linux/drivers/mfd/intel-m10-bmc-pmci.c
Javier Carrasco 9842c62162 mfd: intel-m10-bmc: Constify struct regmap_config
`m10bmc_pmci_regmap_config` and `intel_m10bmc_regmap_config` are not
modified and can be declared as const to move their data to a
read-only section.

Signed-off-by: Javier Carrasco <javier.carrasco.cruz@gmail.com>
Link: https://lore.kernel.org/r/20240704-mfd-const-regmap_config-v2-7-0c8785b1331d@gmail.com
Signed-off-by: Lee Jones <lee@kernel.org>
2024-08-30 09:40:11 +01:00

458 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* MAX10 BMC Platform Management Component Interface (PMCI) based
* interface.
*
* Copyright (C) 2020-2023 Intel Corporation.
*/
#include <linux/bitfield.h>
#include <linux/device.h>
#include <linux/dfl.h>
#include <linux/mfd/core.h>
#include <linux/mfd/intel-m10-bmc.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/regmap.h>
struct m10bmc_pmci_device {
void __iomem *base;
struct intel_m10bmc m10bmc;
struct mutex flash_mutex; /* protects flash_busy and serializes flash read/read */
bool flash_busy;
};
/*
* Intel FGPA indirect register access via hardware controller/bridge.
*/
#define INDIRECT_CMD_OFF 0
#define INDIRECT_CMD_CLR 0
#define INDIRECT_CMD_RD BIT(0)
#define INDIRECT_CMD_WR BIT(1)
#define INDIRECT_CMD_ACK BIT(2)
#define INDIRECT_ADDR_OFF 0x4
#define INDIRECT_RD_OFF 0x8
#define INDIRECT_WR_OFF 0xc
#define INDIRECT_INT_US 1
#define INDIRECT_TIMEOUT_US 10000
struct indirect_ctx {
void __iomem *base;
struct device *dev;
};
static int indirect_clear_cmd(struct indirect_ctx *ctx)
{
unsigned int cmd;
int ret;
writel(INDIRECT_CMD_CLR, ctx->base + INDIRECT_CMD_OFF);
ret = readl_poll_timeout(ctx->base + INDIRECT_CMD_OFF, cmd,
cmd == INDIRECT_CMD_CLR,
INDIRECT_INT_US, INDIRECT_TIMEOUT_US);
if (ret)
dev_err(ctx->dev, "timed out waiting clear cmd (residual cmd=0x%x)\n", cmd);
return ret;
}
static int indirect_reg_read(void *context, unsigned int reg, unsigned int *val)
{
struct indirect_ctx *ctx = context;
unsigned int cmd, ack, tmpval;
int ret, ret2;
cmd = readl(ctx->base + INDIRECT_CMD_OFF);
if (cmd != INDIRECT_CMD_CLR)
dev_warn(ctx->dev, "residual cmd 0x%x on read entry\n", cmd);
writel(reg, ctx->base + INDIRECT_ADDR_OFF);
writel(INDIRECT_CMD_RD, ctx->base + INDIRECT_CMD_OFF);
ret = readl_poll_timeout(ctx->base + INDIRECT_CMD_OFF, ack,
(ack & INDIRECT_CMD_ACK) == INDIRECT_CMD_ACK,
INDIRECT_INT_US, INDIRECT_TIMEOUT_US);
if (ret)
dev_err(ctx->dev, "read timed out on reg 0x%x ack 0x%x\n", reg, ack);
else
tmpval = readl(ctx->base + INDIRECT_RD_OFF);
ret2 = indirect_clear_cmd(ctx);
if (ret)
return ret;
if (ret2)
return ret2;
*val = tmpval;
return 0;
}
static int indirect_reg_write(void *context, unsigned int reg, unsigned int val)
{
struct indirect_ctx *ctx = context;
unsigned int cmd, ack;
int ret, ret2;
cmd = readl(ctx->base + INDIRECT_CMD_OFF);
if (cmd != INDIRECT_CMD_CLR)
dev_warn(ctx->dev, "residual cmd 0x%x on write entry\n", cmd);
writel(val, ctx->base + INDIRECT_WR_OFF);
writel(reg, ctx->base + INDIRECT_ADDR_OFF);
writel(INDIRECT_CMD_WR, ctx->base + INDIRECT_CMD_OFF);
ret = readl_poll_timeout(ctx->base + INDIRECT_CMD_OFF, ack,
(ack & INDIRECT_CMD_ACK) == INDIRECT_CMD_ACK,
INDIRECT_INT_US, INDIRECT_TIMEOUT_US);
if (ret)
dev_err(ctx->dev, "write timed out on reg 0x%x ack 0x%x\n", reg, ack);
