linux/drivers/mmc/host/dw_mmc.c
Sam Protsenko 8396c793ff mmc: dw_mmc: Fix IDMAC operation with pages bigger than 4K
Commit 616f876617 ("mmc: pass queue_limits to blk_mq_alloc_disk") [1]
revealed the long living issue in dw_mmc.c driver, existing since the
time when it was first introduced in commit f95f3850f7 ("mmc: dw_mmc:
Add Synopsys DesignWare mmc host driver."), also making kernel boot
broken on platforms using dw_mmc driver with 16K or 64K pages enabled,
with this message in dmesg:

    mmcblk: probe of mmc0:0001 failed with error -22

That's happening because mmc_blk_probe() fails when it calls
blk_validate_limits() consequently, which returns the error due to
failed max_segment_size check in this code:

    /*
     * The maximum segment size has an odd historic 64k default that
     * drivers probably should override.  Just like the I/O size we
     * require drivers to at least handle a full page per segment.
     */
    ...
    if (WARN_ON_ONCE(lim->max_segment_size < PAGE_SIZE))
        return -EINVAL;

In case when IDMAC (Internal DMA Controller) is used, dw_mmc.c always
sets .max_seg_size to 4 KiB:

    mmc->max_seg_size = 0x1000;

The comment in the code above explains why it's incorrect. Arnd
suggested setting .max_seg_size to .max_req_size to fix it, which is
also what some other drivers are doing:

   $ grep -rl 'max_seg_size.*=.*max_req_size' drivers/mmc/host/ | \
     wc -l
   18

This change is not only fixing the boot with 16K/64K pages, but also
leads to a better MMC performance. The linear write performance was
tested on E850-96 board (eMMC only), before commit [1] (where it's
possible to boot with 16K/64K pages without this fix, to be able to do
a comparison). It was tested with this command:

    # dd if=/dev/zero of=somefile bs=1M count=500 oflag=sync

Test results are as follows:

  - 4K pages,  .max_seg_size = 4 KiB:                   94.2 MB/s
  - 4K pages,  .max_seg_size = .max_req_size = 512 KiB: 96.9 MB/s
  - 16K pages, .max_seg_size = 4 KiB:                   126 MB/s
  - 16K pages, .max_seg_size = .max_req_size = 2 MiB:   128 MB/s
  - 64K pages, .max_seg_size = 4 KiB:                   138 MB/s
  - 64K pages, .max_seg_size = .max_req_size = 8 MiB:   138 MB/s

Unfortunately, SD card controller is not enabled in E850-96 yet, so it
wasn't possible for me to run the test on some cheap SD cards to check
this patch's impact on those. But it's possible that this change might
also reduce the writes count, thus improving SD/eMMC longevity.

All credit for the analysis and the suggested solution goes to Arnd.

[1] https://lore.kernel.org/all/20240215070300.2200308-18-hch@lst.de/

Fixes: f95f3850f7 ("mmc: dw_mmc: Add Synopsys DesignWare mmc host driver.")
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Reported-by: Linux Kernel Functional Testing <lkft@linaro.org>
Closes: https://lore.kernel.org/all/CA+G9fYtddf2Fd3be+YShHP6CmSDNcn0ptW8qg+stUKW+Cn0rjQ@mail.gmail.com/
Signed-off-by: Sam Protsenko <semen.protsenko@linaro.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240306232052.21317-1-semen.protsenko@linaro.org
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2024-08-28 17:20:40 +02:00

