/* * multiorder.c: Multi-order radix tree entry testing * Copyright (c) 2016 Intel Corporation * Author: Ross Zwisler * Author: Matthew Wilcox * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #include #include #include #include "test.h" #define for_each_index(i, base, order) \ for (i = base; i < base + (1 << order); i++) static void __multiorder_tag_test(int index, int order) { RADIX_TREE(tree, GFP_KERNEL); int base, err, i; /* our canonical entry */ base = index & ~((1 << order) - 1); printf("Multiorder tag test with index %d, canonical entry %d\n", index, base); err = item_insert_order(&tree, index, order); assert(!err); /* * Verify we get collisions for covered indices. We try and fail to * insert an exceptional entry so we don't leak memory via * item_insert_order(). */ for_each_index(i, base, order) { err = __radix_tree_insert(&tree, i, order, (void *)(0xA0 | RADIX_TREE_EXCEPTIONAL_ENTRY)); assert(err == -EEXIST); } for_each_index(i, base, order) { assert(!radix_tree_tag_get(&tree, i, 0)); assert(!radix_tree_tag_get(&tree, i, 1)); } assert(radix_tree_tag_set(&tree, index, 0)); for_each_index(i, base, order) { assert(radix_tree_tag_get(&tree, i, 0)); assert(!radix_tree_tag_get(&tree, i, 1)); } assert(radix_tree_tag_clear(&tree, index, 0)); for_each_index(i, base, order) { assert(!radix_tree_tag_get(&tree, i, 0)); assert(!radix_tree_tag_get(&tree, i, 1)); } assert(!radix_tree_tagged(&tree, 0)); assert(!radix_tree_tagged(&tree, 1)); item_kill_tree(&tree); } static void multiorder_tag_tests(void) { /* test multi-order entry for indices 0-7 with no sibling pointers */ __multiorder_tag_test(0, 3); __multiorder_tag_test(5, 3); /* test multi-order entry for indices 8-15 with no sibling pointers */ __multiorder_tag_test(8, 3); __multiorder_tag_test(15, 3); /* * Our order 5 entry covers indices 0-31 in a tree with height=2. * This is broken up as follows: * 0-7: canonical entry * 8-15: sibling 1 * 16-23: sibling 2 * 24-31: sibling 3 */ __multiorder_tag_test(0, 5); __multiorder_tag_test(29, 5); /* same test, but with indices 32-63 */ __multiorder_tag_test(32, 5); __multiorder_tag_test(44, 5); /* * Our order 8 entry covers indices 0-255 in a tree with height=3. * This is broken up as follows: * 0-63: canonical entry * 64-127: sibling 1 * 128-191: sibling 2 * 192-255: sibling 3 */ __multiorder_tag_test(0, 8); __multiorder_tag_test(190, 8); /* same test, but with indices 256-511 */ __multiorder_tag_test(256, 8); __multiorder_tag_test(300, 8); __multiorder_tag_test(0x12345678UL, 8); } static void multiorder_check(unsigned long index, int order) { unsigned long i; unsigned long min = index & ~((1UL << order) - 1); unsigned long max = min + (1UL << order); RADIX_TREE(tree, GFP_KERNEL); printf("Multiorder index %ld, order %d\n", index, order); assert(item_insert_order(&tree, index, order) == 0); for (i = min; i < max; i++) { struct item *item = item_lookup(&tree, i); assert(item != 0); assert(item->index == index); } for (i = 0; i < min; i++) item_check_absent(&tree, i); for (i = max; i < 2*max; i++) item_check_absent(&tree, i); for (i = min; i < max; i++) { static void *entry = (void *) (0xA0 | RADIX_TREE_EXCEPTIONAL_ENTRY); assert(radix_tree_insert(&tree, i, entry) == -EEXIST); } assert(item_delete(&tree, index) != 0); for (i = 0; i < 2*max; i++) item_check_absent(&tree, i); } static void multiorder_shrink(unsigned long