// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. * Copyright (C) 2019-2021 Linaro Ltd. */ #include #include #include #include #include #include "gsi.h" #include "gsi_trans.h" #include "ipa.h" #include "ipa_endpoint.h" #include "ipa_table.h" #include "ipa_cmd.h" #include "ipa_mem.h" /** * DOC: IPA Immediate Commands * * The AP command TX endpoint is used to issue immediate commands to the IPA. * An immediate command is generally used to request the IPA do something * other than data transfer to another endpoint. * * Immediate commands are represented by GSI transactions just like other * transfer requests, represented by a single GSI TRE. Each immediate * command has a well-defined format, having a payload of a known length. * This allows the transfer element's length field to be used to hold an * immediate command's opcode. The payload for a command resides in DRAM * and is described by a single scatterlist entry in its transaction. * Commands do not require a transaction completion callback. To commit * an immediate command transaction, either gsi_trans_commit_wait() or * gsi_trans_commit_wait_timeout() is used. */ /* Some commands can wait until indicated pipeline stages are clear */ enum pipeline_clear_options { pipeline_clear_hps = 0x0, pipeline_clear_src_grp = 0x1, pipeline_clear_full = 0x2, }; /* IPA_CMD_IP_V{4,6}_{FILTER,ROUTING}_INIT */ struct ipa_cmd_hw_ip_fltrt_init { __le64 hash_rules_addr; __le64 flags; __le64 nhash_rules_addr; }; /* Field masks for ipa_cmd_hw_ip_fltrt_init structure fields */ #define IP_FLTRT_FLAGS_HASH_SIZE_FMASK GENMASK_ULL(11, 0) #define IP_FLTRT_FLAGS_HASH_ADDR_FMASK GENMASK_ULL(27, 12) #define IP_FLTRT_FLAGS_NHASH_SIZE_FMASK GENMASK_ULL(39, 28) #define IP_FLTRT_FLAGS_NHASH_ADDR_FMASK GENMASK_ULL(55, 40) /* IPA_CMD_HDR_INIT_LOCAL */ struct ipa_cmd_hw_hdr_init_local { __le64 hdr_table_addr; __le32 flags; __le32 reserved; }; /* Field masks for ipa_cmd_hw_hdr_init_local structure fields */ #define HDR_INIT_LOCAL_FLAGS_TABLE_SIZE_FMASK GENMASK(11, 0) #define HDR_INIT_LOCAL_FLAGS_HDR_ADDR_FMASK GENMASK(27, 12) /* IPA_CMD_REGISTER_WRITE */ /* For IPA v4.0+, the pipeline clear options are encoded in the opcode */ #define REGISTER_WRITE_OPCODE_SKIP_CLEAR_FMASK GENMASK(8, 8) #define REGISTER_WRITE_OPCODE_CLEAR_OPTION_FMASK GENMASK(10, 9) struct ipa_cmd_register_write { __le16 flags; /* Unused/reserved prior to IPA v4.0 */ __le16 offset; __le32 value; __le32 value_mask; __le32 clear_options; /* Unused/reserved for IPA v4.0+ */ }; /* Field masks for ipa_cmd_register_write structure fields */ /* The next field is present for IPA v4.0+ */ #define REGISTER_WRITE_FLAGS_OFFSET_HIGH_FMASK GENMASK(14, 11) /* The next field is not present for IPA v4.0+ */ #define REGISTER_WRITE_FLAGS_SKIP_CLEAR_FMASK GENMASK(15, 15) /* The next field and its values are not present for IPA v4.0+ */ #define REGISTER_WRITE_CLEAR_OPTIONS_FMASK GENMASK(1, 0) /* IPA_CMD_IP_PACKET_INIT */ struct ipa_cmd_ip_packet_init { u8 dest_endpoint; u8 reserved[7]; }; /* Field masks for ipa_cmd_ip_packet_init dest_endpoint field */ #define IPA_PACKET_INIT_DEST_ENDPOINT_FMASK GENMASK(4, 0) /* IPA_CMD_DMA_SHARED_MEM */ /* For IPA v4.0+, this opcode gets modified with pipeline clear options */ #define DMA_SHARED_MEM_OPCODE_SKIP_CLEAR_FMASK GENMASK(8, 8) #define DMA_SHARED_MEM_OPCODE_CLEAR_OPTION_FMASK GENMASK(10, 9) struct ipa_cmd_hw_dma_mem_mem { __le16 clear_after_read; /* 0 or DMA_SHARED_MEM_CLEAR_AFTER_READ */ __le16 size; __le16 local_addr; __le16 flags; __le64 system_addr; }; /* Flag allowing atomic clear of target region after reading data (v4.0+)*/ #define DMA_SHARED_MEM_CLEAR_AFTER_READ GENMASK(15, 15) /* Field masks for