linux/arch/s390/crypto/paes_s390.c
Holger Dengler 666300dae8 s390/crypto: Add hardware acceleration for full AES-XTS mode
Extend the existing paes cipher to exploit the full AES-XTS hardware
acceleration introduced with message-security assist extension 10.

The full AES-XTS mode requires a protected key of type
PKEY_KEYTYPE_AES_XTS_128 or PKEY_KEYTYPE_AES_XTS_256.

Reviewed-by: Harald Freudenberger <freude@linux.ibm.com>
Signed-off-by: Holger Dengler <dengler@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
2024-10-29 11:17:19 +01:00

979 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Cryptographic API.
*
* s390 implementation of the AES Cipher Algorithm with protected keys.
*
* s390 Version:
* Copyright IBM Corp. 2017, 2023
* Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
* Harald Freudenberger <freude@de.ibm.com>
*/
#define KMSG_COMPONENT "paes_s390"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <linux/bug.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/cpufeature.h>
#include <linux/init.h>
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <crypto/internal/skcipher.h>
#include <crypto/xts.h>
#include <asm/cpacf.h>
#include <asm/pkey.h>
/*
* Key blobs smaller/bigger than these defines are rejected
* by the common code even before the individual setkey function
* is called. As paes can handle different kinds of key blobs
* and padding is also possible, the limits need to be generous.
*/
#define PAES_MIN_KEYSIZE 16
#define PAES_MAX_KEYSIZE MAXEP11AESKEYBLOBSIZE
#define PAES_256_PROTKEY_SIZE (32 + 32) /* key + verification pattern */
#define PXTS_256_PROTKEY_SIZE (32 + 32 + 32) /* k1 + k2 + verification pattern */
static u8 *ctrblk;
static DEFINE_MUTEX(ctrblk_lock);
static cpacf_mask_t km_functions, kmc_functions, kmctr_functions;
struct paes_protkey {
u32 type;
u32 len;
u8 protkey[PXTS_256_PROTKEY_SIZE];
};
struct key_blob {
/*
* Small keys will be stored in the keybuf. Larger keys are
* stored in extra allocated memory. In both cases does
* key point to the memory where the key is stored.
* The code distinguishes by checking keylen against
* sizeof(keybuf). See the two following helper functions.
*/
u8 *key;
u8 keybuf[128];
unsigned int keylen;
};
/*
* make_clrkey_token() - wrap the raw key ck with pkey clearkey token
* information.
* @returns the size of the clearkey token
*/
static inline u32 make_clrkey_token(const u8 *ck, size_t cklen, u8 *dest)
{
struct clrkey_token {
u8 type;
u8 res0[3];
u8 version;
u8 res1[3];
u32 keytype;
u32 len;
u8 key[];
} __packed *token = (struct clrkey_token *)dest;
token->type = 0x00;
token->version = 0x02;
token->keytype = (cklen - 8) >> 3;
token->len = cklen;
memcpy(token->key, ck, cklen);
return sizeof(*token) + cklen;
}
static inline int _key_to_kb(struct key_blob *kb,
const u8 *key,
unsigned int keylen)
{
switch (keylen) {
case 16:
case 24:
case 32:
/* clear key value, prepare pkey clear key token in keybuf */
memset(kb->keybuf, 0, sizeof(kb->keybuf));
kb->keylen = make_clrkey_token(key, keylen, kb->keybuf);
kb->key = kb->keybuf;
break;
default:
/* other key material, let pkey handle this */
if (keylen <= sizeof(kb->keybuf))
kb->key = kb->keybuf;
else {
kb->key = kmalloc(keylen, GFP_KERNEL);
if (!kb->key)
return -ENOMEM;
}
memcpy(kb->key, key, keylen);
kb->keylen = keylen;
