linux/drivers/scsi/elx/libefc/efc_cmds.c
Christoph Hellwig efac162a4e scsi: efct: Don't pass GFP_DMA to dma_alloc_coherent()
dma_alloc_coherent() ignores the zone specifiers so this is pointless and
confusing.

Link: https://lore.kernel.org/r/20211214163605.416288-1-hch@lst.de
Reviewed-by: James Smart <jsmart2021@gmail.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2021-12-16 22:52:29 -05:00

783 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2021 Broadcom. All Rights Reserved. The term
* “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.
*/
#include "efclib.h"
#include "../libefc_sli/sli4.h"
#include "efc_cmds.h"
#include "efc_sm.h"
static void
efc_nport_free_resources(struct efc_nport *nport, int evt, void *data)
{
struct efc *efc = nport->efc;
/* Clear the nport attached flag */
nport->attached = false;
/* Free the service parameters buffer */
if (nport->dma.virt) {
dma_free_coherent(&efc->pci->dev, nport->dma.size,
nport->dma.virt, nport->dma.phys);
memset(&nport->dma, 0, sizeof(struct efc_dma));
}
/* Free the SLI resources */
sli_resource_free(efc->sli, SLI4_RSRC_VPI, nport->indicator);
efc_nport_cb(efc, evt, nport);
}
static int
efc_nport_get_mbox_status(struct efc_nport *nport, u8 *mqe, int status)
{
struct efc *efc = nport->efc;
struct sli4_mbox_command_header *hdr =
(struct sli4_mbox_command_header *)mqe;
if (status || le16_to_cpu(hdr->status)) {
efc_log_debug(efc, "bad status vpi=%#x st=%x hdr=%x\n",
nport->indicator, status, le16_to_cpu(hdr->status));
return -EIO;
}
return 0;
}
static int
efc_nport_free_unreg_vpi_cb(struct efc *efc, int status, u8 *mqe, void *arg)
{
struct efc_nport *nport = arg;
int evt = EFC_EVT_NPORT_FREE_OK;
int rc;
rc = efc_nport_get_mbox_status(nport, mqe, status);
if (rc)
evt = EFC_EVT_NPORT_FREE_FAIL;
efc_nport_free_resources(nport, evt, mqe);
return rc;
}
static void
efc_nport_free_unreg_vpi(struct efc_nport *nport)
{
struct efc *efc = nport->efc;
int rc;
u8 data[SLI4_BMBX_SIZE];
rc = sli_cmd_unreg_vpi(efc->sli, data, nport->indicator,
SLI4_UNREG_TYPE_PORT);
if (rc) {
efc_log_err(efc, "UNREG_VPI format failure\n");
efc_nport_free_resources(nport, EFC_EVT_NPORT_FREE_FAIL, data);
return;
}
rc = efc->tt.issue_mbox_rqst(efc->base, data,
efc_nport_free_unreg_vpi_cb, nport);
if (rc) {
efc_log_err(efc, "UNREG_VPI command failure\n");
efc_nport_free_resources(nport, EFC_EVT_NPORT_FREE_FAIL, data);
}
}
static void
efc_nport_send_evt(struct efc_nport *nport, int evt, void *data)
{
struct efc *efc = nport->efc;
/* Now inform the registered callbacks */
efc_nport_cb(efc, evt, nport);
/* Set the nport attached flag */
if (evt == EFC_EVT_NPORT_ATTACH_OK)
nport->attached = true;
/* If there is a pending free request, then handle it now */
if (nport->free_req_pending)
efc_nport_free_unreg_vpi(nport);
}
static int
efc_nport_alloc_init_vpi_cb(struct efc *efc, int status, u8 *mqe, void *arg)