ret2 = indirect_clear_cmd(ctx);
if (ret)
return ret;
return ret2;
}
static void pmci_write_fifo(void __iomem *base, const u32 *buf, size_t count)
{
while (count--)
writel(*buf++, base);
}
static void pmci_read_fifo(void __iomem *base, u32 *buf, size_t count)
{
while (count--)
*buf++ = readl(base);
}
static u32 pmci_get_write_space(struct m10bmc_pmci_device *pmci)
{
u32 val;
int ret;
ret = read_poll_timeout(readl, val,
FIELD_GET(M10BMC_N6000_FLASH_FIFO_SPACE, val) ==
M10BMC_N6000_FIFO_MAX_WORDS,
M10BMC_FLASH_INT_US, M10BMC_FLASH_TIMEOUT_US,
false, pmci->base + M10BMC_N6000_FLASH_CTRL);
if (ret == -ETIMEDOUT)
return 0;
return FIELD_GET(M10BMC_N6000_FLASH_FIFO_SPACE, val) * M10BMC_N6000_FIFO_WORD_SIZE;
}
static int pmci_flash_bulk_write(struct intel_m10bmc *m10bmc, const u8 *buf, u32 size)
{
struct m10bmc_pmci_device *pmci = container_of(m10bmc, struct m10bmc_pmci_device, m10bmc);
u32 blk_size, offset = 0, write_count;
while (size) {
blk_size = min(pmci_get_write_space(pmci), size);
if (blk_size == 0) {
dev_err(m10bmc->dev, "get FIFO available size fail\n");
return -EIO;
}
if (size < M10BMC_N6000_FIFO_WORD_SIZE)
break;
write_count = blk_size / M10BMC_N6000_FIFO_WORD_SIZE;
pmci_write_fifo(pmci->base + M10BMC_N6000_FLASH_FIFO,
(u32 *)(buf + offset), write_count);
size -= blk_size;
offset += blk_size;
}
/* Handle remainder (less than M10BMC_N6000_FIFO_WORD_SIZE bytes) */
if (size) {
u32 tmp = 0;
memcpy(&tmp, buf + offset, size);
pmci_write_fifo(pmci->base + M10BMC_N6000_FLASH_FIFO, &tmp, 1);
}
return 0;
}
static int pmci_flash_bulk_read(struct intel_m10bmc *m10bmc, u8 *buf, u32 addr, u32 size)
{
struct m10bmc_pmci_device *pmci = container_of(m10bmc, struct m10bmc_pmci_device, m10bmc);
u32 blk_size, offset = 0, val, full_read_count, read_count;
int ret;
while (size) {
blk_size = min_t(u32, size, M10BMC_N6000_READ_BLOCK_SIZE);
full_read_count = blk_size / M10BMC_N6000_FIFO_WORD_SIZE;
read_count = full_read_count;
if (full_read_count * M10BMC_N6000_FIFO_WORD_SIZE < blk_size)
read_count++;
writel(addr + offset, pmci->base + M10BMC_N6000_FLASH_ADDR);
writel(FIELD_PREP(M10BMC_N6000_FLASH_READ_COUNT, read_count) |
M10BMC_N6000_FLASH_RD_MODE,
pmci->base + M10BMC_N6000_FLASH_CTRL);
ret = readl_poll_timeout((pmci->base + M10BMC_N6000_FLASH_CTRL), val,
!(val & M10BMC_N6000_FLASH_BUSY),
M10BMC_FLASH_INT_US, M10BMC_FLASH_TIMEOUT_US);
if (ret) {
dev_err(m10bmc->dev, "read timed out on reading flash 0x%xn", val);
return ret;
}
pmci_read_fifo(pmci->base + M10BMC_N6000_FLASH_FIFO,
(u32 *)(buf + offset), full_read_count);
size -= blk_size;
offset += blk_size;
if (full_read_count < read_count)
break;
writel(0, pmci->base + M10BMC_N6000_FLASH_CTRL);
}
/* Handle remainder (less than M10BMC_N6000_FIFO_WORD_SIZE bytes) */
if (size) {
u32 tmp;
pmci_read_fifo(pmci->base + M10BMC_N6000_FLASH_FIFO, &tmp, 1);
memcpy(buf + offset, &tmp, size);
writel(0, pmci->base + M10BMC_N6000_FLASH_CTRL);
}
return 0;
}
static int m10bmc_pmci_set_flash_host_mux(struct intel_m10bmc *m10bmc, bool request)
{
u32 ctrl;
int ret;
ret = regmap_update_bits(m10bmc->regmap, M10BMC_N6000_FLASH_MUX_CTRL,
M10BMC_N6000_FLASH_HOST_REQUEST,
FIELD_PREP(M10BMC_N6000_FLASH_HOST_REQUEST, request));
if (ret)
return ret;
return regmap_read_poll_timeout(m10bmc->regmap,
M10BMC_N6000_FLASH_MUX_CTRL, ctrl,
request ?