break;
}
return 0;
}
static inline int _xts_key_to_kb(struct key_blob *kb,
const u8 *key,
unsigned int keylen)
{
size_t cklen = keylen / 2;
memset(kb->keybuf, 0, sizeof(kb->keybuf));
switch (keylen) {
case 32:
case 64:
/* clear key value, prepare pkey clear key tokens in keybuf */
kb->key = kb->keybuf;
kb->keylen = make_clrkey_token(key, cklen, kb->key);
kb->keylen += make_clrkey_token(key + cklen, cklen,
kb->key + kb->keylen);
break;
default:
/* other key material, let pkey handle this */
if (keylen <= sizeof(kb->keybuf)) {
kb->key = kb->keybuf;
} else {
kb->key = kmalloc(keylen, GFP_KERNEL);
if (!kb->key)
return -ENOMEM;
}
memcpy(kb->key, key, keylen);
kb->keylen = keylen;
break;
}
return 0;
}
static inline void _free_kb_keybuf(struct key_blob *kb)
{
if (kb->key && kb->key != kb->keybuf
&& kb->keylen > sizeof(kb->keybuf)) {
kfree_sensitive(kb->key);
kb->key = NULL;
}
memzero_explicit(kb->keybuf, sizeof(kb->keybuf));
}
struct s390_paes_ctx {
struct key_blob kb;
struct paes_protkey pk;
spinlock_t pk_lock;
unsigned long fc;
};
struct s390_pxts_ctx {
struct key_blob kb;
struct paes_protkey pk[2];
spinlock_t pk_lock;
unsigned long fc;
};
static inline int __paes_keyblob2pkey(const u8 *key, unsigned int keylen,
struct paes_protkey *pk)
{
int i, rc = -EIO;
/* try three times in case of busy card */
for (i = 0; rc && i < 3; i++) {
if (rc == -EBUSY && in_task()) {
if (msleep_interruptible(1000))
return -EINTR;
}
rc = pkey_key2protkey(key, keylen, pk->protkey, &pk->len,
&pk->type);
}
return rc;
}
static inline int __paes_convert_key(struct s390_paes_ctx *ctx)
{
struct paes_protkey pk;
int rc;
pk.len = sizeof(pk.protkey);
rc = __paes_keyblob2pkey(ctx->kb.key, ctx->kb.keylen, &pk);
if (rc)
return rc;
spin_lock_bh(&ctx->pk_lock);
memcpy(&ctx->pk, &pk, sizeof(pk));
spin_unlock_bh(&ctx->pk_lock);
return 0;
}
static int ecb_paes_init(struct crypto_skcipher *tfm)
{
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
ctx->kb.key = NULL;
spin_lock_init(&ctx->pk_lock);
return 0;
}
static void ecb_paes_exit(struct crypto_skcipher *tfm)
{
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
_free_kb_keybuf(&ctx->kb);
}
static inline int __ecb_paes_set_key(struct s390_paes_ctx *ctx)
{
unsigned long fc;
int rc;
rc = __paes_convert_key(ctx);
if (rc)
return rc;
/* Pick the correct function code based on the protected key type */
fc = (ctx->pk.type == PKEY_KEYTYPE_AES_128) ? CPACF_KM_PAES_128 :
(ctx->pk.type == PKEY_KEYTYPE_AES_192) ? CPACF_KM_PAES_192 :
(ctx->pk.type == PKEY_KEYTYPE_AES_256) ? CPACF_KM_PAES_256 : 0;
/* Check if the function code is available */
ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
return ctx->fc ? 0 : -EINVAL;
}
static int ecb_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
unsigned int key_len)
{
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
int rc;
_free_kb_keybuf(&ctx->kb);
rc = _key_to_kb(&ctx->kb, in_key, key_len);
if (rc)
return rc;
return __ecb_paes_set_key(ctx);
}
static int ecb_paes_crypt(struct skcipher_request *req, unsigned long modifier)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
struct {
u8 key[PAES_256_PROTKEY_SIZE];
} param;
struct skcipher_walk walk;
unsigned int nbytes, n, k;
int rc;
rc = skcipher_walk_virt(&walk, req, false);
if (rc)
return rc;
spin_lock_bh(&ctx->pk_lock);