{
struct efc_nport *nport = arg;
if (efc_nport_get_mbox_status(nport, mqe, status)) {
efc_nport_free_resources(nport, EFC_EVT_NPORT_ALLOC_FAIL, mqe);
return -EIO;
}
efc_nport_send_evt(nport, EFC_EVT_NPORT_ALLOC_OK, mqe);
return 0;
}
static void
efc_nport_alloc_init_vpi(struct efc_nport *nport)
{
struct efc *efc = nport->efc;
u8 data[SLI4_BMBX_SIZE];
int rc;
/* If there is a pending free request, then handle it now */
if (nport->free_req_pending) {
efc_nport_free_resources(nport, EFC_EVT_NPORT_FREE_OK, data);
return;
}
rc = sli_cmd_init_vpi(efc->sli, data,
nport->indicator, nport->domain->indicator);
if (rc) {
efc_log_err(efc, "INIT_VPI format failure\n");
efc_nport_free_resources(nport, EFC_EVT_NPORT_ALLOC_FAIL, data);
return;
}
rc = efc->tt.issue_mbox_rqst(efc->base, data,
efc_nport_alloc_init_vpi_cb, nport);
if (rc) {
efc_log_err(efc, "INIT_VPI command failure\n");
efc_nport_free_resources(nport, EFC_EVT_NPORT_ALLOC_FAIL, data);
}
}
static int
efc_nport_alloc_read_sparm64_cb(struct efc *efc, int status, u8 *mqe, void *arg)
{
struct efc_nport *nport = arg;
u8 *payload = NULL;
if (efc_nport_get_mbox_status(nport, mqe, status)) {
efc_nport_free_resources(nport, EFC_EVT_NPORT_ALLOC_FAIL, mqe);
return -EIO;
}
payload = nport->dma.virt;
memcpy(&nport->sli_wwpn, payload + SLI4_READ_SPARM64_WWPN_OFFSET,
sizeof(nport->sli_wwpn));
memcpy(&nport->sli_wwnn, payload + SLI4_READ_SPARM64_WWNN_OFFSET,
sizeof(nport->sli_wwnn));
dma_free_coherent(&efc->pci->dev, nport->dma.size, nport->dma.virt,
nport->dma.phys);
memset(&nport->dma, 0, sizeof(struct efc_dma));
efc_nport_alloc_init_vpi(nport);
return 0;
}
static void
efc_nport_alloc_read_sparm64(struct efc *efc, struct efc_nport *nport)
{
u8 data[SLI4_BMBX_SIZE];
int rc;
/* Allocate memory for the service parameters */
nport->dma.size = EFC_SPARAM_DMA_SZ;
nport->dma.virt = dma_alloc_coherent(&efc->pci->dev,
nport->dma.size, &nport->dma.phys,
GFP_KERNEL);
if (!nport->dma.virt) {
efc_log_err(efc, "Failed to allocate DMA memory\n");
efc_nport_free_resources(nport, EFC_EVT_NPORT_ALLOC_FAIL, data);
return;
}
rc = sli_cmd_read_sparm64(efc->sli, data,
&nport->dma, nport->indicator);
if (rc) {
efc_log_err(efc, "READ_SPARM64 format failure\n");
efc_nport_free_resources(nport, EFC_EVT_NPORT_ALLOC_FAIL, data);
return;
}
rc = efc->tt.issue_mbox_rqst(efc->base, data,
efc_nport_alloc_read_sparm64_cb, nport);
if (rc) {
efc_log_err(efc, "READ_SPARM64 command failure\n");
efc_nport_free_resources(nport, EFC_EVT_NPORT_ALLOC_FAIL, data);
}
}
int
efc_cmd_nport_alloc(struct efc *efc, struct efc_nport *nport,
struct efc_domain *domain, u8 *wwpn)
{
u32 index;
nport->indicator = U32_MAX;
nport->free_req_pending = false;
if (wwpn)
memcpy(&nport->sli_wwpn, wwpn, sizeof(nport->sli_wwpn));
/*
* allocate a VPI object for the port and stores it in the
* indicator field of the port object.
