linux/drivers/infiniband/core/uverbs_uapi.c
Jiasheng Jiang 7694a7de22 RDMA/uverbs: Check for null return of kmalloc_array
Because of the possible failure of the allocation, data might be NULL
pointer and will cause the dereference of the NULL pointer later.
Therefore, it might be better to check it and return -ENOMEM.

Fixes: 6884c6c4bd ("RDMA/verbs: Store the write/write_ex uapi entry points in the uverbs_api")
Link: https://lore.kernel.org/r/20211231093315.1917667-1-jiasheng@iscas.ac.cn
Signed-off-by: Jiasheng Jiang <jiasheng@iscas.ac.cn>
Reviewed-by: Leon Romanovsky <leonro@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
2022-01-05 14:16:53 -04:00

735 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
/*
* Copyright (c) 2017, Mellanox Technologies inc. All rights reserved.
*/
#include <rdma/uverbs_ioctl.h>
#include <rdma/rdma_user_ioctl.h>
#include <linux/bitops.h>
#include "rdma_core.h"
#include "uverbs.h"
static int ib_uverbs_notsupp(struct uverbs_attr_bundle *attrs)
{
return -EOPNOTSUPP;
}
static void *uapi_add_elm(struct uverbs_api *uapi, u32 key, size_t alloc_size)
{
void *elm;
int rc;
if (key == UVERBS_API_KEY_ERR)
return ERR_PTR(-EOVERFLOW);
elm = kzalloc(alloc_size, GFP_KERNEL);
if (!elm)
return ERR_PTR(-ENOMEM);
rc = radix_tree_insert(&uapi->radix, key, elm);
if (rc) {
kfree(elm);
return ERR_PTR(rc);
}
return elm;
}
static void *uapi_add_get_elm(struct uverbs_api *uapi, u32 key,
size_t alloc_size, bool *exists)
{
void *elm;
elm = uapi_add_elm(uapi, key, alloc_size);
if (!IS_ERR(elm)) {
*exists = false;
return elm;
}
if (elm != ERR_PTR(-EEXIST))
return elm;
elm = radix_tree_lookup(&uapi->radix, key);
if (WARN_ON(!elm))
return ERR_PTR(-EINVAL);
*exists = true;
return elm;
}
static int uapi_create_write(struct uverbs_api *uapi,
struct ib_device *ibdev,
const struct uapi_definition *def,
u32 obj_key,
u32 *cur_method_key)
{
struct uverbs_api_write_method *method_elm;
u32 method_key = obj_key;
bool exists;
if (def->write.is_ex)
method_key |= uapi_key_write_ex_method(def->write.command_num);
else
method_key |= uapi_key_write_method(def->write.command_num);
method_elm = uapi_add_get_elm(uapi, method_key, sizeof(*method_elm),
&exists);
if (IS_ERR(method_elm))
return PTR_ERR(method_elm);
if (WARN_ON(exists && (def->write.is_ex != method_elm->is_ex)))
return -EINVAL;
method_elm->is_ex = def->write.is_ex;
method_elm->handler = def->func_write;
if (!def->write.is_ex)
method_elm->disabled = !(ibdev->uverbs_cmd_mask &
BIT_ULL(def->write.command_num));
if (!def->write.is_ex && def->func_write) {
method_elm->has_udata = def->write.has_udata;
method_elm->has_resp = def->write.has_resp;
method_elm->req_size = def->write.req_size;
method_elm->resp_size = def->write.resp_size;
}
*cur_method_key = method_key;
return 0;
}
static int uapi_merge_method(struct uverbs_api *uapi,
struct uverbs_api_object *obj_elm, u32 obj_key,
const struct uverbs_method_def *method,
bool is_driver)
{
u32 method_key = obj_key | uapi_key_ioctl_method(method->id);
struct uverbs_api_ioctl_method *method_elm;
unsigned int i;
bool exists;
if (!method->attrs)
return 0;
method_elm = uapi_add_get_elm(uapi, method_key, sizeof(*method_elm),
&exists);
if (IS_ERR(method_elm))
return PTR_ERR(method_elm);
if (exists) {
/*
* This occurs when a driver uses ADD_UVERBS_ATTRIBUTES_SIMPLE
*/
if (WARN_ON(method->handler))
return -EINVAL;
} else {
WARN_ON(!method->handler);
rcu_assign_pointer(method_elm->handler, method->handler);
if (method->handler != uverbs_destroy_def_handler)
method_elm->driver_method = is_driver;
}
for (i = 0; i != method->num_attrs; i++) {
const struct uverbs_attr_def *attr = (*method->attrs)[i];
struct uverbs_api_attr *attr_slot;
if (!attr)
continue;
/*
* ENUM_IN contains the 'ids' pointer to the driver's .rodata,
* so if it is specified by a driver then it always makes this
* into a driver method.
