULLAGNUMBER ||
args->agno > minimum_agno))
args->tp->t_highest_agno = args->agno;
/*
* If the allocation failed with an error or we had an ENOSPC result,
* preserve the returned error whilst also marking the allocation result
* as "no extent allocated". This ensures that callers that fail to
* capture the error will still treat it as a failed allocation.
*/
if (alloc_error || args->agbno == NULLAGBLOCK) {
args->fsbno = NULLFSBLOCK;
error = alloc_error;
goto out_drop_perag;
}
args->fsbno = XFS_AGB_TO_FSB(mp, args->agno, args->agbno);
ASSERT(args->len >= args->minlen);
ASSERT(args->len <= args->maxlen);
ASSERT(args->agbno % args->alignment == 0);
XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno), args->len);
/* if not file data, insert new block into the reverse map btree */
if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) {
error = xfs_rmap_alloc(args->tp, args->agbp, args->pag,
args->agbno, args->len, &args->oinfo);
if (error)
goto out_drop_perag;
}
if (!args->wasfromfl) {
error = xfs_alloc_update_counters(args->tp, args->agbp,
-((long)(args->len)));
if (error)
goto out_drop_perag;
ASSERT(!xfs_extent_busy_search(mp, args->pag, args->agbno,
args->len));
}
xfs_ag_resv_alloc_extent(args->pag, args->resv, args);
XFS_STATS_INC(mp, xs_allocx);
XFS_STATS_ADD(mp, xs_allocb, args->len);
trace_xfs_alloc_vextent_finish(args);
out_drop_perag:
if (drop_perag && args->pag) {
xfs_perag_rele(args->pag);
args->pag = NULL;
}
return error;
}
/*
* Allocate within a single AG only. This uses a best-fit length algorithm so if
* you need an exact sized allocation without locality constraints, this is the
* fastest way to do it.
*
* Caller is expected to hold a perag reference in args->pag.
*/
int
xfs_alloc_vextent_this_ag(
struct xfs_alloc_arg *args,
xfs_agnumber_t agno)
{
struct xfs_mount *mp = args->mp;
xfs_agnumber_t minimum_agno;
uint32_t alloc_flags = 0;
int error;
ASSERT(args->pag != NULL);
ASSERT(args->pag->pag_agno == agno);
args->agno = agno;
args->agbno = 0;
trace_xfs_alloc_vextent_this_ag(args);
error = xfs_alloc_vextent_check_args(args, XFS_AGB_TO_FSB(mp, agno, 0),
&minimum_agno);
if (error) {
if (error == -ENOSPC)
return 0;
return error;
}
error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
if (!error && args->agbp)
error = xfs_alloc_ag_vextent_size(args, alloc_flags);
return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
}
/*
* Iterate all AGs trying to allocate an extent starting from @start_ag.
*
* If the incoming allocation type is XFS_ALLOCTYPE_NEAR_BNO, it means the
* allocation attempts in @start_agno have locality information. If we fail to
* allocate in that AG, then we revert to anywhere-in-AG for all the other AGs
* we attempt to allocation in as there is no locality optimisation possible for
* those allocations.
*
* On return, args->pag may be left referenced if we finish before the "all
* failed" return point. The allocation finish still needs the perag, and
* so the caller will release it once they've finished the allocation.
*
* When we wrap the AG iteration at the end of the filesystem, we have to be
* careful not to wrap into AGs below ones we already have locked in the
* transaction if we are doing a blocking iteration. This will result in an
* out-of-order locking of AGFs and hence can cause deadlocks.