memcpy(param.key, ctx->pk.protkey, PAES_256_PROTKEY_SIZE);
spin_unlock_bh(&ctx->pk_lock);
while ((nbytes = walk.nbytes) != 0) {
/* only use complete blocks */
n = nbytes & ~(AES_BLOCK_SIZE - 1);
k = cpacf_km(ctx->fc | modifier, &param,
walk.dst.virt.addr, walk.src.virt.addr, n);
if (k)
rc = skcipher_walk_done(&walk, nbytes - k);
if (k < n) {
if (__paes_convert_key(ctx))
return skcipher_walk_done(&walk, -EIO);
spin_lock_bh(&ctx->pk_lock);
memcpy(param.key, ctx->pk.protkey, PAES_256_PROTKEY_SIZE);
spin_unlock_bh(&ctx->pk_lock);
}
}
return rc;
}
static int ecb_paes_encrypt(struct skcipher_request *req)
{
return ecb_paes_crypt(req, 0);
}
static int ecb_paes_decrypt(struct skcipher_request *req)
{
return ecb_paes_crypt(req, CPACF_DECRYPT);
}
static struct skcipher_alg ecb_paes_alg = {
.base.cra_name = "ecb(paes)",
.base.cra_driver_name = "ecb-paes-s390",
.base.cra_priority = 401, /* combo: aes + ecb + 1 */
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct s390_paes_ctx),
.base.cra_module = THIS_MODULE,
.base.cra_list = LIST_HEAD_INIT(ecb_paes_alg.base.cra_list),
.init = ecb_paes_init,
.exit = ecb_paes_exit,
.min_keysize = PAES_MIN_KEYSIZE,
.max_keysize = PAES_MAX_KEYSIZE,
.setkey = ecb_paes_set_key,
.encrypt = ecb_paes_encrypt,
.decrypt = ecb_paes_decrypt,
};
static int cbc_paes_init(struct crypto_skcipher *tfm)
{
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
ctx->kb.key = NULL;
spin_lock_init(&ctx->pk_lock);
return 0;
}
static void cbc_paes_exit(struct crypto_skcipher *tfm)
{
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
_free_kb_keybuf(&ctx->kb);
}
static inline int __cbc_paes_set_key(struct s390_paes_ctx *ctx)
{
unsigned long fc;
int rc;
rc = __paes_convert_key(ctx);
if (rc)
return rc;
/* Pick the correct function code based on the protected key type */
fc = (ctx->pk.type == PKEY_KEYTYPE_AES_128) ? CPACF_KMC_PAES_128 :
(ctx->pk.type == PKEY_KEYTYPE_AES_192) ? CPACF_KMC_PAES_192 :
(ctx->pk.type == PKEY_KEYTYPE_AES_256) ? CPACF_KMC_PAES_256 : 0;
/* Check if the function code is available */
ctx->fc = (fc && cpacf_test_func(&kmc_functions, fc)) ? fc : 0;
return ctx->fc ? 0 : -EINVAL;
}
static int cbc_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
unsigned int key_len)
{
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
int rc;
_free_kb_keybuf(&ctx->kb);
rc = _key_to_kb(&ctx->kb, in_key, key_len);
if (rc)
return rc;
return __cbc_paes_set_key(ctx);
}
static int cbc_paes_crypt(struct skcipher_request *req, unsigned long modifier)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
struct {
u8 iv[AES_BLOCK_SIZE];
u8 key[PAES_256_PROTKEY_SIZE];
} param;
struct skcipher_walk walk;
unsigned int nbytes, n, k;
int rc;
rc = skcipher_walk_virt(&walk, req, false);
if (rc)
return rc;
memcpy(param.iv, walk.iv, AES_BLOCK_SIZE);
spin_lock_bh(&ctx->pk_lock);
memcpy(param.key, ctx->pk.protkey, PAES_256_PROTKEY_SIZE);
spin_unlock_bh(&ctx->pk_lock);
while ((nbytes = walk.nbytes) != 0) {
/* only use complete blocks */
n = nbytes & ~(AES_BLOCK_SIZE - 1);
k = cpacf_kmc(ctx->fc | modifier, &param,
walk.dst.virt.addr, walk.src.virt.addr, n);
if (k) {
memcpy(walk.iv, param.iv, AES_BLOCK_SIZE);
rc = skcipher_walk_done(&walk, nbytes - k);
}
if (k < n) {
if (__paes_convert_key(ctx))
return skcipher_walk_done(&walk, -EIO);