*/
if (attr->attr.type == UVERBS_ATTR_TYPE_ENUM_IN)
method_elm->driver_method |= is_driver;
/*
* Like other uobject based things we only support a single
* uobject being NEW'd or DESTROY'd
*/
if (attr->attr.type == UVERBS_ATTR_TYPE_IDRS_ARRAY) {
u8 access = attr->attr.u2.objs_arr.access;
if (WARN_ON(access == UVERBS_ACCESS_NEW ||
access == UVERBS_ACCESS_DESTROY))
return -EINVAL;
}
attr_slot =
uapi_add_elm(uapi, method_key | uapi_key_attr(attr->id),
sizeof(*attr_slot));
/* Attributes are not allowed to be modified by drivers */
if (IS_ERR(attr_slot))
return PTR_ERR(attr_slot);
attr_slot->spec = attr->attr;
}
return 0;
}
static int uapi_merge_obj_tree(struct uverbs_api *uapi,
const struct uverbs_object_def *obj,
bool is_driver)
{
struct uverbs_api_object *obj_elm;
unsigned int i;
u32 obj_key;
bool exists;
int rc;
obj_key = uapi_key_obj(obj->id);
obj_elm = uapi_add_get_elm(uapi, obj_key, sizeof(*obj_elm), &exists);
if (IS_ERR(obj_elm))
return PTR_ERR(obj_elm);
if (obj->type_attrs) {
if (WARN_ON(obj_elm->type_attrs))
return -EINVAL;
obj_elm->id = obj->id;
obj_elm->type_attrs = obj->type_attrs;
obj_elm->type_class = obj->type_attrs->type_class;
/*
* Today drivers are only permitted to use idr_class and
* fd_class types. We can revoke the IDR types during
* disassociation, and the FD types require the driver to use
* struct file_operations.owner to prevent the driver module
* code from unloading while the file is open. This provides
* enough safety that uverbs_uobject_fd_release() will
* continue to work. Drivers using FD are responsible to
* handle disassociation of the device on their own.