(get_flash_mux(ctrl) == M10BMC_N6000_FLASH_MUX_HOST) :
(get_flash_mux(ctrl) != M10BMC_N6000_FLASH_MUX_HOST),
M10BMC_FLASH_INT_US, M10BMC_FLASH_TIMEOUT_US);
}
static int m10bmc_pmci_flash_read(struct intel_m10bmc *m10bmc, u8 *buf, u32 addr, u32 size)
{
struct m10bmc_pmci_device *pmci = container_of(m10bmc, struct m10bmc_pmci_device, m10bmc);
int ret, ret2;
mutex_lock(&pmci->flash_mutex);
if (pmci->flash_busy) {
ret = -EBUSY;
goto unlock;
}
ret = m10bmc_pmci_set_flash_host_mux(m10bmc, true);
if (ret)
goto mux_fail;
ret = pmci_flash_bulk_read(m10bmc, buf, addr, size);
mux_fail:
ret2 = m10bmc_pmci_set_flash_host_mux(m10bmc, false);
unlock:
mutex_unlock(&pmci->flash_mutex);
if (ret)
return ret;
return ret2;
}
static int m10bmc_pmci_flash_write(struct intel_m10bmc *m10bmc, const u8 *buf, u32 offset, u32 size)
{
struct m10bmc_pmci_device *pmci = container_of(m10bmc, struct m10bmc_pmci_device, m10bmc);
int ret;
mutex_lock(&pmci->flash_mutex);
WARN_ON_ONCE(!pmci->flash_busy);
/* On write, firmware manages flash MUX */
ret = pmci_flash_bulk_write(m10bmc, buf + offset, size);
mutex_unlock(&pmci->flash_mutex);
return ret;
}
static int m10bmc_pmci_flash_lock(struct intel_m10bmc *m10bmc)
{
struct m10bmc_pmci_device *pmci = container_of(m10bmc, struct m10bmc_pmci_device, m10bmc);
int ret = 0;
mutex_lock(&pmci->flash_mutex);
if (pmci->flash_busy) {
ret = -EBUSY;
goto unlock;
}
pmci->flash_busy = true;
unlock:
mutex_unlock(&pmci->flash_mutex);
return ret;
}
static void m10bmc_pmci_flash_unlock(struct intel_m10bmc *m10bmc)
{
struct m10bmc_pmci_device *pmci = container_of(m10bmc, struct m10bmc_pmci_device, m10bmc);
mutex_lock(&pmci->flash_mutex);
WARN_ON_ONCE(!pmci->flash_busy);
pmci->flash_busy = false;
mutex_unlock(&pmci->flash_mutex);
}
static const struct intel_m10bmc_flash_bulk_ops m10bmc_pmci_flash_bulk_ops = {
.read = m10bmc_pmci_flash_read,
.write = m10bmc_pmci_flash_write,
.lock_write = m10bmc_pmci_flash_lock,
.unlock_write = m10bmc_pmci_flash_unlock,
};
static const struct regmap_range m10bmc_pmci_regmap_range[] = {
regmap_reg_range(M10BMC_N6000_SYS_BASE, M10BMC_N6000_SYS_END),
};
static const struct regmap_access_table m10bmc_pmci_access_table = {
.yes_ranges = m10bmc_pmci_regmap_range,
.n_yes_ranges = ARRAY_SIZE(m10bmc_pmci_regmap_range),
};
static const struct regmap_config m10bmc_pmci_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.wr_table = &m10bmc_pmci_access_table,
.rd_table = &m10bmc_pmci_access_table,
.reg_read = &indirect_reg_read,
.reg_write = &indirect_reg_write,
.max_register = M10BMC_N6000_SYS_END,
};
static struct mfd_cell m10bmc_pmci_n6000_bmc_subdevs[] = {
{ .name = "n6000bmc-hwmon" },
{ .name = "n6000bmc-sec-update" },
};
static const struct m10bmc_csr_map m10bmc_n6000_csr_map = {