spin_lock_bh(&ctx->pk_lock);
memcpy(param.key, ctx->pk.protkey, PAES_256_PROTKEY_SIZE);
spin_unlock_bh(&ctx->pk_lock);
}
}
return rc;
}
static int cbc_paes_encrypt(struct skcipher_request *req)
{
return cbc_paes_crypt(req, 0);
}
static int cbc_paes_decrypt(struct skcipher_request *req)
{
return cbc_paes_crypt(req, CPACF_DECRYPT);
}
static struct skcipher_alg cbc_paes_alg = {
.base.cra_name = "cbc(paes)",
.base.cra_driver_name = "cbc-paes-s390",
.base.cra_priority = 402, /* ecb-paes-s390 + 1 */
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct s390_paes_ctx),
.base.cra_module = THIS_MODULE,
.base.cra_list = LIST_HEAD_INIT(cbc_paes_alg.base.cra_list),
.init = cbc_paes_init,
.exit = cbc_paes_exit,
.min_keysize = PAES_MIN_KEYSIZE,
.max_keysize = PAES_MAX_KEYSIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = cbc_paes_set_key,
.encrypt = cbc_paes_encrypt,
.decrypt = cbc_paes_decrypt,
};
static int xts_paes_init(struct crypto_skcipher *tfm)
{
struct s390_pxts_ctx *ctx = crypto_skcipher_ctx(tfm);
ctx->kb.key = NULL;
spin_lock_init(&ctx->pk_lock);
return 0;
}
static void xts_paes_exit(struct crypto_skcipher *tfm)
{
struct s390_pxts_ctx *ctx = crypto_skcipher_ctx(tfm);
_free_kb_keybuf(&ctx->kb);
}
static inline int __xts_paes_convert_key(struct s390_pxts_ctx *ctx)
{
struct paes_protkey pk0, pk1;
size_t split_keylen;
int rc;
pk0.len = sizeof(pk0.protkey);
pk1.len = sizeof(pk1.protkey);
rc = __paes_keyblob2pkey(ctx->kb.key, ctx->kb.keylen, &pk0);
if (rc)
return rc;
switch (pk0.type) {
case PKEY_KEYTYPE_AES_128:
case PKEY_KEYTYPE_AES_256:
/* second keytoken required */
if (ctx->kb.keylen % 2)
return -EINVAL;
split_keylen = ctx->kb.keylen / 2;
rc = __paes_keyblob2pkey(ctx->kb.key + split_keylen,
split_keylen, &pk1);
if (rc)
return rc;
if (pk0.type != pk1.type)
return -EINVAL;
break;
case PKEY_KEYTYPE_AES_XTS_128:
case PKEY_KEYTYPE_AES_XTS_256:
/* single key */
pk1.type = 0;
break;
default:
/* unsupported protected keytype */
return -EINVAL;
}
spin_lock_bh(&ctx->pk_lock);
ctx->pk[0] = pk0;
ctx->pk[1] = pk1;
spin_unlock_bh(&ctx->pk_lock);
return 0;
}
static inline int __xts_paes_set_key(struct s390_pxts_ctx *ctx)
{
unsigned long fc;
int rc;
rc = __xts_paes_convert_key(ctx);
if (rc)
return rc;
/* Pick the correct function code based on the protected key type */
switch (ctx->pk[0].type) {
case PKEY_KEYTYPE_AES_128:
fc = CPACF_KM_PXTS_128;
break;
case PKEY_KEYTYPE_AES_256:
fc = CPACF_KM_PXTS_256;
break;
case PKEY_KEYTYPE_AES_XTS_128:
fc = CPACF_KM_PXTS_128_FULL;
break;
case PKEY_KEYTYPE_AES_XTS_256:
fc = CPACF_KM_PXTS_256_FULL;
break;
default:
fc = 0;
break;
}
/* Check if the function code is available */
ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
return ctx->fc ? 0 : -EINVAL;
}
static int xts_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
unsigned int in_keylen)
{
struct s390_pxts_ctx *ctx = crypto_skcipher_ctx(tfm);
u8 ckey[2 * AES_MAX_KEY_SIZE];
unsigned int ckey_len;
int rc;
if ((in_keylen == 32 || in_keylen == 64) &&
xts_verify_key(tfm, in_key, in_keylen))
return -EINVAL;
_free_kb_keybuf(&ctx->kb);
rc = _xts_key_to_kb(&ctx->kb, in_key, in_keylen);
if (rc)
return rc;
rc = __xts_paes_set_key(ctx);
if (rc)
return rc;
/*
* It is not possible on a single protected key (e.g. full AES-XTS) to
* check, if k1 and k2 are the same.