3630 lines
92 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Synopsys DesignWare Multimedia Card Interface driver
* (Based on NXP driver for lpc 31xx)
*
* Copyright (C) 2009 NXP Semiconductors
* Copyright (C) 2009, 2010 Imagination Technologies Ltd.
*/
#include <linux/blkdev.h>
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/ioport.h>
#include <linux/ktime.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/prandom.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/stat.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/mmc/card.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>
#include <linux/mmc/sdio.h>
#include <linux/bitops.h>
#include <linux/regulator/consumer.h>
#include <linux/of.h>
#include <linux/mmc/slot-gpio.h>
#include "dw_mmc.h"
/* Common flag combinations */
#define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
SDMMC_INT_HTO | SDMMC_INT_SBE | \
SDMMC_INT_EBE | SDMMC_INT_HLE)
#define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \
SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
#define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \
DW_MCI_CMD_ERROR_FLAGS)
#define DW_MCI_SEND_STATUS 1
#define DW_MCI_RECV_STATUS 2
#define DW_MCI_DMA_THRESHOLD 16
#define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */
#define DW_MCI_FREQ_MIN 100000 /* unit: HZ */
#define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
SDMMC_IDMAC_INT_TI)
#define DESC_RING_BUF_SZ PAGE_SIZE
struct idmac_desc_64addr {
u32 des0; /* Control Descriptor */
#define IDMAC_OWN_CLR64(x) \
!((x) & cpu_to_le32(IDMAC_DES0_OWN))
u32 des1; /* Reserved */
u32 des2; /*Buffer sizes */
#define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
u32 des3; /* Reserved */
u32 des4; /* Lower 32-bits of Buffer Address Pointer 1*/
u32 des5; /* Upper 32-bits of Buffer Address Pointer 1*/
u32 des6; /* Lower 32-bits of Next Descriptor Address */
u32 des7; /* Upper 32-bits of Next Descriptor Address */
};
struct idmac_desc {
__le32 des0; /* Control Descriptor */
#define IDMAC_DES0_DIC BIT(1)
#define IDMAC_DES0_LD BIT(2)
#define IDMAC_DES0_FD BIT(3)
#define IDMAC_DES0_CH BIT(4)
#define IDMAC_DES0_ER BIT(5)
#define IDMAC_DES0_CES BIT(30)
#define IDMAC_DES0_OWN BIT(31)
__le32 des1; /* Buffer sizes */
#define IDMAC_SET_BUFFER1_SIZE(d, s) \
((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
__le32 des2; /* buffer 1 physical address */
__le32 des3; /* buffer 2 physical address */
};
/* Each descriptor can transfer up to 4KB of data in chained mode */
#define DW_MCI_DESC_DATA_LENGTH 0x1000
#if defined(CONFIG_DEBUG_FS)
static int dw_mci_req_show(struct seq_file *s, void *v)
{
struct dw_mci_slot *slot = s->private;
struct mmc_request *mrq;
struct mmc_command *cmd;
struct mmc_command *stop;
struct mmc_data *data;
/* Make sure we get a consistent snapshot */
spin_lock_bh(&slot->host->lock);
mrq = slot->mrq;
if (mrq) {
cmd = mrq->cmd;
data = mrq->data;
stop = mrq->stop;
if (cmd)
seq_printf(s,
"CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
cmd->opcode, cmd->arg, cmd->flags,
cmd->resp[0], cmd->resp[1], cmd->resp[2],
cmd->resp[2], cmd->error);
if (data)
seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
data->bytes_xfered, data->blocks,
data->blksz, data->flags, data->error);
if (stop)
seq_printf(s,
"CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
stop->opcode, stop->arg, stop->flags,
stop->resp[0], stop->resp[1], stop->resp[2],
stop->resp[2], stop->error);
}
spin_unlock_bh(&slot->host->lock);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(dw_mci_req);
static int dw_mci_regs_show(struct seq_file *s, void *v)
{
struct dw_mci *host = s->private;
pm_runtime_get_sync(host->dev);
seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
pm_runtime_put_autosuspend(host->dev);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(dw_mci_regs);
static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
{
struct mmc_host *mmc = slot->mmc;
struct dw_mci *host = slot->host;
struct dentry *root;
root = mmc->debugfs_root;
if (!root)
return;
debugfs_create_file("regs", S_IRUSR, root, host, &dw_mci_regs_fops);
debugfs_create_file("req", S_IRUSR, root, slot, &dw_mci_req_fops);
debugfs_create_u32("state", S_IRUSR, root, &host->state);
debugfs_create_xul("pending_events", S_IRUSR, root,
&host->pending_events);
debugfs_create_xul("completed_events", S_IRUSR, root,
&host->completed_events);
#ifdef CONFIG_FAULT_INJECTION
fault_create_debugfs_attr("fail_data_crc", root, &host->fail_data_crc);
#endif
}
#endif /* defined(CONFIG_DEBUG_FS) */
static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
{
u32 ctrl;
ctrl = mci_readl(host, CTRL);
ctrl |= reset;
mci_writel(host, CTRL, ctrl);
/* wait till resets clear */
if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
!(ctrl & reset),
1, 500 * USEC_PER_MSEC)) {
dev_err(host->dev,
"Timeout resetting block (ctrl reset %#x)\n",
ctrl & reset);
return false;
}
return true;
}
static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
{
u32 status;
/*
* Databook says that before issuing a new data transfer command
* we need to check to see if the card is busy. Data transfer commands
* all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
*
* ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
* expected.
*/
if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
!(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
status,
!(status & SDMMC_STATUS_BUSY),
10, 500 * USEC_PER_MSEC))
dev_err(host->dev, "Busy; trying anyway\n");
}
}
static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
{
struct dw_mci *host = slot->host;
unsigned int cmd_status = 0;
mci_writel(host, CMDARG, arg);
wmb(); /* drain writebuffer */
dw_mci_wait_while_busy(host, cmd);
mci_writel(host, CMD, SDMMC_CMD_START | cmd);
if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
!(cmd_status & SDMMC_CMD_START),
1, 500 * USEC_PER_MSEC))
dev_err(&slot->mmc->class_dev,
"Timeout sending command (cmd %#x arg %#x status %#x)\n",
cmd, arg, cmd_status);
}
static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
u32 cmdr;
cmd->error = -EINPROGRESS;
cmdr = cmd->opcode;
if (cmd->opcode == MMC_STOP_TRANSMISSION ||
cmd->opcode == MMC_GO_IDLE_STATE ||
cmd->opcode == MMC_GO_INACTIVE_STATE ||
(cmd->opcode == SD_IO_RW_DIRECT &&
((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
cmdr |= SDMMC_CMD_STOP;
else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
if (cmd->opcode == SD_SWITCH_VOLTAGE) {
u32 clk_en_a;
/* Special bit makes CMD11 not die */
cmdr |= SDMMC_CMD_VOLT_SWITCH;
/* Change state to continue to handle CMD11 weirdness */
WARN_ON(slot->host->state != STATE_SENDING_CMD);
slot->host->state = STATE_SENDING_CMD11;
/*
* We need to disable low power mode (automatic clock stop)
* while doing voltage switch so we don't confuse the card,
* since stopping the clock is a specific part of the UHS
* voltage change dance.
*
* Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
* unconditionally turned back on in dw_mci_setup_bus() if it's
* ever called with a non-zero clock. That shouldn't happen
* until the voltage change is all done.
*/
clk_en_a = mci_readl(host, CLKENA);
clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
mci_writel(host, CLKENA, clk_en_a);
mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
SDMMC_CMD_PRV_DAT_WAIT, 0);
}
if (cmd->flags & MMC_RSP_PRESENT) {
/* We expect a response, so set this bit */
cmdr |= SDMMC_CMD_RESP_EXP;
if (cmd->flags & MMC_RSP_136)
cmdr |= SDMMC_CMD_RESP_LONG;
}
if (cmd->flags & MMC_RSP_CRC)
cmdr |= SDMMC_CMD_RESP_CRC;
if (cmd->data) {
cmdr |= SDMMC_CMD_DAT_EXP;
if (cmd->data->flags & MMC_DATA_WRITE)
cmdr |= SDMMC_CMD_DAT_WR;
}
if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
cmdr |= SDMMC_CMD_USE_HOLD_REG;
return cmdr;
}
static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
{
struct mmc_command *stop;
u32 cmdr;
if (!cmd->data)
return 0;
stop = &host->stop_abort;
cmdr = cmd->opcode;
memset(stop, 0, sizeof(struct mmc_command));
if (cmdr == MMC_READ_SINGLE_BLOCK ||
cmdr == MMC_READ_MULTIPLE_BLOCK ||
cmdr == MMC_WRITE_BLOCK ||
cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
mmc_op_tuning(cmdr) ||
cmdr == MMC_GEN_CMD) {
stop->opcode = MMC_STOP_TRANSMISSION;
stop->arg = 0;
stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
} else if (cmdr == SD_IO_RW_EXTENDED) {
stop->opcode = SD_IO_RW_DIRECT;
stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
((cmd->arg >> 28) & 0x7);
stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
} else {
return 0;
}
cmdr = stop->opcode | SDMMC_CMD_STOP |
SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags))
cmdr |= SDMMC_CMD_USE_HOLD_REG;
return cmdr;
}
static inline void dw_mci_set_cto(struct dw_mci *host)
{
unsigned int cto_clks;
unsigned int cto_div;
unsigned int cto_ms;
unsigned long irqflags;
cto_clks = mci_readl(host, TMOUT) & 0xff;
cto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
if (cto_div == 0)
cto_div = 1;
cto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * cto_clks * cto_div,
host->bus_hz);
/* add a bit spare time */
cto_ms += 10;
/*
* The durations we're working with are fairly short so we have to be
* extra careful about synchronization here. Specifically in hardware a
* command timeout is _at most_ 5.1 ms, so that means we expect an
* interrupt (either command done or timeout) to come rather quickly
* after the mci_writel. ...but just in case we have a long interrupt
* latency let's add a bit of paranoia.
*
* In general we'll assume that at least an interrupt will be asserted
* in hardware by the time the cto_timer runs. ...and if it hasn't
* been asserted in hardware by that time then we'll assume it'll never
* come.
*/
spin_lock_irqsave(&host->irq_lock, irqflags);
if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
mod_timer(&host->cto_timer,
jiffies + msecs_to_jiffies(cto_ms) + 1);
spin_unlock_irqrestore(&host->irq_lock, irqflags);
}
static void dw_mci_start_command(struct dw_mci *host,
struct mmc_command *cmd, u32 cmd_flags)
{
host->cmd = cmd;
dev_vdbg(host->dev,
"start command: ARGR=0x%08x CMDR=0x%08x\n",
cmd->arg, cmd_flags);
mci_writel(host, CMDARG, cmd->arg);
wmb(); /* drain writebuffer */
dw_mci_wait_while_busy(host, cmd_flags);
mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
/* response expected command only */
if (cmd_flags & SDMMC_CMD_RESP_EXP)
dw_mci_set_cto(host);
}
static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
{
struct mmc_command *stop = &host->stop_abort;
dw_mci_start_command(host, stop, host->stop_cmdr);
}
/* DMA interface functions */
static void dw_mci_stop_dma(struct dw_mci *host)
{
if (host->using_dma) {
host->dma_ops->stop(host);
host->dma_ops->cleanup(host);
}
/* Data transfer was stopped by the interrupt handler */
set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
}
static void dw_mci_dma_cleanup(struct dw_mci *host)
{
struct mmc_data *data = host->data;
if (data && data->host_cookie == COOKIE_MAPPED) {
dma_unmap_sg(host->dev,
data->sg,
data->sg_len,
mmc_get_dma_dir(data));
data->host_cookie = COOKIE_UNMAPPED;
}
}
static void dw_mci_idmac_reset(struct dw_mci *host)
{
u32 bmod = mci_readl(host, BMOD);
/* Software reset of DMA */
bmod |= SDMMC_IDMAC_SWRESET;
mci_writel(host, BMOD, bmod);
}
static void dw_mci_idmac_stop_dma(struct dw_mci *host)
{
u32 temp;
/* Disable and reset the IDMAC interface */
temp = mci_readl(host, CTRL);
temp &= ~SDMMC_CTRL_USE_IDMAC;
temp |= SDMMC_CTRL_DMA_RESET;
mci_writel(host, CTRL, temp);
/* Stop the IDMAC running */
temp = mci_readl(host, BMOD);
temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
temp |= SDMMC_IDMAC_SWRESET;
mci_writel(host, BMOD, temp);
}
static void dw_mci_dmac_complete_dma(void *arg)
{
struct dw_mci *host = arg;
struct mmc_data *data = host->data;
dev_vdbg(host->dev, "DMA complete\n");
if ((host->use_dma == TRANS_MODE_EDMAC) &&
data && (data->flags & MMC_DATA_READ))
/* Invalidate cache after read */
dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc),
data->sg,
data->sg_len,
DMA_FROM_DEVICE);
host->dma_ops->cleanup(host);
/*
* If the card was removed, data will be NULL. No point in trying to
* send the stop command or waiting for NBUSY in this case.
*/
if (data) {
set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