*/
if (sli_resource_alloc(efc->sli, SLI4_RSRC_VPI,
&nport->indicator, &index)) {
efc_log_err(efc, "VPI allocation failure\n");
return -EIO;
}
if (domain) {
/*
* If the WWPN is NULL, fetch the default
* WWPN and WWNN before initializing the VPI
*/
if (!wwpn)
efc_nport_alloc_read_sparm64(efc, nport);
else
efc_nport_alloc_init_vpi(nport);
} else if (!wwpn) {
/* domain NULL and wwpn non-NULL */
efc_log_err(efc, "need WWN for physical port\n");
sli_resource_free(efc->sli, SLI4_RSRC_VPI, nport->indicator);
return -EIO;
}
return 0;
}
static int
efc_nport_attach_reg_vpi_cb(struct efc *efc, int status, u8 *mqe,
void *arg)
{
struct efc_nport *nport = arg;
nport->attaching = false;
if (efc_nport_get_mbox_status(nport, mqe, status)) {
efc_nport_free_resources(nport, EFC_EVT_NPORT_ATTACH_FAIL, mqe);
return -EIO;
}
efc_nport_send_evt(nport, EFC_EVT_NPORT_ATTACH_OK, mqe);
return 0;
}
int
efc_cmd_nport_attach(struct efc *efc, struct efc_nport *nport, u32 fc_id)
{
u8 buf[SLI4_BMBX_SIZE];
int rc = 0;
if (!nport) {
efc_log_err(efc, "bad param(s) nport=%p\n", nport);
return -EIO;
}
nport->fc_id = fc_id;
/* register previously-allocated VPI with the device */
rc = sli_cmd_reg_vpi(efc->sli, buf, nport->fc_id,
nport->sli_wwpn, nport->indicator,
nport->domain->indicator, false);
if (rc) {
efc_log_err(efc, "REG_VPI format failure\n");
efc_nport_free_resources(nport, EFC_EVT_NPORT_ATTACH_FAIL, buf);
return rc;
}
rc = efc->tt.issue_mbox_rqst(efc->base, buf,
efc_nport_attach_reg_vpi_cb, nport);
if (rc) {
efc_log_err(efc, "REG_VPI command failure\n");
efc_nport_free_resources(nport, EFC_EVT_NPORT_ATTACH_FAIL, buf);
} else {
nport->attaching = true;
}
return rc;
}
int
efc_cmd_nport_free(struct efc *efc, struct efc_nport *nport)
{
if (!nport) {
efc_log_err(efc, "bad parameter(s) nport=%p\n", nport);
return -EIO;
}
/* Issue the UNREG_VPI command to free the assigned VPI context */
if (nport->attached)
efc_nport_free_unreg_vpi(nport);
else if (nport->attaching)
nport->free_req_pending = true;
else
efc_sm_post_event(&nport->sm, EFC_EVT_NPORT_FREE_OK, NULL);
return 0;
}
static int
efc_domain_get_mbox_status(struct efc_domain *domain, u8 *mqe, int status)
{
struct efc *efc = domain->efc;
struct sli4_mbox_command_header *hdr =
(struct sli4_mbox_command_header *)mqe;
if (status || le16_to_cpu(hdr->status)) {
efc_log_debug(efc, "bad status vfi=%#x st=%x hdr=%x\n",
domain->indicator, status,
le16_to_cpu(hdr->status));
return -EIO;
}
return 0;
}
static void
efc_domain_free_resources(struct efc_domain *domain, int evt, void *data)
{
struct efc *efc = domain->efc;
/* Free the service parameters buffer */
if (domain->dma.virt) {
dma_free_coherent(&efc->pci->dev,
domain->dma.size, domain->dma.virt,
domain->dma.phys);
memset(&domain->dma, 0, sizeof(struct efc_dma));
}
/* Free the SLI resources */
sli_resource_free(efc->sli, SLI4_RSRC_VFI, domain->indicator);
efc_domain_cb(efc, evt, domain);
}
static void
efc_domain_send_nport_evt(struct efc_domain *domain,
int port_evt, int domain_evt, void *data)
{
struct efc *efc = domain->efc;
/* Send alloc/attach ok to the physical nport */
efc_nport_send_evt(domain->nport, port_evt, NULL);
/* Now inform the registered callbacks */
efc_domain_cb(efc, domain_evt, domain);
}
static int