*/
if (ctx->pk[0].type == PKEY_KEYTYPE_AES_XTS_128 ||
ctx->pk[0].type == PKEY_KEYTYPE_AES_XTS_256)
return 0;
/*
* xts_verify_key verifies the key length is not odd and makes
* sure that the two keys are not the same. This can be done
* on the two protected keys as well
*/
ckey_len = (ctx->pk[0].type == PKEY_KEYTYPE_AES_128) ?
AES_KEYSIZE_128 : AES_KEYSIZE_256;
memcpy(ckey, ctx->pk[0].protkey, ckey_len);
memcpy(ckey + ckey_len, ctx->pk[1].protkey, ckey_len);
return xts_verify_key(tfm, ckey, 2*ckey_len);
}
static int paes_xts_crypt_full(struct skcipher_request *req,
unsigned long modifier)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct s390_pxts_ctx *ctx = crypto_skcipher_ctx(tfm);
unsigned int keylen, offset, nbytes, n, k;
struct {
u8 key[64];
u8 tweak[16];
u8 nap[16];
u8 wkvp[32];
} fxts_param = {
.nap = {0},
};
struct skcipher_walk walk;
int rc;
rc = skcipher_walk_virt(&walk, req, false);
if (rc)
return rc;
keylen = (ctx->pk[0].type == PKEY_KEYTYPE_AES_XTS_128) ? 32 : 64;
offset = (ctx->pk[0].type == PKEY_KEYTYPE_AES_XTS_128) ? 32 : 0;
spin_lock_bh(&ctx->pk_lock);
memcpy(fxts_param.key + offset, ctx->pk[0].protkey, keylen);
memcpy(fxts_param.wkvp, ctx->pk[0].protkey + keylen,
sizeof(fxts_param.wkvp));
spin_unlock_bh(&ctx->pk_lock);
memcpy(fxts_param.tweak, walk.iv, sizeof(fxts_param.tweak));
fxts_param.nap[0] = 0x01; /* initial alpha power (1, little-endian) */
while ((nbytes = walk.nbytes) != 0) {
/* only use complete blocks */
n = nbytes & ~(AES_BLOCK_SIZE - 1);
k = cpacf_km(ctx->fc | modifier, fxts_param.key + offset,
walk.dst.virt.addr, walk.src.virt.addr, n);
if (k)
rc = skcipher_walk_done(&walk, nbytes - k);
if (k < n) {
if (__xts_paes_convert_key(ctx))
return skcipher_walk_done(&walk, -EIO);
spin_lock_bh(&ctx->pk_lock);
memcpy(fxts_param.key + offset, ctx->pk[0].protkey,
keylen);
memcpy(fxts_param.wkvp, ctx->pk[0].protkey + keylen,
sizeof(fxts_param.wkvp));
spin_unlock_bh(&ctx->pk_lock);
}
}
return rc;
}
static int paes_xts_crypt(struct skcipher_request *req, unsigned long modifier)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct s390_pxts_ctx *ctx = crypto_skcipher_ctx(tfm);
unsigned int keylen, offset, nbytes, n, k;
struct {
u8 key[PAES_256_PROTKEY_SIZE];
u8 tweak[16];
u8 block[16];
u8 bit[16];
u8 xts[16];
} pcc_param;
struct {
u8 key[PAES_256_PROTKEY_SIZE];
u8 init[16];
} xts_param;
struct skcipher_walk walk;
int rc;
rc = skcipher_walk_virt(&walk, req, false);
if (rc)
return rc;
keylen = (ctx->pk[0].type == PKEY_KEYTYPE_AES_128) ? 48 : 64;
offset = (ctx->pk[0].type == PKEY_KEYTYPE_AES_128) ? 16 : 0;
memset(&pcc_param, 0, sizeof(pcc_param));
memcpy(pcc_param.tweak, walk.iv, sizeof(pcc_param.tweak));
