/* * Blackfin On-Chip Sport Emulated UART Driver * * Copyright 2006-2009 Analog Devices Inc. * * Enter bugs at http://blackfin.uclinux.org/ * * Licensed under the GPL-2 or later. */ /* * This driver and the hardware supported are in term of EE-191 of ADI. * http://www.analog.com/static/imported-files/application_notes/EE191.pdf * This application note describe how to implement a UART on a Sharc DSP, * but this driver is implemented on Blackfin Processor. * Transmit Frame Sync is not used by this driver to transfer data out. */ /* #define DEBUG */ #define DRV_NAME "bfin-sport-uart" #define DEVICE_NAME "ttySS" #define pr_fmt(fmt) DRV_NAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "bfin_sport_uart.h" struct sport_uart_port { struct uart_port port; int err_irq; unsigned short csize; unsigned short rxmask; unsigned short txmask1; unsigned short txmask2; unsigned char stopb; /* unsigned char parib; */ #ifdef CONFIG_SERIAL_BFIN_SPORT_CTSRTS int cts_pin; int rts_pin; #endif }; static int sport_uart_tx_chars(struct sport_uart_port *up); static void sport_stop_tx(struct uart_port *port); static inline void tx_one_byte(struct sport_uart_port *up, unsigned int value) { pr_debug("%s value:%x, mask1=0x%x, mask2=0x%x\n", __func__, value, up->txmask1, up->txmask2); /* Place Start and Stop bits */ __asm__ __volatile__ ( "%[val] <<= 1;" "%[val] = %[val] & %[mask1];" "%[val] = %[val] | %[mask2];" : [val]"+d"(value) : [mask1]"d"(up->txmask1), [mask2]"d"(up->txmask2) : "ASTAT" ); pr_debug("%s value:%x\n", __func__, value); SPORT_PUT_TX(up, value); } static inline unsigned char rx_one_byte(struct sport_uart_port *up) { unsigned int value; unsigned char extract; u32 tmp_mask1, tmp_mask2, tmp_shift, tmp; if ((up->csize + up->stopb) > 7) value = SPORT_GET_RX32(up); else value = SPORT_GET_RX(up); pr_debug("%s value:%x, cs=%d, mask=0x%x\n", __func__, value, up->csize, up->rxmask); /* Extract data */ __asm__ __volatile__ ( "%[extr] = 0;" "%[mask1] = %[rxmask];" "%[mask2] = 0x0200(Z);" "%[shift] = 0;" "LSETUP(.Lloop_s, .Lloop_e) LC0 = %[lc];" ".Lloop_s:" "%[tmp] = extract(%[val], %[mask1].L)(Z);" "%[tmp] <<= %[shift];" "%[extr] = %[extr] | %[tmp];" "%[mask1] = %[mask1] - %[mask2];" ".Lloop_e:" "%[shift] += 1;" : [extr]"=&d"(extract), [shift]"=&d"(tmp_shift), [tmp]"=&d"(tmp), [mask1]"=&d"(tmp_mask1), [mask2]"=&d"(tmp_mask2) : [val]"d"(value), [rxmask]"d"(up->rxmask), [lc]"a"(up->csize) : "ASTAT", "LB0", "LC0", "LT0" ); pr_debug(" extract:%x\n", extract); return extract; } static int sport_uart_setup(struct sport_uart_port *up, int size, int baud_rate) { int tclkdiv, rclkdiv; unsigned int sclk = get_sclk(); /* Set TCR1 and TCR2, TFSR is not enabled for uart */ SPORT_PUT_TCR1(up, (LATFS | ITFS | TFSR | TLSBIT | ITCLK)); SPORT_PUT_TCR2(up, size + 1); pr_debug("%s TCR1:%x, TCR2:%x\n", __func__, SPORT_GET_TCR1(up), SPORT_GET_TCR2(up)); /* Set RCR1 and RCR2 */ SPORT_PUT_RCR1(up, (RCKFE | LARFS | LRFS | RFSR | IRCLK)); SPORT_PUT_RCR2(up, (size + 1) * 2 - 1); pr_debug("%s RCR1:%x, RCR2:%x\n", __func__, SPORT_GET_RCR1(up), SPORT_GET_RCR2(up)); tclkdiv = sclk / (2 * baud_rate) - 1; /* The actual uart