ipa_cmd_hw_dma_mem_mem structure fields */ #define DMA_SHARED_MEM_FLAGS_DIRECTION_FMASK GENMASK(0, 0) /* The next two fields are not present for IPA v4.0+ */ #define DMA_SHARED_MEM_FLAGS_SKIP_CLEAR_FMASK GENMASK(1, 1) #define DMA_SHARED_MEM_FLAGS_CLEAR_OPTIONS_FMASK GENMASK(3, 2) /* IPA_CMD_IP_PACKET_TAG_STATUS */ struct ipa_cmd_ip_packet_tag_status { __le64 tag; }; #define IP_PACKET_TAG_STATUS_TAG_FMASK GENMASK_ULL(63, 16) /* Immediate command payload */ union ipa_cmd_payload { struct ipa_cmd_hw_ip_fltrt_init table_init; struct ipa_cmd_hw_hdr_init_local hdr_init_local; struct ipa_cmd_register_write register_write; struct ipa_cmd_ip_packet_init ip_packet_init; struct ipa_cmd_hw_dma_mem_mem dma_shared_mem; struct ipa_cmd_ip_packet_tag_status ip_packet_tag_status; }; static void ipa_cmd_validate_build(void) { /* The sizes of a filter and route tables need to fit into fields * in the ipa_cmd_hw_ip_fltrt_init structure. Although hashed tables * might not be used, non-hashed and hashed tables have the same * maximum size. IPv4 and IPv6 filter tables have the same number * of entries, as and IPv4 and IPv6 route tables have the same number * of entries. */ #define TABLE_SIZE (TABLE_COUNT_MAX * sizeof(__le64)) #define TABLE_COUNT_MAX max_t(u32, IPA_ROUTE_COUNT_MAX, IPA_FILTER_COUNT_MAX) BUILD_BUG_ON(TABLE_SIZE > field_max(IP_FLTRT_FLAGS_HASH_SIZE_FMASK)); BUILD_BUG_ON(TABLE_SIZE > field_max(IP_FLTRT_FLAGS_NHASH_SIZE_FMASK)); #undef TABLE_COUNT_MAX #undef TABLE_SIZE /* Hashed and non-hashed fields are assumed to be the same size */ BUILD_BUG_ON(field_max(IP_FLTRT_FLAGS_HASH_SIZE_FMASK) != field_max(IP_FLTRT_FLAGS_NHASH_SIZE_FMASK)); BUILD_BUG_ON(field_max(IP_FLTRT_FLAGS_HASH_ADDR_FMASK) != field_max(IP_FLTRT_FLAGS_NHASH_ADDR_FMASK)); } /* Validate a memory region holding a table */ bool ipa_cmd_table_valid(struct ipa *ipa, const struct ipa_mem *mem, bool route) { u32 offset_max = field_max(IP_FLTRT_FLAGS_NHASH_ADDR_FMASK); u32 size_max = field_max(IP_FLTRT_FLAGS_NHASH_SIZE_FMASK); const char *table = route ? "route" : "filter"; struct device *dev = &ipa->pdev->dev; /* Size must fit in the immediate command field that holds it */ if (mem->size > size_max) { dev_err(dev, "%s table region size too large\n", table); dev_err(dev, " (0x%04x > 0x%04x)\n", mem->size, size_max); return false; } /* Offset must fit in the immediate command field that holds it */ if (mem->offset > offset_max || ipa->mem_offset > offset_max - mem->offset) { dev_err(dev, "%s table region offset too large\n", table); dev_err(dev, " (0x%04x + 0x%04x > 0x%04x)\n", ipa->mem_offset, mem->offset, offset_max); return false; } /* Entire memory range must fit within IPA-local memory */ if (mem->offset > ipa->mem_size || mem->size > ipa->mem_size - mem->offset) { dev_err(dev, "%s table region out of range\n", table); dev_err(dev, " (0x%04x + 0x%04x > 0x%04x)\n", mem->offset, mem->size, ipa->mem_size); return false; } return true; } #ifdef IPA_VALIDATE /* Validate the memory region that holds headers */ static bool ipa_cmd_header_valid(struct ipa *ipa) { struct device *dev = &ipa->pdev->dev; const struct ipa_mem *mem; u32 offset_max; u32 size_max; u32 offset; u32 size; /* In ipa_cmd_hdr_init_local_add() we record the offset and size of * the header table memory area in an immediate command. Make sure * the offset and size fit in the fields that need to hold them, and * that the entire range is within the overall IPA memory range. */ offset_max = field_max(HDR_INIT_LOCAL_FLAGS_HDR_ADDR_FMASK); size_max = field_max(HDR_INIT_LOCAL_FLAGS_TABLE_SIZE_FMASK); /* The header memory area contains both the modem and AP header * regions. The modem portion defines the address of the