queue_work(system_bh_wq, &host->bh_work);
}
}
static int dw_mci_idmac_init(struct dw_mci *host)
{
int i;
if (host->dma_64bit_address == 1) {
struct idmac_desc_64addr *p;
/* Number of descriptors in the ring buffer */
host->ring_size =
DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
/* Forward link the descriptor list */
for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
i++, p++) {
p->des6 = (host->sg_dma +
(sizeof(struct idmac_desc_64addr) *
(i + 1))) & 0xffffffff;
p->des7 = (u64)(host->sg_dma +
(sizeof(struct idmac_desc_64addr) *
(i + 1))) >> 32;
/* Initialize reserved and buffer size fields to "0" */
p->des0 = 0;
p->des1 = 0;
p->des2 = 0;
p->des3 = 0;
}
/* Set the last descriptor as the end-of-ring descriptor */
p->des6 = host->sg_dma & 0xffffffff;
p->des7 = (u64)host->sg_dma >> 32;
p->des0 = IDMAC_DES0_ER;
} else {
struct idmac_desc *p;
/* Number of descriptors in the ring buffer */
host->ring_size =
DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
/* Forward link the descriptor list */
for (i = 0, p = host->sg_cpu;
i < host->ring_size - 1;
i++, p++) {
p->des3 = cpu_to_le32(host->sg_dma +
(sizeof(struct idmac_desc) * (i + 1)));
p->des0 = 0;
p->des1 = 0;
}
/* Set the last descriptor as the end-of-ring descriptor */
p->des3 = cpu_to_le32(host->sg_dma);
p->des0 = cpu_to_le32(IDMAC_DES0_ER);
}
dw_mci_idmac_reset(host);
if (host->dma_64bit_address == 1) {
/* Mask out interrupts - get Tx & Rx complete only */
mci_writel(host, IDSTS64, IDMAC_INT_CLR);
mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
/* Set the descriptor base address */
mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
} else {
/* Mask out interrupts - get Tx & Rx complete only */
mci_writel(host, IDSTS, IDMAC_INT_CLR);
mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
/* Set the descriptor base address */
mci_writel(host, DBADDR, host->sg_dma);
}
return 0;
}
static inline int dw_mci_prepare_desc64(struct dw_mci *host,
struct mmc_data *data,
unsigned int sg_len)
{
unsigned int desc_len;
struct idmac_desc_64addr *desc_first, *desc_last, *desc;
u32 val;
int i;
desc_first = desc_last = desc = host->sg_cpu;
for (i = 0; i < sg_len; i++) {
unsigned int length = sg_dma_len(&data->sg[i]);
u64 mem_addr = sg_dma_address(&data->sg[i]);
for ( ; length ; desc++) {
desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
length : DW_MCI_DESC_DATA_LENGTH;
length -= desc_len;
/*
* Wait for the former clear OWN bit operation
* of IDMAC to make sure that this descriptor
* isn't still owned by IDMAC as IDMAC's write
* ops and CPU's read ops are asynchronous.
*/
if (readl_poll_timeout_atomic(&desc->des0, val,
!(val & IDMAC_DES0_OWN),
10, 100 * USEC_PER_MSEC))
goto err_own_bit;
/*
* Set the OWN bit and disable interrupts
* for this descriptor
*/
desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
IDMAC_DES0_CH;
/* Buffer length */
IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
/* Physical address to DMA to/from */
desc->des4 = mem_addr & 0xffffffff;
desc->des5 = mem_addr >> 32;
/* Update physical address for the next desc */
mem_addr += desc_len;
/* Save pointer to the last descriptor */
desc_last = desc;
}
}
/* Set first descriptor */
desc_first->des0 |= IDMAC_DES0_FD;
/* Set last descriptor */
desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
desc_last->des0 |= IDMAC_DES0_LD;
return 0;
err_own_bit:
/* restore the descriptor chain as it's polluted */
dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
dw_mci_idmac_init(host);
return -EINVAL;
}
static inline int dw_mci_prepare_desc32(struct dw_mci *host,
struct mmc_data *data,
unsigned int sg_len)
{
unsigned int desc_len;
struct idmac_desc *desc_first, *desc_last, *desc;
u32 val;
int i;
desc_first = desc_last = desc = host->sg_cpu;
for (i = 0; i < sg_len; i++) {
unsigned int length = sg_dma_len(&data->sg[i]);
u32 mem_addr = sg_dma_address(&data->sg[i]);
for ( ; length ; desc++) {
desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
length : DW_MCI_DESC_DATA_LENGTH;
length -= desc_len;
/*
* Wait for the former clear OWN bit operation
* of IDMAC to make sure that this descriptor
* isn't still owned by IDMAC as IDMAC's write
* ops and CPU's read ops are asynchronous.
*/
if (readl_poll_timeout_atomic(&desc->des0, val,
IDMAC_OWN_CLR64(val),
10,
100 * USEC_PER_MSEC))
goto err_own_bit;
/*
* Set the OWN bit and disable interrupts
* for this descriptor
*/
desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
IDMAC_DES0_DIC |
IDMAC_DES0_CH);
/* Buffer length */
IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
/* Physical address to DMA to/from */
desc->des2 = cpu_to_le32(mem_addr);
/* Update physical address for the next desc */
mem_addr += desc_len;
/* Save pointer to the last descriptor */
desc_last = desc;
}
}
/* Set first descriptor */
desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
/* Set last descriptor */
desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
IDMAC_DES0_DIC));
desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
return 0;
err_own_bit:
/* restore the descriptor chain as it's polluted */
dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
dw_mci_idmac_init(host);
return -EINVAL;
}
static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
{
u32 temp;
int ret;
if (host->dma_64bit_address == 1)
ret = dw_mci_prepare_desc64(host, host->data, sg_len);
else
ret = dw_mci_prepare_desc32(host, host->data, sg_len);
if (ret)
goto out;
/* drain writebuffer */
wmb();
/* Make sure to reset DMA in case we did PIO before this */
dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
dw_mci_idmac_reset(host);
/* Select IDMAC interface */
temp = mci_readl(host, CTRL);
temp |= SDMMC_CTRL_USE_IDMAC;
mci_writel(host, CTRL, temp);
/* drain writebuffer */
wmb();
/* Enable the IDMAC */
temp = mci_readl(host, BMOD);
temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
mci_writel(host, BMOD, temp);
/* Start it running */
mci_writel(host, PLDMND, 1);
out:
return ret;
}
static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
.init = dw_mci_idmac_init,
.start = dw_mci_idmac_start_dma,
.stop = dw_mci_idmac_stop_dma,
.complete = dw_mci_dmac_complete_dma,
.cleanup = dw_mci_dma_cleanup,
};
static void dw_mci_edmac_stop_dma(struct dw_mci *host)
{
dmaengine_terminate_async(host->dms->ch);
}
static int dw_mci_edmac_start_dma(struct dw_mci *host,
unsigned int sg_len)
{
struct dma_slave_config cfg;
struct dma_async_tx_descriptor *desc = NULL;
struct scatterlist *sgl = host->data->sg;
static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
u32 sg_elems = host->data->sg_len;
u32 fifoth_val;
u32 fifo_offset = host->fifo_reg - host->regs;
int ret = 0;
/* Set external dma config: burst size, burst width */
memset(&cfg, 0, sizeof(cfg));
cfg.dst_addr = host->phy_regs + fifo_offset;
cfg.src_addr = cfg.dst_addr;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
/* Match burst msize with external dma config */
fifoth_val = mci_readl(host, FIFOTH);
cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
cfg.src_maxburst = cfg.dst_maxburst;
if (host->data->flags & MMC_DATA_WRITE)
cfg.direction = DMA_MEM_TO_DEV;
else
cfg.direction = DMA_DEV_TO_MEM;
ret = dmaengine_slave_config(host->dms->ch, &cfg);
if (ret) {
dev_err(host->dev, "Failed to config edmac.\n");
return -EBUSY;
}
desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
sg_len, cfg.direction,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc) {
dev_err(host->dev, "Can't prepare slave sg.\n");
return -EBUSY;
}
/* Set dw_mci_dmac_complete_dma as callback */
desc->callback = dw_mci_dmac_complete_dma;
desc->callback_param = (void *)host;
dmaengine_submit(desc);
/* Flush cache before write */
if (host->data->flags & MMC_DATA_WRITE)
dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl,
sg_elems, DMA_TO_DEVICE);
dma_async_issue_pending(host->dms->ch);
return 0;
}
static int dw_mci_edmac_init(struct dw_mci *host)
{
/* Request external dma channel */
host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
if (!host->dms)
return -ENOMEM;
host->dms->ch = dma_request_chan(host->dev, "rx-tx");
if (IS_ERR(host->dms->ch)) {
int ret = PTR_ERR(host->dms->ch);
dev_err(host->dev, "Failed to get external DMA channel.\n");
kfree(host->dms);
host->dms = NULL;
return ret;
}
return 0;
}
static void dw_mci_edmac_exit(struct dw_mci *host)
{
if (host->dms) {
if (host->dms->ch) {
dma_release_channel(host->dms->ch);
host->dms->ch = NULL;
}
kfree(host->dms);
host->dms = NULL;
}
}
static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
.init = dw_mci_edmac_init,
.exit = dw_mci_edmac_exit,
.start = dw_mci_edmac_start_dma,
.stop = dw_mci_edmac_stop_dma,
.complete = dw_mci_dmac_complete_dma,
.cleanup = dw_mci_dma_cleanup,
};
static int dw_mci_pre_dma_transfer(struct dw_mci *host,
struct mmc_data *data,
int cookie)
{
struct scatterlist *sg;
unsigned int i, sg_len;
if (data->host_cookie == COOKIE_PRE_MAPPED)
return data->sg_len;
/*
* We don't do DMA on "complex" transfers, i.e. with
* non-word-aligned buffers or lengths. Also, we don't bother
* with all the DMA setup overhead for short transfers.
*/
if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
return -EINVAL;
if (data->blksz & 3)
return -EINVAL;
for_each_sg(data->sg, sg, data->sg_len, i) {
if (sg->offset & 3 || sg->length & 3)
return -EINVAL;
}
sg_len = dma_map_sg(host->dev,
data->sg,
data->sg_len,
mmc_get_dma_dir(data));
if (sg_len == 0)
return -EINVAL;
data->host_cookie = cookie;
return sg_len;
}
static void dw_mci_pre_req(struct mmc_host *mmc,
struct mmc_request *mrq)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
if (!slot->host->use_dma || !data)
return;
/* This data might be unmapped at this time */
data->host_cookie = COOKIE_UNMAPPED;
if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
COOKIE_PRE_MAPPED) < 0)
data->host_cookie = COOKIE_UNMAPPED;
}
static void dw_mci_post_req(struct mmc_host *mmc,
struct mmc_request *mrq,
int err)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
if (!slot->host->use_dma || !data)
return;
if (data->host_cookie != COOKIE_UNMAPPED)
dma_unmap_sg(slot->host->dev,
data->sg,
data->sg_len,
mmc_get_dma_dir(data));
data->host_cookie = COOKIE_UNMAPPED;
}
static int dw_mci_get_cd(struct mmc_host *mmc)
{
int present;
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
int gpio_cd = mmc_gpio_get_cd(mmc);
/* Use platform get_cd function, else try onboard card detect */
if (((mmc->caps & MMC_CAP_NEEDS_POLL)
|| !mmc_card_is_removable(mmc))) {
present = 1;
if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
if (mmc->caps & MMC_CAP_NEEDS_POLL) {
dev_info(&mmc->class_dev,
"card is polling.\n");
} else {
dev_info(&mmc->class_dev,
"card is non-removable.\n");
}
set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
}
return present;
} else if (gpio_cd >= 0)
present = gpio_cd;
else
present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
== 0 ? 1 : 0;
spin_lock_bh(&host->lock);
if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
dev_dbg(&mmc->class_dev, "card is present\n");
else if (!present &&
!test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
dev_dbg(&mmc->class_dev, "card is not present\n");
spin_unlock_bh(&host->lock);
return present;
}
static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
{
unsigned int blksz = data->blksz;
static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
u32 fifo_width = 1 << host->data_shift;
u32 blksz_depth = blksz / fifo_width, fifoth_val;
u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
int idx = ARRAY_SIZE(mszs) - 1;
/* pio should ship this scenario */
if (!host->use_dma)
return;
tx_wmark = (host->fifo_depth) / 2;
tx_wmark_invers = host->fifo_depth - tx_wmark;
/*
* MSIZE is '1',
* if blksz is not a multiple of the FIFO width
*/
if (blksz % fifo_width)
goto done;
do {
if (!((blksz_depth % mszs[idx]) ||
(tx_wmark_invers % mszs[idx]))) {
msize = idx;
rx_wmark = mszs[idx] - 1;
break;
}
} while (--idx > 0);
/*
* If idx is '0', it won't be tried
* Thus, initial values are uesed
*/
done:
fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
mci_writel(host, FIFOTH, fifoth_val);
}
static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
{
unsigned int blksz = data->blksz;
u32 blksz_depth, fifo_depth;
u16 thld_size;
u8 enable;
/*
* CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
* in the FIFO region, so we really shouldn't access it).
*/
if (host->verid < DW_MMC_240A ||
(host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
return;
/*
* Card write Threshold is introduced since 2.80a
* It's used when HS400 mode is enabled.
*/
if (data->flags & MMC_DATA_WRITE &&
host->timing != MMC_TIMING_MMC_HS400)
goto disable;
if (data->flags & MMC_DATA_WRITE)
enable = SDMMC_CARD_WR_THR_EN;
else
enable = SDMMC_CARD_RD_THR_EN;
if (host->timing != MMC_TIMING_MMC_HS200 &&
host->timing != MMC_TIMING_UHS_SDR104 &&
host->timing != MMC_TIMING_MMC_HS400)
goto disable;
blksz_depth = blksz / (1 << host->data_shift);
fifo_depth = host->fifo_depth;
if (blksz_depth > fifo_depth)
goto disable;
/*
* If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
* If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz
* Currently just choose blksz.
*/
thld_size = blksz;
mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
return;
disable:
mci_writel(host, CDTHRCTL, 0);
}
static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
{
unsigned long irqflags;
int sg_len;
u32 temp;
host->using_dma = 0;
/* If we don't have a channel, we can't do DMA */
if (!host->use_dma)
return -ENODEV;
sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
if (sg_len < 0) {
host->dma_ops->stop(host);
return sg_len;
}
host->using_dma = 1;
if (host->use_dma == TRANS_MODE_IDMAC)
dev_vdbg(host->dev,
"sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
(unsigned long)host->sg_cpu,
(unsigned long)host->sg_dma,
sg_len);
/*
* Decide the MSIZE and RX/TX Watermark.
* If current block size is same with previous size,
* no need to update fifoth.
*/
if (host->prev_blksz != data->blksz)
dw_mci_adjust_fifoth(host, data);
/* Enable the DMA interface */
temp = mci_readl(host, CTRL);
temp |= SDMMC_CTRL_DMA_ENABLE;
mci_writel(host, CTRL, temp);
/* Disable RX/TX IRQs, let DMA handle it */
spin_lock_irqsave(&host->irq_lock, irqflags);
temp = mci_readl(host, INTMASK);
temp &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
mci_writel(host, INTMASK, temp);
spin_unlock_irqrestore(&host->irq_lock, irqflags);
if (host->dma_ops->start(host, sg_len)) {
host->dma_ops->stop(host);
/* We can't do DMA, try PIO for this one */
dev_dbg(host->dev,
"%s: fall back to PIO mode for current transfer\n",
__func__);
return -ENODEV;
}
return 0;
}
static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
{
unsigned long irqflags;
int flags = SG_MITER_ATOMIC;
u32 temp;
data->error = -EINPROGRESS;
WARN_ON(host->data);
host->sg = NULL;
host->data = data;
if (data->flags & MMC_DATA_READ)
host->dir_status = DW_MCI_RECV_STATUS;
else
host->dir_status = DW_MCI_SEND_STATUS;
dw_mci_ctrl_thld(host, data);
if (dw_mci_submit_data_dma(host, data)) {
if (host->data->flags & MMC_DATA_READ)
flags |= SG_MITER_TO_SG;
else
flags |= SG_MITER_FROM_SG;
sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
host->sg = data->sg;
host->part_buf_start = 0;
host->part_buf_count = 0;
mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
spin_lock_irqsave(&host->irq_lock, irqflags);
temp = mci_readl(host, INTMASK);
temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
mci_writel(host, INTMASK, temp);
spin_unlock_irqrestore(&host->irq_lock, irqflags);
temp = mci_readl(host, CTRL);
temp &= ~SDMMC_CTRL_DMA_ENABLE;
mci_writel(host, CTRL, temp);
/*
* Use the initial fifoth_val for PIO mode. If wm_algined
* is set, we set watermark same as data size.
* If next issued data may be transfered by DMA mode,
* prev_blksz should be invalidated.
*/
if (host->wm_aligned)
dw_mci_adjust_fifoth(host, data);
else
mci_writel(host, FIFOTH, host->fifoth_val);
host->prev_blksz = 0;
} else {
/*
* Keep the current block size.
* It will be used to decide whether to update
* fifoth register next time.
*/
host->prev_blksz = data->blksz;
}
}
static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
{
struct dw_mci *host = slot->host;
unsigned int clock = slot->clock;
u32 div;
u32 clk_en_a;
u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
/* We must continue to set bit 28 in CMD until the change is complete */
if (host->state == STATE_WAITING_CMD11_DONE)
sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
slot->mmc->actual_clock = 0;
if (!clock) {
mci_writel(host, CLKENA, 0);
mci_send_cmd(slot, sdmmc_cmd_bits, 0);
} else if (clock != host->current_speed || force_clkinit) {
div = host->bus_hz / clock;
if (host->bus_hz % clock && host->bus_hz > clock)
/*
* move the + 1 after the divide to prevent
* over-clocking the card.
*/
div += 1;
div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
if ((clock != slot->__clk_old &&
!test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
force_clkinit) {
/* Silent the verbose log if calling from PM context */
if (!force_clkinit)
dev_info(&slot->mmc->class_dev,
"Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
slot->id, host->bus_hz, clock,
div ? ((host->bus_hz / div) >> 1) :
host->bus_hz, div);
/*
* If card is polling, display the message only
* one time at boot time.
*/
if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
slot->mmc->f_min == clock)
set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
}
/* disable clock */
mci_writel(host, CLKENA, 0);
mci_writel(host, CLKSRC, 0);
/* inform CIU */
mci_send_cmd(slot, sdmmc_cmd_bits, 0);
/* set clock to desired speed */
mci_writel(host, CLKDIV, div);
/* inform CIU */
mci_send_cmd(slot, sdmmc_cmd_bits, 0);
/* enable clock; only low power if no SDIO */
clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
mci_writel(host, CLKENA, clk_en_a);
/* inform CIU */
mci_send_cmd(slot, sdmmc_cmd_bits, 0);
/* keep the last clock value that was requested from core */
slot->__clk_old = clock;
slot->mmc->actual_clock = div ? ((host->bus_hz / div) >> 1) :
host->bus_hz;
}
host->current_speed = clock;
/* Set the current slot bus width */
mci_writel(host, CTYPE, (slot->ctype << slot->id));
}
static void dw_mci_set_data_timeout(struct dw_mci *host,
unsigned int timeout_ns)
{
const struct dw_mci_drv_data *drv_data = host->drv_data;
u32 clk_div, tmout;
u64 tmp;
if (drv_data && drv_data->set_data_timeout)
return drv_data->set_data_timeout(host, timeout_ns);
clk_div = (mci_readl(host, CLKDIV) & 0xFF) * 2;
if (clk_div == 0)
clk_div = 1;
tmp = DIV_ROUND_UP_ULL((u64)timeout_ns * host->bus_hz, NSEC_PER_SEC);
tmp = DIV_ROUND_UP_ULL(tmp, clk_div);
/* TMOUT[7:0] (RESPONSE_TIMEOUT) */
tmout = 0xFF; /* Set maximum */
/* TMOUT[31:8] (DATA_TIMEOUT) */
if (!tmp || tmp > 0xFFFFFF)
tmout |= (0xFFFFFF << 8);
else
tmout |= (tmp & 0xFFFFFF) << 8;
mci_writel(host, TMOUT, tmout);
dev_dbg(host->dev, "timeout_ns: %u => TMOUT[31:8]: %#08x",
timeout_ns, tmout >> 8);
}
static void __dw_mci_start_request(struct dw_mci *host,
struct dw_mci_slot *slot,
struct mmc_command *cmd)
{
struct mmc_request *mrq;
struct mmc_data *data;
u32 cmdflags;
mrq = slot->mrq;
host->mrq = mrq;
host->pending_events = 0;
host->completed_events = 0;
host->cmd_status = 0;
host->data_status = 0;
host->dir_status = 0;
data = cmd->data;
if (data) {
dw_mci_set_data_timeout(host, data->timeout_ns);
mci_writel(host, BYTCNT, data->blksz*data->blocks);
mci_writel(host, BLKSIZ, data->blksz);
}
cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
/* this is the first command, send the initialization clock */
if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
cmdflags |= SDMMC_CMD_INIT;
if (data) {
dw_mci_submit_data(host, data);
wmb(); /* drain writebuffer */
}
dw_mci_start_command(host, cmd, cmdflags);
if (cmd->opcode == SD_SWITCH_VOLTAGE) {
unsigned long irqflags;
/*
* Databook says to fail after 2ms w/ no response, but evidence
* shows that sometimes the cmd11 interrupt takes over 130ms.
* We'll set to 500ms, plus an extra jiffy just in case jiffies
* is just about to roll over.
*
* We do this whole thing under spinlock and only if the
* command hasn't already completed (indicating the irq
* already ran so we don't want the timeout).
*/
spin_lock_irqsave(&host->irq_lock, irqflags);
if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
mod_timer(&host->cmd11_timer,
jiffies + msecs_to_jiffies(500) + 1);
spin_unlock_irqrestore(&host->irq_lock, irqflags);
}
host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
}
static void dw_mci_start_request(struct dw_mci *host,
struct dw_mci_slot *slot)
{
struct mmc_request *mrq = slot->mrq;
struct mmc_command *cmd;
cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
__dw_mci_start_request(host, slot, cmd);
}
/* must be called with host->lock held */
static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
struct mmc_request *mrq)
{
dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
host->state);
slot->mrq = mrq;
if (host->state == STATE_WAITING_CMD11_DONE) {
dev_warn(&slot->mmc->class_dev,
"Voltage change didn't complete\n");
/*
* this case isn't expected to happen, so we can
* either crash here or just try to continue on
* in the closest possible state
*/
host->state = STATE_IDLE;
}
if (host->state == STATE_IDLE) {
host->state = STATE_SENDING_CMD;
dw_mci_start_request(host, slot);
} else {
list_add_tail(&slot->queue_node, &host->queue);
}
}
static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
WARN_ON(slot->mrq);
/*
* The check for card presence and queueing of the request must be
* atomic, otherwise the card could be removed in between and the
* request wouldn't fail until another card was inserted.
*/
if (!dw_mci_get_cd(mmc)) {
mrq->cmd->error = -ENOMEDIUM;
mmc_request_done(mmc, mrq);
return;
}
spin_lock_bh(&host->lock);
dw_mci_queue_request(host, slot, mrq);
spin_unlock_bh(&host->lock);
}
static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
u32 regs;
int ret;
switch (ios->bus_width) {
case MMC_BUS_WIDTH_4:
slot->ctype = SDMMC_CTYPE_4BIT;
break;
case MMC_BUS_WIDTH_8:
slot->ctype = SDMMC_CTYPE_8BIT;
break;
default:
/* set default 1 bit mode */
slot->ctype = SDMMC_CTYPE_1BIT;
}
regs = mci_readl(slot->host, UHS_REG);
/* DDR mode set */
if (ios->timing == MMC_TIMING_MMC_DDR52 ||
ios->timing == MMC_TIMING_UHS_DDR50 ||
ios->timing == MMC_TIMING_MMC_HS400)
regs |= ((0x1 << slot->id) << 16);
else
regs &= ~((0x1 << slot->id) << 16);
mci_writel(slot->host, UHS_REG, regs);
slot->host->timing = ios->timing;
/*
* Use mirror of ios->clock to prevent race with mmc
* core ios update when finding the minimum.
*/
slot->clock = ios->clock;
if (drv_data && drv_data->set_ios)
drv_data->set_ios(slot->host, ios);
switch (ios->power_mode) {
case MMC_POWER_UP:
if (!IS_ERR(mmc->supply.vmmc)) {
ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
ios->vdd);
if (ret) {
dev_err(slot->host->dev,
"failed to enable vmmc regulator\n");
/*return, if failed turn on vmmc*/
return;
}
}
set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
regs = mci_readl(slot->host, PWREN);
regs |= (1 << slot->id);
mci_writel(slot->host, PWREN, regs);
break;
case MMC_POWER_ON:
if (!slot->host->vqmmc_enabled) {
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = regulator_enable(mmc->supply.vqmmc);
if (ret < 0)
dev_err(slot->host->dev,
"failed to enable vqmmc\n");
else
slot->host->vqmmc_enabled = true;
} else {
/* Keep track so we don't reset again */
slot->host->vqmmc_enabled = true;
}
/* Reset our state machine after powering on */
dw_mci_ctrl_reset(slot->host,
SDMMC_CTRL_ALL_RESET_FLAGS);
}
/* Adjust clock / bus width after power is up */
dw_mci_setup_bus(slot, false);
break;
case MMC_POWER_OFF:
/* Turn clock off before power goes down */
dw_mci_setup_bus(slot, false);
if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
regulator_disable(mmc->supply.vqmmc);
slot->host->vqmmc_enabled = false;
regs = mci_readl(slot->host, PWREN);
regs &= ~(1 << slot->id);
mci_writel(slot->host, PWREN, regs);
break;
default:
break;
}
if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
slot->host->state = STATE_IDLE;
}
static int dw_mci_card_busy(struct mmc_host *mmc)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
u32 status;
/*
* Check the busy bit which is low when DAT[3:0]
* (the data lines) are 0000
*/
status = mci_readl(slot->host, STATUS);
return !!(status & SDMMC_STATUS_BUSY);
}
static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
const struct dw_mci_drv_data *drv_data = host->drv_data;
u32 uhs;