baud rate of devices vary between +/-2%. The sport * RX sample rate should be faster than the double of the worst case, * otherwise, wrong data are received. So, set sport RX clock to be * 3% faster. */ rclkdiv = sclk / (2 * baud_rate * 2 * 97 / 100) - 1; SPORT_PUT_TCLKDIV(up, tclkdiv); SPORT_PUT_RCLKDIV(up, rclkdiv); SSYNC(); pr_debug("%s sclk:%d, baud_rate:%d, tclkdiv:%d, rclkdiv:%d\n", __func__, sclk, baud_rate, tclkdiv, rclkdiv); return 0; } static irqreturn_t sport_uart_rx_irq(int irq, void *dev_id) { struct sport_uart_port *up = dev_id; struct tty_port *port = &up->port.state->port; unsigned int ch; spin_lock(&up->port.lock); while (SPORT_GET_STAT(up) & RXNE) { ch = rx_one_byte(up); up->port.icount.rx++; if (!uart_handle_sysrq_char(&up->port, ch)) tty_insert_flip_char(port, ch, TTY_NORMAL); } /* XXX this won't deadlock with lowlat? */ tty_flip_buffer_push(port); spin_unlock(&up->port.lock); return IRQ_HANDLED; } static irqreturn_t sport_uart_tx_irq(int irq, void *dev_id) { struct sport_uart_port *up = dev_id; spin_lock(&up->port.lock); sport_uart_tx_chars(up); spin_unlock(&up->port.lock); return IRQ_HANDLED; } static irqreturn_t sport_uart_err_irq(int irq, void *dev_id) { struct sport_uart_port *up = dev_id; unsigned int stat = SPORT_GET_STAT(up); spin_lock(&up->port.lock); /* Overflow in RX FIFO */ if (stat & ROVF) { up->port.icount.overrun++; tty_insert_flip_char(&up->port.state->port, 0, TTY_OVERRUN); SPORT_PUT_STAT(up, ROVF); /* Clear ROVF bit */ } /* These should not happen */ if (stat & (TOVF | TUVF | RUVF)) { pr_err("SPORT Error:%s %s %s\n", (stat & TOVF) ? "TX overflow" : "", (stat & TUVF) ? "TX underflow" : "", (stat & RUVF) ? "RX underflow" : ""); SPORT_PUT_TCR1(up, SPORT_GET_TCR1(up) & ~TSPEN); SPORT_PUT_RCR1(up, SPORT_GET_RCR1(up) & ~RSPEN); } SSYNC(); spin_unlock(&up->port.lock); /* XXX we don't push the overrun bit to TTY? */ return IRQ_HANDLED; } #ifdef CONFIG_SERIAL_BFIN_SPORT_CTSRTS static unsigned int sport_get_mctrl(struct uart_port *port) { struct sport_uart_port *up = (struct sport_uart_port *)port; if (up->cts_pin < 0) return TIOCM_CTS | TIOCM_DSR | TIOCM_CAR; /* CTS PIN is negative assertive. */ if (SPORT_UART_GET_CTS(up)) return TIOCM_CTS | TIOCM_DSR | TIOCM_CAR; else return TIOCM_DSR | TIOCM_CAR; } static void sport_set_mctrl(struct uart_port *port, unsigned int mctrl) { struct sport_uart_port *up = (struct sport_uart_port *)port; if (up->rts_pin < 0) return; /* RTS PIN is negative assertive. */ if (mctrl & TIOCM_RTS) SPORT_UART_ENABLE_RTS(up); else SPORT_UART_DISABLE_RTS(up); } /* * Handle any change of modem status signal. */ static irqreturn_t sport_mctrl_cts_int(int irq, void *dev_id) { struct sport_uart_port *up = (struct sport_uart_port *)dev_id; unsigned int status; status = sport_get_mctrl(&up->port); uart_handle_cts_change(&up->port, status & TIOCM_CTS); return IRQ_HANDLED; } #else static unsigned int sport_get_mctrl(struct uart_port *port) { pr_debug("%s enter\n", __func__); return TIOCM_CTS | TIOCM_CD | TIOCM_DSR; } static void sport_set_mctrl(struct uart_port *port, unsigned int mctrl) { pr_debug("%s enter\n", __func__); } #endif /* Reqeust IRQ, Setup clock */ static int sport_startup(struct uart_port *port) { struct sport_uart_port *up = (struct sport_uart_port *)port; int ret; pr_debug("%s enter\n", __func__); ret = request_irq(up->port.irq, sport_uart_rx_irq, 0, "SPORT_UART_RX", up); if (ret) { dev_err(port->dev, "unable to request SPORT RX interrupt\n"); return ret; } ret = request_irq(up->port.irq+1, sport_uart_tx_irq, 0, "SPORT_UART_TX", up); if (ret) { dev_err(port->dev, "unable to request SPORT TX interrupt\n"); goto fail1; } ret = request_irq(up->err_irq, sport_uart_err_irq, 0, "SPORT_UART_STATUS", up); if (ret) { dev_err(port->dev, "unable to request SPORT status interrupt\n"); goto fail2; } #ifdef CONFIG_SERIAL_BFIN_SPORT_CTSRTS if (up->cts_pin >= 0) { if (request_irq(gpio_to_irq(up->cts_pin), sport_mctrl_cts_int, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | 0, "BFIN_SPORT_UART_CTS", up)) { up->cts_pin = -1; dev_info(port->dev, "Unable to attach BlackFin UART over SPORT CTS interrupt. So, disable it.\n"); } } if (up->rts_pin >= 0) { if (gpio_request(up->rts_pin, DRV_NAME)) { dev_info(port->dev, "fail to request RTS PIN at GPIO_%d\n", up->rts_pin); up->rts_pin = -1; } else gpio_direction_output(up->rts_pin, 0); } #endif return 0; fail2: free_irq(up->port.irq+1, up); fail1: free_irq(up->port.irq, up); return ret; } /* * sport_uart_tx_chars * * ret 1 means need to enable sport. * ret 0 means do nothing. */ static int sport_uart_tx_chars(struct sport_uart_port *up) { struct circ_buf *xmit = &up->port.state->xmit; if (SPORT_GET_STAT(up) & TXF) return 0; if (up->port.x_char) { tx_one_byte(up, up->port.x_char); up->port.icount.tx++; up->port.x_char = 0; return 1; } if (uart_circ_empty(xmit) || uart_tx_stopped(&up->port)) { /* The waiting loop to stop SPORT TX from TX interrupt is * too long. This may block SPORT RX interrupts and cause * RX FIFO overflow. So, do stop sport TX only after the last * char in TX FIFO is moved into the shift register. */ if (SPORT_GET_STAT(up) & TXHRE) sport_stop_tx(&up->port); return 0; } while(!(SPORT_GET_STAT(up) & TXF) && !uart_circ_empty(xmit)) { tx_one_byte(up, xmit->buf[xmit->tail]); xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE -1); up->port.icount.tx++; } if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) uart_write_wakeup(&up->port); return 1; } static unsigned int sport_tx_empty(struct uart_port *port) { struct sport_uart_port *up = (struct sport_uart_port *)port; unsigned int stat; stat = SPORT_GET_STAT(up); pr_debug("%s stat:%04x\n", __func__, stat); if (stat & TXHRE) { return TIOCSER_TEMT; } else return 0; } static void sport_stop_tx(struct uart_port *port) { struct sport_uart_port *up = (struct sport_uart_port *)port; pr_debug("%s enter\n", __func__); if (!(SPORT_GET_TCR1(up) & TSPEN)) return; /* Although the hold register is empty, last byte is still in shift * register and not sent out yet. So, put a dummy data into TX FIFO. * Then, sport tx stops when last byte is shift out and the dummy * data is moved into the shift register. */ SPORT_PUT_TX(up, 0xffff); while (!