*/
if (WARN_ON(is_driver &&
obj->type_attrs->type_class != &uverbs_idr_class &&
obj->type_attrs->type_class != &uverbs_fd_class))
return -EINVAL;
}
if (!obj->methods)
return 0;
for (i = 0; i != obj->num_methods; i++) {
const struct uverbs_method_def *method = (*obj->methods)[i];
if (!method)
continue;
rc = uapi_merge_method(uapi, obj_elm, obj_key, method,
is_driver);
if (rc)
return rc;
}
return 0;
}
static int uapi_disable_elm(struct uverbs_api *uapi,
const struct uapi_definition *def,
u32 obj_key,
u32 method_key)
{
bool exists;
if (def->scope == UAPI_SCOPE_OBJECT) {
struct uverbs_api_object *obj_elm;
obj_elm = uapi_add_get_elm(
uapi, obj_key, sizeof(*obj_elm), &exists);
if (IS_ERR(obj_elm))
return PTR_ERR(obj_elm);
obj_elm->disabled = 1;
return 0;
}
if (def->scope == UAPI_SCOPE_METHOD &&
uapi_key_is_ioctl_method(method_key)) {
struct uverbs_api_ioctl_method *method_elm;
method_elm = uapi_add_get_elm(uapi, method_key,
sizeof(*method_elm), &exists);
if (IS_ERR(method_elm))
return PTR_ERR(method_elm);
method_elm->disabled = 1;
return 0;
}
if (def->scope == UAPI_SCOPE_METHOD &&
(uapi_key_is_write_method(method_key) ||
uapi_key_is_write_ex_method(method_key))) {
struct uverbs_api_write_method *write_elm;
write_elm = uapi_add_get_elm(uapi, method_key,
sizeof(*write_elm), &exists);
if (IS_ERR(write_elm))
return PTR_ERR(write_elm);
write_elm->disabled = 1;
return 0;
}
WARN_ON(true);
return -EINVAL;
}
static int uapi_merge_def(struct uverbs_api *uapi, struct ib_device *ibdev,
const struct uapi_definition *def_list,
bool is_driver)
{
const struct uapi_definition *def = def_list;
u32 cur_obj_key = UVERBS_API_KEY_ERR;
u32 cur_method_key = UVERBS_API_KEY_ERR;
bool exists;
int rc;
if (!def_list)
return 0;
for (;; def++) {
switch ((enum uapi_definition_kind)def->kind) {
case UAPI_DEF_CHAIN:
rc = uapi_merge_def(uapi, ibdev, def->chain, is_driver);
if (rc)
return rc;
continue;
case UAPI_DEF_CHAIN_OBJ_TREE:
if (WARN_ON(def->object_start.object_id !=
def->chain_obj_tree->id))
return -EINVAL;
cur_obj_key = uapi_key_obj(def->object_start.object_id);
rc = uapi_merge_obj_tree(uapi, def->chain_obj_tree,
is_driver);
if (rc)
return rc;
continue;
case UAPI_DEF_END:
return 0;
case UAPI_DEF_IS_SUPPORTED_DEV_FN: {
void **ibdev_fn =
(void *)(&ibdev->ops) + def->needs_fn_offset;
if (*ibdev_fn)
continue;
rc = uapi_disable_elm(
uapi, def, cur_obj_key, cur_method_key);
if (rc)
return rc;
continue;
}
case UAPI_DEF_IS_SUPPORTED_FUNC:
if (def->func_is_supported(ibdev))
continue;
rc = uapi_disable_elm(
uapi, def, cur_obj_key, cur_method_key);
if (rc)
return rc;
continue;
case UAPI_DEF_OBJECT_START: {
struct uverbs_api_object *obj_elm;
cur_obj_key = uapi_key_obj(def->object_start.object_id);
obj_elm = uapi_add_get_elm(uapi, cur_obj_key,
sizeof(*obj_elm), &exists);
if (IS_ERR(obj_elm))
return PTR_ERR(obj_elm);
continue;
}
case UAPI_DEF_WRITE:
rc = uapi_create_write(
uapi, ibdev, def, cur_obj_key, &cur_method_key);
if (rc)
return rc;
continue;
}
WARN_ON(true);
return -EINVAL;
}
}
static int
uapi_finalize_ioctl_method(struct uverbs_api *uapi,
struct uverbs_api_ioctl_method *method_elm,
u32 method_key)
{
struct radix_tree_iter iter;
unsigned int num_attrs = 0;
unsigned int max_bkey = 0;
bool single_uobj = false;
void __rcu **slot;
method_elm->destroy_bkey = UVERBS_API_ATTR_BKEY_LEN;
radix_tree_for_each_slot (slot, &uapi->radix, &iter,
uapi_key_attrs_start(method_key)) {
struct uverbs_api_attr *elm =
rcu_dereference_protected(*slot, true);
u32 attr_key = iter.index & UVERBS_API_ATTR_KEY_MASK;
u32 attr_bkey = uapi_bkey_attr(attr_key);
u8 type = elm->spec.type;
if (uapi_key_attr_to_ioctl_method(iter.index) !=
uapi_key_attr_to_ioctl_method(method_key))
break;
if (elm->spec.mandatory)
__set_bit(attr_bkey, method_elm->attr_mandatory);
if (elm->spec.is_udata)
method_elm->has_udata = true;
if (type == UVERBS_ATTR_TYPE_IDR ||
type == UVERBS_ATTR_TYPE_FD) {
u8 access = elm->spec.u.obj.access;
/*
* Verbs specs may only have one NEW/DESTROY, we don't
* have the infrastructure to abort multiple NEW's or
* cope with multiple DESTROY failure.