u32 v18 = SDMMC_UHS_18V << slot->id;
int ret;
if (drv_data && drv_data->switch_voltage)
return drv_data->switch_voltage(mmc, ios);
/*
* Program the voltage. Note that some instances of dw_mmc may use
* the UHS_REG for this. For other instances (like exynos) the UHS_REG
* does no harm but you need to set the regulator directly. Try both.
*/
uhs = mci_readl(host, UHS_REG);
if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
uhs &= ~v18;
else
uhs |= v18;
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = mmc_regulator_set_vqmmc(mmc, ios);
if (ret < 0) {
dev_dbg(&mmc->class_dev,
"Regulator set error %d - %s V\n",
ret, uhs & v18 ? "1.8" : "3.3");
return ret;
}
}
mci_writel(host, UHS_REG, uhs);
return 0;
}
static int dw_mci_get_ro(struct mmc_host *mmc)
{
int read_only;
struct dw_mci_slot *slot = mmc_priv(mmc);
int gpio_ro = mmc_gpio_get_ro(mmc);
/* Use platform get_ro function, else try on board write protect */
if (gpio_ro >= 0)
read_only = gpio_ro;
else
read_only =
mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
dev_dbg(&mmc->class_dev, "card is %s\n",
read_only ? "read-only" : "read-write");
return read_only;
}
static void dw_mci_hw_reset(struct mmc_host *mmc)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
const struct dw_mci_drv_data *drv_data = host->drv_data;
int reset;
if (host->use_dma == TRANS_MODE_IDMAC)
dw_mci_idmac_reset(host);
if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
SDMMC_CTRL_FIFO_RESET))
return;
if (drv_data && drv_data->hw_reset) {
drv_data->hw_reset(host);
return;
}
/*
* According to eMMC spec, card reset procedure:
* tRstW >= 1us: RST_n pulse width
* tRSCA >= 200us: RST_n to Command time
* tRSTH >= 1us: RST_n high period
*/
reset = mci_readl(host, RST_N);
reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
mci_writel(host, RST_N, reset);
usleep_range(1, 2);
reset |= SDMMC_RST_HWACTIVE << slot->id;
mci_writel(host, RST_N, reset);
usleep_range(200, 300);
}
static void dw_mci_prepare_sdio_irq(struct dw_mci_slot *slot, bool prepare)
{
struct dw_mci *host = slot->host;
const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
u32 clk_en_a_old;
u32 clk_en_a;
/*
* Low power mode will stop the card clock when idle. According to the
* description of the CLKENA register we should disable low power mode
* for SDIO cards if we need SDIO interrupts to work.
*/
clk_en_a_old = mci_readl(host, CLKENA);
if (prepare) {
set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
clk_en_a = clk_en_a_old & ~clken_low_pwr;
} else {
clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
clk_en_a = clk_en_a_old | clken_low_pwr;
}
if (clk_en_a != clk_en_a_old) {
mci_writel(host, CLKENA, clk_en_a);
mci_send_cmd(slot, SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT,
0);
}
}
static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb)
{
struct dw_mci *host = slot->host;
unsigned long irqflags;
u32 int_mask;
spin_lock_irqsave(&host->irq_lock, irqflags);
/* Enable/disable Slot Specific SDIO interrupt */
int_mask = mci_readl(host, INTMASK);
if (enb)
int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
else
int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
mci_writel(host, INTMASK, int_mask);
spin_unlock_irqrestore(&host->irq_lock, irqflags);
}
static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
dw_mci_prepare_sdio_irq(slot, enb);
__dw_mci_enable_sdio_irq(slot, enb);
/* Avoid runtime suspending the device when SDIO IRQ is enabled */
if (enb)
pm_runtime_get_noresume(host->dev);
else
pm_runtime_put_noidle(host->dev);
}
static void dw_mci_ack_sdio_irq(struct mmc_host *mmc)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
__dw_mci_enable_sdio_irq(slot, 1);
}
static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
const struct dw_mci_drv_data *drv_data = host->drv_data;
int err = -EINVAL;
if (drv_data && drv_data->execute_tuning)
err = drv_data->execute_tuning(slot, opcode);
return err;
}
static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
struct mmc_ios *ios)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct dw_mci *host = slot->host;
const struct dw_mci_drv_data *drv_data = host->drv_data;
if (drv_data && drv_data->prepare_hs400_tuning)
return drv_data->prepare_hs400_tuning(host, ios);
return 0;
}
static bool dw_mci_reset(struct dw_mci *host)
{
u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
bool ret = false;
u32 status = 0;
/*
* Resetting generates a block interrupt, hence setting
* the scatter-gather pointer to NULL.
*/
if (host->sg) {
sg_miter_stop(&host->sg_miter);
host->sg = NULL;
}
if (host->use_dma)
flags |= SDMMC_CTRL_DMA_RESET;
if (dw_mci_ctrl_reset(host, flags)) {
/*
* In all cases we clear the RAWINTS
* register to clear any interrupts.
*/
mci_writel(host, RINTSTS, 0xFFFFFFFF);
if (!host->use_dma) {
ret = true;
goto ciu_out;
}
/* Wait for dma_req to be cleared */
if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
status,
!(status & SDMMC_STATUS_DMA_REQ),
1, 500 * USEC_PER_MSEC)) {
dev_err(host->dev,
"%s: Timeout waiting for dma_req to be cleared\n",
__func__);
goto ciu_out;
}
/* when using DMA next we reset the fifo again */
if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
goto ciu_out;
} else {
/* if the controller reset bit did clear, then set clock regs */
if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
dev_err(host->dev,
"%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
__func__);
goto ciu_out;
}
}
if (host->use_dma == TRANS_MODE_IDMAC)
/* It is also required that we reinit idmac */
dw_mci_idmac_init(host);
ret = true;
ciu_out:
/* After a CTRL reset we need to have CIU set clock registers */
mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0);
return ret;
}
static const struct mmc_host_ops dw_mci_ops = {
.request = dw_mci_request,
.pre_req = dw_mci_pre_req,
.post_req = dw_mci_post_req,
.set_ios = dw_mci_set_ios,
.get_ro = dw_mci_get_ro,
.get_cd = dw_mci_get_cd,
.card_hw_reset = dw_mci_hw_reset,
.enable_sdio_irq = dw_mci_enable_sdio_irq,
.ack_sdio_irq = dw_mci_ack_sdio_irq,
.execute_tuning = dw_mci_execute_tuning,
.card_busy = dw_mci_card_busy,
.start_signal_voltage_switch = dw_mci_switch_voltage,
.prepare_hs400_tuning = dw_mci_prepare_hs400_tuning,
};
#ifdef CONFIG_FAULT_INJECTION
static enum hrtimer_restart dw_mci_fault_timer(struct hrtimer *t)
{
struct dw_mci *host = container_of(t, struct dw_mci, fault_timer);
unsigned long flags;
spin_lock_irqsave(&host->irq_lock, flags);
/*
* Only inject an error if we haven't already got an error or data over
* interrupt.
*/
if (!host->data_status) {
host->data_status = SDMMC_INT_DCRC;
set_bit(EVENT_DATA_ERROR, &host->pending_events);
queue_work(system_bh_wq, &host->bh_work);
}
spin_unlock_irqrestore(&host->irq_lock, flags);
return HRTIMER_NORESTART;
}
static void dw_mci_start_fault_timer(struct dw_mci *host)
{
struct mmc_data *data = host->data;
if (!data || data->blocks <= 1)
return;
if (!should_fail(&host->fail_data_crc, 1))
return;
/*
* Try to inject the error at random points during the data transfer.
*/
hrtimer_start(&host->fault_timer,
ms_to_ktime(get_random_u32_below(25)),
HRTIMER_MODE_REL);
}
static void dw_mci_stop_fault_timer(struct dw_mci *host)
{
hrtimer_cancel(&host->fault_timer);
}
static void dw_mci_init_fault(struct dw_mci *host)
{
host->fail_data_crc = (struct fault_attr) FAULT_ATTR_INITIALIZER;
hrtimer_init(&host->fault_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
host->fault_timer.function = dw_mci_fault_timer;
}
#else
static void dw_mci_init_fault(struct dw_mci *host)
{
}
static void dw_mci_start_fault_timer(struct dw_mci *host)
{
}
static void dw_mci_stop_fault_timer(struct dw_mci *host)
{
}
#endif
static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
__releases(&host->lock)
__acquires(&host->lock)
{
struct dw_mci_slot *slot;
struct mmc_host *prev_mmc = host->slot->mmc;
WARN_ON(host->cmd || host->data);
host->slot->mrq = NULL;
host->mrq = NULL;
if (!list_empty(&host->queue)) {
slot = list_entry(host->queue.next,
struct dw_mci_slot, queue_node);
list_del(&slot->queue_node);
dev_vdbg(host->dev, "list not empty: %s is next\n",
mmc_hostname(slot->mmc));
host->state = STATE_SENDING_CMD;
dw_mci_start_request(host, slot);
} else {
dev_vdbg(host->dev, "list empty\n");
if (host->state == STATE_SENDING_CMD11)
host->state = STATE_WAITING_CMD11_DONE;
else
host->state = STATE_IDLE;
}
spin_unlock(&host->lock);
mmc_request_done(prev_mmc, mrq);
spin_lock(&host->lock);
}
static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
{
u32 status = host->cmd_status;
host->cmd_status = 0;
/* Read the response from the card (up to 16 bytes) */
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136) {
cmd->resp[3] = mci_readl(host, RESP0);
cmd->resp[2] = mci_readl(host, RESP1);
cmd->resp[1] = mci_readl(host, RESP2);
cmd->resp[0] = mci_readl(host, RESP3);
} else {
cmd->resp[0] = mci_readl(host, RESP0);
cmd->resp[1] = 0;
cmd->resp[2] = 0;
cmd->resp[3] = 0;
}
}
if (status & SDMMC_INT_RTO)
cmd->error = -ETIMEDOUT;
else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
cmd->error = -EILSEQ;
else if (status & SDMMC_INT_RESP_ERR)
cmd->error = -EIO;
else
cmd->error = 0;
return cmd->error;
}
static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
{
u32 status = host->data_status;
if (status & DW_MCI_DATA_ERROR_FLAGS) {
if (status & SDMMC_INT_DRTO) {
data->error = -ETIMEDOUT;
} else if (status & SDMMC_INT_DCRC) {
data->error = -EILSEQ;
} else if (status & SDMMC_INT_EBE) {
if (host->dir_status ==
DW_MCI_SEND_STATUS) {
/*
* No data CRC status was returned.
* The number of bytes transferred
* will be exaggerated in PIO mode.
*/
data->bytes_xfered = 0;
data->error = -ETIMEDOUT;
} else if (host->dir_status ==
DW_MCI_RECV_STATUS) {
data->error = -EILSEQ;
}
} else {
/* SDMMC_INT_SBE is included */
data->error = -EILSEQ;
}
dev_dbg(host->dev, "data error, status 0x%08x\n", status);
/*
* After an error, there may be data lingering
* in the FIFO
*/
dw_mci_reset(host);
} else {
data->bytes_xfered = data->blocks * data->blksz;
data->error = 0;
}
return data->error;
}
static void dw_mci_set_drto(struct dw_mci *host)
{
const struct dw_mci_drv_data *drv_data = host->drv_data;
unsigned int drto_clks;
unsigned int drto_div;
unsigned int drto_ms;
unsigned long irqflags;
if (drv_data && drv_data->get_drto_clks)
drto_clks = drv_data->get_drto_clks(host);
else
drto_clks = mci_readl(host, TMOUT) >> 8;
drto_div = (mci_readl(host, CLKDIV) & 0xff) * 2;
if (drto_div == 0)
drto_div = 1;
drto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * drto_clks * drto_div,
host->bus_hz);
dev_dbg(host->dev, "drto_ms: %u\n", drto_ms);
/* add a bit spare time */
drto_ms += 10;
spin_lock_irqsave(&host->irq_lock, irqflags);
if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
mod_timer(&host->dto_timer,
jiffies + msecs_to_jiffies(drto_ms));
spin_unlock_irqrestore(&host->irq_lock, irqflags);
}
static bool dw_mci_clear_pending_cmd_complete(struct dw_mci *host)
{
if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
return false;
/*
* Really be certain that the timer has stopped. This is a bit of
* paranoia and could only really happen if we had really bad
* interrupt latency and the interrupt routine and timeout were
* running concurrently so that the del_timer() in the interrupt
* handler couldn't run.
*/
WARN_ON(del_timer_sync(&host->cto_timer));
clear_bit(EVENT_CMD_COMPLETE, &host->pending_events);
return true;
}
static bool dw_mci_clear_pending_data_complete(struct dw_mci *host)
{
if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events))
return false;
/* Extra paranoia just like dw_mci_clear_pending_cmd_complete() */
WARN_ON(del_timer_sync(&host->dto_timer));
clear_bit(EVENT_DATA_COMPLETE, &host->pending_events);
return true;
}
static void dw_mci_work_func(struct work_struct *t)
{
struct dw_mci *host = from_work(host, t, bh_work);
struct mmc_data *data;
struct mmc_command *cmd;
struct mmc_request *mrq;
enum dw_mci_state state;
enum dw_mci_state prev_state;
unsigned int err;
spin_lock(&host->lock);
state = host->state;
data = host->data;
mrq = host->mrq;
do {
prev_state = state;
switch (state) {
case STATE_IDLE:
case STATE_WAITING_CMD11_DONE:
break;
case STATE_SENDING_CMD11:
case STATE_SENDING_CMD:
if (!dw_mci_clear_pending_cmd_complete(host))
break;