region. */ mem = ipa_mem_find(ipa, IPA_MEM_MODEM_HEADER); offset = mem->offset; size = mem->size; /* Make sure the offset fits in the IPA command */ if (offset > offset_max || ipa->mem_offset > offset_max - offset) { dev_err(dev, "header table region offset too large\n"); dev_err(dev, " (0x%04x + 0x%04x > 0x%04x)\n", ipa->mem_offset, offset, offset_max); return false; } /* Add the size of the AP portion (if defined) to the combined size */ mem = ipa_mem_find(ipa, IPA_MEM_AP_HEADER); if (mem) size += mem->size; /* Make sure the combined size fits in the IPA command */ if (size > size_max) { dev_err(dev, "header table region size too large\n"); dev_err(dev, " (0x%04x > 0x%08x)\n", size, size_max); return false; } /* Make sure the entire combined area fits in IPA memory */ if (size > ipa->mem_size || offset > ipa->mem_size - size) { dev_err(dev, "header table region out of range\n"); dev_err(dev, " (0x%04x + 0x%04x > 0x%04x)\n", offset, size, ipa->mem_size); return false; } return true; } /* Indicate whether an offset can be used with a register_write command */ static bool ipa_cmd_register_write_offset_valid(struct ipa *ipa, const char *name, u32 offset) { struct ipa_cmd_register_write *payload; struct device *dev = &ipa->pdev->dev; u32 offset_max; u32 bit_count; /* The maximum offset in a register_write immediate command depends * on the version of IPA. A 16 bit offset is always supported, * but starting with IPA v4.0 some additional high-order bits are * allowed. */ bit_count = BITS_PER_BYTE * sizeof(payload->offset); if (ipa->version >= IPA_VERSION_4_0) bit_count += hweight32(REGISTER_WRITE_FLAGS_OFFSET_HIGH_FMASK); BUILD_BUG_ON(bit_count > 32); offset_max = ~0U >> (32 - bit_count); /* Make sure the offset can be represented by the field(s) * that holds it. Also make sure the offset is not outside * the overall IPA memory range. */ if (offset > offset_max || ipa->mem_offset > offset_max - offset) { dev_err(dev, "%s offset too large 0x%04x + 0x%04x > 0x%04x)\n", name, ipa->mem_offset, offset, offset_max); return false; } return true; } /* Check whether offsets passed to register_write are valid */ static bool ipa_cmd_register_write_valid(struct ipa *ipa) { const char *name; u32 offset; /* If hashed tables are supported, ensure the hash flush register * offset will fit in a register write IPA immediate command. */ if (ipa_table_hash_support(ipa)) { offset = ipa_reg_filt_rout_hash_flush_offset(ipa->version); name = "filter/route hash flush"; if (!ipa_cmd_register_write_offset_valid(ipa, name, offset)) return false; } /* Each endpoint can have a status endpoint associated with it, * and this is recorded in an endpoint register. If the modem * crashes, we reset the status endpoint for all modem endpoints * using a register write IPA immediate command. Make sure the * worst case (highest endpoint number) offset of that endpoint * fits in the register write command field(s) that must hold it. */ offset = IPA_REG_ENDP_STATUS_N_OFFSET(IPA_ENDPOINT_COUNT - 1); name = "maximal endpoint status"; if (!ipa_cmd_register_write_offset_valid(ipa, name, offset)) return false; return true; } bool ipa_cmd_data_valid(struct ipa *ipa) { if (!ipa_cmd_header_valid(ipa)) return false; if (!ipa_cmd_register_write_valid(ipa)) return false; return true; } #endif /* IPA_VALIDATE */ int ipa_cmd_pool_init(struct gsi_channel *channel, u32 tre_max) { struct gsi_trans_info *trans_info = &channel->trans_info; struct device *dev = channel->gsi->dev; int ret; /* This is as good a place as any to validate build constants */ ipa_cmd_validate_build(); /* Even though command payloads are allocated one at a time, * a single transaction can require up to