*/
if (access == UVERBS_ACCESS_NEW ||
access == UVERBS_ACCESS_DESTROY) {
if (WARN_ON(single_uobj))
return -EINVAL;
single_uobj = true;
if (WARN_ON(!elm->spec.mandatory))
return -EINVAL;
}
if (access == UVERBS_ACCESS_DESTROY)
method_elm->destroy_bkey = attr_bkey;
}
max_bkey = max(max_bkey, attr_bkey);
num_attrs++;
}
method_elm->key_bitmap_len = max_bkey + 1;
WARN_ON(method_elm->key_bitmap_len > UVERBS_API_ATTR_BKEY_LEN);
uapi_compute_bundle_size(method_elm, num_attrs);
return 0;
}
static int uapi_finalize(struct uverbs_api *uapi)
{
const struct uverbs_api_write_method **data;
unsigned long max_write_ex = 0;
unsigned long max_write = 0;
struct radix_tree_iter iter;
void __rcu **slot;
int rc;
int i;
radix_tree_for_each_slot (slot, &uapi->radix, &iter, 0) {
struct uverbs_api_ioctl_method *method_elm =
rcu_dereference_protected(*slot, true);
if (uapi_key_is_ioctl_method(iter.index)) {
rc = uapi_finalize_ioctl_method(uapi, method_elm,
iter.index);
if (rc)
return rc;
}
if (uapi_key_is_write_method(iter.index))
max_write = max(max_write,
iter.index & UVERBS_API_ATTR_KEY_MASK);
if (uapi_key_is_write_ex_method(iter.index))
max_write_ex =
max(max_write_ex,
iter.index & UVERBS_API_ATTR_KEY_MASK);
}
uapi->notsupp_method.handler = ib_uverbs_notsupp;
uapi->num_write = max_write + 1;
uapi->num_write_ex = max_write_ex + 1;
data = kmalloc_array(uapi->num_write + uapi->num_write_ex,
sizeof(*uapi->write_methods), GFP_KERNEL);
if (!data)
return -ENOMEM;
for (i = 0; i != uapi->num_write + uapi->num_write_ex; i++)
data[i] = &uapi->notsupp_method;
uapi->write_methods = data;
uapi->write_ex_methods = data + uapi->num_write;
radix_tree_for_each_slot (slot, &uapi->radix, &iter, 0) {
if (uapi_key_is_write_method(iter.index))
uapi->write_methods[iter.index &
UVERBS_API_ATTR_KEY_MASK] =
rcu_dereference_protected(*slot, true);
if (uapi_key_is_write_ex_method(iter.index))
uapi->write_ex_methods[iter.index &
UVERBS_API_ATTR_KEY_MASK] =
rcu_dereference_protected(*slot, true);
}
return 0;
}
static void uapi_remove_range(struct uverbs_api *uapi, u32 start, u32 last)
{
struct radix_tree_iter iter;
void __rcu **slot;
radix_tree_for_each_slot (slot, &uapi->radix, &iter, start) {
if (iter.index > last)
return;
kfree(rcu_dereference_protected(*slot, true));
radix_tree_iter_delete(&uapi->radix, &iter, slot);
}
}