cmd = host->cmd;
host->cmd = NULL;
set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
err = dw_mci_command_complete(host, cmd);
if (cmd == mrq->sbc && !err) {
__dw_mci_start_request(host, host->slot,
mrq->cmd);
goto unlock;
}
if (cmd->data && err) {
/*
* During UHS tuning sequence, sending the stop
* command after the response CRC error would
* throw the system into a confused state
* causing all future tuning phases to report
* failure.
*
* In such case controller will move into a data
* transfer state after a response error or
* response CRC error. Let's let that finish
* before trying to send a stop, so we'll go to
* STATE_SENDING_DATA.
*
* Although letting the data transfer take place
* will waste a bit of time (we already know
* the command was bad), it can't cause any
* errors since it's possible it would have
* taken place anyway if this bh work got
* delayed. Allowing the transfer to take place
* avoids races and keeps things simple.
*/
if (err != -ETIMEDOUT &&
host->dir_status == DW_MCI_RECV_STATUS) {
state = STATE_SENDING_DATA;
continue;
}
send_stop_abort(host, data);
dw_mci_stop_dma(host);
state = STATE_SENDING_STOP;
break;
}
if (!cmd->data || err) {
dw_mci_request_end(host, mrq);
goto unlock;
}
prev_state = state = STATE_SENDING_DATA;
fallthrough;
case STATE_SENDING_DATA:
/*
* We could get a data error and never a transfer
* complete so we'd better check for it here.
*
* Note that we don't really care if we also got a
* transfer complete; stopping the DMA and sending an
* abort won't hurt.
*/
if (test_and_clear_bit(EVENT_DATA_ERROR,
&host->pending_events)) {
if (!(host->data_status & (SDMMC_INT_DRTO |
SDMMC_INT_EBE)))
send_stop_abort(host, data);
dw_mci_stop_dma(host);
state = STATE_DATA_ERROR;
break;
}
if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
&host->pending_events)) {
/*
* If all data-related interrupts don't come
* within the given time in reading data state.
*/
if (host->dir_status == DW_MCI_RECV_STATUS)
dw_mci_set_drto(host);
break;
}
set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
/*
* Handle an EVENT_DATA_ERROR that might have shown up
* before the transfer completed. This might not have
* been caught by the check above because the interrupt
* could have gone off between the previous check and
* the check for transfer complete.
*
* Technically this ought not be needed assuming we
* get a DATA_COMPLETE eventually (we'll notice the
* error and end the request), but it shouldn't hurt.
*
* This has the advantage of sending the stop command.
*/
if (test_and_clear_bit(EVENT_DATA_ERROR,
&host->pending_events)) {
if (!(host->data_status & (SDMMC_INT_DRTO |
SDMMC_INT_EBE)))
send_stop_abort(host, data);
dw_mci_stop_dma(host);
state = STATE_DATA_ERROR;
break;
}
prev_state = state = STATE_DATA_BUSY;
fallthrough;
case STATE_DATA_BUSY:
if (!dw_mci_clear_pending_data_complete(host)) {
/*
* If data error interrupt comes but data over
* interrupt doesn't come within the given time.
* in reading data state.
*/
if (host->dir_status == DW_MCI_RECV_STATUS)
dw_mci_set_drto(host);
break;
}
dw_mci_stop_fault_timer(host);
host->data = NULL;
set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
err = dw_mci_data_complete(host, data);
if (!err) {
if (!data->stop || mrq->sbc) {
if (mrq->sbc && data->stop)
data->stop->error = 0;
dw_mci_request_end(host, mrq);
goto unlock;
}
/* stop command for open-ended transfer*/
if (data->stop)
send_stop_abort(host, data);
} else {
/*
* If we don't have a command complete now we'll
* never get one since we just reset everything;
* better end the request.
*
* If we do have a command complete we'll fall
* through to the SENDING_STOP command and
* everything will be peachy keen.
*/
if (!test_bit(EVENT_CMD_COMPLETE,
&host->pending_events)) {
host->cmd = NULL;
dw_mci_request_end(host, mrq);
goto unlock;
}
}
/*
* If err has non-zero,
* stop-abort command has been already issued.
*/
prev_state = state = STATE_SENDING_STOP;
fallthrough;
case STATE_SENDING_STOP:
if (!dw_mci_clear_pending_cmd_complete(host))
break;
/* CMD error in data command */
if (mrq->cmd->error && mrq->data)
dw_mci_reset(host);
dw_mci_stop_fault_timer(host);
host->cmd = NULL;
host->data = NULL;
if (!mrq->sbc && mrq->stop)
dw_mci_command_complete(host, mrq->stop);
else
host->cmd_status = 0;
dw_mci_request_end(host, mrq);
goto unlock;
case STATE_DATA_ERROR:
if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
&host->pending_events))
break;
state = STATE_DATA_BUSY;
break;
}
} while (state != prev_state);
host->state = state;
unlock:
spin_unlock(&host->lock);
}
/* push final bytes to part_buf, only use during push */
static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
{
memcpy((void *)&host->part_buf, buf, cnt);
host->part_buf_count = cnt;
}
/* append bytes to part_buf, only use during push */
static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
{
cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
host->part_buf_count += cnt;
return cnt;
}
/* pull first bytes from part_buf, only use during pull */
static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
{
cnt = min_t(int, cnt, host->part_buf_count);
if (cnt) {
memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
cnt);
host->part_buf_count -= cnt;
host->part_buf_start += cnt;
}
return cnt;
}
/* pull final bytes from the part_buf, assuming it's just been filled */
static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
{
memcpy(buf, &host->part_buf, cnt);
host->part_buf_start = cnt;
host->part_buf_count = (1 << host->data_shift) - cnt;
}
static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
{
struct mmc_data *data = host->data;
int init_cnt = cnt;
/* try and push anything in the part_buf */
if (unlikely(host->part_buf_count)) {
int len = dw_mci_push_part_bytes(host, buf, cnt);
buf += len;
cnt -= len;
if (host->part_buf_count == 2) {
mci_fifo_writew(host->fifo_reg, host->part_buf16);
host->part_buf_count = 0;
}
}
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (unlikely((unsigned long)buf & 0x1)) {
while (cnt >= 2) {
u16 aligned_buf[64];
int len = min(cnt & -2, (int)sizeof(aligned_buf));
int items = len >> 1;
int i;
/* memcpy from input buffer into aligned buffer */
memcpy(aligned_buf, buf, len);
buf += len;
cnt -= len;
/* push data from aligned buffer into fifo */
for (i = 0; i < items; ++i)
mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
}
} else
#endif
{
u16 *pdata = buf;
for (; cnt >= 2; cnt -= 2)
mci_fifo_writew(host->fifo_reg, *pdata++);
buf = pdata;
}
/* put anything remaining in the part_buf */
if (cnt) {
dw_mci_set_part_bytes(host, buf, cnt);
/* Push data if we have reached the expected data length */
if ((data->bytes_xfered + init_cnt) ==
(data->blksz * data->blocks))
mci_fifo_writew(host->fifo_reg, host->part_buf16);
}
}
static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
{
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (unlikely((unsigned long)buf & 0x1)) {
while (cnt >= 2) {
/* pull data from fifo into aligned buffer */
u16 aligned_buf[64];
int len = min(cnt & -2, (int)sizeof(aligned_buf));
int items = len >> 1;
int i;
for (i = 0; i < items; ++i)
aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
/* memcpy from aligned buffer into output buffer */
memcpy(buf, aligned_buf, len);
buf += len;
cnt -= len;
}
} else
#endif
{
u16 *pdata = buf;
for (; cnt >= 2; cnt -= 2)
*pdata++ = mci_fifo_readw(host->fifo_reg);
buf = pdata;
}
if (cnt) {
host->part_buf16 = mci_fifo_readw(host->fifo_reg);
dw_mci_pull_final_bytes(host, buf, cnt);
}
}
static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
{
struct mmc_data *data = host->data;
int init_cnt = cnt;
/* try and push anything in the part_buf */
if (unlikely(host->part_buf_count)) {
int len = dw_mci_push_part_bytes(host, buf, cnt);
buf += len;
cnt -= len;
if (host->part_buf_count == 4) {
mci_fifo_writel(host->fifo_reg, host->part_buf32);
host->part_buf_count = 0;
}
}
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (unlikely((unsigned long)buf & 0x3)) {
while (cnt >= 4) {
u32 aligned_buf[32];
int len = min(cnt & -4, (int)sizeof(aligned_buf));
int items = len >> 2;
int i;
/* memcpy from input buffer into aligned buffer */
memcpy(aligned_buf, buf, len);
buf += len;
cnt -= len;
/* push data from aligned buffer into fifo */
for (i = 0; i < items; ++i)
mci_fifo_writel(host->fifo_reg, aligned_buf[i]);
}
} else
#endif
{
u32 *pdata = buf;
for (; cnt >= 4; cnt -= 4)
mci_fifo_writel(host->fifo_reg, *pdata++);
buf = pdata;
}
/* put anything remaining in the part_buf */
if (cnt) {
dw_mci_set_part_bytes(host, buf, cnt);
/* Push data if we have reached the expected data length */
if ((data->bytes_xfered + init_cnt) ==
(data->blksz * data->blocks))
mci_fifo_writel(host->fifo_reg, host->part_buf32);
}
}
static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
{
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (unlikely((unsigned long)buf & 0x3)) {
while (cnt >= 4) {
/* pull data from fifo into aligned buffer */
u32 aligned_buf[32];
int len = min(cnt & -4, (int)sizeof(aligned_buf));
int items = len >> 2;
int i;
for (i = 0; i < items; ++i)
aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
/* memcpy from aligned buffer into output buffer */
memcpy(buf, aligned_buf, len);
buf += len;
cnt -= len;
}
} else
#endif
{
u32 *pdata = buf;
for (; cnt >= 4; cnt -= 4)
*pdata++ = mci_fifo_readl(host->fifo_reg);
buf = pdata;
}
if (cnt) {
host->part_buf32 = mci_fifo_readl(host->fifo_reg);
dw_mci_pull_final_bytes(host, buf, cnt);
}
}
static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
{
struct mmc_data *data = host->data;
int init_cnt = cnt;
/* try and push anything in the part_buf */
if (unlikely(host->part_buf_count)) {
int len = dw_mci_push_part_bytes(host, buf, cnt);
buf += len;
cnt -= len;
if (host->part_buf_count == 8) {
mci_fifo_writeq(host->fifo_reg, host->part_buf);
host->part_buf_count = 0;
}
}
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (unlikely((unsigned long)buf & 0x7)) {
while (cnt >= 8) {
u64 aligned_buf[16];
int len = min(cnt & -8, (int)sizeof(aligned_buf));
int items = len >> 3;
int i;
/* memcpy from input buffer into aligned buffer */
memcpy(aligned_buf, buf, len);
buf += len;
cnt -= len;
/* push data from aligned buffer into fifo */
for (i = 0; i < items; ++i)
mci_fifo_writeq(host->fifo_reg, aligned_buf[i]);
}
} else
#endif
{
u64 *pdata = buf;
for (; cnt >= 8; cnt -= 8)
mci_fifo_writeq(host->fifo_reg, *pdata++);
buf = pdata;
}
/* put anything remaining in the part_buf */
if (cnt) {
dw_mci_set_part_bytes(host, buf, cnt);
/* Push data if we have reached the expected data length */
if ((data->bytes_xfered + init_cnt) ==
(data->blksz * data->blocks))
mci_fifo_writeq(host->fifo_reg, host->part_buf);
}
}
static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
{
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (unlikely((unsigned long)buf & 0x7)) {
while (cnt >= 8) {
/* pull data from fifo into aligned buffer */
u64 aligned_buf[16];
int len = min(cnt & -8, (int)sizeof(aligned_buf));
int items = len >> 3;
int i;
for (i = 0; i < items; ++i)
aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
/* memcpy from aligned buffer into output buffer */
memcpy(buf, aligned_buf, len);
buf += len;
cnt -= len;
}
} else
#endif
{
u64 *pdata = buf;
for (; cnt >= 8; cnt -= 8)
*pdata++ = mci_fifo_readq(host->fifo_reg);
buf = pdata;
}
if (cnt) {
host->part_buf = mci_fifo_readq(host->fifo_reg);
dw_mci_pull_final_bytes(host, buf, cnt);
}
}
static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
{
int len;
/* get remaining partial bytes */
len = dw_mci_pull_part_bytes(host, buf, cnt);
if (unlikely(len == cnt))
return;
buf += len;
cnt -= len;
/* get the rest of the data */
host->pull_data(host, buf, cnt);
}
static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
{
struct sg_mapping_iter *sg_miter = &host->sg_miter;
void *buf;
unsigned int offset;
struct mmc_data *data = host->data;
int shift = host->data_shift;
u32 status;
unsigned int len;
unsigned int remain, fcnt;
do {
if (!sg_miter_next(sg_miter))
goto done;
host->sg = sg_miter->piter.sg;
buf = sg_miter->addr;
remain = sg_miter->length;
offset = 0;
do {
fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
<< shift) + host->part_buf_count;
len = min(remain, fcnt);