efc_domain_alloc_read_sparm64_cb(struct efc *efc, int status, u8 *mqe,
void *arg)
{
struct efc_domain *domain = arg;
if (efc_domain_get_mbox_status(domain, mqe, status)) {
efc_domain_free_resources(domain,
EFC_HW_DOMAIN_ALLOC_FAIL, mqe);
return -EIO;
}
efc_domain_send_nport_evt(domain, EFC_EVT_NPORT_ALLOC_OK,
EFC_HW_DOMAIN_ALLOC_OK, mqe);
return 0;
}
static void
efc_domain_alloc_read_sparm64(struct efc_domain *domain)
{
struct efc *efc = domain->efc;
u8 data[SLI4_BMBX_SIZE];
int rc;
rc = sli_cmd_read_sparm64(efc->sli, data, &domain->dma, 0);
if (rc) {
efc_log_err(efc, "READ_SPARM64 format failure\n");
efc_domain_free_resources(domain,
EFC_HW_DOMAIN_ALLOC_FAIL, data);
return;
}
rc = efc->tt.issue_mbox_rqst(efc->base, data,
efc_domain_alloc_read_sparm64_cb, domain);
if (rc) {
efc_log_err(efc, "READ_SPARM64 command failure\n");
efc_domain_free_resources(domain,
EFC_HW_DOMAIN_ALLOC_FAIL, data);
}
}
static int
efc_domain_alloc_init_vfi_cb(struct efc *efc, int status, u8 *mqe,
void *arg)
{
struct efc_domain *domain = arg;
if (efc_domain_get_mbox_status(domain, mqe, status)) {
efc_domain_free_resources(domain,
EFC_HW_DOMAIN_ALLOC_FAIL, mqe);
return -EIO;
}
efc_domain_alloc_read_sparm64(domain);
return 0;
}
static void
efc_domain_alloc_init_vfi(struct efc_domain *domain)
{
struct efc *efc = domain->efc;
struct efc_nport *nport = domain->nport;
u8 data[SLI4_BMBX_SIZE];
int rc;
/*
* For FC, the HW alread registered an FCFI.
* Copy FCF information into the domain and jump to INIT_VFI.
*/
domain->fcf_indicator = efc->fcfi;
rc = sli_cmd_init_vfi(efc->sli, data, domain->indicator,
domain->fcf_indicator, nport->indicator);
if (rc) {
efc_log_err(efc, "INIT_VFI format failure\n");
efc_domain_free_resources(domain,
EFC_HW_DOMAIN_ALLOC_FAIL, data);
return;
}
efc_log_err(efc, "%s issue mbox\n", __func__);
rc = efc->tt.issue_mbox_rqst(efc->base, data,
efc_domain_alloc_init_vfi_cb, domain);
if (rc) {
efc_log_err(efc, "INIT_VFI command failure\n");
efc_domain_free_resources(domain,
EFC_HW_DOMAIN_ALLOC_FAIL, data);
}
}
int
efc_cmd_domain_alloc(struct efc *efc, struct efc_domain *domain, u32 fcf)
{
u32 index;
if (!domain || !domain->nport) {
efc_log_err(efc, "bad parameter(s) domain=%p nport=%p\n",
domain, domain ? domain->nport : NULL);
return -EIO;
}
/* allocate memory for the service parameters */
domain->dma.size = EFC_SPARAM_DMA_SZ;
domain->dma.virt = dma_alloc_coherent(&efc->pci->dev,
domain->dma.size,
&domain->dma.phys, GFP_KERNEL);
if (!domain->dma.virt) {
efc_log_err(efc, "Failed to allocate DMA memory\n");
return -EIO;
}
domain->fcf = fcf;
domain->fcf_indicator = U32_MAX;
domain->indicator = U32_MAX;
if (sli_resource_alloc(efc->sli, SLI4_RSRC_VFI, &domain->indicator,
&index)) {
efc_log_err(efc, "VFI allocation failure\n");
dma_free_coherent(&efc->pci->dev,
domain->dma.size, domain->dma.virt,
domain->dma.phys);
memset(&domain->dma, 0, sizeof(struct efc_dma));
return -EIO;
}
efc_domain_alloc_init_vfi(domain);
return 0;
}
static int
efc_domain_attach_reg_vfi_cb(struct efc *efc, int status, u8 *mqe,
void *arg)
{
struct efc_domain *domain = arg;
if (efc_domain_get_mbox_status(domain, mqe, status)) {
efc_domain_free_resources(domain,
EFC_HW_DOMAIN_ATTACH_FAIL, mqe);
return -EIO;
}
efc_domain_send_nport_evt(domain, EFC_EVT_NPORT_ATTACH_OK,