.base = M10BMC_N6000_SYS_BASE,
.build_version = M10BMC_N6000_BUILD_VER,
.fw_version = NIOS2_N6000_FW_VERSION,
.mac_low = M10BMC_N6000_MAC_LOW,
.mac_high = M10BMC_N6000_MAC_HIGH,
.doorbell = M10BMC_N6000_DOORBELL,
.auth_result = M10BMC_N6000_AUTH_RESULT,
.bmc_prog_addr = M10BMC_N6000_BMC_PROG_ADDR,
.bmc_reh_addr = M10BMC_N6000_BMC_REH_ADDR,
.bmc_magic = M10BMC_N6000_BMC_PROG_MAGIC,
.sr_prog_addr = M10BMC_N6000_SR_PROG_ADDR,
.sr_reh_addr = M10BMC_N6000_SR_REH_ADDR,
.sr_magic = M10BMC_N6000_SR_PROG_MAGIC,
.pr_prog_addr = M10BMC_N6000_PR_PROG_ADDR,
.pr_reh_addr = M10BMC_N6000_PR_REH_ADDR,
.pr_magic = M10BMC_N6000_PR_PROG_MAGIC,
.rsu_update_counter = M10BMC_N6000_STAGING_FLASH_COUNT,
.staging_size = M10BMC_STAGING_SIZE,
};
static const struct intel_m10bmc_platform_info m10bmc_pmci_n6000 = {
.cells = m10bmc_pmci_n6000_bmc_subdevs,
.n_cells = ARRAY_SIZE(m10bmc_pmci_n6000_bmc_subdevs),
.csr_map = &m10bmc_n6000_csr_map,
};
static int m10bmc_pmci_probe(struct dfl_device *ddev)
{
struct device *dev = &ddev->dev;
struct m10bmc_pmci_device *pmci;
struct indirect_ctx *ctx;
int ret;
pmci = devm_kzalloc(dev, sizeof(*pmci), GFP_KERNEL);
if (!pmci)
return -ENOMEM;
pmci->m10bmc.flash_bulk_ops = &m10bmc_pmci_flash_bulk_ops;
pmci->m10bmc.dev = dev;
pmci->base = devm_ioremap_resource(dev, &ddev->mmio_res);
if (IS_ERR(pmci->base))
return PTR_ERR(pmci->base);
ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
mutex_init(&pmci->flash_mutex);
ctx->base = pmci->base + M10BMC_N6000_INDIRECT_BASE;
ctx->dev = dev;
indirect_clear_cmd(ctx);
pmci->m10bmc.regmap = devm_regmap_init(dev, NULL, ctx, &m10bmc_pmci_regmap_config);
if (IS_ERR(pmci->m10bmc.regmap)) {
ret = PTR_ERR(pmci->m10bmc.regmap);
goto destroy_mutex;
}
ret = m10bmc_dev_init(&pmci->m10bmc, &m10bmc_pmci_n6000);
if (ret)
goto destroy_mutex;
return 0;
destroy_mutex:
mutex_destroy(&pmci->flash_mutex);
return ret;
}
static void m10bmc_pmci_remove(struct dfl_device *ddev)
{
struct intel_m10bmc *m10bmc = dev_get_drvdata(&ddev->dev);
struct m10bmc_pmci_device *pmci = container_of(m10bmc, struct m10bmc_pmci_device, m10bmc);
mutex_destroy(&pmci->flash_mutex);
}
#define FME_FEATURE_ID_M10BMC_PMCI 0x12
static const struct dfl_device_id m10bmc_pmci_ids[] = {
{ FME_ID, FME_FEATURE_ID_M10BMC_PMCI },
{ }
};
MODULE_DEVICE_TABLE(dfl, m10bmc_pmci_ids);
static struct dfl_driver m10bmc_pmci_driver = {
.drv = {
.name = "intel-m10-bmc",
.dev_groups = m10bmc_dev_groups,
},
.id_table = m10bmc_pmci_ids,
.probe = m10bmc_pmci_probe,
.remove = m10bmc_pmci_remove,
};
module_dfl_driver(m10bmc_pmci_driver);
MODULE_DESCRIPTION("MAX10 BMC PMCI-based interface");
MODULE_AUTHOR("Intel Corporation");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS(INTEL_M10_BMC_CORE);