if (!len)
break;
dw_mci_pull_data(host, (void *)(buf + offset), len);
data->bytes_xfered += len;
offset += len;
remain -= len;
} while (remain);
sg_miter->consumed = offset;
status = mci_readl(host, MINTSTS);
mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
/* if the RXDR is ready read again */
} while ((status & SDMMC_INT_RXDR) ||
(dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
if (!remain) {
if (!sg_miter_next(sg_miter))
goto done;
sg_miter->consumed = 0;
}
sg_miter_stop(sg_miter);
return;
done:
sg_miter_stop(sg_miter);
host->sg = NULL;
smp_wmb(); /* drain writebuffer */
set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
}
static void dw_mci_write_data_pio(struct dw_mci *host)
{
struct sg_mapping_iter *sg_miter = &host->sg_miter;
void *buf;
unsigned int offset;
struct mmc_data *data = host->data;
int shift = host->data_shift;
u32 status;
unsigned int len;
unsigned int fifo_depth = host->fifo_depth;
unsigned int remain, fcnt;
do {
if (!sg_miter_next(sg_miter))
goto done;
host->sg = sg_miter->piter.sg;
buf = sg_miter->addr;
remain = sg_miter->length;
offset = 0;
do {
fcnt = ((fifo_depth -
SDMMC_GET_FCNT(mci_readl(host, STATUS)))
<< shift) - host->part_buf_count;
len = min(remain, fcnt);
if (!len)
break;
host->push_data(host, (void *)(buf + offset), len);
data->bytes_xfered += len;
offset += len;
remain -= len;
} while (remain);
sg_miter->consumed = offset;
status = mci_readl(host, MINTSTS);
mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
} while (status & SDMMC_INT_TXDR); /* if TXDR write again */
if (!remain) {
if (!sg_miter_next(sg_miter))
goto done;
sg_miter->consumed = 0;
}
sg_miter_stop(sg_miter);
return;
done:
sg_miter_stop(sg_miter);
host->sg = NULL;
smp_wmb(); /* drain writebuffer */
set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
}
static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
{
del_timer(&host->cto_timer);
if (!host->cmd_status)
host->cmd_status = status;
smp_wmb(); /* drain writebuffer */
set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
queue_work(system_bh_wq, &host->bh_work);
dw_mci_start_fault_timer(host);
}
static void dw_mci_handle_cd(struct dw_mci *host)
{
struct dw_mci_slot *slot = host->slot;
mmc_detect_change(slot->mmc,
msecs_to_jiffies(host->pdata->detect_delay_ms));
}
static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
{
struct dw_mci *host = dev_id;
u32 pending;
struct dw_mci_slot *slot = host->slot;
pending = mci_readl(host, MINTSTS); /* read-only mask reg */
if (pending) {
/* Check volt switch first, since it can look like an error */
if ((host->state == STATE_SENDING_CMD11) &&
(pending & SDMMC_INT_VOLT_SWITCH)) {
mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
pending &= ~SDMMC_INT_VOLT_SWITCH;
/*
* Hold the lock; we know cmd11_timer can't be kicked
* off after the lock is released, so safe to delete.
*/
spin_lock(&host->irq_lock);
dw_mci_cmd_interrupt(host, pending);
spin_unlock(&host->irq_lock);
del_timer(&host->cmd11_timer);
}
if (pending & DW_MCI_CMD_ERROR_FLAGS) {
spin_lock(&host->irq_lock);
del_timer(&host->cto_timer);
mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
host->cmd_status = pending;
smp_wmb(); /* drain writebuffer */
set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
spin_unlock(&host->irq_lock);
}
if (pending & DW_MCI_DATA_ERROR_FLAGS) {
spin_lock(&host->irq_lock);
if (host->quirks & DW_MMC_QUIRK_EXTENDED_TMOUT)
del_timer(&host->dto_timer);
/* if there is an error report DATA_ERROR */
mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
host->data_status = pending;
smp_wmb(); /* drain writebuffer */
set_bit(EVENT_DATA_ERROR, &host->pending_events);
if (host->quirks & DW_MMC_QUIRK_EXTENDED_TMOUT)
/* In case of error, we cannot expect a DTO */
set_bit(EVENT_DATA_COMPLETE,
&host->pending_events);
queue_work(system_bh_wq, &host->bh_work);
spin_unlock(&host->irq_lock);
}
if (pending & SDMMC_INT_DATA_OVER) {
spin_lock(&host->irq_lock);
del_timer(&host->dto_timer);
mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
if (!host->data_status)
host->data_status = pending;
smp_wmb(); /* drain writebuffer */
if (host->dir_status == DW_MCI_RECV_STATUS) {
if (host->sg != NULL)
dw_mci_read_data_pio(host, true);
}
set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
queue_work(system_bh_wq, &host->bh_work);
spin_unlock(&host->irq_lock);
}
if (pending & SDMMC_INT_RXDR) {
mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
dw_mci_read_data_pio(host, false);
}
if (pending & SDMMC_INT_TXDR) {
mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
dw_mci_write_data_pio(host);
}
if (pending & SDMMC_INT_CMD_DONE) {
spin_lock(&host->irq_lock);
mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
dw_mci_cmd_interrupt(host, pending);
spin_unlock(&host->irq_lock);
}
if (pending & SDMMC_INT_CD) {
mci_writel(host, RINTSTS, SDMMC_INT_CD);
dw_mci_handle_cd(host);
}
if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
mci_writel(host, RINTSTS,
SDMMC_INT_SDIO(slot->sdio_id));
__dw_mci_enable_sdio_irq(slot, 0);
sdio_signal_irq(slot->mmc);
}
}
if (host->use_dma != TRANS_MODE_IDMAC)
return IRQ_HANDLED;
/* Handle IDMA interrupts */
if (host->dma_64bit_address == 1) {
pending = mci_readl(host, IDSTS64);
if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
SDMMC_IDMAC_INT_RI);
mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
host->dma_ops->complete((void *)host);
}
} else {
pending = mci_readl(host, IDSTS);
if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
SDMMC_IDMAC_INT_RI);
mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
host->dma_ops->complete((void *)host);
}
}
return IRQ_HANDLED;
}
static int dw_mci_init_slot_caps(struct dw_mci_slot *slot)
{
struct dw_mci *host = slot->host;
const struct dw_mci_drv_data *drv_data = host->drv_data;
struct mmc_host *mmc = slot->mmc;
int ctrl_id;
if (host->pdata->caps)
mmc->caps = host->pdata->caps;
if (host->pdata->pm_caps)
mmc->pm_caps = host->pdata->pm_caps;
if (drv_data)
mmc->caps |= drv_data->common_caps;
if (host->dev->of_node) {
ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
if (ctrl_id < 0)
ctrl_id = 0;
} else {
ctrl_id = to_platform_device(host->dev)->id;
}
if (drv_data && drv_data->caps) {
if (ctrl_id >= drv_data->num_caps) {
dev_err(host->dev, "invalid controller id %d\n",
ctrl_id);
return -EINVAL;
}
mmc->caps |= drv_data->caps[ctrl_id];
}
if (host->pdata->caps2)
mmc->caps2 = host->pdata->caps2;
/* if host has set a minimum_freq, we should respect it */
if (host->minimum_speed)
mmc->f_min = host->minimum_speed;
else
mmc->f_min = DW_MCI_FREQ_MIN;
if (!mmc->f_max)
mmc->f_max = DW_MCI_FREQ_MAX;
/* Process SDIO IRQs through the sdio_irq_work. */
if (mmc->caps & MMC_CAP_SDIO_IRQ)
mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
return 0;
}
static int dw_mci_init_slot(struct dw_mci *host)
{
struct mmc_host *mmc;
struct dw_mci_slot *slot;
int ret;
mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
if (!mmc)
return -ENOMEM;
slot = mmc_priv(mmc);
slot->id = 0;
slot->sdio_id = host->sdio_id0 + slot->id;
slot->mmc = mmc;
slot->host = host;
host->slot = slot;
mmc->ops = &dw_mci_ops;
/*if there are external regulators, get them*/
ret = mmc_regulator_get_supply(mmc);
if (ret)
goto err_host_allocated;
if (!mmc->ocr_avail)
mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
ret = mmc_of_parse(mmc);
if (ret)
goto err_host_allocated;
ret = dw_mci_init_slot_caps(slot);
if (ret)
goto err_host_allocated;
/* Useful defaults if platform data is unset. */
if (host->use_dma == TRANS_MODE_IDMAC) {
mmc->max_segs = host->ring_size;
mmc->max_blk_size = 65535;
mmc->max_req_size = DW_MCI_DESC_DATA_LENGTH * host->ring_size;
mmc->max_seg_size = mmc->max_req_size;
mmc->max_blk_count = mmc->max_req_size / 512;
} else if (host->use_dma == TRANS_MODE_EDMAC) {
mmc->max_segs = 64;
mmc->max_blk_size = 65535;
mmc->max_blk_count = 65535;
mmc->max_req_size =
mmc->max_blk_size * mmc->max_blk_count;
mmc->max_seg_size = mmc->max_req_size;
} else {
/* TRANS_MODE_PIO */
mmc->max_segs = 64;
mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
mmc->max_blk_count = 512;
mmc->max_req_size = mmc->max_blk_size *
mmc->max_blk_count;
mmc->max_seg_size = mmc->max_req_size;
}
dw_mci_get_cd(mmc);
ret = mmc_add_host(mmc);
if (ret)
goto err_host_allocated;
#if defined(CONFIG_DEBUG_FS)
dw_mci_init_debugfs(slot);
#endif
return 0;
err_host_allocated:
mmc_free_host(mmc);
return ret;
}
static void dw_mci_cleanup_slot(struct dw_mci_slot *slot)
{
/* Debugfs stuff is cleaned up by mmc core */
mmc_remove_host(slot->mmc);
slot->host->slot = NULL;
mmc_free_host(slot->mmc);
}
static void dw_mci_init_dma(struct dw_mci *host)
{
int addr_config;
struct device *dev = host->dev;
/*
* Check tansfer mode from HCON[17:16]
* Clear the ambiguous description of dw_mmc databook:
* 2b'00: No DMA Interface -> Actually means using Internal DMA block
* 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
* 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
* 2b'11: Non DW DMA Interface -> pio only
* Compared to DesignWare DMA Interface, Generic DMA Interface has a
* simpler request/acknowledge handshake mechanism and both of them
* are regarded as external dma master for dw_mmc.
*/
host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
if (host->use_dma == DMA_INTERFACE_IDMA) {
host->use_dma = TRANS_MODE_IDMAC;
} else if (host->use_dma == DMA_INTERFACE_DWDMA ||
host->use_dma == DMA_INTERFACE_GDMA) {
host->use_dma = TRANS_MODE_EDMAC;
} else {
goto no_dma;
}
/* Determine which DMA interface to use */
if (host->use_dma == TRANS_MODE_IDMAC) {
/*
* Check ADDR_CONFIG bit in HCON to find
* IDMAC address bus width
*/
addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
if (addr_config == 1) {
/* host supports IDMAC in 64-bit address mode */
host->dma_64bit_address = 1;
dev_info(host->dev,
"IDMAC supports 64-bit address mode.\n");
if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
dma_set_coherent_mask(host->dev,
DMA_BIT_MASK(64));
} else {
/* host supports IDMAC in 32-bit address mode */
host->dma_64bit_address = 0;
dev_info(host->dev,
"IDMAC supports 32-bit address mode.\n");
}
/* Alloc memory for sg translation */
host->sg_cpu = dmam_alloc_coherent(host->dev,
DESC_RING_BUF_SZ,
&host->sg_dma, GFP_KERNEL);
if (!host->sg_cpu) {
dev_err(host->dev,
"%s: could not alloc DMA memory\n",
__func__);
goto no_dma;
}
host->dma_ops = &dw_mci_idmac_ops;
dev_info(host->dev, "Using internal DMA controller.\n");
} else {
/* TRANS_MODE_EDMAC: check dma bindings again */
if ((device_property_string_array_count(dev, "dma-names") < 0) ||
!device_property_present(dev, "dmas")) {
goto no_dma;
}
host->dma_ops = &dw_mci_edmac_ops;
dev_info(host->dev, "Using external DMA controller.\n");
}
if (host->dma_ops->init && host->dma_ops->start &&
host->dma_ops->stop && host->dma_ops->cleanup) {
if (host->dma_ops->init(host)) {
dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
__func__);
goto no_dma;
}
} else {
dev_err(host->dev, "DMA initialization not found.\n");
goto no_dma;
}
return;
no_dma:
dev_info(host->dev, "Using PIO mode.\n");
host->use_dma = TRANS_MODE_PIO;
}
static void dw_mci_cmd11_timer(struct timer_list *t)
{
struct dw_mci *host = from_timer(host, t, cmd11_timer);
if (host->state != STATE_SENDING_CMD11) {
dev_warn(host->dev, "Unexpected CMD11 timeout\n");
return;
}
host->cmd_status = SDMMC_INT_RTO;
set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
queue_work(system_bh_wq, &host->bh_work);
}
static void dw_mci_cto_timer(struct timer_list *t)
{
struct dw_mci *host = from_timer(host, t, cto_timer);
unsigned long irqflags;
u32 pending;
spin_lock_irqsave(&host->irq_lock, irqflags);
/*
* If somehow we have very bad interrupt latency it's remotely possible
* that the timer could fire while the interrupt is still pending or
* while the interrupt is midway through running. Let's be paranoid
* and detect those two cases. Note that this is paranoia is somewhat
* justified because in this function we don't actually cancel the
* pending command in the controller--we just assume it will never come.
*/
pending = mci_readl(host, MINTSTS); /* read-only mask reg */
if (pending & (DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_CMD_DONE)) {
/* The interrupt should fire; no need to act but we can warn */