EFC_HW_DOMAIN_ATTACH_OK, mqe);
return 0;
}
int
efc_cmd_domain_attach(struct efc *efc, struct efc_domain *domain, u32 fc_id)
{
u8 buf[SLI4_BMBX_SIZE];
int rc = 0;
if (!domain) {
efc_log_err(efc, "bad param(s) domain=%p\n", domain);
return -EIO;
}
domain->nport->fc_id = fc_id;
rc = sli_cmd_reg_vfi(efc->sli, buf, SLI4_BMBX_SIZE, domain->indicator,
domain->fcf_indicator, domain->dma,
domain->nport->indicator, domain->nport->sli_wwpn,
domain->nport->fc_id);
if (rc) {
efc_log_err(efc, "REG_VFI format failure\n");
goto cleanup;
}
rc = efc->tt.issue_mbox_rqst(efc->base, buf,
efc_domain_attach_reg_vfi_cb, domain);
if (rc) {
efc_log_err(efc, "REG_VFI command failure\n");
goto cleanup;
}
return rc;
cleanup:
efc_domain_free_resources(domain, EFC_HW_DOMAIN_ATTACH_FAIL, buf);
return rc;
}
static int
efc_domain_free_unreg_vfi_cb(struct efc *efc, int status, u8 *mqe, void *arg)
{
struct efc_domain *domain = arg;
int evt = EFC_HW_DOMAIN_FREE_OK;
int rc;
rc = efc_domain_get_mbox_status(domain, mqe, status);
if (rc) {
evt = EFC_HW_DOMAIN_FREE_FAIL;
rc = -EIO;
}
efc_domain_free_resources(domain, evt, mqe);
return rc;
}
static void
efc_domain_free_unreg_vfi(struct efc_domain *domain)
{
struct efc *efc = domain->efc;
int rc;
u8 data[SLI4_BMBX_SIZE];
rc = sli_cmd_unreg_vfi(efc->sli, data, domain->indicator,
SLI4_UNREG_TYPE_DOMAIN);
if (rc) {
efc_log_err(efc, "UNREG_VFI format failure\n");
goto cleanup;
}
rc = efc->tt.issue_mbox_rqst(efc->base, data,
efc_domain_free_unreg_vfi_cb, domain);
if (rc) {
efc_log_err(efc, "UNREG_VFI command failure\n");
goto cleanup;
}
return;
cleanup:
efc_domain_free_resources(domain, EFC_HW_DOMAIN_FREE_FAIL, data);
}
int
efc_cmd_domain_free(struct efc *efc, struct efc_domain *domain)
{
if (!domain) {
efc_log_err(efc, "bad parameter(s) domain=%p\n", domain);
return -EIO;
}
efc_domain_free_unreg_vfi(domain);
return 0;
}
int
efc_cmd_node_alloc(struct efc *efc, struct efc_remote_node *rnode, u32 fc_addr,
struct efc_nport *nport)
{
/* Check for invalid indicator */
if (rnode->indicator != U32_MAX) {
efc_log_err(efc,
"RPI allocation failure addr=%#x rpi=%#x\n",
fc_addr, rnode->indicator);
return -EIO;
}
/* NULL SLI port indicates an unallocated remote node */
rnode->nport = NULL;
if (sli_resource_alloc(efc->sli, SLI4_RSRC_RPI,
&rnode->indicator, &rnode->index)) {
efc_log_err(efc, "RPI allocation failure addr=%#x\n",
fc_addr);
return -EIO;
}
rnode->fc_id = fc_addr;
rnode->nport = nport;
return 0;
}
static int
efc_cmd_node_attach_cb(struct efc *efc, int status, u8 *mqe, void *arg)
{
struct efc_remote_node *rnode = arg;
struct sli4_mbox_command_header *hdr =
(struct sli4_mbox_command_header *)mqe;
int evt = 0;
if (status || le16_to_cpu(hdr->status)) {
efc_log_debug(efc, "bad status cqe=%#x mqe=%#x\n", status,
le16_to_cpu(hdr->status));
rnode->attached = false;
evt = EFC_EVT_NODE_ATTACH_FAIL;
} else {
rnode->attached = true;
evt = EFC_EVT_NODE_ATTACH_OK;
}
efc_remote_node_cb(efc, evt, rnode);
return 0;
}
int
efc_cmd_node_attach(struct efc *efc, struct efc_remote_node *rnode,
struct efc_dma *sparms)
{
int rc = -EIO;
u8 buf[SLI4_BMBX_SIZE];
if (!rnode || !sparms) {
efc_log_err(efc, "bad parameter(s) rnode=%p sparms=%p\n",
rnode, sparms);
return -EIO;
}
/*
* If the attach count is non-zero, this RPI has already been reg'd.