(SPORT_GET_STAT(up) & TXHRE)) cpu_relax(); SPORT_PUT_TCR1(up, (SPORT_GET_TCR1(up) & ~TSPEN)); SSYNC(); return; } static void sport_start_tx(struct uart_port *port) { struct sport_uart_port *up = (struct sport_uart_port *)port; pr_debug("%s enter\n", __func__); /* Write data into SPORT FIFO before enable SPROT to transmit */ if (sport_uart_tx_chars(up)) { /* Enable transmit, then an interrupt will generated */ SPORT_PUT_TCR1(up, (SPORT_GET_TCR1(up) | TSPEN)); SSYNC(); } pr_debug("%s exit\n", __func__); } static void sport_stop_rx(struct uart_port *port) { struct sport_uart_port *up = (struct sport_uart_port *)port; pr_debug("%s enter\n", __func__); /* Disable sport to stop rx */ SPORT_PUT_RCR1(up, (SPORT_GET_RCR1(up) & ~RSPEN)); SSYNC(); } static void sport_enable_ms(struct uart_port *port) { pr_debug("%s enter\n", __func__); } static void sport_break_ctl(struct uart_port *port, int break_state) { pr_debug("%s enter\n", __func__); } static void sport_shutdown(struct uart_port *port) { struct sport_uart_port *up = (struct sport_uart_port *)port; dev_dbg(port->dev, "%s enter\n", __func__); /* Disable sport */ SPORT_PUT_TCR1(up, (SPORT_GET_TCR1(up) & ~TSPEN)); SPORT_PUT_RCR1(up, (SPORT_GET_RCR1(up) & ~RSPEN)); SSYNC(); free_irq(up->port.irq, up); free_irq(up->port.irq+1, up); free_irq(up->err_irq, up); #ifdef CONFIG_SERIAL_BFIN_SPORT_CTSRTS if (up->cts_pin >= 0) free_irq(gpio_to_irq(up->cts_pin), up); if (up->rts_pin >= 0) gpio_free(up->rts_pin); #endif } static const char *sport_type(struct uart_port *port) { struct sport_uart_port *up = (struct sport_uart_port *)port; pr_debug("%s enter\n", __func__); return up->port.type == PORT_BFIN_SPORT ? "BFIN-SPORT-UART" : NULL; } static void sport_release_port(struct uart_port *port) { pr_debug("%s enter\n", __func__); } static int sport_request_port(struct uart_port *port) { pr_debug("%s enter\n", __func__); return 0; } static void sport_config_port(struct uart_port *port, int flags) { struct sport_uart_port *up = (struct sport_uart_port *)port; pr_debug("%s enter\n", __func__); up->port.type = PORT_BFIN_SPORT; } static int sport_verify_port(struct uart_port *port, struct serial_struct *ser) { pr_debug("%s enter\n", __func__); return 0; } static void sport_set_termios(struct uart_port *port, struct ktermios *termios, struct ktermios *old) { struct sport_uart_port *up = (struct sport_uart_port *)port; unsigned long flags; int i; pr_debug("%s enter, c_cflag:%08x\n", __func__, termios->c_cflag); switch (termios->c_cflag & CSIZE) { case CS8: up->csize = 8; break; case CS7: up->csize = 7; break; case CS6: up->csize = 6; break; case CS5: up->csize = 5; break; default: pr_warning("requested word length not supported\n"); } if (termios->c_cflag & CSTOPB) { up->stopb = 1; } if (termios->c_cflag & PARENB) { pr_warning("PAREN bits is not supported yet\n"); /* up->parib = 1; */ } spin_lock_irqsave(&up->port.lock, flags); port->read_status_mask = 0; /* * Characters to ignore */ port->ignore_status_mask = 0; /* RX extract mask */ up->rxmask = 0x01 | (((up->csize + up->stopb) * 2 - 1) << 0x8); /* TX masks, 8 bit data and 1 bit stop for example: * mask1 = b#0111111110 * mask2 = b#1000000000 */ for (i = 0, up->txmask1 = 0; i < up->csize; i++) up->txmask1 |= (1<txmask2 = (1<stopb) { ++i; up->txmask2 |= (1<txmask1 <<= 1; up->txmask2 <<= 1; /* uart baud rate */ port->uartclk = uart_get_baud_rate(port, termios, old, 0, get_sclk()/16); /* Disable UART */ SPORT_PUT_TCR1(up, SPORT_GET_TCR1(up) & ~TSPEN); SPORT_PUT_RCR1(up, SPORT_GET_RCR1(up) & ~RSPEN); sport_uart_setup(up, up->csize + up->stopb, port->uartclk); /* driver TX line high after config, one dummy data is * necessary to stop sport after shift one byte */ SPORT_PUT_TX(up, 0xffff); SPORT_PUT_TX(up, 0xffff); SPORT_PUT_TCR1(up, (SPORT_GET_TCR1(up) | TSPEN)); SSYNC(); while (!(SPORT_GET_STAT(up) & TXHRE)) cpu_relax(); SPORT_PUT_TCR1(up, SPORT_GET_TCR1(up) & ~TSPEN); SSYNC(); /* Port speed changed, update the per-port timeout. */ uart_update_timeout(port, termios->c_cflag, port->uartclk); /* Enable sport rx */ SPORT_PUT_RCR1(up, SPORT_GET_RCR1(up) | RSPEN); SSYNC(); spin_unlock_irqrestore(&up->port.lock, flags); } struct uart_ops sport_uart_ops = { .tx_empty = sport_tx_empty, .set_mctrl = sport_set_mctrl, .get_mctrl = sport_get_mctrl, .stop_tx = sport_stop_tx, .start_tx = sport_start_tx, .stop_rx = sport_stop_rx, .enable_ms = sport_enable_ms, .break_ctl = sport_break_ctl, .startup = sport_startup, .shutdown = sport_shutdown, .set_termios = sport_set_termios, .type = sport_type, .release_port = sport_release_port, .request_port = sport_request_port, .config_port = sport_config_port, .verify_port = sport_verify_port, }; #define BFIN_SPORT_UART_MAX_PORTS 4 static struct sport_uart_port *bfin_sport_uart_ports[BFIN_SPORT_UART_MAX_PORTS]; #ifdef CONFIG_SERIAL_BFIN_SPORT_CONSOLE #define CLASS_BFIN_SPORT_CONSOLE "bfin-sport-console" static int __init sport_uart_console_setup(struct console *co, char *options) { struct sport_uart_port *up; int baud = 57600; int bits = 8; int parity = 'n'; # ifdef CONFIG_SERIAL_BFIN_SPORT_CTSRTS int flow = 'r'; # else int flow = 'n'; # endif /* Check whether an invalid uart number has been specified */ if (co->index < 0 || co->index >= BFIN_SPORT_UART_MAX_PORTS) return -ENODEV; up = bfin_sport_uart_ports[co->index]; if (!up) return -ENODEV; if (options) uart_parse_options(options, &baud, &parity, &bits, &flow); return uart_set_options(&up->port, co, baud, parity, bits, flow); } static void sport_uart_console_putchar(struct uart_port *port, int ch) { struct sport_uart_port *up = (struct sport_uart_port *)port; while (SPORT_GET_STAT(up) & TXF) barrier(); tx_one_byte(up, ch); } /* * Interrupts are disabled on entering */ static void sport_uart_console_write(struct console *co, const char *s, unsigned int count) { struct sport_uart_port *up = bfin_sport_uart_ports[co->index]; unsigned long flags; spin_lock_irqsave(&up->port.lock, flags); if (SPORT_GET_TCR1(up) & TSPEN) uart_console_write(&up->port, s, count, sport_uart_console_putchar); else { /* dummy data to start sport */ while (SPORT_GET_STAT(up) & TXF) barrier(); SPORT_PUT_TX(up, 0xffff); /* Enable transmit, then an interrupt will generated */ SPORT_PUT_TCR1(up, (SPORT_GET_TCR1(up) | TSPEN)); SSYNC(); uart_console_write(&up->port, s, count, sport_uart_console_putchar); /* Although the hold register is empty, last byte is still in shift * register and not sent out yet. So, put a dummy data into TX FIFO. * Then, sport tx stops when last byte is shift out and the dummy * data is moved into the shift register. */ while (SPORT_GET_STAT(up) & TXF) barrier(); SPORT_PUT_TX(up, 0xffff); while (!