dev_warn(host->dev, "Unexpected interrupt latency\n");
goto exit;
}
if (test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) {
/* Presumably interrupt handler couldn't delete the timer */
dev_warn(host->dev, "CTO timeout when already completed\n");
goto exit;
}
/*
* Continued paranoia to make sure we're in the state we expect.
* This paranoia isn't really justified but it seems good to be safe.
*/
switch (host->state) {
case STATE_SENDING_CMD11:
case STATE_SENDING_CMD:
case STATE_SENDING_STOP:
/*
* If CMD_DONE interrupt does NOT come in sending command
* state, we should notify the driver to terminate current
* transfer and report a command timeout to the core.
*/
host->cmd_status = SDMMC_INT_RTO;
set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
queue_work(system_bh_wq, &host->bh_work);
break;
default:
dev_warn(host->dev, "Unexpected command timeout, state %d\n",
host->state);
break;
}
exit:
spin_unlock_irqrestore(&host->irq_lock, irqflags);
}
static void dw_mci_dto_timer(struct timer_list *t)
{
struct dw_mci *host = from_timer(host, t, dto_timer);
unsigned long irqflags;
u32 pending;
spin_lock_irqsave(&host->irq_lock, irqflags);
/*
* The DTO timer is much longer than the CTO timer, so it's even less
* likely that we'll these cases, but it pays to be paranoid.
*/
pending = mci_readl(host, MINTSTS); /* read-only mask reg */
if (pending & SDMMC_INT_DATA_OVER) {
/* The interrupt should fire; no need to act but we can warn */
dev_warn(host->dev, "Unexpected data interrupt latency\n");
goto exit;
}
if (test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) {
/* Presumably interrupt handler couldn't delete the timer */
dev_warn(host->dev, "DTO timeout when already completed\n");
goto exit;
}
/*
* Continued paranoia to make sure we're in the state we expect.
* This paranoia isn't really justified but it seems good to be safe.
*/
switch (host->state) {
case STATE_SENDING_DATA:
case STATE_DATA_BUSY:
/*
* If DTO interrupt does NOT come in sending data state,
* we should notify the driver to terminate current transfer
* and report a data timeout to the core.
*/
host->data_status = SDMMC_INT_DRTO;
set_bit(EVENT_DATA_ERROR, &host->pending_events);
set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
queue_work(system_bh_wq, &host->bh_work);
break;
default:
dev_warn(host->dev, "Unexpected data timeout, state %d\n",
host->state);
break;
}
exit:
spin_unlock_irqrestore(&host->irq_lock, irqflags);
}
#ifdef CONFIG_OF
static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
{
struct dw_mci_board *pdata;
struct device *dev = host->dev;
const struct dw_mci_drv_data *drv_data = host->drv_data;
int ret;
u32 clock_frequency;
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return ERR_PTR(-ENOMEM);
/* find reset controller when exist */
pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset");
if (IS_ERR(pdata->rstc))
return ERR_CAST(pdata->rstc);
if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth))
dev_info(dev,
"fifo-depth property not found, using value of FIFOTH register as default\n");
device_property_read_u32(dev, "card-detect-delay",
&pdata->detect_delay_ms);
device_property_read_u32(dev, "data-addr", &host->data_addr_override);
if (device_property_present(dev, "fifo-watermark-aligned"))
host->wm_aligned = true;
if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency))
pdata->bus_hz = clock_frequency;
if (drv_data && drv_data->parse_dt) {
ret = drv_data->parse_dt(host);
if (ret)
return ERR_PTR(ret);
}
return pdata;
}
#else /* CONFIG_OF */
static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
{
return ERR_PTR(-EINVAL);
}
#endif /* CONFIG_OF */
static void dw_mci_enable_cd(struct dw_mci *host)
{
unsigned long irqflags;
u32 temp;
/*
* No need for CD if all slots have a non-error GPIO
* as well as broken card detection is found.
*/
if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL)
return;
if (mmc_gpio_get_cd(host->slot->mmc) < 0) {
spin_lock_irqsave(&host->irq_lock, irqflags);
temp = mci_readl(host, INTMASK);
temp |= SDMMC_INT_CD;
mci_writel(host, INTMASK, temp);
spin_unlock_irqrestore(&host->irq_lock, irqflags);
}
}
int dw_mci_probe(struct dw_mci *host)
{
const struct dw_mci_drv_data *drv_data = host->drv_data;
int width, i, ret = 0;
u32 fifo_size;
if (!host->pdata) {
host->pdata = dw_mci_parse_dt(host);
if (IS_ERR(host->pdata))
return dev_err_probe(host->dev, PTR_ERR(host->pdata),
"platform data not available\n");
}
host->biu_clk = devm_clk_get(host->dev, "biu");
if (IS_ERR(host->biu_clk)) {
dev_dbg(host->dev, "biu clock not available\n");
ret = PTR_ERR(host->biu_clk);
if (ret == -EPROBE_DEFER)
return ret;
} else {
ret = clk_prepare_enable(host->biu_clk);
if (ret) {
dev_err(host->dev, "failed to enable biu clock\n");
return ret;
}
}
host->ciu_clk = devm_clk_get(host->dev, "ciu");
if (IS_ERR(host->ciu_clk)) {
dev_dbg(host->dev, "ciu clock not available\n");
ret = PTR_ERR(host->ciu_clk);
if (ret == -EPROBE_DEFER)
goto err_clk_biu;
host->bus_hz = host->pdata->bus_hz;
} else {
ret = clk_prepare_enable(host->ciu_clk);
if (ret) {
dev_err(host->dev, "failed to enable ciu clock\n");
goto err_clk_biu;
}
if (host->pdata->bus_hz) {
ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
if (ret)
dev_warn(host->dev,
"Unable to set bus rate to %uHz\n",
host->pdata->bus_hz);
}
host->bus_hz = clk_get_rate(host->ciu_clk);
}
if (!host->bus_hz) {
dev_err(host->dev,
"Platform data must supply bus speed\n");
ret = -ENODEV;
goto err_clk_ciu;
}
if (host->pdata->rstc) {
reset_control_assert(host->pdata->rstc);
usleep_range(10, 50);
reset_control_deassert(host->pdata->rstc);
}
if (drv_data && drv_data->init) {
ret = drv_data->init(host);
if (ret) {
dev_err(host->dev,
"implementation specific init failed\n");
goto err_clk_ciu;
}
}
timer_setup(&host->cmd11_timer, dw_mci_cmd11_timer, 0);
timer_setup(&host->cto_timer, dw_mci_cto_timer, 0);
timer_setup(&host->dto_timer, dw_mci_dto_timer, 0);
spin_lock_init(&host->lock);
spin_lock_init(&host->irq_lock);
INIT_LIST_HEAD(&host->queue);
dw_mci_init_fault(host);
/*
* Get the host data width - this assumes that HCON has been set with
* the correct values.
*/
i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
if (!i) {
host->push_data = dw_mci_push_data16;
host->pull_data = dw_mci_pull_data16;
width = 16;
host->data_shift = 1;
} else if (i == 2) {
host->push_data = dw_mci_push_data64;
host->pull_data = dw_mci_pull_data64;
width = 64;
host->data_shift = 3;
} else {
/* Check for a reserved value, and warn if it is */
WARN((i != 1),
"HCON reports a reserved host data width!\n"
"Defaulting to 32-bit access.\n");
host->push_data = dw_mci_push_data32;
host->pull_data = dw_mci_pull_data32;
width = 32;
host->data_shift = 2;
}
/* Reset all blocks */
if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
ret = -ENODEV;
goto err_clk_ciu;
}
host->dma_ops = host->pdata->dma_ops;
dw_mci_init_dma(host);
/* Clear the interrupts for the host controller */
mci_writel(host, RINTSTS, 0xFFFFFFFF);
mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
/* Put in max timeout */
mci_writel(host, TMOUT, 0xFFFFFFFF);
/*
* FIFO threshold settings RxMark = fifo_size / 2 - 1,
* Tx Mark = fifo_size / 2 DMA Size = 8
*/
if (!host->pdata->fifo_depth) {
/*
* Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
* have been overwritten by the bootloader, just like we're
* about to do, so if you know the value for your hardware, you
* should put it in the platform data.
*/
fifo_size = mci_readl(host, FIFOTH);
fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
} else {
fifo_size = host->pdata->fifo_depth;
}
host->fifo_depth = fifo_size;
host->fifoth_val =
SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
mci_writel(host, FIFOTH, host->fifoth_val);
/* disable clock to CIU */
mci_writel(host, CLKENA, 0);
mci_writel(host, CLKSRC, 0);
/*
* In 2.40a spec, Data offset is changed.
* Need to check the version-id and set data-offset for DATA register.
*/
host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
dev_info(host->dev, "Version ID is %04x\n", host->verid);
if (host->data_addr_override)
host->fifo_reg = host->regs + host->data_addr_override;
else if (host->verid < DW_MMC_240A)
host->fifo_reg = host->regs + DATA_OFFSET;
else
host->fifo_reg = host->regs + DATA_240A_OFFSET;
INIT_WORK(&host->bh_work, dw_mci_work_func);
ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
host->irq_flags, "dw-mci", host);
if (ret)
goto err_dmaunmap;
/*
* Enable interrupts for command done, data over, data empty,
* receive ready and error such as transmit, receive timeout, crc error
*/
mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
SDMMC_INT_TXDR | SDMMC_INT_RXDR |
DW_MCI_ERROR_FLAGS);
/* Enable mci interrupt */
mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
dev_info(host->dev,
"DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
host->irq, width, fifo_size);
/* We need at least one slot to succeed */
ret = dw_mci_init_slot(host);
if (ret) {
dev_dbg(host->dev, "slot %d init failed\n", i);
goto err_dmaunmap;
}
/* Now that slots are all setup, we can enable card detect */
dw_mci_enable_cd(host);
return 0;
err_dmaunmap:
if (host->use_dma && host->dma_ops->exit)
host->dma_ops->exit(host);
reset_control_assert(host->pdata->rstc);
err_clk_ciu:
clk_disable_unprepare(host->ciu_clk);
err_clk_biu:
clk_disable_unprepare(host->biu_clk);
return ret;
}
EXPORT_SYMBOL(dw_mci_probe);
void dw_mci_remove(struct dw_mci *host)
{
dev_dbg(host->dev, "remove slot\n");
if (host->slot)
dw_mci_cleanup_slot(host->slot);
mci_writel(host, RINTSTS, 0xFFFFFFFF);
mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
/* disable clock to CIU */
mci_writel(host, CLKENA, 0);
mci_writel(host, CLKSRC, 0);
if (host->use_dma && host->dma_ops->exit)
host->dma_ops->exit(host);
reset_control_assert(host->pdata->rstc);
clk_disable_unprepare(host->ciu_clk);
clk_disable_unprepare(host->biu_clk);
}
EXPORT_SYMBOL(dw_mci_remove);
#ifdef CONFIG_PM
int dw_mci_runtime_suspend(struct device *dev)
{
struct dw_mci *host = dev_get_drvdata(dev);
if (host->use_dma && host->dma_ops->exit)
host->dma_ops->exit(host);
clk_disable_unprepare(host->ciu_clk);
if (host->slot &&
(mmc_can_gpio_cd(host->slot->mmc) ||
!mmc_card_is_removable(host->slot->mmc)))
clk_disable_unprepare(host->biu_clk);
return 0;
}
EXPORT_SYMBOL(dw_mci_runtime_suspend);
int dw_mci_runtime_resume(struct device *dev)
{
int ret = 0;
struct dw_mci *host = dev_get_drvdata(dev);
if (host->slot &&
(mmc_can_gpio_cd(host->slot->mmc) ||
!mmc_card_is_removable(host->slot->mmc))) {
ret = clk_prepare_enable(host->biu_clk);
if (ret)
return ret;
}
ret = clk_prepare_enable(host->ciu_clk);
if (ret)
goto err;
if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
clk_disable_unprepare(host->ciu_clk);
ret = -ENODEV;
goto err;
}
if (host->use_dma && host->dma_ops->init)
host->dma_ops->init(host);
/*
* Restore the initial value at FIFOTH register
* And Invalidate the prev_blksz with zero
*/
mci_writel(host, FIFOTH, host->fifoth_val);
host->prev_blksz = 0;
/* Put in max timeout */
mci_writel(host, TMOUT, 0xFFFFFFFF);
mci_writel(host, RINTSTS, 0xFFFFFFFF);
mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
SDMMC_INT_TXDR | SDMMC_INT_RXDR |
DW_MCI_ERROR_FLAGS);
mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
if (host->slot && host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios);
/* Force setup bus to guarantee available clock output */
dw_mci_setup_bus(host->slot, true);
/* Re-enable SDIO interrupts. */
if (sdio_irq_claimed(host->slot->mmc))
__dw_mci_enable_sdio_irq(host->slot, 1);
/* Now that slots are all setup, we can enable card detect */
dw_mci_enable_cd(host);
return 0;
err:
if (host->slot &&
(mmc_can_gpio_cd(host->slot->mmc) ||
!mmc_card_is_removable(host->slot->mmc)))
clk_disable_unprepare(host->biu_clk);
return ret;
}
EXPORT_SYMBOL(dw_mci_runtime_resume);
#endif /* CONFIG_PM */
static int __init dw_mci_init(void)
{
pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
return 0;
}
static void __exit dw_mci_exit(void)
{
}
module_init(dw_mci_init);
module_exit(dw_mci_exit);
MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
MODULE_AUTHOR("NXP Semiconductor VietNam");
MODULE_AUTHOR("Imagination Technologies Ltd");
MODULE_LICENSE("GPL v2");