*/
static int
xfs_alloc_vextent_iterate_ags(
struct xfs_alloc_arg *args,
xfs_agnumber_t minimum_agno,
xfs_agnumber_t start_agno,
xfs_agblock_t target_agbno,
uint32_t alloc_flags)
{
struct xfs_mount *mp = args->mp;
xfs_agnumber_t restart_agno = minimum_agno;
xfs_agnumber_t agno;
int error = 0;
if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)
restart_agno = 0;
restart:
for_each_perag_wrap_range(mp, start_agno, restart_agno,
mp->m_sb.sb_agcount, agno, args->pag) {
args->agno = agno;
error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
if (error)
break;
if (!args->agbp) {
trace_xfs_alloc_vextent_loopfailed(args);
continue;
}
/*
* Allocation is supposed to succeed now, so break out of the
* loop regardless of whether we succeed or not.
*/
if (args->agno == start_agno && target_agbno) {
args->agbno = target_agbno;
error = xfs_alloc_ag_vextent_near(args, alloc_flags);
} else {
args->agbno = 0;
error = xfs_alloc_ag_vextent_size(args, alloc_flags);
}
break;
}
if (error) {
xfs_perag_rele(args->pag);
args->pag = NULL;
return error;
}
if (args->agbp)
return 0;
/*
* We didn't find an AG we can alloation from. If we were given
* constraining flags by the caller, drop them and retry the allocation
* without any constraints being set.
*/
if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK) {
alloc_flags &= ~XFS_ALLOC_FLAG_TRYLOCK;
restart_agno = minimum_agno;
goto restart;
}
ASSERT(args->pag == NULL);
trace_xfs_alloc_vextent_allfailed(args);
return 0;
}
/*
* Iterate from the AGs from the start AG to the end of the filesystem, trying
* to allocate blocks. It starts with a near allocation attempt in the initial
* AG, then falls back to anywhere-in-ag after the first AG fails. It will wrap
* back to zero if allowed by previous allocations in this transaction,
* otherwise will wrap back to the start AG and run a second blocking pass to
* the end of the filesystem.
*/
int
xfs_alloc_vextent_start_ag(
struct xfs_alloc_arg *args,
xfs_fsblock_t target)
{
struct xfs_mount *mp = args->mp;
xfs_agnumber_t minimum_agno;
xfs_agnumber_t start_agno;
xfs_agnumber_t rotorstep = xfs_rotorstep;
bool bump_rotor = false;
uint32_t alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
int error;
ASSERT(args->pag == NULL);
args->agno = NULLAGNUMBER;
args->agbno = NULLAGBLOCK;
trace_xfs_alloc_vextent_start_ag(args);
error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
if (error) {
if (error == -ENOSPC)
return 0;
return error;
}
if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) &&
xfs_is_inode32(mp)) {
target = XFS_AGB_TO_FSB(mp,
((mp->m_agfrotor / rotorstep) %
mp->m_sb.sb_agcount), 0);
bump_rotor = 1;
}
start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
if (bump_rotor) {
if (args->agno == start_agno)
mp->m_agfrotor = (mp->m_agfrotor + 1) %
(mp->m_sb.sb_agcount * rotorstep);
else
mp->m_agfrotor = (args->agno * rotorstep + 1) %
(mp->m_sb.sb_agcount * rotorstep);
}
return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
}
/*
* Iterate from the agno indicated via @target through to the end of the
* filesystem attempting blocking allocation. This does not wrap or try a second
* pass, so will not recurse into AGs lower than indicated by the target.
*/
int
xfs_alloc_vextent_first_ag(
struct xfs_alloc_arg *args,
xfs_fsblock_t target)
{
struct xfs_mount *mp = args->mp;
xfs_agnumber_t minimum_agno;
xfs_agnumber_t start_agno;
uint32_t alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
int error;
ASSERT(args->pag == NULL);
args->agno = NULLAGNUMBER;
args->agbno = NULLAGBLOCK;
trace_xfs_alloc_vextent_first_ag(args);
error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
if (error) {
if (error == -ENOSPC)
return 0;
return error;
}
start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
}
/*
* Allocate at the exact block target or fail. Caller is expected to hold a
* perag reference in args->pag.