tlv_count of them, * so we treat them as if that many can be allocated at once. */ ret = gsi_trans_pool_init_dma(dev, &trans_info->cmd_pool, sizeof(union ipa_cmd_payload), tre_max, channel->tlv_count); if (ret) return ret; /* Each TRE needs a command info structure */ ret = gsi_trans_pool_init(&trans_info->info_pool, sizeof(struct ipa_cmd_info), tre_max, channel->tlv_count); if (ret) gsi_trans_pool_exit_dma(dev, &trans_info->cmd_pool); return ret; } void ipa_cmd_pool_exit(struct gsi_channel *channel) { struct gsi_trans_info *trans_info = &channel->trans_info; struct device *dev = channel->gsi->dev; gsi_trans_pool_exit(&trans_info->info_pool); gsi_trans_pool_exit_dma(dev, &trans_info->cmd_pool); } static union ipa_cmd_payload * ipa_cmd_payload_alloc(struct ipa *ipa, dma_addr_t *addr) { struct gsi_trans_info *trans_info; struct ipa_endpoint *endpoint; endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; trans_info = &ipa->gsi.channel[endpoint->channel_id].trans_info; return gsi_trans_pool_alloc_dma(&trans_info->cmd_pool, addr); } /* If hash_size is 0, hash_offset and hash_addr ignored. */ void ipa_cmd_table_init_add(struct gsi_trans *trans, enum ipa_cmd_opcode opcode, u16 size, u32 offset, dma_addr_t addr, u16 hash_size, u32 hash_offset, dma_addr_t hash_addr) { struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi); enum dma_data_direction direction = DMA_TO_DEVICE; struct ipa_cmd_hw_ip_fltrt_init *payload; union ipa_cmd_payload *cmd_payload; dma_addr_t payload_addr; u64 val; /* Record the non-hash table offset and size */ offset += ipa->mem_offset; val = u64_encode_bits(offset, IP_FLTRT_FLAGS_NHASH_ADDR_FMASK); val |= u64_encode_bits(size, IP_FLTRT_FLAGS_NHASH_SIZE_FMASK); /* The hash table offset and address are zero if its size is 0 */ if (hash_size) { /* Record the hash table offset and size */ hash_offset += ipa->mem_offset; val |= u64_encode_bits(hash_offset, IP_FLTRT_FLAGS_HASH_ADDR_FMASK); val |= u64_encode_bits(hash_size, IP_FLTRT_FLAGS_HASH_SIZE_FMASK); } cmd_payload = ipa_cmd_payload_alloc(ipa, &payload_addr); payload = &cmd_payload->table_init; /* Fill in all offsets and sizes and the non-hash table address */ if (hash_size) payload->hash_rules_addr = cpu_to_le64(hash_addr); payload->flags = cpu_to_le64(val); payload->nhash_rules_addr = cpu_to_le64(addr); gsi_trans_cmd_add(trans, payload, sizeof(*payload), payload_addr, direction, opcode); } /* Initialize header space in IPA-local memory */ void ipa_cmd_hdr_init_local_add(struct gsi_trans *trans, u32 offset, u16 size, dma_addr_t addr) { struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi); enum ipa_cmd_opcode opcode = IPA_CMD_HDR_INIT_LOCAL; enum dma_data_direction direction = DMA_TO_DEVICE; struct ipa_cmd_hw_hdr_init_local *payload; union ipa_cmd_payload *cmd_payload; dma_addr_t payload_addr; u32 flags; offset += ipa->mem_offset; /* With this command we tell the IPA where in its local memory the * header tables reside. The content of the buffer provided is * also written via DMA into that space. The IPA hardware owns * the table, but the AP must initialize it. */ cmd_payload = ipa_cmd_payload_alloc(ipa, &payload_addr); payload = &cmd_payload->hdr_init_local; payload->hdr_table_addr = cpu_to_le64(addr); flags = u32_encode_bits(size, HDR_INIT_LOCAL_FLAGS_TABLE_SIZE_FMASK); flags |= u32_encode_bits(offset, HDR_INIT_LOCAL_FLAGS_HDR_ADDR_FMASK); payload->flags = cpu_to_le32(flags); gsi_trans_cmd_add(trans, payload, sizeof(*payload), payload_addr, direction, opcode); } void ipa_cmd_register_write_add(struct gsi_trans *trans, u32 offset, u32 value, u32 mask, bool clear_full) { struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi); struct