* Otherwise, register the RPI
*/
if (rnode->index == U32_MAX) {
efc_log_err(efc, "bad parameter rnode->index invalid\n");
return -EIO;
}
/* Update a remote node object with the remote port's service params */
if (!sli_cmd_reg_rpi(efc->sli, buf, rnode->indicator,
rnode->nport->indicator, rnode->fc_id, sparms, 0, 0))
rc = efc->tt.issue_mbox_rqst(efc->base, buf,
efc_cmd_node_attach_cb, rnode);
return rc;
}
int
efc_node_free_resources(struct efc *efc, struct efc_remote_node *rnode)
{
int rc = 0;
if (!rnode) {
efc_log_err(efc, "bad parameter rnode=%p\n", rnode);
return -EIO;
}
if (rnode->nport) {
if (rnode->attached) {
efc_log_err(efc, "rnode is still attached\n");
return -EIO;
}
if (rnode->indicator != U32_MAX) {
if (sli_resource_free(efc->sli, SLI4_RSRC_RPI,
rnode->indicator)) {
efc_log_err(efc,
"RPI free fail RPI %d addr=%#x\n",
rnode->indicator, rnode->fc_id);
rc = -EIO;
} else {
rnode->indicator = U32_MAX;
rnode->index = U32_MAX;
}
}
}
return rc;
}
static int
efc_cmd_node_free_cb(struct efc *efc, int status, u8 *mqe, void *arg)
{
struct efc_remote_node *rnode = arg;
struct sli4_mbox_command_header *hdr =
(struct sli4_mbox_command_header *)mqe;
int evt = EFC_EVT_NODE_FREE_FAIL;
int rc = 0;
if (status || le16_to_cpu(hdr->status)) {
efc_log_debug(efc, "bad status cqe=%#x mqe=%#x\n", status,
le16_to_cpu(hdr->status));
/*
* In certain cases, a non-zero MQE status is OK (all must be
* true):
* - node is attached
* - status is 0x1400
*/
if (!rnode->attached ||
(le16_to_cpu(hdr->status) != SLI4_MBX_STATUS_RPI_NOT_REG))
rc = -EIO;
}
if (!rc) {
rnode->attached = false;
evt = EFC_EVT_NODE_FREE_OK;
}
efc_remote_node_cb(efc, evt, rnode);
return rc;
}
int
efc_cmd_node_detach(struct efc *efc, struct efc_remote_node *rnode)
{
u8 buf[SLI4_BMBX_SIZE];
int rc = -EIO;
if (!rnode) {
efc_log_err(efc, "bad parameter rnode=%p\n", rnode);
return -EIO;
}
if (rnode->nport) {
if (!rnode->attached)
return -EIO;
rc = -EIO;
if (!sli_cmd_unreg_rpi(efc->sli, buf, rnode->indicator,
SLI4_RSRC_RPI, U32_MAX))
rc = efc->tt.issue_mbox_rqst(efc->base, buf,
efc_cmd_node_free_cb, rnode);
if (rc != 0) {
efc_log_err(efc, "UNREG_RPI failed\n");
rc = -EIO;
}
}
return rc;
}