*/
int
xfs_alloc_vextent_exact_bno(
struct xfs_alloc_arg *args,
xfs_fsblock_t target)
{
struct xfs_mount *mp = args->mp;
xfs_agnumber_t minimum_agno;
int error;
ASSERT(args->pag != NULL);
ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target));
args->agno = XFS_FSB_TO_AGNO(mp, target);
args->agbno = XFS_FSB_TO_AGBNO(mp, target);
trace_xfs_alloc_vextent_exact_bno(args);
error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
if (error) {
if (error == -ENOSPC)
return 0;
return error;
}
error = xfs_alloc_vextent_prepare_ag(args, 0);
if (!error && args->agbp)
error = xfs_alloc_ag_vextent_exact(args);
return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
}
/*
* Allocate an extent as close to the target as possible. If there are not
* viable candidates in the AG, then fail the allocation.
*
* Caller may or may not have a per-ag reference in args->pag.
*/
int
xfs_alloc_vextent_near_bno(
struct xfs_alloc_arg *args,
xfs_fsblock_t target)
{
struct xfs_mount *mp = args->mp;
xfs_agnumber_t minimum_agno;
bool needs_perag = args->pag == NULL;
uint32_t alloc_flags = 0;
int error;
if (!needs_perag)
ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target));
args->agno = XFS_FSB_TO_AGNO(mp, target);
args->agbno = XFS_FSB_TO_AGBNO(mp, target);
trace_xfs_alloc_vextent_near_bno(args);
error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
if (error) {
if (error == -ENOSPC)
return 0;
return error;
}
if (needs_perag)
args->pag = xfs_perag_grab(mp, args->agno);
error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
if (!error && args->agbp)
error = xfs_alloc_ag_vextent_near(args, alloc_flags);
return xfs_alloc_vextent_finish(args, minimum_agno, error, needs_perag);
}
/* Ensure that the freelist is at full capacity. */
int
xfs_free_extent_fix_freelist(
struct xfs_trans *tp,
struct xfs_perag *pag,
struct xfs_buf **agbp)
{
struct xfs_alloc_arg args;
int error;
memset(&args, 0, sizeof(struct xfs_alloc_arg));
args.tp = tp;
args.mp = tp->t_mountp;
args.agno = pag->pag_agno;
args.pag = pag;
/*
* validate that the block number is legal - the enables us to detect
* and handle a silent filesystem corruption rather than crashing.
*/
if (args.agno >= args.mp->m_sb.sb_agcount)
return -EFSCORRUPTED;
error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING);
if (error)
return error;
*agbp = args.agbp;
return 0;
}
/*
* Free an extent.
* Just break up the extent address and hand off to xfs_free_ag_extent
* after fixing up the freelist.
*/
int
__xfs_free_extent(
struct xfs_trans *tp,
struct xfs_perag *pag,
xfs_agblock_t agbno,
xfs_extlen_t len,
const struct xfs_owner_info *oinfo,
enum xfs_ag_resv_type type,
bool skip_discard)
{
struct xfs_mount *mp = tp->t_mountp;
struct xfs_buf *agbp;
struct xfs_agf *agf;
int error;
unsigned int busy_flags = 0;
ASSERT(len != 0);
ASSERT(type != XFS_AG_RESV_AGFL);
if (XFS_TEST_ERROR(false, mp,
XFS_ERRTAG_FREE_EXTENT))
return -EIO;
error = xfs_free_extent_fix_freelist(tp, pag, &agbp);
if (error) {
if (xfs_metadata_is_sick(error))
xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT);
return error;
}
agf = agbp->b_addr;
if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) {
xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT);
error = -EFSCORRUPTED;
goto err_release;
}
/* validate the extent size is legal now we have the agf locked */
if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) {
xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT);
error = -EFSCORRUPTED;
goto err_release;
}
error = xfs_free_ag_extent(tp, agbp, pag->pag_agno, agbno, len, oinfo,
type);
if (error)
goto err_release;
if (skip_discard)
busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD;
xfs_extent_busy_insert(tp, pag, agbno, len, busy_flags);
return 0;
err_release:
xfs_trans_brelse(tp, agbp);
return error;
}
struct xfs_alloc_query_range_info {
xfs_alloc_query_range_fn fn;
void *priv;
};
/* Format btree record and pass to our callback. */
STATIC int
xfs_alloc_query_range_helper(
struct xfs_btree_cur *cur,
const union xfs_btree_rec *rec,
void *priv)
{
struct xfs_alloc_query_range_info *query = priv;
struct xfs_alloc_rec_incore irec;
xfs_failaddr_t fa;
xfs_alloc_btrec_to_irec(rec, &irec);
fa = xfs_alloc_check_irec(cur->bc_ag.pag, &irec);
if (fa)
return xfs_alloc_complain_bad_rec(cur, fa, &irec);
return query->fn(cur, &irec, query->priv);
}
/* Find all free space within a given range of blocks. */
int
xfs_alloc_query_range(
struct xfs_btree_cur *cur,
const struct xfs_alloc_rec_incore *low_rec,
const struct xfs_alloc_rec_incore *high_rec,
xfs_alloc_query_range_fn fn,
void *priv)
{
union xfs_btree_irec low_brec = { .a = *low_rec };
union xfs_btree_irec high_brec = { .a = *high_rec };
struct xfs_alloc_query_range_info query = { .priv = priv, .fn = fn };
ASSERT(xfs_btree_is_bno(cur->bc_ops));
return xfs_btree_query_range(cur, &low_brec, &high_brec,
xfs_alloc_query_range_helper, &query);
}
/* Find all free space records. */
int
xfs_alloc_query_all(
struct xfs_btree_cur *cur,
xfs_alloc_query_range_fn fn,
void *priv)
{
struct xfs_alloc_query_range_info query;
ASSERT(xfs_btree_is_bno(cur->bc_ops));
query.priv = priv;
query.fn = fn;
return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query);
}
/*
* Scan part of the keyspace of the free space and tell us if the area has no
* records, is fully mapped by records, or is partially filled.
*/
int
xfs_alloc_has_records(
struct xfs_btree_cur *cur,
xfs_agblock_t bno,
xfs_extlen_t len,
enum xbtree_recpacking *outcome)
{
union xfs_btree_irec low;
union xfs_btree_irec high;
memset(&low, 0, sizeof(low));
low.a.ar_startblock = bno;
memset(&high, 0xFF, sizeof(high));
high.a.ar_startblock = bno + len - 1;
return xfs_btree_has_records(cur, &low, &high, NULL, outcome);
}
/*
* Walk all the blocks in the AGFL. The @walk_fn can return any negative
* error code or XFS_ITER_*.
*/
int
xfs_agfl_walk(
struct xfs_mount *mp,
struct xfs_agf *agf,
struct xfs_buf *agflbp,
xfs_agfl_walk_fn walk_fn,
void *priv)
{
__be32 *agfl_bno;
unsigned int i;
int error;
agfl_bno = xfs_buf_to_agfl_bno(agflbp);
i = be32_to_cpu(agf->agf_flfirst);
/* Nothing to walk in an empty AGFL. */
if (agf->agf_flcount == cpu_to_be32(0))
return 0;
/* Otherwise, walk from first to last, wrapping as needed. */
for (;;) {
error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv);
if (error)
return error;
if (i == be32_to_cpu(agf->agf_fllast))
break;
if (++i == xfs_agfl_size(mp))
i = 0;
}
return 0;
}
int __init
xfs_extfree_intent_init_cache(void)
{
xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent",
sizeof(struct xfs_extent_free_item),
0, 0, NULL);
return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM;
}
void
xfs_extfree_intent_destroy_cache(void)
{
kmem_cache_destroy(xfs_extfree_item_cache);
xfs_extfree_item_cache = NULL;
}