static void uapi_remove_object(struct uverbs_api *uapi, u32 obj_key)
{
uapi_remove_range(uapi, obj_key,
obj_key | UVERBS_API_METHOD_KEY_MASK |
UVERBS_API_ATTR_KEY_MASK);
}
static void uapi_remove_method(struct uverbs_api *uapi, u32 method_key)
{
uapi_remove_range(uapi, method_key,
method_key | UVERBS_API_ATTR_KEY_MASK);
}
static u32 uapi_get_obj_id(struct uverbs_attr_spec *spec)
{
if (spec->type == UVERBS_ATTR_TYPE_IDR ||
spec->type == UVERBS_ATTR_TYPE_FD)
return spec->u.obj.obj_type;
if (spec->type == UVERBS_ATTR_TYPE_IDRS_ARRAY)
return spec->u2.objs_arr.obj_type;
return UVERBS_API_KEY_ERR;
}
static void uapi_key_okay(u32 key)
{
unsigned int count = 0;
if (uapi_key_is_object(key))
count++;
if (uapi_key_is_ioctl_method(key))
count++;
if (uapi_key_is_write_method(key))
count++;
if (uapi_key_is_write_ex_method(key))
count++;
if (uapi_key_is_attr(key))
count++;
WARN(count != 1, "Bad count %u key=%x", count, key);
}
static void uapi_finalize_disable(struct uverbs_api *uapi)
{
struct radix_tree_iter iter;
u32 starting_key = 0;
bool scan_again = false;
void __rcu **slot;
again:
radix_tree_for_each_slot (slot, &uapi->radix, &iter, starting_key) {
uapi_key_okay(iter.index);
if (uapi_key_is_object(iter.index)) {
struct uverbs_api_object *obj_elm =
rcu_dereference_protected(*slot, true);
if (obj_elm->disabled) {
/* Have to check all the attrs again */
scan_again = true;
starting_key = iter.index;
uapi_remove_object(uapi, iter.index);
goto again;
}
continue;
}
if (uapi_key_is_ioctl_method(iter.index)) {
struct uverbs_api_ioctl_method *method_elm =
rcu_dereference_protected(*slot, true);
if (method_elm->disabled) {
starting_key = iter.index;
uapi_remove_method(uapi, iter.index);
goto again;
}
continue;
}
if (uapi_key_is_write_method(iter.index) ||
uapi_key_is_write_ex_method(iter.index)) {
struct uverbs_api_write_method *method_elm =
rcu_dereference_protected(*slot, true);
if (method_elm->disabled) {
kfree(method_elm);
radix_tree_iter_delete(&uapi->radix, &iter, slot);
}
continue;
}
if (uapi_key_is_attr(iter.index)) {
struct uverbs_api_attr *attr_elm =
rcu_dereference_protected(*slot, true);
const struct uverbs_api_object *tmp_obj;
u32 obj_key;
/*
* If the method has a mandatory object handle
* attribute which relies on an object which is not
* present then the entire method is uncallable.