ipa_cmd_register_write *payload; union ipa_cmd_payload *cmd_payload; u32 opcode = IPA_CMD_REGISTER_WRITE; dma_addr_t payload_addr; u32 clear_option; u32 options; u16 flags; /* pipeline_clear_src_grp is not used */ clear_option = clear_full ? pipeline_clear_full : pipeline_clear_hps; /* IPA v4.0+ represents the pipeline clear options in the opcode. It * also supports a larger offset by encoding additional high-order * bits in the payload flags field. */ if (ipa->version >= IPA_VERSION_4_0) { u16 offset_high; u32 val; /* Opcode encodes pipeline clear options */ /* SKIP_CLEAR is always 0 (don't skip pipeline clear) */ val = u16_encode_bits(clear_option, REGISTER_WRITE_OPCODE_CLEAR_OPTION_FMASK); opcode |= val; /* Extract the high 4 bits from the offset */ offset_high = (u16)u32_get_bits(offset, GENMASK(19, 16)); offset &= (1 << 16) - 1; /* Extract the top 4 bits and encode it into the flags field */ flags = u16_encode_bits(offset_high, REGISTER_WRITE_FLAGS_OFFSET_HIGH_FMASK); options = 0; /* reserved */ } else { flags = 0; /* SKIP_CLEAR flag is always 0 */ options = u16_encode_bits(clear_option, REGISTER_WRITE_CLEAR_OPTIONS_FMASK); } cmd_payload = ipa_cmd_payload_alloc(ipa, &payload_addr); payload = &cmd_payload->register_write; payload->flags = cpu_to_le16(flags); payload->offset = cpu_to_le16((u16)offset); payload->value = cpu_to_le32(value); payload->value_mask = cpu_to_le32(mask); payload->clear_options = cpu_to_le32(options); gsi_trans_cmd_add(trans, payload, sizeof(*payload), payload_addr, DMA_NONE, opcode); } /* Skip IP packet processing on the next data transfer on a TX channel */ static void ipa_cmd_ip_packet_init_add(struct gsi_trans *trans, u8 endpoint_id) { struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi); enum ipa_cmd_opcode opcode = IPA_CMD_IP_PACKET_INIT; enum dma_data_direction direction = DMA_TO_DEVICE; struct ipa_cmd_ip_packet_init *payload; union ipa_cmd_payload *cmd_payload; dma_addr_t payload_addr; /* assert(endpoint_id < field_max(IPA_PACKET_INIT_DEST_ENDPOINT_FMASK)); */ cmd_payload = ipa_cmd_payload_alloc(ipa, &payload_addr); payload = &cmd_payload->ip_packet_init; payload->dest_endpoint = u8_encode_bits(endpoint_id, IPA_PACKET_INIT_DEST_ENDPOINT_FMASK); gsi_trans_cmd_add(trans, payload, sizeof(*payload), payload_addr, direction, opcode); } /* Use a DMA command to read or write a block of IPA-resident memory */ void ipa_cmd_dma_shared_mem_add(struct gsi_trans *trans, u32 offset, u16 size, dma_addr_t addr, bool toward_ipa) { struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi); enum ipa_cmd_opcode opcode = IPA_CMD_DMA_SHARED_MEM; struct ipa_cmd_hw_dma_mem_mem *payload; union ipa_cmd_payload *cmd_payload; enum dma_data_direction direction; dma_addr_t payload_addr; u16 flags; /* size and offset must fit in 16 bit fields */ /* assert(size > 0 && size <= U16_MAX); */ /* assert(offset <= U16_MAX && ipa->mem_offset <= U16_MAX - offset); */ offset += ipa->mem_offset; cmd_payload = ipa_cmd_payload_alloc(ipa, &payload_addr); payload = &cmd_payload->dma_shared_mem; /* payload->clear_after_read was reserved prior to IPA v4.0. It's * never needed for current code, so it's 0 regardless of version. */ payload->size = cpu_to_le16(size); payload->local_addr = cpu_to_le16(offset); /* payload->flags: * direction: 0 = write to IPA, 1 read from IPA * Starting at v4.0 these are reserved; either way, all zero: * pipeline clear: 0 = wait for pipeline clear (don't skip) * clear_options: 0 = pipeline_clear_hps * Instead, for v4.0+ these are encoded in the opcode. But again * since both values are 0 we won't bother OR'ing them in. */ flags = toward_ipa ? 