index, int order) { unsigned long i; unsigned long max = 1 << order; RADIX_TREE(tree, GFP_KERNEL); struct radix_tree_node *node; printf("Multiorder shrink index %ld, order %d\n", index, order); assert(item_insert_order(&tree, 0, order) == 0); node = tree.rnode; assert(item_insert(&tree, index) == 0); assert(node != tree.rnode); assert(item_delete(&tree, index) != 0); assert(node == tree.rnode); for (i = 0; i < max; i++) { struct item *item = item_lookup(&tree, i); assert(item != 0); assert(item->index == 0); } for (i = max; i < 2*max; i++) item_check_absent(&tree, i); if (!item_delete(&tree, 0)) { printf("failed to delete index %ld (order %d)\n", index, order); abort(); } for (i = 0; i < 2*max; i++) item_check_absent(&tree, i); } static void multiorder_insert_bug(void) { RADIX_TREE(tree, GFP_KERNEL); item_insert(&tree, 0); radix_tree_tag_set(&tree, 0, 0); item_insert_order(&tree, 3 << 6, 6); item_kill_tree(&tree); } void multiorder_iteration(void) { RADIX_TREE(tree, GFP_KERNEL); struct radix_tree_iter iter; void **slot; int i, err; printf("Multiorder iteration test\n"); #define NUM_ENTRIES 11 int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128}; int order[NUM_ENTRIES] = {1, 1, 2, 3, 4, 1, 0, 1, 3, 0, 7}; for (i = 0; i < NUM_ENTRIES; i++) { err = item_insert_order(&tree, index[i], order[i]); assert(!err); } i = 0; /* start from index 1 to verify we find the multi-order entry at 0 */ radix_tree_for_each_slot(slot, &tree, &iter, 1) { int height = order[i] / RADIX_TREE_MAP_SHIFT; int shift = height * RADIX_TREE_MAP_SHIFT; assert(iter.index == index[i]); assert(iter.shift == shift); i++; } /* * Now iterate through the tree starting at an elevated multi-order * entry, beginning at an index in the middle of the range. */ i = 8; radix_tree_for_each_slot(slot, &tree, &iter, 70) { int height = order[i] / RADIX_TREE_MAP_SHIFT; int shift = height * RADIX_TREE_MAP_SHIFT; assert(iter.index == index[i]); assert(iter.shift == shift); i++; } item_kill_tree(&tree); } void multiorder_tagged_iteration(void) { RADIX_TREE(tree, GFP_KERNEL); struct radix_tree_iter iter; void **slot; int i; printf("Multiorder tagged iteration test\n"); #define MT_NUM_ENTRIES 9 int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128}; int order[MT_NUM_ENTRIES] = {1, 0, 2, 4, 3, 1, 3, 0, 7}; #define TAG_ENTRIES 7 int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128}; for (i = 0; i < MT_NUM_ENTRIES; i++) assert(!item_insert_order(&tree, index[i], order[i])); assert(!radix_tree_tagged(&tree, 1)); for (i = 0; i < TAG_ENTRIES; i++) assert(radix_tree_tag_set(&tree, tag_index[i], 1)); i = 0; /* start from index 1 to verify we find the multi-order entry at 0 */ radix_tree_for_each_tagged(slot, &tree, &iter, 1, 1) { assert(iter.index == tag_index[i]); i++; } /* * Now iterate through the tree starting at an elevated multi-order * entry, beginning at an index in the middle of the range. */ i = 4; radix_tree_for_each_slot(slot, &tree, &iter, 70) { assert(iter.index == tag_index[i]); i++; } item_kill_tree(&tree); } void multiorder_checks(void) { int i; for (i = 0; i < 20; i++) { multiorder_check(200, i); multiorder_check(0, i); multiorder_check((1UL << i) + 1, i); } for (i = 0; i < 15; i++) multiorder_shrink((1UL << (i + RADIX_TREE_MAP_SHIFT)), i); multiorder_insert_bug(); multiorder_tag_tests(); multiorder_iteration(); multiorder_tagged_iteration(); }