spin_lock_bh(&ctx->pk_lock);
memcpy(pcc_param.key + offset, ctx->pk[1].protkey, keylen);
memcpy(xts_param.key + offset, ctx->pk[0].protkey, keylen);
spin_unlock_bh(&ctx->pk_lock);
cpacf_pcc(ctx->fc, pcc_param.key + offset);
memcpy(xts_param.init, pcc_param.xts, 16);
while ((nbytes = walk.nbytes) != 0) {
/* only use complete blocks */
n = nbytes & ~(AES_BLOCK_SIZE - 1);
k = cpacf_km(ctx->fc | modifier, xts_param.key + offset,
walk.dst.virt.addr, walk.src.virt.addr, n);
if (k)
rc = skcipher_walk_done(&walk, nbytes - k);
if (k < n) {
if (__xts_paes_convert_key(ctx))
return skcipher_walk_done(&walk, -EIO);
spin_lock_bh(&ctx->pk_lock);
memcpy(xts_param.key + offset,
ctx->pk[0].protkey, keylen);
spin_unlock_bh(&ctx->pk_lock);
}
}
return rc;
}
static inline int xts_paes_crypt(struct skcipher_request *req, unsigned long modifier)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct s390_pxts_ctx *ctx = crypto_skcipher_ctx(tfm);
switch (ctx->fc) {
case CPACF_KM_PXTS_128:
case CPACF_KM_PXTS_256:
return paes_xts_crypt(req, modifier);
case CPACF_KM_PXTS_128_FULL:
case CPACF_KM_PXTS_256_FULL:
return paes_xts_crypt_full(req, modifier);
default:
return -EINVAL;
}
}
static int xts_paes_encrypt(struct skcipher_request *req)
{
return xts_paes_crypt(req, 0);
}
static int xts_paes_decrypt(struct skcipher_request *req)
{
return xts_paes_crypt(req, CPACF_DECRYPT);
}
static struct skcipher_alg xts_paes_alg = {
.base.cra_name = "xts(paes)",
.base.cra_driver_name = "xts-paes-s390",
.base.cra_priority = 402, /* ecb-paes-s390 + 1 */
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct s390_pxts_ctx),
.base.cra_module = THIS_MODULE,
.base.cra_list = LIST_HEAD_INIT(xts_paes_alg.base.cra_list),
.init = xts_paes_init,
.exit = xts_paes_exit,
.min_keysize = 2 * PAES_MIN_KEYSIZE,
.max_keysize = 2 * PAES_MAX_KEYSIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = xts_paes_set_key,
.encrypt = xts_paes_encrypt,
.decrypt = xts_paes_decrypt,
};
static int ctr_paes_init(struct crypto_skcipher *tfm)
{
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
ctx->kb.key = NULL;
spin_lock_init(&ctx->pk_lock);
return 0;
}
static void ctr_paes_exit(struct crypto_skcipher *tfm)
{
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
_free_kb_keybuf(&ctx->kb);
}
static inline int __ctr_paes_set_key(struct s390_paes_ctx *ctx)
{
unsigned long fc;
int rc;
rc = __paes_convert_key(ctx);
if (rc)
return rc;
/* Pick the correct function code based on the protected key type */
fc = (ctx->pk.type == PKEY_KEYTYPE_AES_128) ? CPACF_KMCTR_PAES_128 :
(ctx->pk.type == PKEY_KEYTYPE_AES_192) ? CPACF_KMCTR_PAES_192 :
(ctx->pk.type == PKEY_KEYTYPE_AES_256) ?