*/
if (!attr_elm->spec.mandatory)
continue;
obj_key = uapi_get_obj_id(&attr_elm->spec);
if (obj_key == UVERBS_API_KEY_ERR)
continue;
tmp_obj = uapi_get_object(uapi, obj_key);
if (IS_ERR(tmp_obj)) {
if (PTR_ERR(tmp_obj) == -ENOMSG)
continue;
} else {
if (!tmp_obj->disabled)
continue;
}
starting_key = iter.index;
uapi_remove_method(
uapi,
iter.index & (UVERBS_API_OBJ_KEY_MASK |
UVERBS_API_METHOD_KEY_MASK));
goto again;
}
WARN_ON(false);
}
if (!scan_again)
return;
scan_again = false;
starting_key = 0;
goto again;
}
void uverbs_destroy_api(struct uverbs_api *uapi)
{
if (!uapi)
return;
uapi_remove_range(uapi, 0, U32_MAX);
kfree(uapi->write_methods);
kfree(uapi);
}
static const struct uapi_definition uverbs_core_api[] = {
UAPI_DEF_CHAIN(uverbs_def_obj_async_fd),
UAPI_DEF_CHAIN(uverbs_def_obj_counters),
UAPI_DEF_CHAIN(uverbs_def_obj_cq),
UAPI_DEF_CHAIN(uverbs_def_obj_device),
UAPI_DEF_CHAIN(uverbs_def_obj_dm),
UAPI_DEF_CHAIN(uverbs_def_obj_flow_action),
UAPI_DEF_CHAIN(uverbs_def_obj_intf),
UAPI_DEF_CHAIN(uverbs_def_obj_mr),
UAPI_DEF_CHAIN(uverbs_def_obj_qp),
UAPI_DEF_CHAIN(uverbs_def_obj_srq),
UAPI_DEF_CHAIN(uverbs_def_obj_wq),
UAPI_DEF_CHAIN(uverbs_def_write_intf),
{},
};
struct uverbs_api *uverbs_alloc_api(struct ib_device *ibdev)
{
struct uverbs_api *uapi;
int rc;
uapi = kzalloc(sizeof(*uapi), GFP_KERNEL);
if (!uapi)
return ERR_PTR(-ENOMEM);
INIT_RADIX_TREE(&uapi->radix, GFP_KERNEL);
uapi->driver_id = ibdev->ops.driver_id;
rc = uapi_merge_def(uapi, ibdev, uverbs_core_api, false);
if (rc)
goto err;
rc = uapi_merge_def(uapi, ibdev, ibdev->driver_def, true);
if (rc)
goto err;
uapi_finalize_disable(uapi);
rc = uapi_finalize(uapi);
if (rc)
goto err;
return uapi;
err:
if (rc != -ENOMEM)
dev_err(&ibdev->dev,
"Setup of uverbs_api failed, kernel parsing tree description is not valid (%d)??\n",
rc);
uverbs_destroy_api(uapi);
return ERR_PTR(rc);
}
/*
* The pre version is done before destroying the HW objects, it only blocks
* off method access. All methods that require the ib_dev or the module data
* must test one of these assignments prior to continuing.
*/
void uverbs_disassociate_api_pre(struct ib_uverbs_device *uverbs_dev)
{
struct uverbs_api *uapi = uverbs_dev->uapi;
struct radix_tree_iter iter;
void __rcu **slot;
rcu_assign_pointer(uverbs_dev->ib_dev, NULL);
radix_tree_for_each_slot (slot, &uapi->radix, &iter, 0) {
if (uapi_key_is_ioctl_method(iter.index)) {
struct uverbs_api_ioctl_method *method_elm =
rcu_dereference_protected(*slot, true);
if (method_elm->driver_method)
rcu_assign_pointer(method_elm->handler, NULL);
}
}
synchronize_srcu(&uverbs_dev->disassociate_srcu);
}
/*
* Called when a driver disassociates from the ib_uverbs_device. The
* assumption is that the driver module will unload after. Replace everything
* related to the driver with NULL as a safety measure.
*/
void uverbs_disassociate_api(struct uverbs_api *uapi)
{
struct radix_tree_iter iter;
void __rcu **slot;
radix_tree_for_each_slot (slot, &uapi->radix, &iter, 0) {
if (uapi_key_is_object(iter.index)) {
struct uverbs_api_object *object_elm =
rcu_dereference_protected(*slot, true);
/*
* Some type_attrs are in the driver module. We don't
* bother to keep track of which since there should be
* no use of this after disassociate.
*/
object_elm->type_attrs = NULL;
} else if (uapi_key_is_attr(iter.index)) {
struct uverbs_api_attr *elm =
rcu_dereference_protected(*slot, true);
if (elm->spec.type == UVERBS_ATTR_TYPE_ENUM_IN)
elm->spec.u2.enum_def.ids = NULL;
}
}
}