0 : DMA_SHARED_MEM_FLAGS_DIRECTION_FMASK; payload->flags = cpu_to_le16(flags); payload->system_addr = cpu_to_le64(addr); direction = toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE; gsi_trans_cmd_add(trans, payload, sizeof(*payload), payload_addr, direction, opcode); } static void ipa_cmd_ip_tag_status_add(struct gsi_trans *trans) { struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi); enum ipa_cmd_opcode opcode = IPA_CMD_IP_PACKET_TAG_STATUS; enum dma_data_direction direction = DMA_TO_DEVICE; struct ipa_cmd_ip_packet_tag_status *payload; union ipa_cmd_payload *cmd_payload; dma_addr_t payload_addr; /* assert(tag <= field_max(IP_PACKET_TAG_STATUS_TAG_FMASK)); */ cmd_payload = ipa_cmd_payload_alloc(ipa, &payload_addr); payload = &cmd_payload->ip_packet_tag_status; payload->tag = le64_encode_bits(0, IP_PACKET_TAG_STATUS_TAG_FMASK); gsi_trans_cmd_add(trans, payload, sizeof(*payload), payload_addr, direction, opcode); } /* Issue a small command TX data transfer */ static void ipa_cmd_transfer_add(struct gsi_trans *trans) { struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi); enum dma_data_direction direction = DMA_TO_DEVICE; enum ipa_cmd_opcode opcode = IPA_CMD_NONE; union ipa_cmd_payload *payload; dma_addr_t payload_addr; /* Just transfer a zero-filled payload structure */ payload = ipa_cmd_payload_alloc(ipa, &payload_addr); gsi_trans_cmd_add(trans, payload, sizeof(*payload), payload_addr, direction, opcode); } /* Add immediate commands to a transaction to clear the hardware pipeline */ void ipa_cmd_pipeline_clear_add(struct gsi_trans *trans) { struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi); struct ipa_endpoint *endpoint; /* This will complete when the transfer is received */ reinit_completion(&ipa->completion); /* Issue a no-op register write command (mask 0 means no write) */ ipa_cmd_register_write_add(trans, 0, 0, 0, true); /* Send a data packet through the IPA pipeline. The packet_init * command says to send the next packet directly to the exception * endpoint without any other IPA processing. The tag_status * command requests that status be generated on completion of * that transfer, and that it will be tagged with a value. * Finally, the transfer command sends a small packet of data * (instead of a command) using the command endpoint. */ endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; ipa_cmd_ip_packet_init_add(trans, endpoint->endpoint_id); ipa_cmd_ip_tag_status_add(trans); ipa_cmd_transfer_add(trans); } /* Returns the number of commands required to clear the pipeline */ u32 ipa_cmd_pipeline_clear_count(void) { return 4; } void ipa_cmd_pipeline_clear_wait(struct ipa *ipa) { wait_for_completion(&ipa->completion); } void ipa_cmd_pipeline_clear(struct ipa *ipa) { u32 count = ipa_cmd_pipeline_clear_count(); struct gsi_trans *trans; trans = ipa_cmd_trans_alloc(ipa, count); if (trans) { ipa_cmd_pipeline_clear_add(trans); gsi_trans_commit_wait(trans); ipa_cmd_pipeline_clear_wait(ipa); } else { dev_err(&ipa->pdev->dev, "error allocating %u entry tag transaction\n", count); } } static struct ipa_cmd_info * ipa_cmd_info_alloc(struct ipa_endpoint *endpoint, u32 tre_count) { struct gsi_channel *channel; channel = &endpoint->ipa->gsi.channel[endpoint->channel_id]; return gsi_trans_pool_alloc(&channel->trans_info.info_pool, tre_count); } /* Allocate a transaction for the command TX endpoint */ struct gsi_trans *ipa_cmd_trans_alloc(struct ipa *ipa, u32 tre_count) { struct ipa_endpoint *endpoint; struct gsi_trans *trans; endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; trans = gsi_channel_trans_alloc(&ipa->gsi, endpoint->channel_id, tre_count, DMA_NONE); if (trans) trans->info = ipa_cmd_info_alloc(endpoint, tre_count); return trans; }