(SPORT_GET_STAT(up) & TXHRE)) barrier(); /* Stop sport tx transfer */ SPORT_PUT_TCR1(up, (SPORT_GET_TCR1(up) & ~TSPEN)); SSYNC(); } spin_unlock_irqrestore(&up->port.lock, flags); } static struct uart_driver sport_uart_reg; static struct console sport_uart_console = { .name = DEVICE_NAME, .write = sport_uart_console_write, .device = uart_console_device, .setup = sport_uart_console_setup, .flags = CON_PRINTBUFFER, .index = -1, .data = &sport_uart_reg, }; #define SPORT_UART_CONSOLE (&sport_uart_console) #else #define SPORT_UART_CONSOLE NULL #endif /* CONFIG_SERIAL_BFIN_SPORT_CONSOLE */ static struct uart_driver sport_uart_reg = { .owner = THIS_MODULE, .driver_name = DRV_NAME, .dev_name = DEVICE_NAME, .major = 204, .minor = 84, .nr = BFIN_SPORT_UART_MAX_PORTS, .cons = SPORT_UART_CONSOLE, }; #ifdef CONFIG_PM static int sport_uart_suspend(struct device *dev) { struct sport_uart_port *sport = dev_get_drvdata(dev); dev_dbg(dev, "%s enter\n", __func__); if (sport) uart_suspend_port(&sport_uart_reg, &sport->port); return 0; } static int sport_uart_resume(struct device *dev) { struct sport_uart_port *sport = dev_get_drvdata(dev); dev_dbg(dev, "%s enter\n", __func__); if (sport) uart_resume_port(&sport_uart_reg, &sport->port); return 0; } static struct dev_pm_ops bfin_sport_uart_dev_pm_ops = { .suspend = sport_uart_suspend, .resume = sport_uart_resume, }; #endif static int sport_uart_probe(struct platform_device *pdev) { struct resource *res; struct sport_uart_port *sport; int ret = 0; dev_dbg(&pdev->dev, "%s enter\n", __func__); if (pdev->id < 0 || pdev->id >= BFIN_SPORT_UART_MAX_PORTS) { dev_err(&pdev->dev, "Wrong sport uart platform device id.\n"); return -ENOENT; } if (bfin_sport_uart_ports[pdev->id] == NULL) { bfin_sport_uart_ports[pdev->id] = kzalloc(sizeof(struct sport_uart_port), GFP_KERNEL); sport = bfin_sport_uart_ports[pdev->id]; if (!sport) { dev_err(&pdev->dev, "Fail to malloc sport_uart_port\n"); return -ENOMEM; } ret = peripheral_request_list( (unsigned short *)dev_get_platdata(&pdev->dev), DRV_NAME); if (ret) { dev_err(&pdev->dev, "Fail to request SPORT peripherals\n"); goto out_error_free_mem; } spin_lock_init(&sport->port.lock); sport->port.fifosize = SPORT_TX_FIFO_SIZE, sport->port.ops = &sport_uart_ops; sport->port.line = pdev->id; sport->port.iotype = UPIO_MEM; sport->port.flags = UPF_BOOT_AUTOCONF; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (res == NULL) { dev_err(&pdev->dev, "Cannot get IORESOURCE_MEM\n"); ret = -ENOENT; goto out_error_free_peripherals; } sport->port.membase = ioremap(res->start, resource_size(res)); if (!sport->port.membase) { dev_err(&pdev->dev, "Cannot map sport IO\n"); ret = -ENXIO; goto out_error_free_peripherals; } sport->port.mapbase = res->start; sport->port.irq = platform_get_irq(pdev, 0); if ((int)sport->port.irq < 0) { dev_err(&pdev->dev, "No sport RX/TX IRQ specified\n"); ret = -ENOENT; goto out_error_unmap; } sport->err_irq = platform_get_irq(pdev, 1); if (sport->err_irq < 0) { dev_err(&pdev->dev, "No sport status IRQ specified\n"); ret = -ENOENT; goto out_error_unmap; } #ifdef CONFIG_SERIAL_BFIN_SPORT_CTSRTS res = platform_get_resource(pdev, IORESOURCE_IO, 0); if (res == NULL) sport->cts_pin = -1; else { sport->cts_pin = res->start; sport->port.flags |= ASYNC_CTS_FLOW; } res = platform_get_resource(pdev, IORESOURCE_IO, 1); if (res == NULL) sport->rts_pin = -1; else sport->rts_pin = res->start; #endif } #ifdef CONFIG_SERIAL_BFIN_SPORT_CONSOLE if (!is_early_platform_device(pdev)) { #endif sport = bfin_sport_uart_ports[pdev->id]; sport->port.dev = &pdev->dev; dev_set_drvdata(&pdev->dev, sport); ret = uart_add_one_port(&sport_uart_reg, &sport->port); #ifdef CONFIG_SERIAL_BFIN_SPORT_CONSOLE } #endif if (!ret) return 0; if (sport) { out_error_unmap: iounmap(sport->port.membase); out_error_free_peripherals: peripheral_free_list( (unsigned short *)dev_get_platdata(&pdev->dev)); out_error_free_mem: kfree(sport); bfin_sport_uart_ports[pdev->id] = NULL; } return ret; } static int sport_uart_remove(struct platform_device *pdev) { struct sport_uart_port *sport = platform_get_drvdata(pdev); dev_dbg(&pdev->dev, "%s enter\n", __func__); dev_set_drvdata(&pdev->dev, NULL); if (sport) { uart_remove_one_port(&sport_uart_reg, &sport->port); iounmap(sport->port.membase); peripheral_free_list( (unsigned short *)dev_get_platdata(&pdev->dev)); kfree(sport); bfin_sport_uart_ports[pdev->id] = NULL; } return 0; } static struct platform_driver sport_uart_driver = { .probe = sport_uart_probe, .remove = sport_uart_remove, .driver = { .name = DRV_NAME, #ifdef CONFIG_PM .pm = &bfin_sport_uart_dev_pm_ops, #endif }, }; #ifdef CONFIG_SERIAL_BFIN_SPORT_CONSOLE static __initdata struct early_platform_driver early_sport_uart_driver = { .class_str = CLASS_BFIN_SPORT_CONSOLE, .pdrv = &sport_uart_driver, .requested_id = EARLY_PLATFORM_ID_UNSET, }; static int __init sport_uart_rs_console_init(void) { early_platform_driver_register(&early_sport_uart_driver, DRV_NAME); early_platform_driver_probe(CLASS_BFIN_SPORT_CONSOLE, BFIN_SPORT_UART_MAX_PORTS, 0); register_console(&sport_uart_console); return 0; } console_initcall(sport_uart_rs_console_init); #endif static int __init sport_uart_init(void) { int ret; pr_info("Blackfin uart over sport driver\n"); ret = uart_register_driver(&sport_uart_reg); if (ret) { pr_err("failed to register %s:%d\n", sport_uart_reg.driver_name, ret); return ret; } ret = platform_driver_register(&sport_uart_driver); if (ret) { pr_err("failed to register sport uart driver:%d\n", ret); uart_unregister_driver(&sport_uart_reg); } return ret; } module_init(sport_uart_init); static void __exit sport_uart_exit(void) { platform_driver_unregister(&sport_uart_driver); uart_unregister_driver(&sport_uart_reg); } module_exit(sport_uart_exit); MODULE_AUTHOR("Sonic Zhang, Roy Huang"); MODULE_DESCRIPTION("Blackfin serial over SPORT driver"); MODULE_LICENSE("GPL");