CPACF_KMCTR_PAES_256 : 0;
/* Check if the function code is available */
ctx->fc = (fc && cpacf_test_func(&kmctr_functions, fc)) ? fc : 0;
return ctx->fc ? 0 : -EINVAL;
}
static int ctr_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
unsigned int key_len)
{
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
int rc;
_free_kb_keybuf(&ctx->kb);
rc = _key_to_kb(&ctx->kb, in_key, key_len);
if (rc)
return rc;
return __ctr_paes_set_key(ctx);
}
static unsigned int __ctrblk_init(u8 *ctrptr, u8 *iv, unsigned int nbytes)
{
unsigned int i, n;
/* only use complete blocks, max. PAGE_SIZE */
memcpy(ctrptr, iv, AES_BLOCK_SIZE);
n = (nbytes > PAGE_SIZE) ? PAGE_SIZE : nbytes & ~(AES_BLOCK_SIZE - 1);
for (i = (n / AES_BLOCK_SIZE) - 1; i > 0; i--) {
memcpy(ctrptr + AES_BLOCK_SIZE, ctrptr, AES_BLOCK_SIZE);
crypto_inc(ctrptr + AES_BLOCK_SIZE, AES_BLOCK_SIZE);
ctrptr += AES_BLOCK_SIZE;
}
return n;
}
static int ctr_paes_crypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
u8 buf[AES_BLOCK_SIZE], *ctrptr;
struct {
u8 key[PAES_256_PROTKEY_SIZE];
} param;
struct skcipher_walk walk;
unsigned int nbytes, n, k;
int rc, locked;
rc = skcipher_walk_virt(&walk, req, false);
if (rc)
return rc;
spin_lock_bh(&ctx->pk_lock);
memcpy(param.key, ctx->pk.protkey, PAES_256_PROTKEY_SIZE);
spin_unlock_bh(&ctx->pk_lock);
locked = mutex_trylock(&ctrblk_lock);
while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
n = AES_BLOCK_SIZE;
if (nbytes >= 2*AES_BLOCK_SIZE && locked)
n = __ctrblk_init(ctrblk, walk.iv, nbytes);
ctrptr = (n > AES_BLOCK_SIZE) ? ctrblk : walk.iv;
k = cpacf_kmctr(ctx->fc, &param, walk.dst.virt.addr,
walk.src.virt.addr, n, ctrptr);
if (k) {
if (ctrptr == ctrblk)
memcpy(walk.iv, ctrptr + k - AES_BLOCK_SIZE,
AES_BLOCK_SIZE);
crypto_inc(walk.iv, AES_BLOCK_SIZE);
rc = skcipher_walk_done(&walk, nbytes - k);
}
if (k < n) {
if (__paes_convert_key(ctx)) {
if (locked)
mutex_unlock(&ctrblk_lock);
return skcipher_walk_done(&walk, -EIO);
}
spin_lock_bh(&ctx->pk_lock);
memcpy(param.key, ctx->pk.protkey, PAES_256_PROTKEY_SIZE);
spin_unlock_bh(&ctx->pk_lock);
}
}
if (locked)
mutex_unlock(&ctrblk_lock);
/*
* final block may be < AES_BLOCK_SIZE, copy only nbytes
*/
if (nbytes) {
memset(buf, 0, AES_BLOCK_SIZE);
memcpy(buf, walk.src.virt.addr, nbytes);
while (1) {
if (cpacf_kmctr(ctx->fc, &param, buf,
buf, AES_BLOCK_SIZE,
walk.iv) == AES_BLOCK_SIZE)
break;
if (__paes_convert_key(ctx))
return skcipher_walk_done(&walk, -EIO);
spin_lock_bh(&ctx->pk_lock);
memcpy(param.key, ctx->pk.protkey, PAES_256_PROTKEY_SIZE);
spin_unlock_bh(&ctx->pk_lock);
}
memcpy(walk.dst.virt.addr, buf, nbytes);
crypto_inc(walk.iv, AES_BLOCK_SIZE);
rc = skcipher_walk_done(&walk, nbytes);
}
return rc;
}
static struct skcipher_alg ctr_paes_alg = {
.base.cra_name = "ctr(paes)",
.base.cra_driver_name = "ctr-paes-s390",
.base.cra_priority = 402, /* ecb-paes-s390 + 1 */
.base.cra_blocksize = 1,
.base.cra_ctxsize = sizeof(struct s390_paes_ctx),
.base.cra_module = THIS_MODULE,
.base.cra_list = LIST_HEAD_INIT(ctr_paes_alg.base.cra_list),
.init = ctr_paes_init,
.exit = ctr_paes_exit,
.min_keysize = PAES_MIN_KEYSIZE,
.max_keysize = PAES_MAX_KEYSIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = ctr_paes_set_key,
.encrypt = ctr_paes_crypt,
.decrypt = ctr_paes_crypt,
.chunksize = AES_BLOCK_SIZE,
};
static inline void __crypto_unregister_skcipher(struct skcipher_alg *alg)
{
if (!list_empty(&alg->base.cra_list))
crypto_unregister_skcipher(alg);
}
static void paes_s390_fini(void)
{
__crypto_unregister_skcipher(&ctr_paes_alg);
__crypto_unregister_skcipher(&xts_paes_alg);
__crypto_unregister_skcipher(&cbc_paes_alg);
__crypto_unregister_skcipher(&ecb_paes_alg);
if (ctrblk)
free_page((unsigned long) ctrblk);
}
static int __init paes_s390_init(void)
{
int rc;
/* Query available functions for KM, KMC and KMCTR */
cpacf_query(CPACF_KM, &km_functions);
cpacf_query(CPACF_KMC, &kmc_functions);
cpacf_query(CPACF_KMCTR, &kmctr_functions);
if (cpacf_test_func(&km_functions, CPACF_KM_PAES_128) ||
cpacf_test_func(&km_functions, CPACF_KM_PAES_192) ||
cpacf_test_func(&km_functions, CPACF_KM_PAES_256)) {
rc = crypto_register_skcipher(&ecb_paes_alg);
if (rc)
goto out_err;
}
if (cpacf_test_func(&kmc_functions, CPACF_KMC_PAES_128) ||
cpacf_test_func(&kmc_functions, CPACF_KMC_PAES_192) ||
cpacf_test_func(&kmc_functions, CPACF_KMC_PAES_256)) {
rc = crypto_register_skcipher(&cbc_paes_alg);
if (rc)
goto out_err;
}
if (cpacf_test_func(&km_functions, CPACF_KM_PXTS_128) ||
cpacf_test_func(&km_functions, CPACF_KM_PXTS_256)) {
rc = crypto_register_skcipher(&xts_paes_alg);
if (rc)
goto out_err;
}
if (cpacf_test_func(&kmctr_functions, CPACF_KMCTR_PAES_128) ||
cpacf_test_func(&kmctr_functions, CPACF_KMCTR_PAES_192) ||
cpacf_test_func(&kmctr_functions, CPACF_KMCTR_PAES_256)) {
ctrblk = (u8 *) __get_free_page(GFP_KERNEL);
if (!ctrblk) {
rc = -ENOMEM;
goto out_err;
}
rc = crypto_register_skcipher(&ctr_paes_alg);
if (rc)
goto out_err;
}
return 0;
out_err:
paes_s390_fini();
return rc;
}
module_init(paes_s390_init);
module_exit(paes_s390_fini);
MODULE_ALIAS_CRYPTO("ecb(paes)");
MODULE_ALIAS_CRYPTO("cbc(paes)");
MODULE_ALIAS_CRYPTO("ctr(paes)");
MODULE_ALIAS_CRYPTO("xts(paes)");
MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm with protected keys");
MODULE_LICENSE("GPL");